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ABSTRACT 

The evolution of a system is represented by transitions from one state to the next, and the system's physical or 

mathematical behavior can also be depicted by defining all of the numerous states it can be in and demonstrating 

how it moves between them. In this study, the iterative solution methods for the stationary distribution of Markov 

chains were investigated, which start with an initial estimate of the solution vector and then alter it in such a way 

that it gets closer and closer to the genuine solution with each step or iteration., and also involved matrices 

operations such as multiplication with one or more vectors, which leaves the transition matrices unchanged and 

saves time. Our goal is to use Successive Overrelaxation Algorithmic and Block Numerical Iterative Solution 

Methods to compute the solutions. With the help of some existing Markov chain laws, theorems, and formulas, 

the normalization principle and matric operations such as lower, upper, and diagonal matrices are used.  The 

stationary distribution vector’s �(���) = ���
(���)

��
(���)

��
(���)

��
(���)

��
(���), � = 0,1,2,… ,�� are 

obtained for the illustrative examples, taken the initial stationary solution to be �(�) =

(0.2 0.2 0.2 0.2 0.2)� and it was observed that all subsequent iterations yield exactly the same result as 

�(�), and this shows that, the block iterative method requires only a single iteration to obtain the solution to full 

machine precision. 

 

Keywords: Gauss-Seidel, infinitesimal generator, block iterative, compact storage, Successive over-relaxation 

Introduction 

In the discipline of numerical analysis, Iterative 

and direct solution methods are the two types of 

solution methods available. Iterative techniques 

begin with a rough estimate of the solution vector, 

which is subsequently tweaked until it gets closer 

to the true solution with each step or iteration. It 

eventually converges on the true solution. If there 

is no known initial approximation, a guess is 

performed or an arbitrary initial vector is used 

instead. The solution must be computed when a 

specified number of well-defined stages have been 

completed Stewart (2009). The most widely 

utilized methods for deriving the stationary 

probability vector from either the stochastic 
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transition probability matrix or the infinitesimal 

generator are iterative methods of one form or 

another. This decision was made for a variety of 

reasons. A look at the conventional iterative 

approaches reveals that the matrices are only 

involved in one operation: multiplication with one 

or more vectors, which leaves the transition 

matrices unchanged. When the transition matrix is 

large and not banded, direct techniques are 

generally not preferred due to the volume of fill-in 

that can quickly overwhelm available storage 

capacity. Romanovsky (1970) established the 

application and simulation of discrete Markov 

Chains while Ramaswami (1980, 1988) 

demonstrated stable recursion for the steady state 

vector in M/G/1 type Markov chains, which was 

followed by Stewart (1994, 2009) with the 

development of Numerical Solutions of Markov 

Chains, and Pesch et al. (2015) demonstrated the 

applicability of the Markov chain technique in 

Germany's wind feed. Uzun and Kiral (2017) 

utilized the Markov chain model of fuzzy state to 

forecast gold price movement and calculate the 

probabilistic transition matrix of gold price closing 

returns, whereas Aziza et al. (2019) used the 

Markov chain model of fuzzy state to forecast 

monthly rainfall data. Clemence (2019) 

demonstrated the application of Markov chain to 

the spread of disease infection, demonstrating that 

Hepatitis B became more infectious over time than 

tuberculosis and HIV, while Vermeer and Trilling 

(2020) demonstrated the application of Markov 

chain to journalism. Agboola (2021) introduced 

direct equation solving algorithms compositions of 

lower -upper triangular matrix and Grassmann–

Taksar–Heyman for the stationary distribution of 

Markov chains while Agboola, and Ayoade (2021) 

analysed the matrix geometric and analytical block 

numerical iterative methods for stationary 

distribution in the structured Markov chains. 

Agboola and Ayinde (2021) demonstrated the 

performance measure analysis on the states 

classification in Markov chain while Agboola and 

Badmus (2021) established the application of 

renewal reward processes in homogeneous discrete 

Markov chain and, Agboola (2022) discussed the 

decomposition and aggregation algorithmic 

numerical iterative solution methods for the 

stationary distribution of Markov chain. Agboola, 

and Ayoade (2022) Analysed the block lower 

Hessenberg numerical iterative methods for 

stationary distribution in the structured Markov 

chains However, in this study, the successive 

overrelaxation method (SOR) and block numerical 

iterative solution methods and algorithms for 

computing the stationary distribution of Markov 

chain is considered. 

 

Notation 

�� Iteration matrix for successive overrelaxation 

method (SOR) 

� varied constant to detect various iterative 

method from the formulae 

��
(���)

  ��� component of the (� + 1)�� iteration 

for stationary distribution vector’s  

 

Materials and Methods 

The study area consisted of the Application of 

Successive Overrelaxation Algorithmic and Block 

Numerical Iterative Solutions for the Stationary 

Distribution in Markov Chain. The Gauss–Seidel 

method looks similar to the successive 

overrelaxation method (SOR). The ��� component 

of the (� + 1)��iteration is obtained from �� =

 �, a linear system of n equations in n unknowns. 

�����
(���)

= ��� (1 − �)��
(�)

+ � ��� − ∑ �����
(���)���

��� −

∑ �����
(�)�

����� � ,    � = 1,2,… ,�.      (1) 

It is observed that the expression within the big 

parentheses on the right-hand side completely 

represents the Gauss–Seidel method, and that when 

� is equal to 1, the successive overrelaxation 

method (SOR) simplifies to Gauss–Seidel. It's also 

possible to write a backward SOR relaxation. 

Overrelaxation is described as a process for � > 1; 

underrelaxation is described as a process for � < 1. 

As a result, the SOR technique converges only 
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if 0 <  � < 1 is true. Stewart (1994). This is a 

necessary condition for convergence, but it is not 

sufficient. Much research has gone into 

determining an optimal, or even a fair, value for  �, 

particularly for issues emerging in the numerical 

solution of partial differential equations. Although 

some findings have been established for specific 

classes of matrices, little is currently known 

regarding the best choice of  � for arbitrary 

nonsymmetric linear systems. If a series of similar 

experiments is to be undertaken, it may well be 

worthwhile to carry out some numerical tests to try 

to determine an appropriate value; some sort of 

adaptive technique might be added into the 

algorithm. For example, it is possible to begin 

iterating with a value of ω = 1 and, after numerous 

iterations have been carried out, to estimate the rate 

of convergence from the computed approximations. 

After a several more iterations, the value of ω may 

be increased by 1.1, and a new estimate of the rate 

of convergence can be produced. If this is better 

than previously, it should be increased again, 

perhaps to 1.2, and the same method followed. The 

value of ω should be reduced if the rate of 

convergence is not as good Stewart (2009) when 

applied to the homogeneous system 

��� = (� − � − �)� = 0,    (2) 

The SOR method becomes 

��
(���)

= ��� (1 − �)��
(�)

+ � �
�

���
− ∑ �����

(���)���
��� −

∑ �����
(�)�

����� � ,    � = 1,2,… ,�.           (3) 

or in matrix form 

�(���) =  (1 − �)�(�) + ��������(���) − ��(�)�� 

Re-arranging, we find 

(� − ��)�(���) = [(1 − �)� + ��]�(�)          (4) 

Or 

�(���) = (� − ��)��[(1 − �)� + ��]�(�)       (5) 

and thus, the iteration matrix for the SOR method is 

�� = (� − ��)��[(1 − �)� + ��]           (6) 

It corresponds to the splitting  

� = ���(� − ��) and � = ���[(1 − �)� +

��] 

The stationary probability vector is the eigenvector 

corresponding to a unit eigenvalue of the SOR 

iteration matrix, as shown in Equation (3). 

However, because the eigenvalues are dependent 

on the relaxation parameter ω, it is not always true 

that this unit eigenvalue is the dominant eigenvalue 

when using the SOR approach. There's a chance 

that �� has eigenvalues that are strictly bigger than 

1. The SOR approach is identical to the power 

method applied to �� when the unit eigenvalue is 

the dominating eigenvalue. The relaxation 

parameter value that maximizes the difference 

between this unit eigenvalue and the subdominant 

eigenvalue of �� is the best choice, and the 

convergence rate achieved with this value of can be 

significantly better than Gauss–Seidel. 

Data Structures for Large Sparse Matrices 

This section concentrates on various algorithmic 

features that must be considered when using 

iterative approaches to solve large-scale Markov 

chains. When the transition matrix is larger than a 

few hundred, keeping it in a two-dimensional array, 

which is how we're used to seeing matrices, 

becomes impractical. Because each state can only 

reach a small number of states in a single step, the 

transition matrix is sparse in most cases, with only 

a few nonzero elements in each row. We'll look at 

ways to make use of the sparsity of this matrix to 

store it efficiently. One of the most significant 

advantages of iterative approaches over direct 

methods is that no changes to the elements of the 

transition matrix occur during the algorithm's 

execution. As a result, the matrix can be stored once 

and for all in a compact format without the need for 

additional processes to deal with insertions (due to 

nonzero entries becoming nonzero) and deletions 

(due to the elimination of nonzero elements). The 
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storage technique should not obstruct the numerical 

operations that must be performed on the matrix as 

a constraint. The pre- and post-multiplication of the 

matrix by a vector is the main numerical operation 

performed by the iterative methods we investigate, 

in fact, the only numerical operation performed on 

the matrix. 

� = ��   and  � = ���     (7) 

One easy method is to store the nonzero 

components of the matrix in a real (double-

precision) one-dimensional array ��, with two 

integer arrays �� and �� indicating the row and 

column positions of these items, respectively. We 

have ��(�) =  � and ��(�) =  � if the nonzero 

element ��� is stored in position � of ��, i.e. 

��(�) = ���.     

  (8) 

Block Iterative Methods 

To distinguish them from their block counterparts, 

the iterative methods we've looked at so far are 

commonly referred to as point iterative approaches. 

Block iterative methods are generalizations of point 

iterative methods, and they can be especially useful 

in Markov chain situations when the state space can 

be divided into subsets. In general, block iterative 

algorithms need more processing per iteration, but 

this is compensated by a higher convergence rate. 

Let's divide the defining homogeneous system of 

equations �� =  0 into three parts. 

(�� ��
�� ��)�

��� ��� ⋯ ���

��� ��� ⋯ ���

⋮
���

⋮
���

⋱
⋯

⋮
���

� = 0. 

We now introduce the block splitting 

�� = �� − (�� − ��)                (9) 

We have ��, a block diagonal matrix, �� and �� 

strictly lower and upper triangular block matrices, 

respectively. 

�� = �

��� 0 ⋯ 0
0 ��� ⋯ 0
⋮
0

⋮
0

⋱
⋯

⋮
���

�, 

�� = �

0 0 ⋯ 0
��� 0 ⋯ 0

⋮
���

⋮
���

⋱
⋯

⋮
0

�, 

�� = �

0 ��� ⋯ ���

0 0 ⋯ ���

⋮
0

⋮
0

⋱
⋯

⋮
0

�, 

the block Gauss–Seidel method is given by 

(�� − ��) �(���) = ����(�)�            (10) 

and corresponds to the splitting  � = (�� −

��);    � =  ��. The  ��� block equation is given by 

�����
(���)

=  �∑ �����
(���)���

��� + ∑ �����
(�)�

����� �,    � =

1,2,… ,�.           (11) 

where the sub-vectors �� are partitioned 

conformally with ���, � = 1,2,… ,�, This implies 

that at each iteration we must now solve N systems 

of linear equations 

�����
(���)

= ��,   � = 1,2,… ,�                     (12) 

�� =  �∑ �����
(���)���

��� + ∑ �����
(�)�

����� �,    � =

1,2,… ,�.                      (13) 

Before solving the ��� system, the right-hand side 

�� can always be computed. The N systems of 

equations (13) are nonhomogeneous and have 

nonsingular coefficient matrices if our Markov 

chain is irreducible. To solve them, we can utilize 

either direct or iterative methods. Naturally, there is 

no obligation to solve all of the diagonal blocks 

using the same way. Instead, methods can be 

customized to fit specific block structures. 

If a direct technique is utilized, a LU decomposition 

of block ��� can be created once and for all before 

starting the iteration, reducing  �����
(���)

= ��,   � =

1,2,… ,�, to a forward and backward substitution 

in each global iteration. This strategy may be 
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particularly efficient due to the nonzero structure of 

the blocks. If the diagonal blocks are themselves 

diagonal matrices, upper or lower triangular 

matrices, or even tridiagonal matrices, obtaining 

their LU decomposition is quite simple, and a block 

iterative technique becomes very appealing. 

If the diagonal blocks are large and lack a suitable 

nonzero structure, it may be appropriate to solve 

these block equations using matrix iterative 

methods (such as point Gauss–Seidel), in which 

case we can have multiple inner (or local) iterative 

methods (one for each block thus analyzed) within 

an outer (or global) iteration. There are a few 

strategies that can be utilized to speed up the 

procedure. First, the solution computed at iteration 

k utilizing any block E ii should be utilized as an 

initial approximation to the solution computed at 

iteration k + 1. Second, obtaining a highly accurate 

answer in early (outer) iterations is rarely 

profitable. Until the global process begins to 

converge, we should only demand a modest number 

of digits of precision. One simple approach to 

accomplish this is to perform only a certain number 

of iterations for each inner solution. This will not 

provide much accuracy at initially, but when 

combined with the first recommendation, the 

accuracy will improve as you progress through the 

outer iterations. Intuitively, the greater the block 

sizes (and consequently the lower the number of 

blocks) for a given transition rate matrix Q, the 

fewer the number of (outer) iterations required for 

convergence.  

The approach degenerates to a regular direct 

method in the exceptional case of only one block, 

and we compute the answer in a single "iteration." 

The decrease in the number of iterations associated 

with larger blocks is partially countered by an 

increase in the number of operations that must be 

completed at each iteration. However, it may be 

demonstrated that there is no growth in some 

significant cases. When the matrix is block 

tridiagonal (as in quasi-birth-death processes) and 

the diagonal blocks are similarly tridiagonal, it can 

be proven that both point and block iterative 

approaches have the same computational effort 

each iteration. In this scenario, the block 

approaches are extremely efficient because to the 

reduced amount of iterations. We can define a block 

Jacobi method in the same way that we can define 

a block Gauss–Seidel method. 

�����
(���)

=  �∑ �����
(���)���

��� + ∑ �����
(�)�

����� �,    � =

1,2,… ,�.           (14) 

and a block SOR method 

��
(���)

=  (1 − �)��
(�)

+ �����
���∑ �����

(���)���
��� +

 ∑ �����
(�)�

����� ��,    � = 1,2,… ,�.  (15) 

Results and Discussion 

This section discusses the application of formulae 

for performance measures as well as composition of 

algorithms for Successive Overrelaxation 

Algorithmic and Block Numerical Iterative 

Solutions for the Stationary Distribution in Markov 

Chain which are demonstrated with illustrative 

examples. 

Illustrative example 1: Considering the (4 × 4) 

matrix A given by 

� = �

−3.2 0.0 1.5 0.6
0.6 −0.9 0.0 0.0
0.4
0.0

1.8
0.5

−1.5
0.7

0.0
−0.6

� 

It   may be stored as 

 

or as 

 

or yet again as 
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and so forth. The matrix is stored by rows in the first 

case, by columns in the second case, and in a 

random form in the third situation (although 

diagonal elements are given first). The following 

algorithm, in which n z specifies the number of 

nonzero elements in A, computes the product � =

��. regardless of the order in which the components 

of the matrix A are entered into aa. 

Algorithm 1: Sparse Matrix-Vector Multiplication I 

1. Set �(� ) =  0 for all � . 

2. For next = 1 to �� do 

• Set ���� =  ��(����). 

• Set ���� =  ��(����). 

• Compute �(����) =  �(����) +  ��(����) ×  �(����). 

It's as simple as swapping the arrays �� and �� to 

get the product � = ���. This algorithm is based on 

the fact that when multiplying a matrix by a vector, 

each element of the matrix is used only once: 

element ��� is multiplied by ��and forms one term 

of the inner product  ∑ �����
�
��� = ��, It follows that 

the elements in the array aa can be treated 

consecutively from first to last, at the end of which 

the matrix-vector product will have been formed. If 

a partial ordering is imposed on the positions of the 

nonzero elements in the array aa, a more efficient 

storing technique can be developed. Consider the 

scenario when the matrix's nonzero components are 

kept in rows; elements from row � precede those 

from row � +  1, but elements within a row may or 

may not be in order. This is common with Markov 

chains, because it's common to generate all the 

states that can be reached in a single step from a 

given state � before generating the states that can be 

reached from the next state, � +  1. As a result, the 

matrix is created row by row. It is feasible to 

eliminate the integer array �� and replace it with a 

smaller array when the nonzero elements are stored 

by rows in this manner. The items of �� are utilized 

as pointers into the arrays aa and ja in the most 

typical compact storage technique. The ��� element 

of ia indicates where the first element of row � is 

kept in aa and ja. As a result, ��(1) =  1. is always 

true. In addition, the first empty position of aa and 

ja is usually stored in position (n + 1) of ��. This 

usually means that ��(� + 1) =  �� + 1. The 

number of nonzero elements in row � is then given 

by ��(� +  1) −  ��(� ). Even though the matrix is 

kept in a compact form, this makes it 

straightforward to jump to any row—the ��(� +

 1) −  ��(� ) nonzero components of row I begin at 

��[��(� )]. The Harwell-Boeing format is a row-

wise packing system that is sometimes used. 

Illustrative Example 2: Consider, once again, the 

same 4 × 4 matrix in Example 1 

� = �

−3.2 0.0 1.5 0.6
0.6 −0.9 0.0 0.0
0.4
0.0

1.8
0.5

−1.5
0.7

0.0
−0.6

� 

In this row-wise packing scheme, A may be stored 

as 

 

It is not necessary for the elements in any row to be 

in order; it suffices that all the nonzero elements of 

row i come before those of row (� +  1) and after 

those of row (� −  1). Using this storage scheme, 

the matrix-vector product � =  �� may be 

computed by  

Algorithm 2: Sparse Matrix-Vector Multiplication II 

1. For � =  1 to � do 

• Set sum = 0. 

• Set initial = ��(� ). 

• Set last = ��(� +  1) −  1. 
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• For j = initial to last do 

◦ Compute ��� =  ��� +  ��( � ) ×  �( ��( � )). 

• Set �(� ) =  ���. 

It may have seemed that the SOR technique was 

numerically more difficult than the simple power 

method or Gauss–Seidel, and that including a 

sparse storage data structure would be more 

difficult. This is not the case, however. The SOR 

method, like the power method and the Jacobi or 

Gauss–Seidel methods, requires simply a matrix-

vector multiplication per iteration. the formula is 

utilized when programming SOR. 

��
(���)

=  (1 − �)��
(�)

+
�

���
��� − ∑ �����

(���)���
��� −

∑ �����
(�)�

����� �,    � = 1,2,… ,�.     (16) 

By scaling the matrix so that ��� = 1  for all � and 

setting �� = 0, for all �, this reduces to 

��
(���)

=  (1 − �)��
(�)

− ��∑ �����
(���)���

��� +

 ∑ �����
(�)�

����� �,    � = 1,2,… ,�.               (17) 

��
(���)

=  ��
(�)

− ��∑ �����
(���)���

��� +  �����
(�)

+

∑ �����
(�)�

����� �,          (18) 

At iteration k, the program may be written 

(assuming A is stored in the row-wise compact form 

just described) simply as 

Algorithm 3: Sparse SOR 

1. For � =  1 to � do 

• Set ��� =  0. 

• Set ������� =  ��(� ). 

• Compute last = ��(� +  1) −  1. 

• For j = initial to last do 

◦ Compute ��� =  ��� +  ��( � ) ×

 �( ��( � )). 

• Compute �(� ) =  �(� ) −  � ×  ���. 

The only difference between this and Algorithm 2, 

which is a simple matrix-vector multiply algorithm, 

is in the very last line. The elements of � are 

generated sequentially in the SOR method, 

allowing them to be overwritten with fresh values 

as soon as they are computed. After the new value 

of �(� ) has been computed, the computation of 

element �(� + 1 ) begins. The matrix A above must 

be replaced with ��, the transpose of the 

infinitesimal generator, when utilizing the SOR 

procedure to derive the stationary distribution of a 

Markov chain. If Q is formed by rows, as is 

typically the case, this could be an issue. If it is not 

possible to create Q by columns (that is, for each 

state, we must locate the states that may access that 

state in a single step), the matrix must be transposed 

without being expanded into a full two-dimensional 

format. If there is enough storage for the compacted 

matrix and its compacted transpose, the 

transposition operation can be done in �(�� ) 

operations, where �� is the number of nonzero 

items stored. If there isn't enough room for a second 

compressed copy, the transposition can be done in 

situ using a conventional sorting technique in 

�(�� ��� �� )operations. Obviously, the moral of 

the story is to try to store the matrix Q as columns. 

Unfortunately, in many Markov chain applications, 

determining all destination states that arise from a 

given source state (row-wise generation) is far more 

convenient than determining all source states that 

lead to a particular destination state (column-wise 

generation). 

Illustrative example 3: We apply the block Gauss–

Seidel method to find the stationary distribution of 

the continuous-time Markov chain with 

infinitesimal generator given by 

� =

⎝

⎜
⎛

−4 2.0 1.0 0.5 0.5
0.0 −3 3.0 0.0 0.0
0.0
1.0
1.0

0.0
0.0
0.0

−1
0.0
0.0

0.0
−5
1.0

1.0
4.0
−2⎠

⎟
⎞

 

We put the first three states in the first subset and 

the remaining two states into a second subset. 
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Transposing Q and writing out the system of 

equations, we have 

��� = �
��� −���

−��� ���
� �

��

��
�

=

⎝

⎜
⎛

−4 0.0 0.0 1.0 1.0
2.0 −3 0.0 0.0 0.0
1.0
0.5
0.5

3.0
0.0
0.0

−1
0.0
1.0

0.0
−5
4.0

0.0
1.0
−2⎠

⎟
⎞

⎝

⎜
⎛

��

��
��

��

��⎠

⎟
⎞

=

⎝

⎜
⎛

0
0
0
0
0 ⎠

⎟
⎞

. 

Equation (15) becomes 

�����
(���)

=  �∑ �����
(���)���

��� + ∑ �����
(�)�

����� �,    � =

1,2,… ,�.           (19) 

and leads to the two block equations 

� = 1: �����
(���)

=  �∑ �����
(���)�

��� + ∑ �����
(�)�

��� � =

�����
(�),         (20) 

� = 1: �����
(���)

=  �∑ �����
(���)�

��� + ∑ �����
(�)�

��� � =

�����
(���).      

 (21) 

Writing these block equations in full, they become 

�
−4 0 0
2 −3 0
1 3 −1

� �

��
(���)

��
(���)

��
(���)

� = − �
1 1
0 0
0 0

� �
��

(�)

��
(�)

� 

and 

�
−5 1
4 −2

� �
��

(���)

��
(���)

� = − �
0.5 0 0
0.5 0 0

� �

��
(���)

��
(���)

��
(���)

�. 

We'll use LU decompositions to solve these block 

equations. The first subsystem can be solved with 

only forward substitution because ��� is lower 

triangular: 

��� = �
−4 0 0
2 −3 0
1 3 −1

� = � × �. 

Forming an LU decomposition of the second 

subsystem, we have 

��� = �
−5 1
4 −2

� = �
1 0

−0.8 1
� �

−5 1
0 −1.2

� = � × �. 

Taking the initial distribution to be 

�(�) = (0.2 0.2 0.2 0.2 0.2)� 

and substituting the first block equation, we find 

�
−4 0 0
2 −3 0
1 3 −1

� �

��
(�)

��
(�)

��
(�)

� = �
1 1
0 0
0 0

� �
0.2
0.2

� = �
0.4
0.0
0.0

�. 

Forward substitution successively gives 

��
(�)

= 0.1000,     ��
(�)

= 0.0667,  ��
(�)

= 0.3000. 

The second block system now becomes 

�
1 0

−0.8 1
� �

−5 1
0 −1.2

� �
��

(�)

��
(�)

�

= − �
0.5 0 0
0.5 0 1

� �
0.100

0.0667
0.300

� = − �
0.05
0.35

�. 

The answer is computed by first obtaining z from 

Lz = B and then Y from UY = z in the conventional 

form LUY = B. From 

�
1 0

−0.8 1
� �

��

��
� = − �

0.05
0.35

�, 

we obtain 

�� = −0.05   and    �� = −0.39. 

Now, solving 

�
−5 1
0 −1.2

� �
��

(�)

��
(�)

� = �
−0.05
−0.39

�, 

We find 

��
(�)

= 0.075   and  ��
(�)

= 0.325. 

We now have  

�(�) = (0.100 0.0667 0.300 0.075 0.325). 

which, when normalized so that the elements sum 

to 1, gives 

�(�) = (0.1154 0.0769 0.3462 0.0865 0.375), 

�(�) = (0.1154 0.0769 0.3462 0.0865 0.375), 

⋮ 
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�(��) = (0.1154 0.0769 0.3462 0.0865 0.375) 

⋮ 

�(��) = (0.1154 0.0769 0.3462 0.0865 0.375) 

The result is the same in all subsequent iterations. 

Indeed, the block iterative technique just requires a 

single iteration to find the solution to full machine 

accuracy in this case. It is possible to conclude that 

the iteration matrix has an eigenvalue of 1 and four 

equals 0, which explains why convergence occurs 

in a single iteration. 

Conclusions 

The Successive Overrelaxation Algorithmic and 

Block Numerical Iterative Solution Methods for the 

stationary distribution of Markov chains which start 

with an initial estimate of the solution vector and 

then alter it in such a way that it gets closer and 

closer to the genuine solution with each step or 

iteration, has been investigated, in order to provide 

some insight into the solutions of stationary 

distribution of Markov chain. Normalization 

principle, Matrix operations such as Lower, upper 

and diagonal matrices are used with the help of 

some existing laws, theorems and formulas of 

Markov chain, while the stationary distribution 

vector’s  

�(���) = ���
(���)

 ��
(���)

��
(���)

��
(���)

��
(���),

� = 0,1,2,… ,�� are obtained for the illustrative 

examples, taken the initial stationary solution to be 

�(�) = (0.2 0.2 0.2 0.2 0.2)�, and it was 

observed that all subsequent iterations yield exactly 

the same result as �(�).  Which shows that, the 

block iterative method requires only a single 

iteration to obtain the solution to full machine 

precision. 
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