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In this article, a fast algorithm is developed to compute two-dimensional convolutions 
of an array of d 1· d 2 complex number points, where d 2 = 2m and d 1 = 2m -r+ 1 for some 
I ,.; r ,.; m. This new algorithm requires fewer multiplications and about the same number 
of additions as the conventional FFT method for computing the two-dimensional 
convolution. It also has the advantage that the operation of transposing the matrix of 
data can be avoided. 

I. Introduction 
Two-dimensional convolutions of two sequences of complex number points can be applied to many areas, in particular to the 

synthetic aperture radar (SAR) (Refs. l, 2). In SAR, a two-dimensional cross correlation of the raw echo data of complex 
numbers with the response function of a point target is required to produce images. When the two-dimensional filter does not 
change rapidly with the range, one can divide the entire range of echo data into several subintervals. Within each subinterval, one 
can use a constant filter function. This is accomplished usually by using the conventional fast Fourier transform (FFT). However, 
the FFT algorithm generally requires a large number of floating-point complex additions and multiplications. Also, the transpose 
of a matrix is usually required in the computation of such a two-dimensional convolution. 

Recently, Rader (Ref. 3) proposed that a number-theoretic transform (NIT) could be used to accomplish two-dimensional 
filtering. It was shown (Ref. 4) that an improvement, both in accuracy and speed, of two-dimensional convolutions could be 
achieved by transforms over a finite field GF(q) , where q is a prime of the form 45 X 229 + 1. However, to compute a 
two-dimensional convolution of two long sequences of an integer number of points, such a transform over a finite field did not 
allow for a wide variety of dynamic ranges. 

87 



More recently, Nussbaumer and Quandalle (Ref. 5) showed that a type of polynomial transform over the complex numbers 
could be used to efficiently compute two·dimensional convolutions. A principal advantage of this method over the above 
mentioned techniques is that the need for computing the transpose of matrix can be avoided. Furthermore, this hew method 
offers a wider variety of dynamic ranges. It was shown recently by Arambepola and Rayner (Ref. 6) that the ideas of Nussbaumer 
and Quandalle can be generalized to a radix·2 polynomial transform analogous to the conventional radix-2 FET. But they do not 
make use of the Chinese remainder theorem as it is shown in this article to further reduce the complexity of the algorithm. 

In this article, it is shown that a combination of a fast polynomial transform (FPT) and the Chinese remainder theorem (CRT) 
can be used to very efficiently compute a two-dimensional convolution of a d 1'd2 complex number array, where d

2
,= 2m and 

d
1 

= 2m - r + 1 for 1 ~r~m. Such a new algorithm requires considerably fewer multiplications and about the same number of 
additions as the conventional algorithm for the two-dimensional case. Therefore, it has the potential for important application in 
SAR. 

II. The Computation of Two-Dimensional Convolutions 

The following algorithm for a two·dimensional digital convolution is based on an important identity. Let d. be a power of 2 for 
I 

i = 1, 2 and let C be the field of complex numbers. Also let at1 ,t2 and b t1 ,t2 be two d l' d2 arrays, where 0 ~ tj ~ d j - 1 for 
i = 1,2. Then the two·dimensional cyclic convolution of a t1 ,t2 and btl> t2' where at1, t2' btl, t2 € C, is defined by 

Cn1 ,n 2 

d
1
-1 d

2
-1 

L: L a t1 •t2 b (n1-t1),(n2-t2)' 0 ~nj ~dj for i = 1,2 
t 1=0 t2=0 

where (n. - t.) denotes the residue of n. - t. modulo d. for i = I, 2. 
I I I I I 

Define 

d -1 d -1 
2 t 2 t 

At (Z) = L: at ,t Z 2 B t (Z) = L: b t ,t Z 2; 
1 t =0 1 2 1 t =0 1 2 

2 2 

d
2

-1 

C (Z) = L C Zn 2 , for 0 ~ n l' t 1 ~ d 1 - 1 n
1 

n 1,n
2 n 2 =0 

O~n2' t2 ~d2 - 1 

(1) 

(2) 

Nussbaumer and Quandalle (Ref. 5) expressed the two·dimensional convolution in Eq. (1) as a one-dimensional convolution of 
polynomials, i.e., 

d -1 (d -1 ) 1 2 . t 

Cn (Z) = L: L: at ,t Z 2 B(n -t ) (Z) 
1 t =0 t =0 1 2 1 1 

1 2 

(3) 
d -1 

1 ( d L: At (Z)B(n -t ) (Z) mod Z 2 
t =0 1 1 1 
1 

- 1) for 0 ~ n ~ d - 1 
1 1 

where Cn 1 (Z), A t1 (Z), Btl (Z) are defined in Eq. (2) and (n 1 - t 1) denotes the residue of n 1 - t 1 modulo d 1 . 
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If d
2 

= 2m and d I = 2m - r+ I for 1 < r < m, then one can factor Z d
2 - 1 into pairwise relatively prime factors as follows, 

d ( d 12 ) ( d 122 ) Z2-1=Z2+1 Z2 +1", Z2 +1 Z2 +1 Z2 -1 ( 
d 12 r-I ) ( d 12 r ) ( d 12 r ) 

Thus, Eq. (3) is equivalent to 

d -I 

Cn/Z) = tt At
l 

(Z)B(nl_t I) (Z) mod (zd2/
2 + 1) (zd2/

2
2 
+ 1) ... (zd2/

2r + 1) (zd 2/
2r - 1) (4) 

2 

Since (zd2/2 + 1), ... ,(Zd2/2
r 

- 1) are pairwise relatively prime, by the Chinese remainder theorem (CRT) for polynomials 
(Ref. 7), the polynomial congruences 

. ( d /2i ) C' (Z) == C (Z) mod Z 2 + 1 for i = 1, 2, ... ,r 
n l n I 

and 

* ( d 12
r 

) Cnl(Z) == C
nl 

(Z) mod Z 2 - 1 

have a unique solution Cn (Z) given by 
I 

r () d 2 d 2 
C (Z) == L: C i (Z) -~ Z ~ 1 + C* (Z) (_1_) Z - 1 mod l2 - 1 

nl ._ nl 2' Zd2/2 1 + 1 nl 2 r d /2 r 
I-I· Z 2 - 1 

(Sa) 

(5b) 

(6) 

Note that the arithmetic needed to compute Eq. (6) requires only cyclic shifts and additions. The number of real additions needed 
to compute Eq. (6) is 2rd2d I' 

The derivation of Ci (Z) in Eq. (Sa) proceeds in the following manner: 
nl 

c i (Z) == C (Z) mod (zd 2/
2i + 1) 

n I n l 

dl-I (d I2i ) 
== L: At (Z)B(n,_t)(Z)mod Z 2 + 1 

t =0 I I 
I 

dl-I 

L: 
t 1=0 

A:
I 

(Z)B/nl_tl)(Z) mod (Zd2/2i + 1 ) (7) 
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where A: (Z) is defined by 
1 

(d
2

/2 i)_1 

A: (Z) = :E (at ,t -atl,t2+d2/2i+atl,t2+2d2/2i '" 
1 t =0 1 2 

= 

2 

) 

t 
-a i+"'-a i iZ 2 

tl,t2+3d2/2 t 1,t2 (2 -l)d2/2 

( d
2

f2 i)-1 

:E 
t
2
=0 

ai zt2 
t
1
,t

2 
forl<.i<.r 

and B~ (Z) is obtained from the expression A ~ (Z) on replacing each a . . by b . . , that is, 
1 1 I,J I,J 

(d2/2i)-1 

Bi (Z) = " 
tl L.J 

t
2

=0 

. t 
b' Z 2 

t
1
,t

2 
for 1 <.i <.r 

d 12 i 
Note thatA~ (Z) andB~ (Z) are, respectively, At (Z) andBt (Z) reduced modulo(Z 2 + 1). 

1 1 1 1 

It was demonstrated in (Ref. 6) that a fast polynomial transform can be used to compute Eq. (7). Let us show this more 
carefully. Since d

2 
= 2m and d

1 
= 2m -,+1 for 1 <. r <.m, then d

2
/i- 1 = 2m -i+l = 2,-1 • 2m -'+1 = 2,-i d

1 
for i = 1,2,"', r. 

Note the identity 

d f2 i-I (d 12 i) 2 ( d 12 i ) 
Z 2 == Z 2 == (-I? == 1 mod Z 2 + I 

Also letj = 2,-i and define the d
1
-point/h power polynomial transform of A: (Z) and Bf (Z) by 

1 2 

i 
d 1-l (d

2
f2 )-1 i 

Ai (Z) == " Ai (Z) (Z/l
k 

== " 7/ Z2 mod (zd2/2 + 1) 
k L.J tl L.J k,2 

t
1
=0 2=0 

for 0 <. k <. d - 1 
1 

and 

d 1 -1 (d
2

/2 i)_1 i 

-. :E. - tl k :E -. n (d2f2 
) B' (Z) == B' (Z) (Z) == b' Z" mod Z + 1 

k tl k,2 
t 1 =0 2=0 

for 0 <. k <. d - 1 
1 ' 

respectively, where Z = Zi is the /h power of Z. Note by Eq. (8) that 

-d _fd 2,-ld d 12 i - 1 
( d f2i ) 

Z 1 == Z 1 == Z 1 == Z 2 == 1 mod Z 2 + 1 , for i = 1, 2, ... , r 
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The product of the transforms A~(Z) and B~(Z) is given by 

; 
( d

2/2 )-1 ; 

~(Z) == A~(Z)· B~(Z) == L c~.QZQ mod (Zd 2/2 + 1) 
Q=O 

One needs now to compute the inverse transform of C~(Z). That is, to compute 

c; (Z) 
n

1 

d -1 
1 1 - r L C~(Z)Z-knl 
1 k=O 

for 0 .;;;; k';;;; d 1 - 1 

1 .;;;; i';;;; r 

d
1
-l 

== d~1 L 
k=O 

(
d -1 ) (d -1 ) ~ A ~ (Z)ZSk • ~ B~ (Z)Zrk Z-kn 1 

d
1
-l d

1
-l d

1
-l ; 

L A~(Z)B~(Z) d L Z(s+r- nl)k mod (Zd 2 /
2 + 1) L 

s=O r=0 1 k=O 

Now let t = s + r - n 1 and note that 

d -1 
1 

1 _td 
S == __ " Z-tk = 1 Z 1 - 1 d LJ - ------~ 

1 k=O d 1 zt - 1 

- d
1 

(id1) t _ 1 

zt -1 - d
1 

( d /2 ;-1 ) t ( d /2; ) 
Z 2 _ - 1 == 0 mod Z 2 + 1 

zt - 1 
for ~ =F 0 mod d 1 

It is seen that S = 1 for t == 0 mod d
1 

and S = 0 for t =FO mod d
1

• Hence Eq. (11) yields the desired result, namely, 

d 1-1 ; ) 

C~ (Z) == L A~ (Z)B~n -t ) (Z) mod (Zd 2/
2 + 1 

1 t=O 1 1 1 
for 0 .;;;; n 1 .;;;; d 1 - 1, 1 .;;;; i .;;;; r 

where (n 1 - t 1) denotes the residue of (n 1 - t 1) modulo d 1 • 

(10) 

(II) 

(I 2) 

Since d
2 

= 2m and d 1 = 2m -r+ 1 for 1 .;;;; r .;;;; m the analogue of the conventional FFT algorithm can be utilized to realize the 
needed polynomial transforms Eqs. (9a) and (9b) and its inverse defined by Eq. (11). That is, in Eq. (9a) let the input data to the 
usual FFT jJe replaced by a sequence of polynomials over C, and let w, the usual d I-th complex root of unity, be replaced by Z, 
satisfying 'fd 1 = 1, and finally let the arithmetic operations on the complex number field be replaced by arithmetic operations in 
the field of polynomials. Then the polynomial transforms in Eqs. (9a), (9b), and (11) can be computed by the conventional FFT 
algorithm. The polynomial transform, obtained in this manner, is called the fast polynomial transform (FPT). The number of 
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operations needed to perform the polynomial transform defined in Eq. (9a) requires only (d2/2) . logd I cyclic shifts of 
polynomials and 2(d2/2) d I' log d I real additions. 

-. d /2( 
To compute Ck(Z), given in Eq. (10) for 0 ~ k '" d I - 1, one needs to compute a polynomial product mod Z 2 + 1. To do 

this directly takes a lengthy calculation. Using an idea, based on the work of Arambepola and Rayner (Ref. 6), this equation can 
be transformed into 

_. _. _. ( d /2i ) c; (cu) = A~ (cu) • B~ (cu) mod u 2 - 1 (13) 

by changing variables from Z to u with the mapping Z = cu, ':Vhere C is a d2/2-th primitive root of -1, i.e. /2/2i = -1. One can 
verify (Ref. 8) that the above polynomial product mod ud2 /21 - 1 can be obtained as a cyclic convolution of th~ two d2/2 /-point 
coefficients of the polynomialsA~(cu) and B~(cu). This is vastly simpler than finding the product modulo Zd2/2

1 + 1. 

In Eq. (13), one observes that 

(d2 /2
i
>-1 (d2/2

i
>-1 

1~ (cu) = 2: 71 (cu)Q = k,Q 2: ai uQ 
k,Q 

Q=o Q=O 

(14) 

(d2/2 />-1 (d 2/2
i
>-1 

B~ (cu) = 2: hi (cu)Q k,Q 2: 'hi uQ 
k,Q 

Q=O Q=O 

and 

(d2/2
i
>-1 (d

2
/2

i>-1 

Ci (cu) = "" ci (cu)Q = "" ci uQ 
k ~ ~Q ~ ~Q 

£=0 Q~O 

. 
h ..... 1 - Q-oJ ..... bi - Q-bi d ..... 1 - Q-i c 0 ~ Q ~ (d 12i) - 1 If d fi w ereak~-cak,Q' k,Q-c k,Q,an ck•Q-Cck•Qlor .......... 2 • one emes 

(d2 /2
i
>-1 (d2/2 i >-1 

A~ (u) = L ai,Q uQ
• Bi (u) = ~ 'hi,Q uQ

; 
Q=O Q=O 

(d2/2
i
>-1 

C: (u) = "" ..... i Q ~ ck,Q U (15) 
Q=O 

Then Eq. (13) becomes 

...... ........... ( d /2
1 

) c~(u) = A~(u) B~(u) mod u 2 - 1 (16) 

92 



The polynomial multiplication in Eq. (16) can be computed by the cyclic convolution of the two d2 /2i .point sequences, 
(a~,o;a~,l> "', a~,d2/2 i_I) and (b~,o, b~,1 .... ,b~,d2/2 i_I)' This cyclic convolution can be written as 

(d
2

/2 i)-1 

""i = 
Ck,Q 

'"' ~i ~bi C' 0 ..:: k ..:: d - 1 L..J a k,n k,(Q-n) lor ..... ..... I (17) 
n=O 

O~Q ~d2/i - 1 

where (Q - n) denotes the resid~e of (Q - n) modulo d2/2i and a~,k and b~,k are the coefficients of the 1HZ) and iiHZ), 
respectively. The convolution c~ Q in Eq, (17) can be computed by using the conventional FFT (Ref. 9). Thus, the desired 
quantities in Eq. (15), i.e.,0c Q for 0 ~ k ~ d l - 1, 0 ~ Q ~ d 2/2i - 1 are obtained from Ck,Q = c-Qc~ Q' The number of real 
multiplications and real additi~ns needed to compute Eq. (Sa) are d I (d2/2i-2) . log (d2/2i) + d I d2/2i.!..2 + 8d I (d2 /2i-l) and 
2d I d2 + (d2/2i- 2)d I . log d 1 + 6d I (d2/2') • log (d2/2'), for i = 1,2, ... ,r, respectively. 

The flow chart for computing C~(Z) is given in Fig. 1. 

Consider now the computation of C; (Z) in Eq. (Sb). That is, 
I 

dl-I ( d /2' ) C:
I 
(Z) = t~ A;I (Z) B;nl_t/Z) mod Z 2 - 1 

where 

I 

(d
2

/2')-1 

A; (Z) = 2: (atl ,t
2 

+atl ,t
2

+d
2
/2' +atl ,t

2
+2d

2
/2' 

1 t =0 
2 

= 

) 

t2 +a + ... +a Z , " t1,t2+3d2/2 t1,t2+(2 -1)d2/2 

(d
2
/2')-1 

2: 
t
2
=0 

a* i2 
t
l
,t

2 

and B;I (Z) is obtained from the expression A;1 (Z) on replacing each ai,i by bij , that is, 

(d2 /2')-1 

B* (Z) = '"' b* i2 
~ L..J ~,~ 

t
2
=0 

Evidently, C* (Z) in Eq. (18) is in the form of 
n l 

(d
2
/2')-1 

C* (Z) = '"' C i2 n1 L..J n1,n2 n
2
=0 

* * d /2i 
Note here that A t (Z) and B t (Z) are, respectively, A t (Z) and B t (Z) reduced modulo Z 2 + 1. 

I I 1 1 

(18) 
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In order to use the FPT technique to obtain Eq. (18), again use the idea of Arambepola and Rayner (Ref. 6). To compute Eq. 
(18), let Z = CU, where c is a d2/2r-th root of -1. By an argument similar to that used to obtain Eq. (12), (18) becomes 

d -1 . 1.. ( d /2
r 

) 
Cn1 (cu) = ~ Atl (cu)B(n1_t/cu) mod U 2 + 1 

1 

for 0 ~ n 1 ~ d 1 - 1 (19) 

In Eq. (19), one observes that 

(d2/2r)-1 
• t2 

(d2/2r)-1 
I t2 

A; (cu) = ~ a (cu) = ~ a· U 
1 t2=0 

t1,t2 t2=0 
t1,t2 

(20) 
(d2/2r)-1 

• t2 
(d2/2 r)-1 

I t2 
B; (cu) = ~ b (cu) = ~ b U 

1 t2=0 
t 1,t2 t2=0 

t1,t2 

and 

(d2/2r)-1 (d2/2r)-1 n2 
C· (cu) = ~ • n2 ~ 

I 
C (cu) = C 

U 
n1 n2=0 

n1,n2 n =0 
n1,n2 

.2 

h I - n2 • I - t2 • d b' -' t2b· &' 0 ~ ~ 0 ~ ~ / r werecn n -c cn n ,at t -c at t ,an t t -c t t Jor ""'" nl,t) """,d1 -I, ~n2,t2~d2 2-1 
1'2 1'21'2 1'2 1'2 1'2 

InEq.(20),defineA~ (u)=A; (cu),B~ (u)=B; (cu),and~ (u)=C~ (cu). Then Eq. (19) becomes 
1 1 1 1 1 1 

d 1-l ( r) I I I d /2 
Cn/u) = ~ A t /u)B(n

1
-t

1
)(u) mod u 2 + 1 

1 

for 0 ~ n 1 ~ d 1 - 1 

Using the same procedure used in the computation of Eq. (7), one obtains C~ (u). Hence, c~ n in Eq. (18) is obtained from 
1 l' 2 

the substitutions, C -n2c~ n' The number of real multiplications and real additions needed to compute Eq. (19) are d Id2/2r-2 + 
I' 2 

d1d2/2r-2 log (d2/2r) + 16 d 1(d2/2r - 1) and 2d1d2 + d 1(d2/2r- 2) log d 1 + 3d1(d2/2r- 1) log (d2 /2r), respectively. Hence the 

total number of real multiplications and real adtlitions needed to compute Eq. (4) are 8 d d(d2/2r+ 1 )(2r(1og d2 +3) +4) -

(d2 + r + 2)] and 2 . d 1 [d2(2r-4) + d2(2 . log d 1 - 1 + 3 . log d2) + 6 . d2/2r], respectively. The flowchart of this new algorithm 

is shown in Fig. 2. 

In the introduction it was stated that transposition of the data matrix, usually required in two-dimensional convolution, can be 

avoided in this new algorithm. Assume the data matrix for a typical array such as at t ,0 ~ tj ~ d j - 1 for i = 1,2, is arranged 
I' 2 

with t 1 indexing the row, t2 indexing the column. Then the polynomialA t1 (Z) of Eq. (2) is the t 1 th row of this matrix. The FPT 

of At (Z) can be implemented by a decimation-in-time algorithm analogous to the well-known conventional FFT one. An 
1 

example is given in the Appendix. This requires that only two polynomials (or rows) need be available for processing at anytime 
and the resulting two polynomials can replace the input ones. Consequently, no additional storage is required for the FPT, and the 
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data array need only be accessed by rows with replacement after processing, thus obviating the accessing of individual columns 
usually done in two dimensional convolution. 

In the Appendix, it is shown by an example how fast polynomial transforms can be combined with FFTs to yield a new fast 
algorithm for computing a two-dimensional convolution. The number of operations needed for this new algorithm to perform the 
two-dimensional convolutions of a d l ' d 2 array, where d 2 = 2m and d l = 2m -r+ 1 for 1 :0;;;;,:0;;;; m, is given in Table 1. In this table, 
the FPT-FFT algorithm and conventional FFT algorithm for computing the two-dimensional convolutions are compared by giving 
the number of operations to perform these algorithms. 

Table 1. Complexity of new algorithm for two-dImensional convolutions 

FPT-FFT-algorithm Radix-2 FFT algorithm 

Convolution size 
No. of factors of No. of real No. of real 

No. of real multiplication No. of real addition 
d=d l X d2 = 2m-r+l X 2m 

zd2_1=r+l multiplication addition 
4d l d2 (Iogd2 + 6d l d 2 (Iogd2 

for 1 <. r <. m log d l + 1) + logd l ) + 2 d l d 2 

27 X 29 4 2,747,392 5,537,792 4,456,448 6,422,528 

27 X 210 5 5,892,096 12,288,000 9,437,184 13,631,488 

211 X 211 2 234,831,872 457,179,136 385,875,968 562,036,736 

210 X 211 3 109,019,136 222,298,112 184,549,376 268,435,456 

28 X 212 6 55,035,904 118,882,304 88,080,384 127,926,272 

28 X 213 7 117,948,416 258,342,912 184,549,376 268,435,456 

27 X 213 8 58,842,112 129,073,152 88,080,384 127,926,272 
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1.".j 
d Bk(Z) 

1 

1 A!1 (Z) 

FAST POLYNOMIAL TRANSFORM OF 

Ai (Z), i.e., 
t 1 

• d1-l. dl7i 
A! (Z) =1; AI (Z) Zk tl MOD (Z Z - + 1) 
. lc t =0 tl 

1 
_d 

FOR 0 5 k S d
1 

- I, WHERE Z 1 = 1 

~(Z) 

TRANSFORMATION OF THE POLYNOMIAL 

POLYNOMIAL PRODUCTS, 
i . 1·· di2 

C~(Z) =dA~(Z) .~(Z) MOD (Z +1) INTO 
1 

i 
. 1.. di2 

"'WI -I -I 'Z' 
C

k 
(cu) =ciAk (cu) • Bk(cu) MOD (u - 1) 

1 

BY MAPPING Z = cu, WHERE 

di2i 

c = -1 FOR 0 S k 5 d
1 

- 1 

-i 
Ck(u) 

COMPUTATION e~ (u) BY THE FAST FOURIER 

TRANSFORM AND TRANSFORMATION OF 

C~ (Z) FROM e~ (u) BY THE SUBSTITUTION u = c -1 Z 

I 

C~(Z) 

INVERSE FAST POLYNOMIAL TRANSFORM 

OF C~(Z) OF DIM:NSIONALd1 

d (Z) 
n1 

Fig. 1. Computation of the cyclic convolution of two Z-polynomlals 

mod zd21'i + 1, I.e., CJ
1 

(Z) given In Fig. 2 by 

fast polynomial transforms 



A (Z) t, 

COMPUTATION OF 

d.j'l 
A (Z)MOO(Z -I) t, 

A: (Z) , 
TRANSFORMATION OF C* (Z) 

", 
d(' d.j2r 

= 2: At (Z) BC" _ t ) MOD Z - , INTO t, =0' " 

I 

dl -' d.j2r 
C* (cu) =2: A*(cu) B*( )(cu) MOD (fI- + ') 

", t,=O t, "1- tl 

d.j'l 
BY THE MAPPING Z = CU, WHERE c =-, 

COMPUTATION OF C' (u) BY THE FPT AND 

" 
TRANSFORMATION OF C* (Z) FROM c' (u) ", ", 
BY THE SUBSTITUTION u = c -, Z 

C* (Z) 

"," 
! 

COMPUTATION OF • 

di'21 

A; (Z) MOD (Z + I) 
, '~i~r 

A~,(Z) t-- - -i A~/Z) 
COMPUTATION OF d (Z) 

", 
dl-I.. d.j2 i 

= 2: A
t
l 

(Z) BI( -t) (Z) MOD (Z + I) t, = 0, "" 

BY THE FAST POLYNOMIAL TRANSFORM 

(FPT) FOR i ~ i ~ r 

C 1 (Z) ~ - - --I Cr 
(Z) 

", I I ", 

1-----

RECONSTRUCTION OF C (Z) BY 
", 

THE CHINESE REMAINDER THEOREM 

IC (Z) ", 

Fig. 2. Computation of a two-dimensional convolution of dimensional d
1
xd

2
, 

where d
2 
= 2m and d

1 
= 2m- r+1 for 1 :5 , :5 m 
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Appendix 

Example of a Two-Dimensional Convolution of 
Dimension Computed by the New Method 

Example: Compute the two-dimensional cyclic convolution of two sequences at t and bt t ,i.e., 
I' 2 I' 2 

4-1 

C - "" n
1

,n
2 

- L...J 
t
1
=0 

4-1 

"" at t b( -t) ( -t) forO~nl,n2 ~3 L...J l' 2 n 1 2' n2 2 
t
2
=0 

where (x) denotes the residue of x modulo 4 and where ao,o = Yo,o = 1, aO ,1 = bO,1 = 1, aO,2 = bO,2 = 0, aO,3 = bO,3 = 0, 
a1,0 = b1,o = 1, a1,1 = b1,1 = 1, a1,2 = b 1,2 = 1, a1,3 = b1,3 = 0, a2,0 = b2,o = 0, a2,1 = b2,1 = 0, a2,2 = b2,2 = 0, a2,3 = 

b2,3 = 0, a3 ,o = b3 ,0 = 0, a3 ,1 = b3 ,1 = 0, a3 ,2 = b3 ,2 = 0, a3 ,3 = b 3 ,3 = 0. 

Define 

A (Z) = 
tl 

4-1 4-1 
"" t2 _ "" t2 . L...J at t Z , B t (Z) - L...J b t t Z , 
t =0 l' 2 1 t =0 e 2 
2 2 

4-1 

Cn (Z) 
1 

= "" C Zn 2 ;-:0 n l,n 2 
for ° ~ n 1 ,t 1 ~ 3 

2 

(A-I) 

That is,Ao(Z) = Bo(Z) = 1 + Z,A 1 (Z) =Bl (Z) = 1 + Z + Z2,A 2(Z) =B2(Z) = 0,A 3(Z) = BiZ) = 0. From Eq. (4), (A-I) becomes 

4-1 

Cn (Z) = L At (Z) B(n -t )(Z) mod (Z2 - I)(Z2 + 1) 
1 t =0 1 1 1 

1 

(A-2) 

From Eqs. (Sa) and (Sb) one obtains 

4-1 

c1 (Z) = "" Al (Z) Bl _ (Z). mod (Z2 + 1) n1 L...J tl (n 1 t1) 
t
1
=0 

(A-3a) 

whereA~(Z) = B~(Z) = 1 + Z,A~(Z) = B~(Z) = Z,A~(Z) =B~(Z) = O,A~(Z) =B~(Z) = 0. 

and 

4-1 

C;(Z) = L A;/Z) BZn1- t1 ) (Z) mod (Z2 - 1) 
t
1
=0 

(A-3b) 

whereA~(Z) =B~(Z) = 1 + Z,A;(Z) =B;(Z) = 2 + Z,A;(Z) =B;(Z) = O,A;(Z) =B;(Z) = 0. 
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To compute Eq. (A-3a), one takes the Z polynomial transform of A: (Z) given by 
I 

4-1 t k 

Ak(Z).;:: LA: (Z)Z I mod(Z2 + 1) 
t =0 I 
I 

The flowgraph of the decimation-in·time decomposition of a four-point polynomial transform computation is given in Fig. I-A as 
Ao(Z) ;:: 1 + 2Z, AI(Z) ;:: Z, A 2(Z);:: 1, and AiZ) ;:: 2 + Z. Similarly, the Z polynomial transform ofBk(Z) are Bo(Z);:: 1 + 2Z, 
BI (Z);:: Z,B2(Z);:: 1, and B3(Z);:: 2 + Z. 

Let 

Ck(Z) ;:: Ak(Z)' Bk(Z) mod (Z2 + 1) for k ;:: 0,1,2,3 (A4) 

If one uses the mapping Z;:: iu, where ;.2 ;:: -1 then Eq. (A4) becomes 

Ck(iu) ;:: Ak(iu) . Bk(iu) mod (u2 - 1) for 0"';; k"';; 3 (A-S) 

For t;:: 0, Eq. (A-S) becomes 

CO(iu) == Ao(iu) . Bo(iu) == (1 + 2iu)(1 + 2iu) mod (u2 - 1) (A-6) 

The FFT can be used to compute Eq. (A-6). That is, let ao ;:: 1, a l ;:: 2i, bo ;:: 1, b l ;:: 2i. The transform of an is 

2-1 
A ;:: ~ w

nk 
k L.J an ;:: 

2-1 

L an(-l)nk ;:: 1 + 2i(-I)k for k;:: 0,1 (A-7) 
k=0 n=O 

The radix-2 FFT algorithm is used to compute Eq. (A-7). The results are Ao ;:: 1 + 2i and A I ;:: 1 - 2i. Similarly, one obtains Bo ;:: 
1+2iandBI ;::1-2i.LetCo ;::A o 'Bo ;::-3+4i,andCI ;::A I 'B I ;::-3-4i.TheinverseFouriertransformofCk is 

2-1 2-1 -nk 
cn;::T I LCkW ;::T I Lck(-l)-nk 

k=O k=0 

(A-S) 
;:: TI [(-3 + 4i) + (-3 - 4i)(-1)-n] for n;:: 0,1 

Again, the radix-2 FFT algorithm is used to compute Eq. (A-8). That is, Co ;:: -3 and c i ;:: 4i. Thus, Co(iu);:: -3 + 4iu mod (u2 -

1). Hence, one obtains Co(Z);:: -3 + 4r 1iZ;:: -3 + 4Z mod (Z2 + 1). 

Similarly one obtains C1 (Z) ;:: -1, C2(Z) ;:: 1, and C3(Z);:: 3 + 4Z. The inverse polynomial transform of Ck(Z) is given by 

4-1 _ -n k 
C 1 (Z) ;:: 4- 1 ~ C (Z) . Z 1 

n 1 L.J k 
(A-9) 

k=O 

The FPT is used to compute Eq. (A·9). The results in Eq. (A-3) are C~(Z);:: 2Z, C~(Z);:: -2 + 2Z, C~(Z) ;:: -1, and C~(Z) ;:: 0. 
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To compute Eq. (A-3b), one needs to use the mappingZ = iu. Then Eq. (A-3b) becomes 

4-1 

C* (iu) == L A; (iu) B(*n -t ') (iu) 
n 1 1 =0 1 1 1 

1 

==C +ic* !-l mod(u2 +I) forO~nl~3 
n 1'0 n 1 '1 (A-IO) 

where A~(iu) = B~(iu) = 1 + iu, A; (iu) = B;(iu) = 2 + iu, A;(iu) = B;(iu) = O,A;(iu) = B;(iu) = O. 

Let A~(u) = B~(u) = 1 + iu, A ~ (u) = B~ (u) = 2 + iu, A~(u) = B~(u) = O,A~(u) = B~(u) = 0 and c'n (u) = c~ + c~ u for 0 ~ 
./ h' * d ' . * E ( 0) b 1 1,0 1,0 n

l
"",3,werecn =Cn ancn =ICn .Hence,q.A-I ecomes 

1,0 1,0 1,1 1,0 

4-1 

C~ (u) = L A~ (u) B~ -1 )(u) mod (u2 + 1) 
1 1 =0 1 nIl 

1 

(A-ll) 

Equation (A-II) can be computed by the FPT. This yields c'o(u) = 2 + 2iu, c'1 (u) = 6 + 6 iu, c'2(u) = 5 + 4 iu, and c'3(u) = O. 
Hence 

C~(Z) = c'o(r l Z) = 2 + 2Z, C;(Z) = C;(i-l Z) = 6 + 6Z; 

C;(Z) = C;(i- lZ) = 5 + 2Z, C;(Z) = C;W' I Z) = 0 (A-I2) 

From Eq. (6), one obtains 

C (Z) = .!. r C * (Z) (Z2 + 1) + C l (Z)(I - Z2)] mod (Z4 - 1) 
n 1 2 L nl nl 

for 0 ~1l1~ 3 

where C,: (Z) and C: (Z) are defined in Eqs. (A-3a) and (A-3b), respectively. Thus, the desired results are Co(Z) = 1 + 2Z + Z2, 
Cl (Z) = 'i + 4Z + 4zi + 2Z3, C2(Z) = 2 + 2Z + 3Z2 + 2Z3, and C3(Z) = O. Hence co,o = 1, cO,1 = 2, CO,2 = 1, cO,3 = 0, cl ,o = 2, 

Cl ,1 =4,C l ,2 =4,Cl ,3 =2,c2,0 =2,c2,1 =2,c2,2 =3,c2,3 =2,c3,o =0,c3,1 =0,C3,2 =0,andc3,3 =0. 
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