

Corresponding Author: Agboola, Sunday .O.
Department of Mathematical Sciences, Faculty of Natural and Applied Sciences, Nigerian Army University

Biu, No. 1 Biu – Gombe Road, PMB 1500 Biu, Borno State, Nigeria.

Phone: +2348058222949; Email: agboolasunday70@gmail.com

Nig. J. Pure & Appl. Sci. Vol. 35 (Issue 1, 2022)
e-ISSN 2756-4045

(C) 2022 Faculty of Physical Sciences and Faculty of
Life Sciences, Univ. of Ilorin, Nigeria

www.njpas.com.ng

Page | 4263

On the Application of Successive Over-relaxation Algorithmic and Block Numerical
Iterative Solutions for the Stationary Distribution in Markov Chain

*1Agboola Sunday O. and 2Ayinde Semiu A.

1Department of Mathematical Sciences, Faculty of Natural and Applied Sciences, Nigerian Army University Biu,
No. 1 Biu – Gombe Road, PMB 1500 Biu, Borno State, Nigeria.

2Department of Basic Sciences (Mathematics Unit), Babcock University, Ilisan Remo, Ogun State

Date Received: 29-01-2022
Date Accepted: 13-03-2022
DOI: https://doi.org/10.48198/NJPAS/22.A02

ABSTRACT

The evolution of a system is represented by transitions from one state to the next, and the system's physical or

mathematical behavior can also be depicted by defining all of the numerous states it can be in and demonstrating

how it moves between them. In this study, the iterative solution methods for the stationary distribution of Markov

chains were investigated, which start with an initial estimate of the solution vector and then alter it in such a way

that it gets closer and closer to the genuine solution with each step or iteration., and also involved matrices

operations such as multiplication with one or more vectors, which leaves the transition matrices unchanged and

saves time. Our goal is to use Successive Overrelaxation Algorithmic and Block Numerical Iterative Solution

Methods to compute the solutions. With the help of some existing Markov chain laws, theorems, and formulas,

the normalization principle and matric operations such as lower, upper, and diagonal matrices are used. The

stationary distribution vector’s �(���) = ���
(���)

��
(���)

��
(���)

��
(���)

��
(���), � = 0,1,2,… ,�� are

obtained for the illustrative examples, taken the initial stationary solution to be �(�) =

(0.2 0.2 0.2 0.2 0.2)� and it was observed that all subsequent iterations yield exactly the same result as

�(�), and this shows that, the block iterative method requires only a single iteration to obtain the solution to full

machine precision.

Keywords: Gauss-Seidel, infinitesimal generator, block iterative, compact storage, Successive over-relaxation

Introduction

In the discipline of numerical analysis, Iterative

and direct solution methods are the two types of

solution methods available. Iterative techniques

begin with a rough estimate of the solution vector,

which is subsequently tweaked until it gets closer

to the true solution with each step or iteration. It

eventually converges on the true solution. If there

is no known initial approximation, a guess is

performed or an arbitrary initial vector is used

instead. The solution must be computed when a

specified number of well-defined stages have been

completed Stewart (2009). The most widely

utilized methods for deriving the stationary

probability vector from either the stochastic

 Agboola, S.O. and Ayinde, S.A. Nig. J. Pure & Appl. Sci. Vol. 35 (Issue 1, 2022)

Nig. J. Pure & Appl. Sci. Vol. 35 (Issue 1): 4263-4272

Page | 4264

transition probability matrix or the infinitesimal

generator are iterative methods of one form or

another. This decision was made for a variety of

reasons. A look at the conventional iterative

approaches reveals that the matrices are only

involved in one operation: multiplication with one

or more vectors, which leaves the transition

matrices unchanged. When the transition matrix is

large and not banded, direct techniques are

generally not preferred due to the volume of fill-in

that can quickly overwhelm available storage

capacity. Romanovsky (1970) established the

application and simulation of discrete Markov

Chains while Ramaswami (1980, 1988)

demonstrated stable recursion for the steady state

vector in M/G/1 type Markov chains, which was

followed by Stewart (1994, 2009) with the

development of Numerical Solutions of Markov

Chains, and Pesch et al. (2015) demonstrated the

applicability of the Markov chain technique in

Germany's wind feed. Uzun and Kiral (2017)

utilized the Markov chain model of fuzzy state to

forecast gold price movement and calculate the

probabilistic transition matrix of gold price closing

returns, whereas Aziza et al. (2019) used the

Markov chain model of fuzzy state to forecast

monthly rainfall data. Clemence (2019)

demonstrated the application of Markov chain to

the spread of disease infection, demonstrating that

Hepatitis B became more infectious over time than

tuberculosis and HIV, while Vermeer and Trilling

(2020) demonstrated the application of Markov

chain to journalism. Agboola (2021) introduced

direct equation solving algorithms compositions of

lower -upper triangular matrix and Grassmann–

Taksar–Heyman for the stationary distribution of

Markov chains while Agboola, and Ayoade (2021)

analysed the matrix geometric and analytical block

numerical iterative methods for stationary

distribution in the structured Markov chains.

Agboola and Ayinde (2021) demonstrated the

performance measure analysis on the states

classification in Markov chain while Agboola and

Badmus (2021) established the application of

renewal reward processes in homogeneous discrete

Markov chain and, Agboola (2022) discussed the

decomposition and aggregation algorithmic

numerical iterative solution methods for the

stationary distribution of Markov chain. Agboola,

and Ayoade (2022) Analysed the block lower

Hessenberg numerical iterative methods for

stationary distribution in the structured Markov

chains However, in this study, the successive

overrelaxation method (SOR) and block numerical

iterative solution methods and algorithms for

computing the stationary distribution of Markov

chain is considered.

Notation

�� Iteration matrix for successive overrelaxation

method (SOR)

� varied constant to detect various iterative

method from the formulae

��
(���)

 ��� component of the (� + 1)�� iteration

for stationary distribution vector’s

Materials and Methods

The study area consisted of the Application of

Successive Overrelaxation Algorithmic and Block

Numerical Iterative Solutions for the Stationary

Distribution in Markov Chain. The Gauss–Seidel

method looks similar to the successive

overrelaxation method (SOR). The ��� component

of the (� + 1)��iteration is obtained from �� =

 �, a linear system of n equations in n unknowns.

�����
(���)

= ��� (1 − �)��
(�)

+ � ��� − ∑ �����
(���)���

��� −

∑ �����
(�)�

����� � , � = 1,2,… ,�. (1)

It is observed that the expression within the big

parentheses on the right-hand side completely

represents the Gauss–Seidel method, and that when

� is equal to 1, the successive overrelaxation

method (SOR) simplifies to Gauss–Seidel. It's also

possible to write a backward SOR relaxation.

Overrelaxation is described as a process for � > 1;

underrelaxation is described as a process for � < 1.

As a result, the SOR technique converges only

 Agboola, S.O. and Ayinde, S.A. Nig. J. Pure & Appl. Sci. Vol. 35 (Issue 1, 2022)

Nig. J. Pure & Appl. Sci. Vol. 35 (Issue 1): 4263-4272

Page | 4265

if 0 < � < 1 is true. Stewart (1994). This is a

necessary condition for convergence, but it is not

sufficient. Much research has gone into

determining an optimal, or even a fair, value for �,

particularly for issues emerging in the numerical

solution of partial differential equations. Although

some findings have been established for specific

classes of matrices, little is currently known

regarding the best choice of � for arbitrary

nonsymmetric linear systems. If a series of similar

experiments is to be undertaken, it may well be

worthwhile to carry out some numerical tests to try

to determine an appropriate value; some sort of

adaptive technique might be added into the

algorithm. For example, it is possible to begin

iterating with a value of ω = 1 and, after numerous

iterations have been carried out, to estimate the rate

of convergence from the computed approximations.

After a several more iterations, the value of ω may

be increased by 1.1, and a new estimate of the rate

of convergence can be produced. If this is better

than previously, it should be increased again,

perhaps to 1.2, and the same method followed. The

value of ω should be reduced if the rate of

convergence is not as good Stewart (2009) when

applied to the homogeneous system

��� = (� − � − �)� = 0, (2)

The SOR method becomes

��
(���)

= ��� (1 − �)��
(�)

+ � �
�

���
− ∑ �����

(���)���
��� −

∑ �����
(�)�

����� � , � = 1,2,… ,�. (3)

or in matrix form

�(���) = (1 − �)�(�) + ��������(���) − ��(�)��

Re-arranging, we find

(� − ��)�(���) = [(1 − �)� + ��]�(�) (4)

Or

�(���) = (� − ��)��[(1 − �)� + ��]�(�) (5)

and thus, the iteration matrix for the SOR method is

�� = (� − ��)��[(1 − �)� + ��] (6)

It corresponds to the splitting

� = ���(� − ��) and � = ���[(1 − �)� +

��]

The stationary probability vector is the eigenvector

corresponding to a unit eigenvalue of the SOR

iteration matrix, as shown in Equation (3).

However, because the eigenvalues are dependent

on the relaxation parameter ω, it is not always true

that this unit eigenvalue is the dominant eigenvalue

when using the SOR approach. There's a chance

that �� has eigenvalues that are strictly bigger than

1. The SOR approach is identical to the power

method applied to �� when the unit eigenvalue is

the dominating eigenvalue. The relaxation

parameter value that maximizes the difference

between this unit eigenvalue and the subdominant

eigenvalue of �� is the best choice, and the

convergence rate achieved with this value of can be

significantly better than Gauss–Seidel.

Data Structures for Large Sparse Matrices

This section concentrates on various algorithmic

features that must be considered when using

iterative approaches to solve large-scale Markov

chains. When the transition matrix is larger than a

few hundred, keeping it in a two-dimensional array,

which is how we're used to seeing matrices,

becomes impractical. Because each state can only

reach a small number of states in a single step, the

transition matrix is sparse in most cases, with only

a few nonzero elements in each row. We'll look at

ways to make use of the sparsity of this matrix to

store it efficiently. One of the most significant

advantages of iterative approaches over direct

methods is that no changes to the elements of the

transition matrix occur during the algorithm's

execution. As a result, the matrix can be stored once

and for all in a compact format without the need for

additional processes to deal with insertions (due to

nonzero entries becoming nonzero) and deletions

(due to the elimination of nonzero elements). The

 Agboola, S.O. and Ayinde, S.A. Nig. J. Pure & Appl. Sci. Vol. 35 (Issue 1, 2022)

Nig. J. Pure & Appl. Sci. Vol. 35 (Issue 1): 4263-4272

Page | 4266

storage technique should not obstruct the numerical

operations that must be performed on the matrix as

a constraint. The pre- and post-multiplication of the

matrix by a vector is the main numerical operation

performed by the iterative methods we investigate,

in fact, the only numerical operation performed on

the matrix.

� = �� and � = ��� (7)

One easy method is to store the nonzero

components of the matrix in a real (double-

precision) one-dimensional array ��, with two

integer arrays �� and �� indicating the row and

column positions of these items, respectively. We

have ��(�) = � and ��(�) = � if the nonzero

element ��� is stored in position � of ��, i.e.

��(�) = ���.

 (8)

Block Iterative Methods

To distinguish them from their block counterparts,

the iterative methods we've looked at so far are

commonly referred to as point iterative approaches.

Block iterative methods are generalizations of point

iterative methods, and they can be especially useful

in Markov chain situations when the state space can

be divided into subsets. In general, block iterative

algorithms need more processing per iteration, but

this is compensated by a higher convergence rate.

Let's divide the defining homogeneous system of

equations �� = 0 into three parts.

(�� ��
�� ��)�

��� ��� ⋯ ���

��� ��� ⋯ ���

⋮
���

⋮
���

⋱
⋯

⋮
���

� = 0.

We now introduce the block splitting

�� = �� − (�� − ��) (9)

We have ��, a block diagonal matrix, �� and ��

strictly lower and upper triangular block matrices,

respectively.

�� = �

��� 0 ⋯ 0
0 ��� ⋯ 0
⋮
0

⋮
0

⋱
⋯

⋮
���

�,

�� = �

0 0 ⋯ 0
��� 0 ⋯ 0

⋮
���

⋮
���

⋱
⋯

⋮
0

�,

�� = �

0 ��� ⋯ ���

0 0 ⋯ ���

⋮
0

⋮
0

⋱
⋯

⋮
0

�,

the block Gauss–Seidel method is given by

(�� − ��) �(���) = ����(�)� (10)

and corresponds to the splitting � = (�� −

��); � = ��. The ��� block equation is given by

�����
(���)

= �∑ �����
(���)���

��� + ∑ �����
(�)�

����� �, � =

1,2,… ,�. (11)

where the sub-vectors �� are partitioned

conformally with ���, � = 1,2,… ,�, This implies

that at each iteration we must now solve N systems

of linear equations

�����
(���)

= ��, � = 1,2,… ,� (12)

�� = �∑ �����
(���)���

��� + ∑ �����
(�)�

����� �, � =

1,2,… ,�. (13)

Before solving the ��� system, the right-hand side

�� can always be computed. The N systems of

equations (13) are nonhomogeneous and have

nonsingular coefficient matrices if our Markov

chain is irreducible. To solve them, we can utilize

either direct or iterative methods. Naturally, there is

no obligation to solve all of the diagonal blocks

using the same way. Instead, methods can be

customized to fit specific block structures.

If a direct technique is utilized, a LU decomposition

of block ��� can be created once and for all before

starting the iteration, reducing �����
(���)

= ��, � =

1,2,… ,�, to a forward and backward substitution

in each global iteration. This strategy may be

 Agboola, S.O. and Ayinde, S.A. Nig. J. Pure & Appl. Sci. Vol. 35 (Issue 1, 2022)

Nig. J. Pure & Appl. Sci. Vol. 35 (Issue 1): 4263-4272

Page | 4267

particularly efficient due to the nonzero structure of

the blocks. If the diagonal blocks are themselves

diagonal matrices, upper or lower triangular

matrices, or even tridiagonal matrices, obtaining

their LU decomposition is quite simple, and a block

iterative technique becomes very appealing.

If the diagonal blocks are large and lack a suitable

nonzero structure, it may be appropriate to solve

these block equations using matrix iterative

methods (such as point Gauss–Seidel), in which

case we can have multiple inner (or local) iterative

methods (one for each block thus analyzed) within

an outer (or global) iteration. There are a few

strategies that can be utilized to speed up the

procedure. First, the solution computed at iteration

k utilizing any block E ii should be utilized as an

initial approximation to the solution computed at

iteration k + 1. Second, obtaining a highly accurate

answer in early (outer) iterations is rarely

profitable. Until the global process begins to

converge, we should only demand a modest number

of digits of precision. One simple approach to

accomplish this is to perform only a certain number

of iterations for each inner solution. This will not

provide much accuracy at initially, but when

combined with the first recommendation, the

accuracy will improve as you progress through the

outer iterations. Intuitively, the greater the block

sizes (and consequently the lower the number of

blocks) for a given transition rate matrix Q, the

fewer the number of (outer) iterations required for

convergence.

The approach degenerates to a regular direct

method in the exceptional case of only one block,

and we compute the answer in a single "iteration."

The decrease in the number of iterations associated

with larger blocks is partially countered by an

increase in the number of operations that must be

completed at each iteration. However, it may be

demonstrated that there is no growth in some

significant cases. When the matrix is block

tridiagonal (as in quasi-birth-death processes) and

the diagonal blocks are similarly tridiagonal, it can

be proven that both point and block iterative

approaches have the same computational effort

each iteration. In this scenario, the block

approaches are extremely efficient because to the

reduced amount of iterations. We can define a block

Jacobi method in the same way that we can define

a block Gauss–Seidel method.

�����
(���)

= �∑ �����
(���)���

��� + ∑ �����
(�)�

����� �, � =

1,2,… ,�. (14)

and a block SOR method

��
(���)

= (1 − �)��
(�)

+ �����
���∑ �����

(���)���
��� +

 ∑ �����
(�)�

����� ��, � = 1,2,… ,�. (15)

Results and Discussion

This section discusses the application of formulae

for performance measures as well as composition of

algorithms for Successive Overrelaxation

Algorithmic and Block Numerical Iterative

Solutions for the Stationary Distribution in Markov

Chain which are demonstrated with illustrative

examples.

Illustrative example 1: Considering the (4 × 4)

matrix A given by

� = �

−3.2 0.0 1.5 0.6
0.6 −0.9 0.0 0.0
0.4
0.0

1.8
0.5

−1.5
0.7

0.0
−0.6

�

It may be stored as

or as

or yet again as

 Agboola, S.O. and Ayinde, S.A. Nig. J. Pure & Appl. Sci. Vol. 35 (Issue 1, 2022)

Nig. J. Pure & Appl. Sci. Vol. 35 (Issue 1): 4263-4272

Page | 4268

and so forth. The matrix is stored by rows in the first

case, by columns in the second case, and in a

random form in the third situation (although

diagonal elements are given first). The following

algorithm, in which n z specifies the number of

nonzero elements in A, computes the product � =

��. regardless of the order in which the components

of the matrix A are entered into aa.

Algorithm 1: Sparse Matrix-Vector Multiplication I

1. Set �(�) = 0 for all � .

2. For next = 1 to �� do

• Set ���� = ��(����).

• Set ���� = ��(����).

• Compute �(����) = �(����) + ��(����) × �(����).

It's as simple as swapping the arrays �� and �� to

get the product � = ���. This algorithm is based on

the fact that when multiplying a matrix by a vector,

each element of the matrix is used only once:

element ��� is multiplied by ��and forms one term

of the inner product ∑ �����
�
��� = ��, It follows that

the elements in the array aa can be treated

consecutively from first to last, at the end of which

the matrix-vector product will have been formed. If

a partial ordering is imposed on the positions of the

nonzero elements in the array aa, a more efficient

storing technique can be developed. Consider the

scenario when the matrix's nonzero components are

kept in rows; elements from row � precede those

from row � + 1, but elements within a row may or

may not be in order. This is common with Markov

chains, because it's common to generate all the

states that can be reached in a single step from a

given state � before generating the states that can be

reached from the next state, � + 1. As a result, the

matrix is created row by row. It is feasible to

eliminate the integer array �� and replace it with a

smaller array when the nonzero elements are stored

by rows in this manner. The items of �� are utilized

as pointers into the arrays aa and ja in the most

typical compact storage technique. The ��� element

of ia indicates where the first element of row � is

kept in aa and ja. As a result, ��(1) = 1. is always

true. In addition, the first empty position of aa and

ja is usually stored in position (n + 1) of ��. This

usually means that ��(� + 1) = �� + 1. The

number of nonzero elements in row � is then given

by ��(� + 1) − ��(�). Even though the matrix is

kept in a compact form, this makes it

straightforward to jump to any row—the ��(� +

 1) − ��(�) nonzero components of row I begin at

��[��(�)]. The Harwell-Boeing format is a row-

wise packing system that is sometimes used.

Illustrative Example 2: Consider, once again, the

same 4 × 4 matrix in Example 1

� = �

−3.2 0.0 1.5 0.6
0.6 −0.9 0.0 0.0
0.4
0.0

1.8
0.5

−1.5
0.7

0.0
−0.6

�

In this row-wise packing scheme, A may be stored

as

It is not necessary for the elements in any row to be

in order; it suffices that all the nonzero elements of

row i come before those of row (� + 1) and after

those of row (� − 1). Using this storage scheme,

the matrix-vector product � = �� may be

computed by

Algorithm 2: Sparse Matrix-Vector Multiplication II

1. For � = 1 to � do

• Set sum = 0.

• Set initial = ��(�).

• Set last = ��(� + 1) − 1.

 Agboola, S.O. and Ayinde, S.A. Nig. J. Pure & Appl. Sci. Vol. 35 (Issue 1, 2022)

Nig. J. Pure & Appl. Sci. Vol. 35 (Issue 1): 4263-4272

Page | 4269

• For j = initial to last do

◦ Compute ��� = ��� + ��(�) × �(��(�)).

• Set �(�) = ���.

It may have seemed that the SOR technique was

numerically more difficult than the simple power

method or Gauss–Seidel, and that including a

sparse storage data structure would be more

difficult. This is not the case, however. The SOR

method, like the power method and the Jacobi or

Gauss–Seidel methods, requires simply a matrix-

vector multiplication per iteration. the formula is

utilized when programming SOR.

��
(���)

= (1 − �)��
(�)

+
�

���
��� − ∑ �����

(���)���
��� −

∑ �����
(�)�

����� �, � = 1,2,… ,�. (16)

By scaling the matrix so that ��� = 1 for all � and

setting �� = 0, for all �, this reduces to

��
(���)

= (1 − �)��
(�)

− ��∑ �����
(���)���

��� +

 ∑ �����
(�)�

����� �, � = 1,2,… ,�. (17)

��
(���)

= ��
(�)

− ��∑ �����
(���)���

��� + �����
(�)

+

∑ �����
(�)�

����� �, (18)

At iteration k, the program may be written

(assuming A is stored in the row-wise compact form

just described) simply as

Algorithm 3: Sparse SOR

1. For � = 1 to � do

• Set ��� = 0.

• Set ������� = ��(�).

• Compute last = ��(� + 1) − 1.

• For j = initial to last do

◦ Compute ��� = ��� + ��(�) ×

 �(��(�)).

• Compute �(�) = �(�) − � × ���.

The only difference between this and Algorithm 2,

which is a simple matrix-vector multiply algorithm,

is in the very last line. The elements of � are

generated sequentially in the SOR method,

allowing them to be overwritten with fresh values

as soon as they are computed. After the new value

of �(�) has been computed, the computation of

element �(� + 1) begins. The matrix A above must

be replaced with ��, the transpose of the

infinitesimal generator, when utilizing the SOR

procedure to derive the stationary distribution of a

Markov chain. If Q is formed by rows, as is

typically the case, this could be an issue. If it is not

possible to create Q by columns (that is, for each

state, we must locate the states that may access that

state in a single step), the matrix must be transposed

without being expanded into a full two-dimensional

format. If there is enough storage for the compacted

matrix and its compacted transpose, the

transposition operation can be done in �(��)

operations, where �� is the number of nonzero

items stored. If there isn't enough room for a second

compressed copy, the transposition can be done in

situ using a conventional sorting technique in

�(�� ��� ��)operations. Obviously, the moral of

the story is to try to store the matrix Q as columns.

Unfortunately, in many Markov chain applications,

determining all destination states that arise from a

given source state (row-wise generation) is far more

convenient than determining all source states that

lead to a particular destination state (column-wise

generation).

Illustrative example 3: We apply the block Gauss–

Seidel method to find the stationary distribution of

the continuous-time Markov chain with

infinitesimal generator given by

� =

⎝

⎜
⎛

−4 2.0 1.0 0.5 0.5
0.0 −3 3.0 0.0 0.0
0.0
1.0
1.0

0.0
0.0
0.0

−1
0.0
0.0

0.0
−5
1.0

1.0
4.0
−2⎠

⎟
⎞

We put the first three states in the first subset and

the remaining two states into a second subset.

 Agboola, S.O. and Ayinde, S.A. Nig. J. Pure & Appl. Sci. Vol. 35 (Issue 1, 2022)

Nig. J. Pure & Appl. Sci. Vol. 35 (Issue 1): 4263-4272

Page | 4270

Transposing Q and writing out the system of

equations, we have

��� = �
��� −���

−��� ���
� �

��

��
�

=

⎝

⎜
⎛

−4 0.0 0.0 1.0 1.0
2.0 −3 0.0 0.0 0.0
1.0
0.5
0.5

3.0
0.0
0.0

−1
0.0
1.0

0.0
−5
4.0

0.0
1.0
−2⎠

⎟
⎞

⎝

⎜
⎛

��

��
��

��

��⎠

⎟
⎞

=

⎝

⎜
⎛

0
0
0
0
0 ⎠

⎟
⎞

.

Equation (15) becomes

�����
(���)

= �∑ �����
(���)���

��� + ∑ �����
(�)�

����� �, � =

1,2,… ,�. (19)

and leads to the two block equations

� = 1: �����
(���)

= �∑ �����
(���)�

��� + ∑ �����
(�)�

��� � =

�����
(�), (20)

� = 1: �����
(���)

= �∑ �����
(���)�

��� + ∑ �����
(�)�

��� � =

�����
(���).

 (21)

Writing these block equations in full, they become

�
−4 0 0
2 −3 0
1 3 −1

� �

��
(���)

��
(���)

��
(���)

� = − �
1 1
0 0
0 0

� �
��

(�)

��
(�)

�

and

�
−5 1
4 −2

� �
��

(���)

��
(���)

� = − �
0.5 0 0
0.5 0 0

� �

��
(���)

��
(���)

��
(���)

�.

We'll use LU decompositions to solve these block

equations. The first subsystem can be solved with

only forward substitution because ��� is lower

triangular:

��� = �
−4 0 0
2 −3 0
1 3 −1

� = � × �.

Forming an LU decomposition of the second

subsystem, we have

��� = �
−5 1
4 −2

� = �
1 0

−0.8 1
� �

−5 1
0 −1.2

� = � × �.

Taking the initial distribution to be

�(�) = (0.2 0.2 0.2 0.2 0.2)�

and substituting the first block equation, we find

�
−4 0 0
2 −3 0
1 3 −1

� �

��
(�)

��
(�)

��
(�)

� = �
1 1
0 0
0 0

� �
0.2
0.2

� = �
0.4
0.0
0.0

�.

Forward substitution successively gives

��
(�)

= 0.1000, ��
(�)

= 0.0667, ��
(�)

= 0.3000.

The second block system now becomes

�
1 0

−0.8 1
� �

−5 1
0 −1.2

� �
��

(�)

��
(�)

�

= − �
0.5 0 0
0.5 0 1

� �
0.100

0.0667
0.300

� = − �
0.05
0.35

�.

The answer is computed by first obtaining z from

Lz = B and then Y from UY = z in the conventional

form LUY = B. From

�
1 0

−0.8 1
� �

��

��
� = − �

0.05
0.35

�,

we obtain

�� = −0.05 and �� = −0.39.

Now, solving

�
−5 1
0 −1.2

� �
��

(�)

��
(�)

� = �
−0.05
−0.39

�,

We find

��
(�)

= 0.075 and ��
(�)

= 0.325.

We now have

�(�) = (0.100 0.0667 0.300 0.075 0.325).

which, when normalized so that the elements sum

to 1, gives

�(�) = (0.1154 0.0769 0.3462 0.0865 0.375),

�(�) = (0.1154 0.0769 0.3462 0.0865 0.375),

⋮

 Agboola, S.O. and Ayinde, S.A. Nig. J. Pure & Appl. Sci. Vol. 35 (Issue 1, 2022)

Nig. J. Pure & Appl. Sci. Vol. 35 (Issue 1): 4263-4272

Page | 4271

�(��) = (0.1154 0.0769 0.3462 0.0865 0.375)

⋮

�(��) = (0.1154 0.0769 0.3462 0.0865 0.375)

The result is the same in all subsequent iterations.

Indeed, the block iterative technique just requires a

single iteration to find the solution to full machine

accuracy in this case. It is possible to conclude that

the iteration matrix has an eigenvalue of 1 and four

equals 0, which explains why convergence occurs

in a single iteration.

Conclusions

The Successive Overrelaxation Algorithmic and

Block Numerical Iterative Solution Methods for the

stationary distribution of Markov chains which start

with an initial estimate of the solution vector and

then alter it in such a way that it gets closer and

closer to the genuine solution with each step or

iteration, has been investigated, in order to provide

some insight into the solutions of stationary

distribution of Markov chain. Normalization

principle, Matrix operations such as Lower, upper

and diagonal matrices are used with the help of

some existing laws, theorems and formulas of

Markov chain, while the stationary distribution

vector’s

�(���) = ���
(���)

 ��
(���)

��
(���)

��
(���)

��
(���),

� = 0,1,2,… ,�� are obtained for the illustrative

examples, taken the initial stationary solution to be

�(�) = (0.2 0.2 0.2 0.2 0.2)�, and it was

observed that all subsequent iterations yield exactly

the same result as �(�). Which shows that, the

block iterative method requires only a single

iteration to obtain the solution to full machine

precision.

References

Agboola, S. O. (2016). Repairman problem with

multiple batch deterministic repairs,

Unpublished Ph.D. Thesis, Obafemi

Awolowo University, Ile-Ife, Nigeria,

256pp.

Agboola, S. O. (2021). Direct Equation Solving

methods Algorithms Compositions of

Lower -Upper Triangular Matrix and

Grassmann–Taksar–Heyman for the

stationary Distribution of Markov chains,

International Journal of Applied Science

and Mathematics (IJASM), 8(6): 87 – 96.

www.ijasm.org.

Agboola, S. O. (2022). The Decomposition and

Aggregation Algorithmic Numerical

Iterative Solution Methods for the

Stationary Distribution of Markov Chain,

Journal of Scientific and Engineering, 9(1):

116 - 123. CODEN (USA): JSERBR.

www.jsaer.com.

 Agboola, S. O. and Ayoade, A. A. (2021). On the

Analysis of Matrix Geometric and

Analytical Block Numerical Iterative

Methods for Stationary Distribution in the

Structured Markov Chains, International

Journal of Contemporary Applied

Researches (IJCAR), 8(11): 51 – 65,

Turkey, http://www.ijcar.net

Agboola, Sunday O. and Ayoade, Abayomi A.

(2022). On the Analysis of Block Lower

Hess Enberg Numerical Iterative Methods

for Stationary Distribution in the Structured

Markov Chains, International Journal of

Engineering Research and Applications,

12(1): 07 – 14. www.ijera.com

Agboola, S. O. and Ayinde, S. A. (2021). The

Performance Measure Analysis on the

States Classification in Markov Chain,

Dutse Journal of Pure and Applied Sciences

(DUJOPAS), Faculty of Science Journal,

Federal University Dutse, Jigawa

State.7(4b): 19-29.

https://fud.edu.ng/dujopas.

Agboola, S. O. and Badmus, N. I. (2021).

Application of Renewal Reward Processes

in Homogeneous Discrete Markov Chain,

 Agboola, S.O. and Ayinde, S.A. Nig. J. Pure & Appl. Sci. Vol. 35 (Issue 1, 2022)

Nig. J. Pure & Appl. Sci. Vol. 35 (Issue 1): 4263-4272

Page | 4272

FUDMA Journal of Sciences (FJS),

Faculties of Earth Science and Physical

Science Journal, Federal University

DutsinMa, 5(4): 210 – 215.

https://fjs.fudutsinma.edu.ng

Azizah, A., Welastica, R., Nur, F., Ruchjana, B.

and Abdullah, A. (2019). An application of

Markov chain for predicting rainfall data at

West Java using data mining approach,

Earth and Environmental Science, 303(1):

203 – 216.

 Clemence. T. (2019). Markov chain modelling

of HIV, Tuberculosis, and Hepatitis B

transmission in Ghana, Hindawi,

Interdisciplinary Perspective on Infectious

Disease, 27(1): 204 – 214.

Dayar., T. (1998). Permuting Markov chains to

nearly completely decomposable form.

Technical Report BU-CEIS-9808,

Department of Computer Engineering and

Information Science, Bilkent University,

Ankara, Turkey. P 18 – 31.

Pesch, T., Schroder, S., Allelein, H. and Hake, J.

(2015). A new Markov chain related

statistical approach for modelling synthetic

wind power time series, New Journal of

Physics, Dentsche Physikalishe, 35(2): 64

– 85.

 Philippe, B and Sidje, B. (1993) Transient

Solution of Markov Processes by Krylov

Subspaces, Technical Report, IRISA—

Campus de Beaulieu, Rennes, France. P 11

- 24.

Ramaswami, V. (1988). A Stable Recursion for

the Steady State Vector in Markov chains of

M/G/1 type. Communication in Statist.

Stochastic Models, 4(1): 183–188.

Ramaswami, V and Neuts, M. F. (1980). Some

explicit formulas and computational

methods for infinite server queues with

phase type arrivals. Journal of Applied

Probability, 17(1): 498–514.

 Romanovsky, V.I. (1970). Discrete Markov

Chains, Wolters-Noord off, Groningen,

Netherlands. P 23 – 44.

Stewart, W. J. (1994). Introduction to the

Numerical Solution of Markov Chains.

Princeton University Press, Princeton, N.J.

P 310 – 328.

Stewart, W. J. (2009). Probability, Markov Chain,

Queues and Simulation, Princeton

University Press, United Kingdom. P 1- 42.

Uzun, B. and Kiral, E. (2017). Application of

Markov chain-fuzzy states to gold price,

Science Direct. ELSEVIER, 120(1): 365 –

371.

Vermeer, S. and Trilling, D. (2020): Toward a

better understanding of a new user

journeys: A Markov chain approach.

Journalism Journal, 21(1): 879 – 894.

Zakaria, N. N., Mahmod, O., Rajalmgan, S.,

Hamita, D., Lazim, A. and Evizal, A.

(2019). Markov chain model development

for forecasting air pollution index of Miri,

Sarawak, Sustainability 11(1): 5190 -5202.

