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ABSTRACT 

Since Newton, the stumbling block in celestial mechan- 

ics has been the three-body problem. Only restricted cases 

have yielded solutions. This paper describes a device, the 

“Lie-Series,“that first appeared in Lie’s work on analytical 

transformations; Grobner has shown that they can be used 

to solve systems of differential equations by applying dif- 

ferential operators to known functions or to invert systems 

of analytical functions. The series are applied to Kepler’s 

problem of an undisturbed planet round the sun (two-body 

problem), to the study of perturbations, and to the process 

of obtaining the characteristics for any general dynamical 

problem. 
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ON THE APPLICATION OF LIE-SERIES 

TO THE PROBLEMS OF CELESTIAL MECHANICS* 

by 
Karl Stumpff 

Goddard Space Flight Center 

DEFINITION AND PROPERTIES OF LIE-SERIES 

The main problem of celestial mechanics is the study of the motions in space of n mass 

points that attract one another according to Newton’s law of gravitation. This problem can be 

solved for n = 2, but for n 2 3 no general solutions exist that are valid for any values of the 

masses, initial conditions, and range of time. Since Newton, many attempts have been made to 

construct solutions for special cases, for instance, the solar system or the sun, earth, and moon 

system. The difficulty of solving the II -body problem justifies introducing any new mathematical 

method that gives deeper insight and facilitates solution. 

Recently, a new method has been proposed by Wolfgang Grobner (Reference 1). He uses the 

“Lie-Series” in solving a restricted class of differential equations. It is not yet clear that this 

new method is better than others; it has not been sufficiently used. But it is worthwhile to give a 

summary of the technique. The Lie-Series were originated by the celebrated Norwegian mathema- 

tician Sophus Lie, but they appear only incidentally in his works on analytical transformations. 

Their usefulness in solving problems like those of celestial mechanics was ascertained by Profes- 

sor Grobner . 

Suppose that 

6,(z) = si (z,. Z2’... ‘2”) 

are II functions of the II complex variables zk, and are holomorphic (i.e., can be developed into 

regular and convergent power series) within a certain neighborhood G around the position 

*This paper originares from lectures given at rhe Goddard Space Flight Center, Laboratory for Theoretical Studies, in February and 
March, I $167. 

1 



Define the operator D as 

a 
D = + e”(z) az (1) 

n 

This operator can be applied to any function f(z) that is holomorphic in G. Applying this operator 

repeatedly on f ( z ) gives 

D’f = D(Df). D3f = D(D*f) , 

and so on. Define a Lie-Series as 

co 

c 
tY t* 

L(z,t) = ,ID”f(z) = 1 T tD+FD 2 + . . . 1 f(z) 9 V=O (2) 

and write it symbolically 

L = erD f(z) 

This series is holomorphic in the region G and converges for all values of 1 t / smaller than a 

certain positive number T. The proof is left to the mathematicians. We shall assume that there 

is always a positive radius of convergence, no matter how small. 

The fundamental properties of the Lie-Series can be derived from the algebraic behavior of 

the operator D . It is enough to write down the principal aspects of the algebra. The following rules 

can easily be demonstrated: 

D[f, (2) 7 f&>] = Df, (z) + Df,(z) , 

D [c f (z >] = cDf(z) , 

DC z 0. 

D[f,W . f2 Cd] = flDf2(z) + f2Dfl(z) 1 

II 

D”[f, (2). f+)] = 
c 

(;)D” f, (z) D”-a f, (z) . 

-=tl 

From these, rules for the Lie-Series can be generated, for instance: 

etD[c,fl(z) + ... + cnfn(z)] = c,efD fl(z)f ... + cn et’ f”(z) 

ecD[f,(z) . f?(z) ... f”(z)] = [etD fl(z)] . [e’Df2(z)] ... [et’ f,(z)] 



These two relations illustrate the following remarkable theorem: 

“The Lie-Series of a sum or a product of different functions is equal to the sum or the 

product of the Lie-Series of the components.” 

This statement generalizes to the important rule 

etDP f ( 1' f,, . . . , f J = P(etD f,, etD f,, . . . , etD f,) , 

i.e. the Lie-Series of a polynomial P is equal to the polynomial of the Lie-Series. This law is also 

valid for any analytical function of the zk. If we let z stand for zl, z2, . . . , z,, and F(Z) for 

Fh, 229 . . . , 2”)) we may write 

e’“F(z) = F(etD z) or etDF[f(z)] = F[etD f(z)] ; (3) 

i.e., the symbol e tD and the function symbol F can be interchanged. This “rule of interchanging” 

is one of the most useful features of Lie-Series. The proof follows from the assumed uniform 

convergence of the Lie-Series within the region of their validity. Consider the simple example 

where z is a single complex variable (the operator D = d/dz). Then 

Dz = 1, D”z = 0 for n = 2, 3, . 

and 

.tD z z (1 + tD)z = ztt . 

The rule of interchanging gives 

or 

F(etD z) = eLDF(z) , 

m 

F(z + t) = 
c 

t” 
,!FcY) (z) > 

v=o 

i.e., the well known Taylor series, which may be considered as a special Lie-Series. It is easy to 

extend these considerations to functions of several variables. 

The above simple application of the rule of interchanging shows that Lie-Series can demonstrate 

certain analytical properties in a very direct manner. This is still true when solving systems of 

first-order differential equations. 

Consider the equations 

dz. i = 1, 2 ,...( n , 

1 = B,(z) ; dt (z) = (zl, z*, . . . ‘2”) . 

I 



The functions Bi( Z) are holomorphic in a certain region G, and do not explicitly contain the 

independent variable t. Such a system is called “autonomous.” (Non-autonomous systems can 

easily be reduced to autonomous ones, so that restriction to autonomous systems is not essential.) 

To solve the system in Equation (4) let the differential operator D be 

D = W)& + e2( 

where 

is a position in the region G that provisionally may be considered as variable but independent 

of the time. Then 

‘i = +i (5, t) = etD ci (i = 1, 2, . , n) 

are n holomorphic functions of time t and of position b which, for t = 0, take the values 

Differentiating zi with respect to time gives 

dz 
--L 

dt = De’“ci = etDDci , 

according to the rule of interchanging. But because 

Wi = e,(c) ; 

therefore, 

i.e. the functions 

dz 
1 = etDOi([) dt = Bi(etD 5) = B;(z) 1 

zi = etD ci 
(5) 

are solutions of Equations 4, with the initial conditions zi( 0) = Ci. The 5 i are to be considered 

as variables during the application of the operator D, but after having performed all partial 



differentiations connected with this application they must be replaced by the constant values Ci 

prescribed by the initial conditions of the problem. 

If the system of differential equations is not autonomous, then 

dz. 
1 

dt = oi(z,t) I 

where the functions Bi are holomorphic in a certain region G of the complex variables zl, z2,. . . , 

=“) t. Now introduce, only by a change of notation, the new variable z. = t , which is the solution 

of the equation d~,/dt = 1, with the initial condition (z~)~=;= 0 . This allows the nonautonomous 

system of n equations to be replaced by the autonomous system of n+l equations 

dz. 
1 
dt = Bi (ZJ I (i. = 0, 1, 2, . . . , n) 

with 0,~~) = 1. This system can be solved using the differential operator 

,, = ++ 
” 

0 c 
i=l 

in the same manner as before. 

The Lie-Series is applied here to a simple problem. Let A be the time, or another independent 

variable replacing the time, and let z(h) be a real or complex function of A. Then, if ,* is a 

positive constant, 

z ” + a22 = 0, z’ = g 

is the differential equation of a harmonic oscillation with the period %/a. This problem can be 

solved directly by classical methods; however, we shall here use Lie-Series. The second-order 

differential equation is replaced by a system of two first-order differential equations: 

dz 
dX = Y = 0, (z, Y) I 

dy 
-&- = -a*z = 8, (z, y) . 



We let ( 5, 7) be a certain position in the (z, y)-space, and use the operator 

a a 
D = 77x-a2<a7) . 

Solving Equation 6, with the initial conditions 

for A = 0, gives 

z = .ADc = 1 tk+Il* t *.. 
I 

5 . 

It is easy to apply the operator on 5, as in this case D has a simple linear form. Indeed, we get 

W = T 

D2< = D?j = -a*< , 

D3<. = -a*Dc = -a*~ , . . . 

and generally 

D*"< = (-l)"a*"< , DZn+l 
5 = (-1)" a2"7J 

Therefore, the solution z is given by 

A2 x3 x4 
z = 5 t Arj -~a*< -z a*~ +=a45 t **- 

A4a4 A3CL2 X5a4 
4!- --* -7+ XT-- -*- > 

or 

7) 
2 = 5 COS~A +nsmah , 

with the initial conditions’ 

z(O) = 5, ( ) go = -q . 

This is the well-known general solution of Equation 6. 

(7) 

(8) 



I- 

Suppose that the general solution of a system of differential equations 

dzi 
dt = ei (2) 

” 

D = 
c 
i=l 

4 
and 

the Ci being the coordinates of a certain point of the region G, in which the functions Bi( z) are 

holomorphic. Then every analytical function F(Z) of the solutions zk is holomorphic in G, and 

may be written as a Lie-Series 

F(z) = etDF(<) = 2 sDY[F(5)] 

“=O 

This means that we can formally write down the development of any function F(Z) without having 

explicitly calculated the solutions zk . Among these functions F, there are some for which 

“F(5) = 0. 

These are called “characteristics” or “integrals” of the problem. Indeed, if F is a characteristic, 

then 

F(z) = e’“F(5) = F(5) 

i.e., F(Z) is constant on every trajectory z = Z( t ) which solves the problem. The last section of 

this paper discusses methods of constructing all the characteristics of a given system of differential 

equations. 

APP&lCATlON TO KEPLER'S PROBLEM 

The preceding section presented symbolically the general solution of a system of first-order 

differential equations with the aid of Lie-Series. Suppose that the equations are of the form 

5 I - 
dt = eicz) = eitzl, z2, . . . ,q , i = 1,2 ,_._, n , 

7 



the zi being complex or real coordinates, and the Bi being functions that are holomorphic within 

a neighborhood G around a certain position ( 5) = (5,) C,, . . . , <J. The solutions of this system 

can be expressed by the Lie-Series 

zi = e (t-to)D 5i ’ 

where 

is an operator, and zi (t O) = ci are the initial conditions. All operations refer to 5 as a variable, 

but afterwards 5 must be replaced by its constant value 5 = z (t O). 

We may use this method to solve Kepler’s problem of the undisturbed motion of a planet 

around the sun. The heliocentric rectangular coordinates of the planet being x1, x2, x3, the 

differential equations of the problem are 

xi 
Ri t- 

r3 
= 0, r =pEqT i = 1, 2, 3, (9) 

if the units are canonic, i.e., if they are determined so that the gravitational constant k = 1, and 

the sum of the masses M+m = 1. These equations may be written as a system of the first-order 

equations: 

ki = ui ( 

(10) 

If the initial conditions for t = to are 

(xi) 0 
= gi > (“i)o = 77i ? 

the differential operator will be 

and the solutions which correspond to the conditions are 

xi = eTD ci I ui = eTD Ti , 7 = t-t0 . 

8 



Carrying out the partial differentiations involved in the first of these formulas (the second is no 

absolutely needed) gives the well-known development of the undisturbed planetary coordinates in 

a power series of intermediate time 7 = t - to. Unfortunately, this development is useful only 

for small intermediate times. For large T, higher-order terms in the series are needed, the 

expressions for the coefficients of T” become complicated for large n, and the convergence of 

the series is poor. However, if we introduce independent variable h , where 

dX 1 -=- 
d-r r 1 (11) 

the operator D becomes linear. The resulting solutions converge for all values of A and may be 

written in closed form. Indeed, with pseudo-time A as independent parameter (x' = dx/dA) , 

Equations 9 change into linear ones, X: + aZxi = pi = const. , a2 = l/a = const., a being the 

major semiaxis of a conic section; and, instead of Equation 10, 

x; = ui ( 

u! = I -a2xi + pi 

Another interesting method (Reference 2) of solving this problem makes use of the Levi-Civita 

transformation of the plane (x1, x2) -coordinates, 

which leads to the equations 

g t “2Ci = 0, u2 = & = const. 

that are identical with Equation 6, and have the general solutions given in Equation 7, 

qi 

5i = ci coswh t ; sin& I 

with the initial conditions of Equation 8: 

IL-.. - 



Kepler’s problem of the undisturbed motion of two bodies in a heliocentric system requires 

six integrals. The integral constants are the six elements of the orbit 

a, e, T; i, a, w 

The first three of these are independent of the choice of coordinate system; the last three 

are not. The first three are essential, as they determine the shape and the spatial extension of 

the orbit and its relation to the current of time. The last three, however, are merely directions 

for imbedding the orbit into an arbitrary given system of reference. Therefore to solve Kepler’s 

problem it is sufficient to reduce the system of differential equations to one of the third order, 

using only variables that are independent of the system of coordinates. For instance, we may 

solve equation given on page 201 of Reference 3: 

ti’ * .yt3,+i = 0 
r3 

for the radius vector r, provided that for 7 = t-t0 = 0 the initial conditions r(O), i(O), T(0) are 

given. When the pseudo-time A is introduced, the differential equation takes the linear form 

1 -r# 1 
r II) + a2r’ = 0, a II - z-z 

r a const. , 

which has the well-known solution 

r zz a + b cosah f c sinaX , (12) 

a, b, c being constants depending on ro, i,, To. To obtain this solution by using Lie-Series, 

replace the one third-order differential equation by first-order equations. For instance, by the 

system 

r’ = +(rl 6 $1 I 

4’ = $(r. 44 4) , 

4’ = -a26 . 

7’ = r , 

which is accomplished using Equation 11 (which connects X and time). Then the differential operator 



where ro? +,, $J~, 7. are the values Of r, 4, $J, 7 for X=0, gives the general solutions ’ 

r = ehDro , 4 = eAD+o , $ = eAD$o , 7 = eADT 0 . 

It is sufficient here to consider the first and the last of these formulas. Considering the first, we 

have 

A2 
r = ltADtzD2+*** r. , 

DrO = q50 = rb , 

D2ro = W. = $Jo = ri , 

D3ro = LAJJo = -“24o = -a2r; ) 

and generally, for n 2 1, 

D2” r. = (- ,)“-I r6 , D2”-1 r. = (sa)n-1 rI, . (13) 

Therefore, 

A2 A3 A4 
r = r. + ArI, trr: -Fa2r;) -Ta2ri + ... 

= r. + rI, A -ga2 +ga4 -’ . ..) + r;($-$a2 +%,4 - . ..) 

or 

r;, ri 
r z 

r. +,sinaA +- (1 - cos aA) , a2 

which is Equation 12 in another form. If we introduce the c -functions 

sin ah 1 - cos aA a A- sinaX 
co = cosaA , Cl = ah 9 c2 = 

(QA)~ ’ 
c3 = 

(aA)’ ’ . . ’ 

we may write the solutiofi for r in the elegant form 

r = r. + r: c,A + rgc2A2 . 



In a similar way, we derive the connection between time T and pseudo-time A by solving the 

differential equation 

by the Lie-Series 

7 = eAD-r 0 . 

As r. = o, 

DTo = r. , DGO = Dro , . . , D”T~ = D”-‘r. , 

Using Equation 13 for the operation of D” on r gives 

7 = roX + r; c2A2 + ri c3A3 , 

the “main equation” of Kepler’s problem, which is equivalent to Kepler’s equation 

n(t -T) = E-esinE . 

Trying to solve Kepler’s equation has fascinated generations of astronomers and mathemati- 

cians. Countless methods have been used, especially to overcome the difficulties when orbit 

eccentricity e approaches 1 (the parabolic case.) Today, interest in this problem has notably 

decreased because the main equation (the regularized form of Kepler’s equation) avoids these 

difficulties and is applicable to orbits of all eccentricities without singularities. 

Solving either Kepler’s equation or the main equation may be considered an example of 

inverting analytical functions. We have equations of the form 

,. 
., ,. 

,’ 

@ = t-T = f(E) (Kepler’s equation) , 

7 = s t - to = g(A) (Main equation) , 

:,. 

and the problem is to find the reverse relations 

E = F(O) , A = G(T) . 



This inversion is possible under the following general conditions. Given a system of analytical 

functions 

yi 
= c&(x> = di(X1’ X2’... ‘X”) I 

where the functions +i are holomorphic in the environment of a position 

and the Jacobian matrix 

J = (+ik) = (2) = ($1::: ::: : :j) 

is different from zero at the position 5, then the system of functions is reversible; i.e., there 

exists the solution 

xi = mi(Y> = Qi(Y1. Yg. ... I Yn) 7 

with the inverse Jacobian matrix 

J-' = (aik) = (2) . 

The Lie-Series are helpful in solving this problem. Indeed, the xi as functions of the Y i must 

satisfy the system of partial differential equations 

a,. 
1 
ayk = ‘ikCx) 

with the initial conditions 

xi = ci for yi = vi , 

and it can easily be shown that it is possible to write the solution of this problem in the form of 

Lie-Series. 

For simplicity and with special attention to the problem of solving Kepler’s equation, we shall 

consider here only the case of one function ‘, 

Y = f(x) ; Y = 7) for x = c . 



We can solve for the inverted function 

provided that ay/ax # o for x = 5. In this case, we can write 

dy -= 
dx ecx) = f’(x) 

as a common differential equation, the non-singular inverse is 

dx -= 
dy 

provided f’(5) f 0 . 

Then by Lie-Series, with 

1 -- 
D = f’(5) $ ’ x = e(~--rl)D 5 

is the solution of Equation 14 with the prescribed initial conditions. 

Apply this rule to Kepler’s equation 

Y = x-esinx 

Then y’ = 1 - e cos 4 is different from zero for x = 0 and e < 1, and 

1 d 
D = l-ecoscz’ 

Applying this operator repeatedly to 5, we obtain 
.’ I ~, 

T. ., 
,: 

.:, ,: 

1 
Et = l-ecosc 1 

D25 = - e, sin 4 
(l-e cos5)3 ’ 

D35 = - e cos 5 3 e2 sin2 5 

(1 -e c0s.5)~ + (l- e cos 5)s ’ ..’ 

(14) 



Therefore, 

x = 5 + (y-77)x +&(y-~)~D~c +&(Y-~)~D~C + . . . 

and, for c = 77 = o, 

x = 
Y3 ee --- 
3! (&4 + --* . 

This is indeed one of the simplest special series solving Kepler’s equation. 

It is interesting to apply this method to the main equation 

7 = rob t r; c2x2 + rbc3A3 

If 

D = 
i a I a 

< ah, = 7 ax, 

denotes the solving operator, then 

A = e7D A, = 
C 

1 + TD +$D2 + *** 
I 

A, , 

and 

Therefore, 

T2 ro’ * = LF1 
T3 r: 3;: 

r0 r0 
-3!4--+"' ' 

( ) r0 r05 



or, introducing the dimensionless quantity 

and multiplying h by r o/~ gives 

When these considerations are extended to systems of several functions of several variables, 

the process of inversion is complicated as we are dealing with partial differential equations. 

Without going into details, note that this problem requires, not one operator D but n operators, 

such that 

” 

c 

a 
Dj = ‘ij TV j = 1, 2, , ” ( 

i=l 

and these operators must fulfill the conditions of reversibility 

DjDk = D,Dj , 

which correspond to the conditions of compatibility, 

ah. a%. 

L=aykayj aYj aYk 

between second-order partial derivatives. 

APPLICATION TO THE PROBLEM OF PERTURBATIONS 

Lie-Series are helpful in symbolically representing the solution of any system of first-order 

differentia+qnations. A theorem of Lagrange, applied to a more complicated problem, demon- 

strates the”usefulness:of Lie-Series. 
.,. 

Suppose that three.bodies (for instance, the sun and two planets) are moving according to 

Newton’s law of gravitation. Let the masses be ml, m3, m5, and let ;i,, i,, is be the vectors 

leading from m3 to m5, m5 to ml, ml to m3 respectively, and 



be the corresponding velocity vectors. This system of relative motions requires 12 integrals of 

motion. Between the q’s there exist the vector relations 

Therefore, only four independent vectors need be solved for, e.g., ?jl, ;i,, {,, 4,. Lagrange states 

that this three-body problem is solved if we know, as functions of time, nine independent functions 

of the Gi that are invariant under coordinate transformations. This solution being achieved, the 

remaining three integrals can be obtained directly or by simple quadratures. The problem of 

finding the nine first integrals is called the “reduced problem of three bodies” (see Reference 4, 

or Chapter XII of Reference 5). If 

pik 
= (a, . $,) = XiXk + yiyk + ZiZk ? 

(the scalar products between any two of the six vectors <, inclusive of the cases i k), it is 

sufficient to solve for the nine independent quantities 

pllv p33’ p55; p12’ p34’ p56; p22? p44’ p66 (15) 

as functions of the time. These quantities may be called “fundamental invariants” of the problem, 

as they are independent of the system of coordinates and of one another, and form a symmetrically 

builtup system. These nine quantities are solutions of the differential equations 

1 yj-r;,, 1 = PI2 3 Pl q -= 3 

r1 

Pl -3/2 1 

p12 = p22 - PlPll + mlpl I with 
Pl 

- pIpI + m,p2 . p2 q p,P,, ’ pLJP23 + +,P25 I 

(16) 

and six others are obtained by cyclic permutation of the indices 1, 3, 5,and 2, 4;:.6;-respectively. 

The invariants p1 and p2 (likewise p3 and p4, p5, and ~6) on the right&and-sides can be expressed 

as functions of the fundamental invariants by a number of easily constructed relations between the 

Pik (e.ih Pll + P13 + PI5 = ‘, p32 + p34 + P36 = 0, etc.). We could supplement this system of 

nine differential equations by those for all the other possible pi k invariants. The total number 

of different invariants is 21 (for N bodies there are N . (2N+l) p’s). The system 

dpik 

dt= eik(P1l’ P12’ “’ ’ P56’ P66) = ‘ik(P) 



may be solved by Lie-Series, if we use the operator 

the sum containing 21 expressions. The solutions can be written 

PiI& = .(t-to>D -r, 
ik ’ 

where rik are the values of the pi, for t = to. In discussing Lagrange’s theorem it is enough to 

write down these developments for nine of the fundamental invariants (Equation 15) or for nine 

independent functions of these invariants. The procedure may be improved by introducing a 

pseudo-time s instead of t. 

This method of developing the solutions of the reduced three-body problem does not seem to 

have been attempted. Perhaps it is as intricate and cumbersome as any of the classical methods, 

but the short and elegant symbolic form of the solution may be more tractable for computer pro- 

gramming, as the right-hand sides of the differential equations are finite algebraic expressions of 

the invariants themselves. 

Another interesting, possible use for Lie-Series is in the case of slightly perturbed planetary 

orbits. Then, as in classical celestial mechanics, we may divide the motion of a planet into two 

parts: an intermediate orbit, (for instance, a Keplerian ellipse easily calculable with simple sub- 

routines) and a perturbation term proportional to the small perturbing mass. The differential 

operator that solves the problem may be written as the sum of two parts, 

D = D, + D, 

These two operators must fulfill some necessary conditions: 

1. D, must be constituted so that the solutions 

L, = e (t-to)Dl 
f(t) 

a&simplezm&well.kaown functions. This is always the case if D, represents the linear part of 

D, for. in&nc~e.~if D, is the operator of a Kepler motion osculating the true orbit, and if a linearizing 

pseudo-time--is used as independent variable. 

2. D, must be small compared with D1; i.e., the coefficients 8, of D, must be noticeably 

smaller than those of D1, at least within a certain range of time. If these conditions are satisfied, 



the problem can be solved by the Lie-Series 

f(t) = e 
(t-to)(D*+Dz) gto) . 

When D =D, + D, is applied to f , the f is considered as variable, and set equal to f (to) only after 

all differentiations have been performed. However, this exponential expression developed into a 

power series of 7 = t - to gives 

and 

f = [l + r(D1 + D2) + $ (D1 + D2)2 f -] f (to) ; 

(Dl + D2)2 expands to D12 + DID2 t D,D, t Dz2 , etc. , 

because, generally, D,D, # D,D, , i.e., the operators D, and D, do not commute, except under very 

special conditions. Let us digress and consider briefly the commutation relations for the D’s. 

It can be shown that in the reduced three-body problem D, and D, do not commute. Write the 

solutions of the three differential equations for p1 1, p12, p22, using the differential operator 

D = D, + D, with 

a a 
Dl = 2p,,+ 

( 
p22 - p11 

-l/2 

) qy *p12p11 
-312 - 

ap22 * 

a 
+2p2ap,, ’ 1 

supposing that p1 , p2 zu-2 functions of p1 I7 p1 2, p22 and lmown functions of the time (i.e., supposing 

that the motion of the perturbing mass ml is known). Then, for instance, 

D 1p11 = *p,, * D, (D,P,,) = D,(O) = 0 1 

D 2p11 = 0, D2 P1p11) = 2D,pl, = 2mlpl ; 

therefore D,D, # D,D, . 

It is easy to derive the commutation conditions for any two operators D, and D,. Suppose there 

are two operators 

iJ 

a a a a 

Dl = e -+B 11 az, 127+ -*- y D2 = e -t e 21 az, 22x7. ‘.. * 



Then 

a a 
v2 = e 11q 1 

e -L t ez2r + 
21 az, --- 

> 
t .e 

22 
d8,, & t e,, &t -.- + -aa 

12 az, ( 1 > 

ae2~ a 
= 011 az 

[ 

a2 
* 7-+@21a, + *-* 1 + ..* 

1 

The product of the two operators consists of two terms, one containing first-order partials and the 

other containing only second-order partials. A simple calculation shows that, for the operator 

(J& D2) = D,D, - D,D, 1 

the sum of the second-order terms is zero. Therefore (D1, D2) is a linear operator like D, and D,. 

This operator has the symmetric form 

” 

(% D2) = 
c 

Oi& > 
I 

i=l 

where 

ae2i 
-- lk aZ, . 

Dl and D, commute only if (D1,D2), the “Jacobi bracket”, is zero. The Jacobi brackets behave 

like the bracket expressions of Lagrange and Poisson, which are well known in celestial mechanics. 

The Jacobi brackets obey the rule 

((D1, D2) > D3) + ((“29 D3) 1 Dl) + ((“39 “I) 1 D2) = O 7 

: 
whrch is.dso valid for the brackets of Lagrange and Poisson. 

Let usreturn to the problem of perturbed motions. Let z = (zl,. . . , 2”) be an n -dimensional 

vector describingthe position of a system of bodies as a function of the time, and let 5 = (5, , . . . ,c”) 

be the position at t = 0. Then 

z(t) = e t(D*+Dz) 5 = f(t, 5) 



will be the solution of the system of differential 

the exponential, we may write 

m 

z(t) = 
tY 
7 D1”z + 

c 
lJ=* 

equations belonging to this 

tY 
3 D,“-‘D, D V-2 

1 

problem. Developin 

D2Dz 

On the right side z must be replaced by 5 when all operations are performed. The first sum, 

m 

fo(t, 2) = 
c 

tY tDI >DDIvz=e z, 

v=o 

contains all terms that depend on D, only and symbolize the intermediary orbit. The second term 

contains D, only once and at the end. The third sum has D, at the last position but one, and in 

certain terms at the last one too, and so on. This series is not in a convenient form, as the 

perturbations of different order are not separated. On the contrary, there are parts of the per- 

turbations of the first order in all sums except the first, and there are parts of the second-order 

perturbations in all sums but the first and the second. The perturbations of different orders can 

be obtained separately only by our totally changing the sequence of the terms; this is possible if 

the series converges absolutely. 

For simplicity, consider only the first-order perturbations. Select from each sum the terms 

that contain D, only once; i.e., from the sum beginning with v = a take the partial sum 

m 

c 

tV 
7 D,v-aD2D,a-1 z 

“=a 

Then the perturbation terms of the first order are completely collected in the double sum 

f*(t, 2) = 2 25 D,“-aD2D;-1 z = 2 2 ,;;;=;;,! D,aD2D1”z . (18) 

a=1 v=a a=0 v=o 

Each term of this expression contains D, only once, but in every 

factors D, . Similar considerations lead to the expressions 

order. 



Grobner proposes another method which gives the solutions 

z(t) = [f&v 2) + f*(t, 2) + -] ==?, 

in the form of an integral equation of the Volterra type. We can rewrite the complete partial sum 

of Equation 1’7: 

m m 
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tY 
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DIVD2Da-' z , 
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by making use of the identity 

tY+a 

I 
t 

(V+a)!= 
(t --7),=-l -TV 

0 
(a-l)! z d7 ' 

which can easily be proved by repeated integration by parts, in the form 

(t -7>a-1 TY 
(a-l)! T DIvD2 Da-lzd7 . 

This is the partial sum with index a. Summing up all these expressions and changing the index a 

into a t 1 gives the total expression for the solution Z( t > , 

z(t) = f(t, z).=1; = fo(t,z),,l f [ cc+ (r$D;D2Daz) dT 

v='o Z=S 

Now we may write in the inner sum, 

m 

c 

TV 
ED,"' e rD 1 

v=o 

and, according to the rule of interchanging, 

rD1 e 
( 1 D,D= = (z=5) = D2Da(eTD1 =).=I = D2Daz (z=fo) . 



Therefore, 

2 
D”z = D,f(t -7, z) , 

a=0 a=0 

and finally 

I 
t 

z(t) = f,(t* Z).,< + D,f(t -7, z)~=~ d-i 
0 0 

This integral equation can be solved by iteration; this process will rapidly converge if D, is small 

enough. The first steps of the iteration will be 

20 = fo(t,z)Z,I = erD1 zczE5, , 

I 
t 

21 q f,+ 
0 

D,f,(t -7, Qzzzo d7 , 

and one can easily prove that the integral on the right side of the second equation is identical with 

the double sum in Equation 18 derived for the first-order perturbations. 

APPLICATION TO THE CONSTRUCTION OF THE CHARACTERISTICS OF 

DYNAMICAL PROCESSES 

Three previous sections applied Lie-Series to some problems of celestial mechanics: the 

two-body problem, the reduced three-body problem, and the special problem of computing general 

perturbations. 

Is this new method of solving dynamical problems an improvement? That depends on our point 

of view. The development of solutions in terms of power series is scarcely changed by the innova- 

tion. But the Lie-Series give short, pregnant solutions for any dynamical process-an obvious 

advantage. The Lie operators have a universal form that encompasses nearly all the types of 

linear operators used in former theories. The very interesting properties of the Lie-Series, 

especially the important rule of interchanging (Equation 3), allow the expressions for the solutions 

of dynamical problems to be reduced to simple and most lucid forms. This is helpful, especially 

in developing series for computer programming. 

This section discusses a method to obtain the integrals of motion of a dynamical process. 

Consider a concrete case: the reduced problem of two bodies. This involves three integrals-in 
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other words, three independent constant functions, which may or may not contain the time explicitly. 

Jn the reduced problems, the integrals are invariants with respect to coordinate transformations. 

If x1, yl, and =, are the heliocentric coordinates of a planet, and x2 = X,, yz = i,, z2 = Z, 

the coordinates of the velocity, then the reduced problem of two bodies will be solved when three 

fundamental invariants are found (as functions of time): 

- x2 $ Pll - 1 
Y,2 i =,2 = r2 . 

p22 
2 

X2 
+ y22 i z22 = v2 . 

where r is the distance from sun to planet, v is the magnitude of the relative velocity, and 4 is 

the angle between the vectors of position and velocity. These invariants are the solutions of 

Equations 16 (with P, - p, ,-3/2, and m, = 0): 

Pll = 2P,2 . 

p12 P22 - Pll 
-1 2 

p22 
3 
-p12p11 

-3 ‘2 

The integrals of this problem are 

1 
T- - 3-Pll 

-1 2 _ p2? (the integral of energy) , 

a(1 -e?) = p11 %2-p122 (the integral of areas) . 

T = t - a3 2 (E - e sin E) = f(t. a. e)(Kepler’s equation). 

These integrals provide three arbitrary constants ZI, e, and T. The first two integrals describe 

the geometrical form of the heliocentric orbit of the planet; the last integral describes the planet’s 

motion in this orbit. The first two integrals show that certain functions of the variables pik are 

true time-independent constants, denoted as “characteristics” of the problem. In the reduced two- 

body problem the characteristics are finite algebraic functions of the variables. The third integral 

behaves quite differently. This constant expression contains the time explicitly and involves the 

time-dependent function E, usually denoted as the “eccentric anomaly”. This is a very simple 

case, showing that among the three integrals of the problem there are two characteristic functions. 
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Generally we can prove that among the n integrals of an 11 -order problem there are exactly n-l 

independent characteristics, i.e., n-l independent functions of the variables that are constant along 

each special solution of the problem and do not contain time explicitly. 

The proof that an n-order problem has n-l characteristics at most, is easy. Let 

D = HI(z)+ ... + b'"(Z)-& 
n 

be the Lie-operator of the problem, and let F(Z) be a characteristic function; then DF( Z) = 0. 

If F,(z) ,...,Fr(z) are r different characteristics, each analytic function G(F,, F,, . . ., Fr) is a 

characteristic also, as 

JIG = $DF, + . . . ‘cc 
+FDF~ 1 0 . 

I r 

As each characteristic F,(Z) is a function of the n variables zl, z2, . . . , zn of the problem, it is 

clear that no more than n independent characteristics exist. Indeed, if there were n+l functions 

F, of the n variables Z, , there would exist a relation G(F, , F2, . . . , Fntl) = 0. Actually, there 

are no more than n-l independent characteristics. Assume that there are n characteristic 

functions 

IV I = F,(z) , ._. , \vn = F,(z) 

If these functions are independent, the Jacobian matrix 

must be regular. Therefore, it must be possible to invert the equations and obtain 

z1 = q5i,(w) 1 . _. , Z” = h”(W) . 

But the functions &i (We, . . . ,w”) are characteristics, as shown above, and therefore 

Dzi = P,(z) = 0 . 

i.e., the problem restricts itself to the trivial case 

z. = fii(Z) q 0 ( 
i q 

which can be excluded. 

1. 2. . ..n , 
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Finally, we must prove that n-l independent characteristics really exist. Let us assume that 

the solutions of a system of n differential equations 

are 

z. z (etD z,)z=T z~ $i(t.i) 

Then, eliminating t from any two of these equations gives a characteristic. The inverse function 

of any analytic function 

in the environment of a position 71 = j(c), where &I(X) Z 0, may be expressed by the Lie-Series 

is an operator that is regular in the neighborhood of s = 5. If we apply this rule to any two solu- 

tions of our problem 

z, ; 

we obtain the reversal expressions 

c 
(2,-c,@; 

with the operators 

‘:,(t. i) 

t 

Dk 
1tl 
jk dt 

(19) 

which are regular in any region around t = 7 where the derivatives of $, and jk do not vanish. The 

difference between these two expressions for t gives an equation 
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with constant values 5 and independent of time. This formula represents a characteristic of 

problem, as it is valid along each solution. Combining thus the first solution with the other n- 

solutions gives n-l independent characteristics 

+k (z1’ zk; 5) = 0 , k = 2, 3 ,... ,n m-0 

Besides the n-l characteristics in Equation 20, there exists one independent relation (Equation 19) 

that gives t as a function of the particular zi, ci ; e.g., 

t = ( e(” 
-c,)D, 

t),=, . 

This equation, t = f (z,, <,, . . . , 5,)) plays the same role in the general problem as Kepler’s 

equation does in the two-body problem. In this case, z1 takes a favored position but can obviously 

be replaced by any other of the zn . 

The above device for constructing the characteristics of a dynamical problem does not quite 

satisfy our expectations, as each of the cases of Equation 20 contains only two of the n variables 

z i and more or less of the constants 5 i . (Pertinent to this question there is an unpublished remark 

made in 1950 by K. Stumpff.) 

Let <I . . . 5, = r, bethepositionofavector z1 . ..z” = z(t) at t = to. Then,T=t -to, 

where z i and its derivatives are taken at time t,,. If Zi is different from zero, 

z. - 5. 
I = 

i’. 2 Yi 73 
-AL.- 

ii 
7-o . 

‘i 
2 +--- ... 

‘i 
6 q dQ(T, z1 . . ..I Z”) 

as the derivatives z i (“) are functions of the z themselves, and may be derived from the differential 

equations ii = B,(Z). Reversing these equations gives, as before, n equations 

7 = fi (L Si) 

Suppose that one of the ci (for instance 6,) is zero. Then 

7 = f”(Z) 

is a function of the variables z only. Substituting fn for 7 the equations for f 1, f *, . . . , fnel ,. 

gives n-l equations 

fi(Z, &) = f”(Z) * 
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from which 

<i = c,(z) = const. , i = 1,2 ,..., n-l , 

by inversion, provided that the position 5 is so chosen that in a certain surrounding region G the 
. 
z 1 are not zero. These equations, which can easily be expressed by Lie-Series, are the charac- 

teristics in a convenient form, and they describe the geometrical feature of the trajectories. These 

n-l constants are supplemented by the main equation 7 = f .( z ), which expresses the connection 

between the variables z and the time. 

ACKNOWLEDGMENT 

The author gratefully acknowledges the collaboration of Mr. Thomas Kelsall of the Laboratory 

for Theoretical Studies, who revised the manuscript and coordinated the process of its printing. 

Goddard Space Flight Center 
National Aeronautics and Space Administration 

Greenbelt, Maryland, July 28, 1967 
188-43-01-01-51 

REFERENCES 

1. Griibner, W., “Die Lie-Reihen und ihre Anwendungen,” Berlin; Springer-Verlag, 1960. 

2. Stumpff, K., “On the Application of Spinors to the Problems of Celestial Mechanics,” NASA 

Technical Note, D-4447, in press 1968. 

3. Stumpff, K., “Himmelsmechanik, Vol. I,” Berlin; Deutscher Verlag der Wiss., 1959. 

4. Stumpff, K., “On Lagrange’s Theory of the Three-Body Problem,” NASA Technical Note, 

D-1417, 1963. 

5. Stumpff, K., “Himmelsmechanik, Vol. II,” Berlin; Deutscher Verlag der Wiss., 1965. 

NASA-Langley, 1968 - 30 



1 
'NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

WASHINGTON, D.C. 20546 

OFFICIAL BUSINESS FIRST CLASS MAIL 

POSTAGE AND FEES PAID 
NATIONAL AERONAUTICS AND 

SPACE ADMINISTRATION 

‘The tieronautical and space activities of the United States shall be 
conducted so as to contribute . . . to the expansion of human knowl- 
edge of phenomena in the atmosphere and space. The Administration 
shall provide for the widest practicable and appropriate dissemination 
of information concerning its activities and the reszdlts thereof.” 

-NATIONAL AERONAUTICS ANDSPACE ACTOF I958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: Scientific and 
technical information considered important, 
complete, and a lasting contribution to existing 

knowledge. 

TECHNICAL NOTES: Information less broad 

in scope but nevertheless of importance as a 
contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: 
Information receiving limited distribution 

because of preliminary data, security classifica- 

tion, or other reasons. 

CONTRACTOR REPORTS: Scientific and 

technical information generated under a NASA 

contract or grant and considered an important 
contribution to existing knowledge. 

TECHNICAL TRANSLATIONS: Information 
published in a foreign language considered 
to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information 
derived from or of value to NASA activities. 
Publications include conference proceedings, 
monographs, data compilations, handbooks, 
sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION 
PUBLICATIONS: Information on technology 
used by NASA that may be of particular 

interest in commercial and other non-aerospace 
applications. Publications include Tech Briefs, 

Technology Utilization Reports and Notes, 
and Technology Surveys. 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
Washington, D.C. PO546 


