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Abstract

The dimensional accuracy of a simple benchmark specimen fabricated with fused �lament fabrication (FFF) route is 
discussed in the present study. FFF is a low-cost 3D-printing process that builds complicated parts by extruding molten 
plastic. Experimental method was designed according to Taguchi robust design based on an orthogonal array with 
nine experiments  (L9 orthogonal array). The printing material was the polylactic acid (PLA). First, Grey–Taguchi method 
was used for the identi�cation of the optimal printing parameter levels which result in the best dimensional accuracy 
for the PLA FFF parts. The printing parameters selected included number of shells, printing temperature, in�ll rate and 
printing pattern; they were selected in accordance with relevant studies already published. Then, in the second phase, 
nine specimens were fabricated using the same optimal printing parameter values determined in the �rst phase. The 
tolerance of these specimens was characterized according to international tolerance grades (IT grades). Data analysis 
showed that nozzle temperature is the dominant parameter. Additionally, the parts printed using the optimized process 
parameter levels possess good dimensional accuracy, which is compatible with the IT grades speci�cation.
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1 Introduction

Unlike conventional subtractive manufacturing processes, 
Fused Filament Fabrication (FFF) or Fused Deposition Mod-
elling (FDM) is an Additive Manufacturing (AM) method 
that creates physical objects by melted material deposi-
tion layer by layer [1–5]. As a 3D printing procedure, FFF 
offers several advantages such as producing complex 
geometries with shorter cycle time and lower cost com-
pared to other traditional manufacturing processes [6–8].

Dimensional accuracy is crucial in any manufacturing 
process as it is an indicator of how close a dimension of a 
fabricated piece to the nominal dimension of the designed 

part is [9]. Tolerance is also very important for every manu-
factured part, because it is essential for mechanical assem-
blies such as shafts and holes [10]. Although FFF method 
has a lot potential advantages, a limiting aspect of its 
industrial rejection is the obtainable accuracy of the manu-
factured models [11]. This is the reason why dimensional 
accuracy of models produced by FFF technology and the 
factors which a�ect it, are major issues of examination in 
the literature.

Mohamed et al. [12] reviewed the literature concern-
ing the determination and the optimization of the FDM 
process parameters. Notable research work has been 
done for improving the mechanical properties and part 
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quality of FDM ABS parts using statistical design opti-
mization. It is concluded that modelling and optimiza-
tion of FDM process with other significant FDM materials 
such as PC, PC-ABS, PPSF, etc., has not been attempted. 
Moreover, characterization and optimization of FDM 
process parameters in terms of other properties using 
statistical experiment design and optimization tech-
niques do not exist in the literature. Turner and Gold 
[13] reviewed studies related to surface roughness and 
dimensional accuracy of parts fabricated with the use 
of FDM process. They found that dimensional accuracy 
and surface roughness depend on system parameters, 
such as the ability of control system to manage the flow 
rate of the material from the print nozzle. Additionally, 
thermal warping and shrinkage seem to play an impor-
tant role. Dey and Yodo [14] reviewed a number of FDM 
process parameters and their impact on dimensional 
accuracy, surface finish and mechanical properties. They 
concluded that in terms of dimensional accuracy, layer 
thickness is one of the most examined and dominant 
factors. Moreover, high dimensional accuracy is achieved 
with low layer thickness, number of shells and extru-
sion temperature values. The impact of many process 
parameters such as infill pattern and raster width on 
dimensional accuracy needs further research. Valerga 
et al. [15] investigated the effect of process parame-
ters and material characteristics of FDM PLA parts on 
dimensional accuracy, surface quality and mechanical 
strength. The results showed that the extrusion tem-
perature is the most influential parameter, while the 
pigmentation of the material and the environmental 
humidity where it has been stored are also important. 
Moza et al. [16] studied the dimensional accuracy of FFF 
parts using two printing materials, PLA and ABS. The 
experimental results indicated that the dimensional 
accuracy in XY plane is mainly affected by the printing 
material (39.9%), followed by infill rate (23.9%), number 
of shells (22.5%) and layer thickness (13.7%). Addition-
ally, PLA was found to have better dimensional accuracy 
than ABS. Zero values of deposition angle were used. 
Sudin et al. [9] investigated the dimensional accuracy of 
parts produced using the FDM process. They found that 
the machine’s tolerance has a significant effect on the 
dimensional accuracy of the FDM parts. Moreover, the 
FDM machine was found to be less accurate in produc-
ing circular parts such as cylinder, sphere and hole, as 
the majority of them are out of the machine’s tolerance. 
Minetola and Galati [10] investigated the dimensional 
accuracy and the form errors of geometrical features of 
four different low cost 3D printers. The benchmarking 
results showed that the most effective modifications of 
the original printer were those related to the improve-
ment of the structure stiffness and chatter reduction. 

Alafaghani et al. [17] investigated the effect of six (6) 
process parameters (building direction, infill percent, 
print speed, extrusion temperature, layer height and 
infill pattern) on dimensional accuracy and mechanical 
properties of FDM PLA parts. They used an  L18 experi-
mental array. They concluded that dimensional accuracy 
is affected more by building direction, extrusion temper-
ature and layer height than infill percentage, infill pat-
tern, and printing speed. Data analysis was not applied 
in this research; only some effect graphs. Alafaghani and 
Qattawi [18] used Taguchi’s DOE to investigate the main 
effects of four processing parameters (infill percentage, 
infill pattern, layer thickness, and extrusion temperature) 
of the PLA filament FDM process. They showed that lower 
values of extrusion temperature, layer thickness and 
infill percentage along with hexagonal infill pattern are 
required for better dimensional accuracy. On the other 
hand, in order to increase the strength of FDM parts, 
higher extrusion temperature, optimized layer thickness, 
triangular infill pattern and higher infill percentage are 
needed. Mahmood et al. [19] investigated extensively 
the geometrical characteristics of ABS filament FDM 
printed parts. A prototype with simple geometric fea-
tures was designed, which allowed measurements for 
both dimensional accuracy and geometric properties. 
Deposition angle was set at zero for all the experiments. 
Statistical analysis was utilized for the determination 
of the process parameter levels which affect most the 
geometrical properties of the designed prototype. They 
concluded that the number of shells (E), was the most 
important factor affecting the dimensional accuracy of 
the printed part. This was followed by the inset distance 
multiplier (G), the space between adjacent shells, cham-
ber temperature (A), infill shell spacing multiplier (F), the 
amount of overlap between the innermost shell and the 
adjacent infill extrusion and the infill density (K). These 
five factors were found to be the most sensitive for the 
identification of the part’s printing accuracy. Layer thick-
ness proved that was not so important in this research. 
Vishwas et al. [20] optimized the process parameter lev-
els for FDM printed parts in terms of dimensional accu-
racy and tensile strength. They utilized ABS and Nylon as 
printing materials and Taguchi‘s  L9 orthogonal array. The 
process parameters were orientation angle, layer thick-
ness and shell thickness. They found that in case of ABS 
0.2 mm layer thickness, 300 orientation angle and 0.8 
mm shell thickness gave the best dimensional accuracy, 
whereas in case of Nylon, the corresponding levels were 
0.3 mm layer thickness, 150 orientation angle and 0.4 
mm shell thickness.

The following conclusions can been drawn from the 
above literature review:
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1 Sti�ness and chatter reduction of 3D printers should 
be improved in order to achieve better process perfor-
mance [10].

2 Geometrical features and deposition angle (orienta-
tion of STL model) are very important for the quality 
performance of 3D printed parts [9, 18]. Optimization 
of these parameters is needed before the 3D printing 
process starts.

3 Layer thickness has small e�ect on XY plane dimen-
sional accuracy, when zero values of deposition angle 
are used [16, 19]. When deposition angle is changed, 
e�ect of layer thickness on XY plane dimensional accu-
racy is observed [10, 17, 18]; in these cases smaller val-
ues of layer thickness give the best performance.

4 Number of shells, in�ll rate, and printing (in�ll) pattern 
a�ect signi�cantly the process quality performance 
[9–12, 14, 16–20].

Based on the above conclusions, an experiment for 
optimizing the FFF process’ dimensional accuracy was 
designed using four (4) process parameters (number of 
shells, printing nozzle temperature, in�ll rate and print-
ing pattern. Deposition angle and layer thickness were 
held constant (zero angle and 0.2 mm, correspondingly) 
throughout the whole process. As it is mentioned above, 
when zero values of deposition angle are used, layer thick-
ness has small e�ect on XY plane dimensional accuracy 
[16, 19]. PLA material was used as the printing material as 
it was found to give better dimensional accuracy perfor-
mance [16].

For optimization purposes, an  L9 orthogonal array (OA) 
was designed and nine (9) parts were built as the �rst run. 
Then, Grey Taguchi approach was used along with ANOM 
and ANOVA techniques to identify the process parameters 
which a�ect the dimensional accuracy and to establish an 
optimal selection of them. After the selection of the best 
printing parameter levels, nine (9) new parts (replicas) 
were printed as a second run, using only these particular 
printing parameter values. Finally, international tolerance 
(IT) grade was used for specifying the tolerances of these 
nine replicas. To the best of authors’ knowledge, the toler-
ance characterization of FFF PLA parts printed with the use 
of the optimized printing parameters levels has not been 
addressed before.

2  Experimental procedure

2.1  Preparation of 3D printed PLA specimens

In this investigation, a 3D model was created, consisting 
of a square base with three orthogonal parallelepiped 
features. The nominal dimensions of these parallelepiped 

features for X and Y directions are shown in Fig. 1. The 
base’s height is 2 mm, while feature’s height is 5 mm. 
This 3D model was designed by Solidworks software 
and it was extracted in STL format. The 3D printer which 
was used was Wanhao Duplicator 4X (Fig. 2) [16], while 
the printing material was polylactic acid (PLA). PLA is a 
thermoplastic polyester and it is produced by renewable 
resources such as corn starch, tapioca roots or sugarcane 
[21]. MakerBot Print desktop application was also used for 
preparing, managing and monitoring all 3D prints. At the 
�rst attempt of this project, nine specimens were printed 
(Fig. 3). Di�erent combination of process parameters’ val-
ues was used each time, according to  L9 Taguchi design. 

Fig. 1  Printed model and feature dimensions

Fig. 2  Wanhao duplicator 4X 3D printer [16]
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These nine specimens were used for the parameters’ opti-
mization. At the second run, after the selection of the best 
process parameter levels according to the Grey Taguchi 
study that has been executed (see Sect. 3), nine new parts 
were printed using the same 3D model and printer.

2.2  Preparation of 3D printed PLA specimens

The dimensional accuracy of parts created using FFF tech-
nology is a�ected strongly by the process parameters’ 
values that are selected during the printing process (see 
Sect. 1). Τhe process parameters whose impact on the 
dimensional accuracy is studied here are: number of shells, 
printing temperature, in�ll rate and printing pattern. For 
experimentation, two or three levels have been selected 
for each printing parameter. Table 1 outlines the FFF print-
ing parameters and their levels that are used in this study. 
The process parameters are brie�y de�ned as follows:

• Number of shells: It is a key parameter which de�nes 
the outline shape and inner support structure of an 
object. At least one shell is needed for printing an 
object and additional shells add strength and weight 
but increase the printing time [22].

• Printing temperature: It is the temperature that the 
material is heated to during the printing process. The 
recommended printing temperature for PLA is 195– 
230 °C [23].

• In�ll rate: It is the ratio of printed material to air volume 
and its value vary from 0 to 100%. It controls the �nal 
mass density of the 3D printed part. Once selected, the 
in�ll value is constant throughout the fabricated object 
and cannot be altered mid-print [24].

• Printing pattern: It is the geometric pattern that it is 
used in the printing process [25]. The capitals letters 
assigned as: D for diamond �ll, E for hexagonal and R 
for linear.

As it is analyzed in Sect. 1, a number of process param-
eters such as deposition angle, layer thickness and print-
ing speeds were held constant throughout the printing 
process. These parameters and their values are:

• Deposition angle: 0°
  The value of this parameter should be chosen before 

the start of the printing process, according to geometri-
cal features and shape of the model [9, 18].

• Layer thickness: 0.2 mm
  When deposition angle is zero, layer thickness has 

small e�ect on XY plane dimensional accuracy [16, 19].
• Printing material: PLA
  PLA material was found to give better dimensional 

accuracy [16].
• Printing speeds

• Travel speed: 150 mm/s
 This speed occurs when printer is not extruding 

material.
• In�ll printing speed: 90 mm/s
• Shell printing speed: 40 mm/s
    In general, speed and material’s deposition volume 

are related. These parameters are very important 
and are associated with sti�ness and printer‘s design 
[10]. They are kept constant, because when they are 
increased, the quality and the dimensional accuracy 
of the printed models become worse. Analytical and 
arithmetical models should be developed in order to 
optimize these parameters.

• Printing table temperature: 70 °C
• Environment temperature: 25 °C

2.3  Design of experiments (�rst run)

In this research, Taguchi’s orthogonal array has been used 
for the design of experiments. Taguchi’s design is gener-
ally adopted by a number of researchers in order to make 

Fig. 3  Printed parts for process optimization (�rst run)

Table 1  Di�erent process parameters and their levels

Process parameters Levels

1 2 3

Number of shells (–) 2 3 –

Printing temperature (°C) 210 220 230

In�ll rate (%) 10 15 20

Printing pattern (–) D E R
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experiments with smaller number of trials [26–28]. This 
method provides an e�cient and systematic approach to 
optimize a number experiments and the utility to study 
the interaction e�ects among parameters [29]. In Tagu-
chi design, selection of the proper orthogonal array is a 
very important issue in order to obtain valid conclusions. 
Since there is one factor with two levels and three factors 
with three levels, the appropriate orthogonal array for this 
case is  L9. Many researchers have utilized the  L9 orthogo-
nal array for the optimization of various manufacturing 
processes. Singh et al. [30] used an  L9 array to optimize 
the dimensional accuracy and surface roughness of an 
Investment Casting (IC) printed implant. Sundaramoor-
thy et al. [31] investigated the optimum tool wear of CNC 
milling magnesium silicide alloys with the use of Taguchi’s 
 L9 orthogonal array. Satyanarayana et al. [32] studied the 
optimized laser welding process parameters for P92 steel 
using an  L9 array and modi�ed Taguchi design of experi-
ments. The  L9 orthogonal array with all process parameters 
and their levels that has been used in this study is shown 
in Table 2.

2.4  Dimensional measurement techniques (�rst 
and second run)

For all nine components, both in the case of using  L9 
DOE and the best parameter levels in printing, dimen-
sions of the three features were measured in X and Y 
direction (see Fig. 1). Three measurements were con-
ducted for every direction and their average value was 
calculated. Next, dimensional deviation was computed, 
which shows the difference between the nominal and 
the average measured values and represents dimen-
sional accuracy of the parts. The goal here is to find the 
process parameter levels that minimize dimensional 
deviation for both directions, then using these levels 
for printing new parts and study their dimensional 

deviation and tolerance. A micrometre with 0–25 mm 
range and 0.01 mm accuracy was used for the dimen-
sional measurements. Average dimension values, nomi-
nal dimension values and deviation of each feature for 
the nine DOE parts are shown in Table 3 (first run).

3  Statistical analysis of DOE parts (�rst run)

3.1  Grey Taguchi approach

The Taguchi method optimizes single response perfor-
mance, but for multiple responses optimization gets 
complex [33]. In this case, grey relational analysis optimi-
zation methodology is recommended. The Grey–Taguchi 
approach is an advanced form of the Taguchi method. It 
is used for the optimization of more than one responses 
rather than optimizing a single response as in case of 
the classic Taguchi approach [34]. In this investigation, 
Grey–Taguchi method is employed to �nd the best level 
arrangement of both X and Y dimensional deviation of all 
three features.

In the grey Taguchi method, all dimensional deviation 
results (six in total, see Table 3) are �rst normalized to a 
range of 0–1. Then, the grey relational coe�cient is calcu-
lated in order to relate the desired and actual normalized 
data. Next, the grey relational grade is derived, by aver-
aging the previous calculated grey relational coe�cient 
values. The optimization of the grey relational grade is 
equivalent with the optimization of the multiple process 
responses. The optimum printing parameter levels are 
computed by maximizing the grey relational grade [35, 
36]. The normalized deviation values which correspond to 
the smaller-the-better are expressed as:

where xij is the normalized deviation value, minyij is the 
lowest value of ith experiment in the jth response and 
maxyij is the highest value of ith experiment in the jth 
responce. Table 4 shows the normalized deviation results 
of all the experiments.

The grey relational coe�cient � can be calculated as:

where Δij =
|
|
|
x
0j − xij

|
|
|
 , Δ

min
 = min Δij  for all i and j, 

Δ
max

 = max Δij for all i and j while ζ is called distinguishing 
coe�cient (0 ∼ 1) . The value of the distinguishing coe�-
cient is considered as 0.5 in this research. The grey rela-
tional coe�cient values are tabulated in Table 5.

(1)xij =
max yij − yij

max yij −min yij

(2)�ij =
Δmin + �Δmax

Δij + �Δmax

Table 2  L9 experimental design for selected process parameters 
and their levels

Exp. no. Number of 
cells (–)

Τemperature 
(°C)

Ιn�ll (%) Pattern (–)

1 2 210 10 E

2 2 220 15 D

3 2 230 20 R

4 3 210 15 R

5 3 220 20 E

6 3 230 10 D

7 2 210 20 D

8 2 220 10 R

9 2 230 15 E
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The grey relational grade can be derived as:

(3)�i =

n
∑

i=1

�ij

Table 6 shows the grey relational grade calculation 
results of each  L9 orthogonal array’s experiment and 
their optimization order.

Table 3  Dimensional accuracy 
measurement results for nine 
printed parts (�rst run)

Feature Nominal dimension (mm) Measured dimension (mm)

X direction Y direction X direction Y direction

Average Deviation Average Deviation

A 5 20 5.063 0.063 19.940 0.060

5.063 0.063 19.850 0.150

5.040 0.040 19.890 0.110

5.113 0.113 19.990 0.010

4.963 0.037 19.930 0.070

5.090 0.090 20.030 0.030

5.070 0.070 19.920 0.080

5.257 0.257 19.890 0.110

5.007 0.007 19.920 0.080

B 15 15 14.855 0.145 14.905 0.095

14.825 0.175 14.915 0.085

14.875 0.125 15.055 0.055

14.845 0.155 15.045 0.045

14.785 0.215 14.895 0.105

14.950 0.050 15.005 0.005

14.750 0.250 14.865 0.135

14.825 0.175 14.970 0.030

14.750 0.250 14.975 0.025

C 25 5 24.670 0.330 5.107 0.107

24.610 0.390 5.087 0.087

24.800 0.200 5.100 0.100

24.640 0.360 5.127 0.127

24.750 0.250 5.040 0.040

24.670 0.330 5.067 0.067

24.650 0.350 5.113 0.113

24.670 0.330 5.043 0.043

24.640 0.360 5.020 0.020

Table 4  Normalized deviation 
values xij

Feature A Feature B Feature C

X direction Y direction X direction Y direction X direction Y direction

0.7733 0.6429 0.5250 0.3077 0.3150 0.1875

0.7733 0.0000 0.3750 0.3846 0.0000 0.3750

0.8667 0.2857 0.6250 0.6154 1.0000 0.2500

0.5733 1.0000 0.4750 0.6923 0.1579 0.0000

0.8800 0.5714 0.1750 0.2308 0.7368 0.8125

0.6667 0.8571 1.0000 1.0000 0.3158 0.5625

0.7467 0.5000 0.0000 0.0000 0.2105 0.1250

0.0000 0.2857 0.3750 0.8077 0.3158 0.7813

1.0000 0.5000 0.0000 0.8462 0.1579 1.0000
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3.2  ANOM and ANOVA for grey relational grade 
results

In this study, the statistical analysis and the plots were 
conducted with the use of Minitab 17 Statistical Soft-
ware. Table 7 outlines the mean grey relational grade 
values calculated with the Analysis of Means (ANOM). 
It has been revealed that temperature is the most influ-
ential printing parameter followed by number of cells, 
pattern and infill. The optimal parameter levels are those 
that have the highest grey relational grade value as it is 
shown in the plot of means (Fig. 4). These levels are: (a) 
Number of cells: 3, (b) Temperature: 230 °C, (c) Infill: 10%, 
(d) Pattern: E.

Table 5  Grey relational 
coe�cient � results

Feature A Feature B Feature C

X direction Y direction X direction Y direction X direction Y direction

0.6881 0.5833 0.5128 0.4194 0.4222 0.3809

0.6881 0.3333 0.4444 0.4483 0.3333 0.4444

0.7895 0.4118 0.5714 0.5652 1.0000 0.4000

0.5396 1.0000 0.4878 0.6190 0.3725 0.3333

0.8065 0.5385 0.3774 0.3939 0.6552 0.7272

0.6000 0.7778 1.0000 1.0000 0.4222 0.5333

0.6637 0.5000 0.3333 0.3333 0.3878 0.3636

0.3333 0.4118 0.4444 0.7222 0.4222 0.6957

1.0000 0.5000 0.3333 0.7647 0.3725 1.0000

Table 6  Grey relational grade 
calculation results

Exp. no. Number of 
cells (–)

Τemperature (°C) Ιn�ll (%) Pattern (–) Grey relational 
grade

Order

1 2 210 10 E 0.5011 7

2 2 220 15 D 0.4487 8

3 2 230 20 R 0.6230 3

4 3 210 15 R 0.5587 5

5 3 220 20 E 0.5831 4

6 3 230 10 D 0.7222 1

7 2 210 20 D 0.4303 9

8 2 220 10 R 0.5049 6

9 2 230 15 E 0.6618 2

Table 7  Response table for the mean (ANOM) values of the grey 
relational grade

Level Number of cells Temperature (°C) In�ll (%) Pattern

1 0.5283 0.4967 0.5761 0.5337

2 0.6213 0.5122 0.5564 0.5820

3 – 0.6690 0.5455 0.5622

Delta 0.0931 0.1723 0.0306 0.0483

Rank 2 1 4 3

Fig. 4  Plot of means for grey relational grade

Table 8  Response table for ANOVA of grey relational grade

Source df Adj. SS Adj. MS F value P value

Number of cells 1 0.017319 0.017319 176.81 0.048

Temperature (°C) 2 0.054492 0.027246 278.16 0.042

In�ll (%) 2 0.001446 0.000723 7.38 0.252

Pattern 2 0.003534 0.001767 18.04 0.164

Error 1 0.000098 0.000098 – –

Total 8 0.076890 – – –
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The purpose of the Analysis of Variance (ANOVA) is to 
investigate which process parameters a�ect signi�cantly 
the dimensional accuracy. Two values, the F and P value 
are computed for this reason. High F values imply that a 
parameter is important; so do small P values (P < 0.05). The 
ANOVA results for grey relational grade are tabulated in 
Table 8. It is appeared that the temperature is the most 
in�uential parameter (F = 278.16, P = 0.042 < 0.05), followed 
by number of cells (F = 176.81, P = 0.048 < 0.05). The other 
two process parameters are not so important. It should be 
noted that the ANOM gave the same results as ANOVA in 
terms of process parameter signi�cance.

4  Tolerance grade study of optimized parts 
(second run)

In this research, a multi-response optimization was exe-
cuted regarding dimensional deviations for two dimen-
sions, using Grey Taguchi approach and statistical anal-
ysis. The whole study showed that the optimal printing 
parameters which result in best dimensional accuracy are: 
(a) Number of cells: 3, (b) Temperature: 230 °C, (c) In�ll: 
10%, (d) Pattern: E (see Sect. 3.2). Nine parts were printed 
using only these particular process parameter levels with 
the same design and 3D printer as the ones used in DOE 
parts (see Sect. 2.1). Features A, B and C of the new parts 
were measured in X and Y direction. Three measurements 
were taken for every direction again. Table 9 shows the 
highest and lowest measured dimensional values and their 
deviation for the three features in X and Y direction.

Table 9  Highest, lowest 
and deviation values of the 
measured dimensions of the 
optimized parts

Feature Nominal dimension (mm) Measured dimension (mm)

X direction Y direction X direction Y direction

Min Max Deviation Min Max Deviation

A 5 20 5.02 5.03 0.01 19.96 19.99 0.03

5.01 5.02 0.01 19.96 19.98 0.02

5.00 5.03 0.03 19.98 19.99 0.01

5.00 5.01 0.01 19.98 19.99 0.01

5.03 5.05 0.02 20.00 20.01 0.01

5.01 5.01 0.00 19.99 20.01 0.02

5.02 5.05 0.03 20.00 20.02 0.02

5.01 5.03 0.02 19.98 19.99 0.01

5.01 5.02 0.01 20.00 20.01 0.01

B 15 15 15.01 15.02 0.01 15.02 15.04 0.02

15.01 15.02 0.01 15.04 15.04 0.00

15.03 15.05 0.02 15.02 15.03 0.01

14.98 14.99 0.01 14.99 15.01 0.02

14.99 14.99 0.00 15.00 15.01 0.01

15.03 15.06 0.03 14.99 15.00 0.01

15.01 15.02 0.01 15.02 15.03 0.01

15.02 15.03 0.01 15.01 15.03 0.02

14.99 15.02 0.03 14.98 14.99 0.01

C 25 5 24.82 24.85 0.03 5.06 5.08 0.02

24.83 24.85 0.02 5.06 5.09 0.03

24.85 24.86 0.01 5.05 5.06 0.01

24.83 24.84 0.01 5.01 5.04 0.03

24.85 24.85 0.00 5.06 5.07 0.01

24.85 24.86 0.01 5.06 5.06 0.00

24.85 24.87 0.02 5.07 5.08 0.01

24.88 24.88 0.00 5.04 5.07 0.03

24.86 24.88 0.02 5.08 5.09 0.01
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In all manufacturing processes, especially additive manu-
facturing, deviations from the nominal dimensions cannot 
be avoided due to number of reasons. These deviations from 
the nominal should not exceed a speci�c limit, in order that 
the manufactured component is able to �t. International 
tolerance (IT) grade numbers, according to ISO 286 -1:2010, 
de�ne whether a manufactured part lies within the desired 
tolerance or not [37]. For sizes up to 3150 mm there are 
twenty IT values, IT01, IT0, IT1,.…, IT18; the lower the IT grade 
is, the higher is the precision of a machining process [38]. In 
this section, the tolerance grade calculations for the parts 
that were printed with the optimized parameter levels is pre-
sented. The process tolerance (T) was calculated as follows:

where D is the geometrical mean dimension in mm and is 
calculated by the function:

where D
min

 and D
max

 are the limits of the dimension range. 
The n value is calculated as:

where D
msmax

 is the highest measured dimensional value 
of all nine parts and D

msmin
 is the lowest measured dimen-

sional value of all nine parts (see Table 9).
All values of n were calculated and the corresponding IT 

grades have been obtained for all the items printed with the 
optimal parameter levels. The results are shown in Table 10. 
It has been observed that IT grades for X direction range 
between IT9 and IT11. In case of Y direction, IT grades are 
between IT 9 and IT12. The IT grades of the components 
printed with the optimal printing parameter levels are con-
sistent with the permissible range of tolerance grades as per 
ISO standard UNI EN 20286-I (1995).

5  Conclusions

In the present study, the e�ect of four process parame-
ters namely number of shells, printing temperature, in�ll 
rate and printing pattern on the dimensional accuracy of 

(4)T =
n

0.45
3
√

D + 0.001D

(5)D =

√

D
min

D
max

(6)n = 1000
(

D
msmax

− D
msmin

)

FFF build parts was studied. Two levels were speci�ed for 
number of shells, while printing temperature, in�ll rate and 
printing pattern had three levels. Taguchi’s  L9 design of 
experiment was used along with grey Taguchi approach in 
order to �nd the optimum factor levels (�rst phase). Impor-
tant process parameters, such as deposition angle and 
layer thickness were hold constant, due to their predict-
able e�ect on dimensional accuracy according to previous 
studies. After the selection of the parameter levels which 
gave the best dimensional accuracy, in a second phase, 
nine parts were printed using only these optimum levels. 
The tolerance of these nine parts was analyzed using the 
international tolerance grade. Summarizing the present 
research, the following conclusions may be drawn:

1 Analysis of Means showed that the levels which mini-
mize dimensional deviation are: (a) Number of cells: 3, 
(b) Printing temperature: 230 °C, (c) In�ll rate: 10%, (d) 
Printing pattern: E.

2 The Analysis of Variance indicated that the factor 
which a�ects most dimensional accuracy is tempera-
ture, followed by number of cells, printing pattern and 
in�ll rate.

3 The new nine parts printed using the optimal print-
ing parameter levels (second phase of experiments) 
possess better dimensional accuracy compared to 
the parts printed using Taguchi’s  L9 design of experi-
ment (�rst phase). This is evident from the values tabu-
lated in Tables 3 and 9; dimensional deviation reaches 
the value of 0.1 mm in the case of Taguchi’s  L9 DOE, 
whereas in the case of the optimal printing parameter 
levels, the deviation values range between 0.00 mm 
and 0.03 mm.

4 In the case of international grade study, it was revealed 
that the nine parts printed with the optimum process 
parameter levels possess IT grades between IT9 and 
IT12. This �nding implies that these parts are consist-
ent with the permissible range of standard tolerance 
grade as per ISO standard UNI EN 20286-I (1995).

As future perspectives, the optimization of surface 
roughness of the  L9 DOE parts and the optimization of 
both dimensional accuracy and surface roughness for the 
same parts may be mentioned. Grey Taguchi approach can 
be used for both cases.

Table 10  D and T values with 
international tolerance (IT) 
grade

Feature X direction Y direction

D value T value IT grade D value T value IT grade

A 4.2426 68.2376 IT11 23.2379 45.8935 IT9

B 13.4164 73.8896 IT11 13.4164 55.4172 IT10

C 23.2379 45.8935 IT9 4.2426 109.1801 IT12



Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1016 | https://doi.org/10.1007/s42452-020-2823-z

Compliace with ethical standards 

Conflict of interest The authors declare that they have no con�ict of 
interest.

References

 1. Huang SH, Liu P, Mokasdar A, Hou L (2013) Additive manu-
facturing and its societal impact: a literature review. Int J Adv 
Manuf Technol 67:1191–1203. https ://doi.org/10.1007/s0017 
0-012-4558-5

 2. Gurrala PK, Regalla SP (2014) Multi-objective optimisation of 
strength and volumetric shrinkage of FDM parts: a multi-objec-
tive optimization scheme is used to optimize the strength and 
volumetric shrinkage of FDM parts considering di�erent pro-
cess parameters. Virtual Phys Prototyp 9:127–138. https ://doi.
org/10.1080/17452 759.2014.89885 1

 3. Jiang J, Lou J, Hu G (2019) E�ect of support on printed proper-
ties in fused deposition modelling processes. Virtual Phys Proto-
typ 14:308–315. https ://doi.org/10.1080/17452 759.2019.15688 
35

 4. Zhang X, Chen L, Mulholland T, Osswald TA (2019) Characteri-
zation of mechanical properties and fracture mode of PLA and 
copper/PLA composite part manufactured by fused deposition 
modeling. SN Appl Sci 1:616. https ://doi.org/10.1007/s4245 
2-019-0639-5

 5. Vidakis N, Vairis A, Petousis M, Savvakis K, Kechagias J (2016) 
Fused deposition modelling parts tensile strength characterisa-
tion. Acad J Manuf Eng 14:87–94

 6. Levy GN, Schindel R, Kruth JP (2003) Rapid manufacturing and 
rapid tooling with layer manufacturing (LM) technologies, state 
of the art and future perspectives. CIRP Ann Manuf Technol 
52:589–609. https ://doi.org/10.1016/S0007 -8506(07)60206 -6

 7. Mohan N, Senthil P, Vinodh S, Jayanth N (2017) A review on 
composite materials and process parameters optimisation for 
the fused deposition modelling process. Virtual Phys Prototyp 
12:47–59. https ://doi.org/10.1080/17452 759.2016.12744 90

 8. Srivastava M, Rathee S (2018) Optimisation of FDM process 
parameters by Taguchi method for imparting customised prop-
erties to components. Virtual Phys Prototyp 13:203–210. https 
://doi.org/10.1080/17452 759.2018.14407 22

 9. Sudin MN, Shamsudin SA, Abdullah MA (2016) E�ect of part 
features on dimensional accuracy of FDM model. ARPN J Eng 
Appl Sci 11:8067–8072

 10. Minetola P, Galati M (2018) A challenge for enhancing the 
dimensional accuracy of a low-cost 3D printer by means of 
self-replicated parts. Addit Manuf 22:256–264. https ://doi.
org/10.1016/j.addma .2018.05.028

 11. Boschetto A, Bottini L (2016) Design for manufacturing of sur-
faces to improve accuracy in fused deposition modeling. Robot 
Comput Integr Manuf 37:103–114. https ://doi.org/10.1016/j.
rcim.2015.07.005

 12. Mohamed OA, Masood SH, Bhowmik JL (2015) Optimization of 
fused deposition modeling process parameters: a review of cur-
rent research and future prospects. Adv Manuf 3:42–53. https ://
doi.org/10.1007/s4043 6-014-0097-7

 13. Turner BN, Gold SA (2015) A review of melt extrusion additive 
manufacturing processes: II. Materials, dimensional accuracy, 
and surface roughness. Rapid Prototyp J 21:250–261. https ://
doi.org/10.1108/RPJ-02-2013-0017

 14. Dey A, Yodo N (2019) A systematic survey of FDM pro-
cess parameter optimization and their influence on part 

characteristics. J Manuf Mater Process 3:64. https ://doi.
org/10.3390/jmmp3 03006 4

 15. Valerga AP, Batista M, Salguero J, Girot F (2018) Influence of 
PLA filament conditions on characteristics of FDM parts. Mate-
rials 11:1322. https ://doi.org/10.3390/ma110 81322 

 16. Moza Z, Kitsakis K, Kechagias J, Mastorakis N (2015) Optimiz-
ing dimensional accuracy of fused filament fabrication using 
Taguchi design. In: 14th international conference on instru-
mentation, measurements, circuits and systems

 17. Alafaghani A, Qattawi A, Alrawi B, Guzman A (2017) Experi-
mental optimization of fused deposition modelling pro-
cessing parameters: a design-for-manufacturing approach. 
Procedia Manuf 10:791–803. https ://doi.org/10.1016/j.promf 
g.2017.07.079

 18. Alafaghani A, Qattawi A (2018) Investigating the effect of 
fused deposition modeling processing parameters using 
Taguchi design of experiment method. J Manuf Process 
36:164–174. https ://doi.org/10.1016/j.jmapr o.2018.09.025

 19. Mahmood S, Qureshi AJ, Talamona D (2018) Taguchi based 
process optimization for dimension and tolerance control for 
fused deposition modelling. Addit Manuf 21:183–190. https 
://doi.org/10.1016/j.addma .2018.03.009

 20. Vishwas M, Basavaraj CK, Vinyas M (2018) Experimental investi-
gation using Taguchi method to optimize process parameters 
of fused deposition modeling for ABS and nylon materials. 
Mater Today Proc 5:7106–7114. https ://doi.org/10.1016/j.
matpr .2017.11.375.21

 21. Chaidas D, Kitsakis K, Kechagias J, Maropoulos S (2016) The 
impact of temperature changing on surface roughness of 
FFF process. In: IOP conference series: materials science 
and engineering 161:012033. https ://doi.org/10.1088/1757-
899x/161/1/01203 3

 22. Chai X, Chai H, Wang X et al (2017) Fused deposition modeling 
(FDM) 3D printed tablets for intragastric floating delivery of 
domperidone. Sci Rep 7:2829. https ://doi.org/10.1038/s4159 
8-017-03097 -x

 23. Yao T, Deng Z, Zhang K, Li S (2019) A method to predict the 
ultimate tensile strength of 3D printing polylactic acid (PLA) 
materials with different printing orientations. Compos Part 
B Eng 163:393–402. https ://doi.org/10.1016/j.compo sites 
b.2019.01.025

 24. Ricotti R, Ciardo D, Pansini F et al (2017) Dosimetric charac-
terization of 3D printed bolus at different infill percentage for 
external photon beam radiotherapy. Phys Med 39:25–32. https 
://doi.org/10.1016/j.ejmp.2017.06.004

 25. Lubombo C, Huneault MA (2018) Effect of infill patterns on 
the mechanical performance of lightweight 3D-printed cel-
lular PLA parts. Mater Today Commun 17:214–228. https ://doi.
org/10.1016/j.mtcom m.2018.09.017

 26. Kechagias J, Aslani KE, Fountas NA, Vaxevanidis NM, Manola-
kos DE (2020) A comparative investigation of Taguchi and 
full factorial design for machinability prediction in turning 
of a titanium alloy. Measurement 151:107213. https ://doi.
org/10.1016/j.measu remen t.2019.10721 3

 27. Zhou X, Hsieh SJ, Ting CC (2018) Modelling and estimation of 
tensile behaviour of polylactic acid parts manufactured by 
fused deposition modelling using finite element analysis and 
knowledge-based library. Virtual Phys Prototyp 13:177–190. 
https ://doi.org/10.1080/17452 759.2018.14426 81

 28. Padhi SK, Sahu RK, Mahapatra SS et al (2017) Optimization 
of fused deposition modeling process parameters using a 
fuzzy inference system coupled with Taguchi philosophy. Adv 
Manuf 5:231–242. https ://doi.org/10.1007/s4043 6-017-0187-4

 29. Cruz Sanchez FA, Boudaoud H, Muller L, Camargo M (2014) 
Towards a standard experimental protocol for open source 

https://doi.org/10.1007/s00170-012-4558-5
https://doi.org/10.1007/s00170-012-4558-5
https://doi.org/10.1080/17452759.2014.898851
https://doi.org/10.1080/17452759.2014.898851
https://doi.org/10.1080/17452759.2019.1568835
https://doi.org/10.1080/17452759.2019.1568835
https://doi.org/10.1007/s42452-019-0639-5
https://doi.org/10.1007/s42452-019-0639-5
https://doi.org/10.1016/S0007-8506(07)60206-6
https://doi.org/10.1080/17452759.2016.1274490
https://doi.org/10.1080/17452759.2018.1440722
https://doi.org/10.1080/17452759.2018.1440722
https://doi.org/10.1016/j.addma.2018.05.028
https://doi.org/10.1016/j.addma.2018.05.028
https://doi.org/10.1016/j.rcim.2015.07.005
https://doi.org/10.1016/j.rcim.2015.07.005
https://doi.org/10.1007/s40436-014-0097-7
https://doi.org/10.1007/s40436-014-0097-7
https://doi.org/10.1108/RPJ-02-2013-0017
https://doi.org/10.1108/RPJ-02-2013-0017
https://doi.org/10.3390/jmmp3030064
https://doi.org/10.3390/jmmp3030064
https://doi.org/10.3390/ma11081322
https://doi.org/10.1016/j.promfg.2017.07.079
https://doi.org/10.1016/j.promfg.2017.07.079
https://doi.org/10.1016/j.jmapro.2018.09.025
https://doi.org/10.1016/j.addma.2018.03.009
https://doi.org/10.1016/j.addma.2018.03.009
https://doi.org/10.1016/j.matpr.2017.11.375.21
https://doi.org/10.1016/j.matpr.2017.11.375.21
https://doi.org/10.1088/1757-899x/161/1/012033
https://doi.org/10.1088/1757-899x/161/1/012033
https://doi.org/10.1038/s41598-017-03097-x
https://doi.org/10.1038/s41598-017-03097-x
https://doi.org/10.1016/j.compositesb.2019.01.025
https://doi.org/10.1016/j.compositesb.2019.01.025
https://doi.org/10.1016/j.ejmp.2017.06.004
https://doi.org/10.1016/j.ejmp.2017.06.004
https://doi.org/10.1016/j.mtcomm.2018.09.017
https://doi.org/10.1016/j.mtcomm.2018.09.017
https://doi.org/10.1016/j.measurement.2019.107213
https://doi.org/10.1016/j.measurement.2019.107213
https://doi.org/10.1080/17452759.2018.1442681
https://doi.org/10.1007/s40436-017-0187-4


Vol.:(0123456789)

SN Applied Sciences (2020) 2:1016 | https://doi.org/10.1007/s42452-020-2823-z Research Article

additive manufacturing. Virtual Phys Prototyp 9:151–167. https 
://doi.org/10.1080/17452 759.2014.91955 3

 30. Singh J, Singh R, Singh H (2017) Dimensional accuracy and sur-
face �nish of biomedical implant fabricated as rapid investment 
casting for small to medium quantity production. J Manuf Pro-
cess 25:201–211. https ://doi.org/10.1016/j.jmapr o.2016.11.012

 31. Sundaramoorthy R, Ravindran R (2019) Tool wear optimization 
in CNC milling operation of Al–Mg2Si alloys by Taguchi method. 
SN Appl Sci 1:1093. https ://doi.org/10.1007/s4245 2-019-1100-5

 32. Satyanarayana G, Narayana KL, Nageswara Rao B (2019) Opti-
mal laser welding process parameters and expected weld bead 
pro�le for P92 steel. SN Appl Sci 1:1291. https ://doi.org/10.1007/
s4245 2-019-1333-3

 33. Chen KT, Kao JY, Hsu CY, Da Hong P (2019) Multi-response opti-
mization of mechanical properties for ZrWN �lms grown using 
grey Taguchi approach. Ceram Int 45:327–333. https ://doi.
org/10.1016/j.ceram int.2018.09.170

 34. Singh R, Rashmi Bhingole P, Avikal S (2018) Gray based Taguchi 
optimization for heat treated welded joint. Mater Today Proc 
5:19156–19165. https ://doi.org/10.1016/j.matpr .2018.06.270

 35. Sood AK, Ohdar RK, Mahapatra SS (2009) Improving dimensional 
accuracy of fused deposition modelling processed part using 

grey Taguchi method. Mater Des 30:4243–4252. https ://doi.
org/10.1016/j.matde s.2009.04.030

 36. Aslani KE, Vakouftsi F, Kechagias JD, Mastorakis NE (2020) Sur-
face roughness optimization of poly-jet 3D printing using Grey 
Taguchi method. In: 2019 international conference on control, 
arti�cial intelligence, robotics & optimization (ICCAIRO), pp 
213–218. https ://doi.org/10.1109/ICCAI RO479 23.2019.00041 

 37. Singh R, Garg H, Singh S (2018) Process capability comparison 
of fused deposition modelling for ABS and Fe–nylon (6) feed-
stock �laments. Mater Today Proc 5:4258–4268. https ://doi.
org/10.1016/j.matpr .2017.11.690

 38. Kitsakis K, Kechagias J, Vaxevanidis N, Giagkopoulos D (2016) 
Tolerance assessment of polyjet direct 3D printing process 
employing the IT grade approach. Acad J Manuf Eng 14:62–69

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional a�liations.

https://doi.org/10.1080/17452759.2014.919553
https://doi.org/10.1080/17452759.2014.919553
https://doi.org/10.1016/j.jmapro.2016.11.012
https://doi.org/10.1007/s42452-019-1100-5
https://doi.org/10.1007/s42452-019-1333-3
https://doi.org/10.1007/s42452-019-1333-3
https://doi.org/10.1016/j.ceramint.2018.09.170
https://doi.org/10.1016/j.ceramint.2018.09.170
https://doi.org/10.1016/j.matpr.2018.06.270
https://doi.org/10.1016/j.matdes.2009.04.030
https://doi.org/10.1016/j.matdes.2009.04.030
https://doi.org/10.1109/ICCAIRO47923.2019.00041
https://doi.org/10.1016/j.matpr.2017.11.690
https://doi.org/10.1016/j.matpr.2017.11.690

	On the application of grey Taguchi method for benchmarking the dimensional accuracy of the PLA fused filament fabrication process
	Abstract
	1 Introduction
	2 Experimental procedure
	2.1 Preparation of 3D printed PLA specimens
	2.2 Preparation of 3D printed PLA specimens
	2.3 Design of experiments (first run)
	2.4 Dimensional measurement techniques (first and second run)

	3 Statistical analysis of DOE parts (first run)
	3.1 Grey Taguchi approach
	3.2 ANOM and ANOVA for grey relational grade results

	4 Tolerance grade study of optimized parts (second run)
	5 Conclusions
	References


