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Consider a probability space (£2, Q, P) and a sequence of events ((^-meas-

urable sets in £2) {Ek}, A = 1, 2, • • • . The upper (or outer) limiting set of the

sequence {Ek} is defined by

oo oo

lim sup Ek =   fi     U   Ek.
n=l     k=n

We recall that the events Ek are said to be (mutually) independent (with re-

spect to the probability measure P) if for any finite number of distinct sub-

scripts Ai, • • • , As we have

P(Eki ■ ■ ■ Ekt) = P(Ekl) ■ ■ ■ P(EK).

The celebrated Borel-Cantelli lemma asserts that

(A) If ZPiEk) < oo, then P (lim sup Ek) =0;
(B) If the events Ek are independent and if Z-^C-^fc)= °° > then

P(lim sup Ek) = l. In intuitive language P(lim sup Ek) is the probability

that the events Ek occur "infinitely often" and will be denoted by P(Ek i.o.).

This lemma is the basis of all theorems of the strong type in probability

theory. Its application is made difficult by the assumption of independence

in part (B). As Borel already noticed [l, p. 48 ff.], this assumption can be

removed if we assume that(2)

(0) Z PiEk \E[ ■ • • E'k-i) = oo

where P(F\E) denotes the conditional probability of F on the hypothesis of E

and E' denotes the complement of E. Although Borel used the condition (0)

successfully in his pioneering work on the metric theory of continued frac-

tions, it is too stringent for many purposes. To overcome the difficulty one

usually constructs a sequence of independent events out of the given se-

quence and applies (B) to the new one. This is the device used for instance

in the proof of the law of the iterated logarithm and similar theorems. There

is however another group of strong theorems to which this method does not
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(2) Clearly we may suppose that P(U,-_i^i) < 1 f°r every k so that the conditional prob-

ability is defined. Added in proof. Conditions like (0) were used a great deal by Paul Levy and

other authors in generalizations to dependent variables; however, that is not what we have in

mind here.
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seem to apply. The following theorem furnishes an alternative method which

may be of fairly general applicability. On the other hand it does not seem to

apply to the law of the iterated logarithm, etc. Two examples given below

will serve as illustrations, of which the second concerns the arcsin law.

Theorem 1. Let {Ek} be a sequence of events satisfying:

(i)    £P(Et)=oo.

(ii) For every pair of positive integers h, n with n^h there exist c(h) and

H(n, h)>h such that for every k^H(n, h) we have

(1) P(Ek\E'h- ■■ El) > cP(Ek).

(iii) There exist two absolute constants Ci and c2 with the following property :

to each E¡ there corresponds a set of events E¡, ■ ■ • , Ejs belonging to {Ek}

such that

(2) Z P(EiEu) < CiP(Ei)
i=i

and if k>j but Ek is not among the E,i (1 ̂ i%.s) then

(3) P(EiEk) < c2P(Ej)P(Ek).

Then P(Eki.o.) = l.

A defense of the assumptions made seems in order. The conditions (i) and

(ii) together resemble Borel's condition (0) but actually they are very much

weaker. The point is that the function 77(re) is at our disposal and can be

chosen of an infinitely greater order of magnitude then n. To put it in a

picturesque way, (iii) requires only that the arbitrarily remote past should

have no overwhelming effect on the present which is certainly a state of

affairs to be hoped for in probability problems. As regards the additional

conditions in (iii), they involve only joint probabilities of pairs of events, or

what is sometimes referred to as dependence to the second order; part (2)

would usually deal with the dependence at close range while (3) deals with

the general situation.

Before proceeding to the proof we shall state a simple lemma.

Lemma. Let \Fk\, A = l, • • • , A7, be an arbitrary sequence of events in

(Ö, G, P). We have, t/P(ULi ^)>0,

(4) 2     Z    P(FiPt) è \p( U Fk)]   Y ZP(P*)Y- Z P(Fk).
lúj<kÚN L      \k=l        /J        \ k-l / k=l

Proof. Define random variables Xk(u), wEß, as follows:

(0   if   «SFt,
Xk(co) =  <

U   if  » G Fk.
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The following identity is evident:

(5) 2     Z    P(FjFk) = E{(Xi+ ■ ■ ■ + XN)2} - E(xl+ • ■ ■ + xl).
láj<fcgjV

Now by the Schwarz inequality we have

(6) [E(Xi+ ■ ■ ■ + XN)]2^P(Xi+ ■ ■ • + XN>0)E{(Xi+ ■ ■ ■ +XN)2}.

Since E(Xk)=E(Xl)=P(Fk), P(Xi+ ■ ■ ■ +Xlf>0)=P(U^1Fk) by defini-

tion, (4) follows from (5) and (6).

Proof of Theorem 1. Let

oo

Bh = U Ek.
k-h

Since (Eki.o.) = \imh~x P(Bh), it is sufficient to prove that P(Bh) = 1 for every

A. Suppose that this is not true for a certain A; let P(Bn) = 1 — 5, ó>0. Thus

(r\E'k)
\ k=h       /

(7) P(  HE,   =5>0.
\ k=h        /

Given any e, 0<e<l —ô, we can find n such that P(U£=„ Ek)>l—5 — e so

that if we write Dh,n = U£LÄ Ek— U£_„ Ek, we have

(8) . P(Dh,n) < e.

We have by (1) and (7), if k>H(n),

(9) P(EkE'h ■■■ En)> c5P(Ek).

Hence by (i), Zî-mn)P(EkE'h • • ■ £¿) = oo. Therefore there exists an integer

H'(n)>H(n) such that (H = H(n), H'=H'(n))

H'

(10) 1 < ZP{EkE'h- ■ ■ En) Ú 2.
k=H

From (9) and (10) we obtain

(11) ZP{Ek)<~-
k=H CO

From (2), (3), and (11) we have

H'

Z     P(EjEk) úciZ P(Ek) + c2      Z     P(Ei)P(Ek)
H¿j<k¿H' j-H BS¡<kSK'

2Cl C2  / 2 V
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where c3(5) is a constant defined by the last equality.

Now let Fk = EkEh' • • • El, H^k^H'. It is obvious that \J^L„ Fk is a

subset of Dh.n, hence by (8),

(13) p(U Fk\ < e.

From (10) and (11) we have

(14) 1 < Z P(Fk) =£ Z P(Ek) < - ■
k=H k~H CO

Applying the lemma to [Fk], II^k^H', we obtain using (13) and (14)

(15) 2      Z      P(E¡Ek) ^ 2      Z      P(FjFk) ^-— •
Hij<kSw HSj<këir e        c5

But (12) and (15) are incompatible for sufficiently small e. This contra-

diction proves that 5 = 0. Hence P(Bh)=:l. q.e.d.

In the two applications given below we shall treat only the simplest

Bernoullian case, since we are more interested in the principle involved than

the technical difficulties. It is not hard to generalize Theorems 2 and 3 to

fairly general lattice cases or even continuous cases. It will be seen from their

proofs that only certain asymptotic formulas and a kind of boundedness of

Sn, with probability one or even in probability, are required. These are avail-

able in more general cases, thanks to various modern limit theorems.

Theorem 2. Let [Xk], A = l, 2, • • • , be independent random variables and

each Xk assume the values +1 and —1 with probabilities 1/2 and 1/2. Let

5n=Zi-i Xk.Let {«,•}, i = l, 2, • • ■ , be an increasing sequence of even integers

such that there exists an absolute constant A with the property that

(16) ni+1 — m > An-î

Then

P(Sn. = 0 i.o.) =

according as

v   -1/2/<l¿_ m    <   > oo

Remark. The theorem in the divergence case is not true without some

such condition as (16). Example: Take {«,-} to be the sequence of even

integers in the intervals [A8, A8+A5], A = 1, 2, • • • . For an alternative condi-

{
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tion and proof see [3, p. 1009].

Proof. The convergence case follows directly from part (A) of the Borel-

Cantelli lemma without the condition (16).

Next, let Ei denote the event 5^ = 0. We know that

P(Ei) = P(Sni = 0) ~ (2/tt«,)1'2.

Hence condition (i) in Theorem 1 is satisfied.

To verify the condition (ii) in Theorem 1 we notice that |5Bi| Sn,, hence

P(Snk - 01 Sn„ * 0, • • • , 5», * 0)

^   Min P(Snk = 0 | Sni = x)  =   Min P(Snk - 5„; = - x)
\*\S»i \*\.£*i

=   Min P(Snk-ni = - x).
\*\¿»i

Now we have, if x2 = o(n),

P(Sn - x) - c(.    n w.)— ~ (—)   e-w» ~ (—)    .
\(n-x)/2/2"      Vtt«/ Vtt»/

We choose H(i) sufficiently large so that if k>H(i), then n\ = o(nk). Then we

have for all \x\ ^n¡,

"^«i-»¡

XT»*/

Therefore we have for all A, i^h and AS:77fo) and any fixed c<l, if 77(1) is

sufficiently large,

P(Snk - 0| 5„A 9* 0, • ■ • , 5Sj ^ 0) > cP(5„4 = 0).

Thus condition (ii) in Theorem 1 is satisfied.

To verify the condition (iii) in Theorem 1 we have

P(E,Ek) = P(Snj = 0)P(5„,_„, = 0)

/       2       y2
-P(Sni  =  0)(---)

(17) ~ P(Snj = 0)P(Snk = 0) (      **     )
\nk — n¡/

(     nk     X1'2
= P(Ej)P(Ek)(-.

If nk>2n¡, then

/     nk    V'2
(18) (-)     < 21'2.

\nk — W)7

1/2
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We call the events Ek with nj<nk^2n¡ the events E¡. (í^i^s) associated

with each E,. We have as before

(19) Z'P{EiEk) ~ P(Ei) Z'ink - m)'1'2

where the summation extends to those A for which ny<w*g2wy. From (16)

we deduce that if k>j (Ai denoting an absolute constant),

»* - n,- > Ai(k2 - j2).

Let N denote the number of A's satisfying nj<nk^2n¡. From the last in-

equality we deduce that nj-\-Ai(N2-\-2jN) ^w3+Jv^2»y. Hence we have

/«A"2
(20, ffS(_)    .

Now using the Schwarz inequality, (16), and (20) we obtain

(»■Vs      1 /   1   \1/2

(19) and (21) give (2) while (17) and (18) give (3). q.e.d.

Theorem 3. Let {Xn\ be as in Theorem 2 and let Nn denote the number of

positive terms among Sit ■ ■ ■ , 5„. Let fan) be an increasing function of n. Then

(0
i.o. 1 =  <

fan)

according as

(22) p(a„ í-?-i.o)= Í
\ fan)      /        U

z  i n
^   n(fan)y'2\ = )

(23)
t(fan)Y

Remark. This is the strong theorem corresponding to the now celebrated

arcsin law. On grounds of symmetry we may replace the left side in (22) by

P(Nn^n(l-l/fan))i.o.).
Proof. Standard arguments(3) show that we may suppose that fan) ^n'

for some 0<e<l/2. The convergence case follows easily from the arcsin law

for Bernoullian variables (see [2, p. 252]; the convention made there regard-

ing the "positiveness" of 5„ makes no difference in the asymptotic formula

below), which asserts that

Pi  Nn   ^   -—)-
V fan)}       t(fan)/       Tr(fan))112

To prove the theorem in the divergence case we note first that the di-

(3) Cf e.g. [3. p. 1010].
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vergence of the series in (23) implies that of

__ 1

n(fanr)Y'2

for any r>0 (proof by the integral test). Let <p(n2) =\p(n). Define Ek to be

the event

S2k = 0,       Si < 0 for 2* < i á 2kfak).

Obviously Ek implies that N2k^ik)^2k. Writing 2hp(k)=n, we have, since

fak)^k2', k^n' where »'«(2-1»)1/<1+i«>. Hence Nn^n/fan'). For all suffi-
ciently large », ip(n') ^fan). Hence in order to prove the second part in (22)

it is sufficient to prove that P(Ek i.o.) = 1.

It is known that (see e.g. [2, p. 252]) P(5;<0 for 0<î'g«)~&»-1/2 for

some absolute constant &>0. Hence we have

P(Ek) = P(S2k = 0)P(5, < 0 for 0 < i g 2kfak) - 2k)

~5A-1'2(A^(A))-1'2 = bk-^fak))-1'2.

Hence condition (i) in Theorem 1 is satisfied.

To verify condition (ii) in Theorem 1 we note that (without loss of gen-

erality we may suppose n\p(n) to be an integer for all «), if A>77(»),

P(Ek I 5i = Xi, • • • , 52„^(n) = y)

= Z P(Ek | SH(n) =  x)P(S H in) = x | 52„^(n) = y)
X

=   ZP(Ek\SHln)   =   x)P(Smn)-2nl,ln)   =   X  —   y)
X

where xh • • • , y, x are integers. Now |y| ^2nfa(n), hence if we choose 77(»)

sufficiently large, P(Shin)-2n^m) — x — y) ~ P(Shiu) = x) as «—»oo, at least

if x is within a certain range, say |x| ^H(n)ll2+i, rj>0. (This is because of

the limitations of the Gaussian approximation.) But the other range of x is

negligible in the sense that

Z P(S H ln)-2nim)   =   X —   y)
|l|>if(n)1/2+1

CM Z -P(5tf (n)-Sn#(n)   =   X —  y) ) .

Hence we have

Min    P(Ek | 5i = xi, • • • , Sinfín) = y)
|tr|£2n*(n)

Z P(Ek\Smn) = x)P(SH(n) = x) = P(Ek).
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This implies condition (ii) in Theorem 1.

To verify condition (iii) in Theorem 1, \etj<k. If AgjV'O). then P(EjEk)

= 0. If k>j\p(j) we have

P(Elc | £,) = P(S2k = 0 | Sti = 0, Si < 0 for 2j < i £ 2jfaj)).

P(St < 0 for 2A < i ¡g 2AiA(A) | S2k = 0) = Pv P2.

Now for every x we have

P(S2k = 0 | S*mi) = s) = P(5ti_2j>(/) = - x) g i(* - jfaj))-112-

Pi being a probability mean of such probabilities we have

Pi Ú b(k - jfaj))-1'2.

As for P2 we have as in (24),

P2~b(2kfak) - 2A)-1/2~è(2A\KA))-1'2.

Therefore we obtain from (25),

(26) P(EjEk) g b1P(Ej)(k - jfaj))-ll2(kfak))-i'2,

where Ai (as b2, b3 later) is an absolute constant. Now for every E¡ we define

Ej{, 1 gigs, to be those Ek with jp(j) <k^2j\p(j). We have then by (26)

ZP(EiEh) g biP(E,)(kfak))-v2'Z i'112
¿-i ¿-i

g J»P(£í).

On the other hand if k>2jp(j), then k-pp(j)>k/2, hence by (26) and (24)

P(EjEk) g bsP(E,)P(Ek).

Therefore condition (iii) in Theorem 1 is satisfied, q.e.d.
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