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On the Application of the Continuous-Time Theory of
Finance to Financial Intermediation and Insurance *

by Robert C. Merton **

1. Introduction

The core of financial economic theory is the study of the micro behavior of agents in
the intertemporal deployment of their resources in an environment of uncertainty. Eco-
nomic organizations are regarded as existing primarily to facilitate these allocations and
are, therefore, endogenous to the theory. From within the permeable and flexible boun-
daries of this core, I choose on this occasion to explore the risk-pooling and risk-sharing
roles of financial intermediaries and to derive some of the operating technologies that can
be used to fulfill those roles. The tool of analysis is the continuous-time model of finance.
The focus is on the economic function of financial intermediaries, rather than on their spe-
cific institutional structure. Nevertheless, the institutional homes of the financial products
and management techniques studied can be readily associated with current structures of
banks, investment-management firms, and insurance companies.

Although surely coincidental, the choice of subject matter makes it especially fitting
that this year's Geneva Association Lecture takes place in the environs of Paris. It was,
after all, here at the Sorbonne in 1900 that Louis Bachelier wrote his magnificent disserta-
tion on the theory of speculation. This work marks the simultaneous births of both the
continuous-time mathematics of stochastic processes and the continuous-time economics of
option and derivative-security pricing.1 Although Bachelier's research was unknown in the

* Twelfth Annual Lecture of the Geneva Association, presented at the Centre HEC-ISA, Jouy-en-
Josas, France on June 29, 1988. The lecture draws heavily on the work presented in Chapter 14 of
Merton (forthcoming). My thanks to the Alfred P. Sloan School of Management, Massachusetts
Institute of Technology and the Graduate School of Business Administration, Harvard University for
providing a reflective year during which this paper was written. I thank A. M. Eikeboom for technical
assistance and D. A. Hannon for editorial assistance.

** George F. Baker, Professor of Business Administration, Harvard University.

I In analyzing the problem of option pricing, Bachelier derives much of the mathematics of proba-
bility diffusions, and this, five years before Einstein's famous discovery of the mathematical theory of
Brownian motion. What financial economist doesn't relish the thought of the great intellectual debt
owed to this early option-pricing theorist by the mathematical physicists and probabilists? However,
because Bachelier dedicates his thesis to Henri Poincaré, there may be more to the story.
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finance literature for more than a half-century2 and although from today's perspective, his
economics and mathematics are flawed, the lineage from Bachelier to modern continuous-
time finance is direct and indisputable. In this light, perhaps you will forgive me for making
a few general remarks on the continuous-time model as both a synthesis and watershed of
finance theory. This to be followed immediately by that promised discussion of financial
intermediation.

Over the past two decades, the continuous-time model in which agents can revise their
decisions continuously has proved to be a versatile and productive tool in the development
of modern finance theory.3 As exemplified by the works of Breeden, Cox, Huang, Inger-
soll, Ross and my own studies of the lifetime consumption-portfolio-selection problem, the
continuous-time model has frequently produced both more-precise theoretical solutions
and more-refined empirical hypotheses than can otherwise be derived from its discrete-time
counterpart.4 As it provides new insights, the continuous-time analysis also reaffirms old
ones. It shows us that those classic pillars of finance - the Markowitz-Tobin Mean-Variance
Model, the Sharpe-Lintner-Mossin Capital Asset Pricing Model, the Arrow-Debreu Com-
plete-Markets Model, and the Modigliani-Miller Theorems - are all far more robust than
had been believed.5 And, of course, there is the seminal contribution of Black and Scholes
that, virtually on the day it was published, brought the field to closure on the subjects of
option and corporate-liability pricing.6 As the Black-Scholes work was closing the gates on
fundamental research in these areas, it was simultaneously opening new ones: in applied
and empirical study and in setting the foundation for a new branch of finance called Contin-
gent Claims Analysis or as we say for compactness, "CCA". The applications of CCA range
from the pricing of complex financial securities to the evaluation of corporate capital-
budgeting and strategic decisions.7 As we will see shortly, it also has an important place in
the theory of financial intermediation.

Time and uncertainty are the central elements that influence financial economic beha-
vior. It is the complexity of their interaction that provides intrinsic excitement to the study

2 rediscovery of his work in the early 1950s is generally credited to P. A. Samuelson via L. J.
Savage. Samuelson's own work on warrant pricing had an important impact on the development of
continuous-time finance [cf. Merton (1983, pp. 106-107; 128-134)].

Development of the Continuous-time model in finance was the work of many. See Merton (forth-
coming) for an overview and an extensive bibliography. Cox and Rubinstein (1985) Cover its applica-
tion to option-pricing theory. Adler and Dumas (1983) provide an excellent survey on the application
of the continuous-time model in international finance, an application pioneered by Solnik (1974).

' Breeden (1979), Cox and Huang (forthcoming), Cox, Ingersoll and Ross (1985), and Merton
(1969; 1971; 1973b).

Although I've made no scientific study, it appears that for a theory to move from the "seminal"
to the "classic" category requires an unspecified, but appropriately-long, passage of time from its publi-
cation. For that reason alone, I do not mention the Arbitrage Pricing Theory of Ross (1976a) in the
text. But, here too, the continuous-time model can add something to the robustness of that theory by
providing a rigorous foundation for preserving the linearity of the return-generating process, even in
the presence of derivative securities with nonlinear payoff functions.

6 Black and Scholes (1973). See Black (1987) for a brief history on how he and Scholes came to
arrive at their famous pricing formula.

For an overview of the development of CCA and discussion of its multi-dimensional applications
in finance, see Mason and Merton (1985) and Merton (forthcoming, Chapters 10, 13, and 14).
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of finance. To capture the effects of this interaction often requires sophisticated analytical
tools. Indeed, the mathematics of the continuous-time finance model contains some of the
most beautiful applications of probability and optimization theory.8 Of course, all that is
beautiful in science need not be practical. And surely, not all that is practical in science is
beautiful. But, here we have both. With all its seemingly abstruse mathematical complexity,
the continuous-time model has nevertheless had a direct and significant influence on
finance practice.9 Although not unique, this conjoining of intrinsic intellectual interest with
extrinsic application is a prevailing theme of research in financial economics, and especially
so, in continuous-time finance.

While intended to exemplify this theme, my remarks today are not exclusively or even
primarily aimed at practitioners. Nor, however, is my aim to break new ground in the
theory of finance. Both practitioner and theorist will happily find their cups abundantly
filled by the multifarious papers of these three days. Instead, in this salutatory session, I try
my hand at providing a frame of reference for what is to follow, by shuttling back and forth
between conceptual issues surrounding the continuous-time model in the theory of inter-
mediation and potential applications of that model in the practice of intermediation.

In following this zig-zag course, I touch upon three categories of contributions of the
continuous-time analysis to the theory and practice of financial intermediation: product
identification, product implementation and pricing, and risk management and control for
an intermediary's entire portfolio.

A commonplace result in the continuous-time model is that investors' optimal demands
for securities exhibit a structure such that each and every investor's optimal portfolio can be
duplicated by various combinations of a relatively small and select set of mutual funds.1°
That is, if individual securities are "pre-packaged" into a specified group of portfolios, then
the theory holds that investors can achieve the same optimal-portfolio allocations by select-
ing from just this group as they could by choosing from the entire universe of available secu-
rities. This finding is generally used to help identify the various sources of systematic risk in

Prime examples are the application of ItO's Lemma in the derivation of the Black-Scholes option-
pricing theory and the application of Martingale theory of the French probability school in the elegant
Cox-Huang (forthcoming) solution of the lifetime consumption-investment problem.

The model has influenced the practices of asset allocation, risk analysis, and performance
measurement. However, as exemplified by the papers of this conference, its most-direct impact on
practice has been in the pricing and hedging of financial instruments, an area that has experienced an
explosion of innovations over the last decade. The continuous-time model is the prime mode of analysis
used for pricing options on equities, fixed-income securities, stock and bond futures, and a variety of
commodities. It is also used to price and hedge mortgage-backed securities; default risk, seniority, call
provisions and sinking-fund arrangements on debt; bonds convertible into stock, commodities, or diffe-
rent currencies; floor and ceiling arrangements on interest rates; stock and debt warrants; rights and
stand-by agreements. Indeed, much of the applied research on using the continuous-time model in this
area takes place within practicing financial organizations.

10 Cf. Breeden (1979), Cox, Ingersoll and Ross (1985), Merton (1971; 1973b), and Solnik (1974).
These analyses describe the economic function for each of the mutual funds as well as the explicit
portfolio rules for their construction. They also establish the minimum information set required to
implement each fund's portfolio strategy. Such findings are not, of course, unique to the continuous-
time model. Examples in discrete time are the Markowitz-Tobin Mean-Variance Model, the Arrow-
Debreu Model, and the Arbitrage-Pricing Model of Ross.
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multi-dimensional versions of the Capital Asset Pricing Model. However, in the context of
financial intermediation, these same mutual-fund theorems also serve to identify a class of
investment products for which there would seem to be a natural demand.11

A derivative security is a security with payoffs that can be expressed as a function of
other traded-securities' prices, and these traded securities are called the underlying secu-
rities (of the derivative security). Common examples of derivative securities are option and
futures contracts. As I need hardly mention in this company, Contingent Claims Analysis
has achieved both theoretical and practical success in the pricing of derivative securities. In
brief, the core of CCA is that a dynamic trading strategy in the underlying securities can be
used to create a portfolio with payoffs that exactly replicate the payoffs to the derivative
security. If the derivative is itself traded, then by an arbitrage argument, its equilibrium
price must equal the value of the replicating portfolio.

The contribution of CCA to the enrichment of the theory of intermediation and insur-
ance is, however, deeper than just the pricing of financial products.12 CCA can also contri-
bute to product implementation by providing the "blueprints" or production technologies
for intermediaries to manufacture these securities. The portfolio-replication process used to
derive derivative-security prices applies whether or not the security actually exists.'3 Thus,
the specified dynamic portfolio strategy used to create an arbitrage position against a traded
derivative security is also a prescription for synthesizing an otherwise nonexistent security.
The investment required to fund the replicating portfolio becomes, in this context, the pro-
duction cost to the intermediary that creates the security. In Section 3, I expand on this
theory of production for financial intermediaries.

The focus of CCA is on the hedging and pricing of an individual security or financial
product. However, as shown in Section 4, CCA, together with general dynamic portfolio
theory, can be used to measure and control the total risk of an intermediary's entire port-
folio. Although few in the practice of intermediation would doubt the central importance
of risk management, such doubts do arise in the theory. It is, after all, standard fare that
the Modigliani-Miller Theorems hold (at least approximately) in economic models with
well-functioning capital markets. It follows as a corollary that at most, only the systematic-
risk component of the firm's total risk warrants first-order attention by the firm's managers.
In Sections 4 and 5, we examine the issue of whether, as a theoretical matter, financial inter-
mediaries are different in this respect from other types of business firms. We conclude that
the management of total risk by intermediaries can be of significant importance even in an

" As in the case of mutual funds, financial-intermediation activities often involve the combining
of diverse financial assets into a package and the issuing of a single class of securities as claims against
the portfolio. However, it is also common to "reverse" the process and issue a diverse set of claims
against a relatively-homogeneous package of financial assets. One real-world example is the Collatera-
lized Mortgage Obligation in which the portfolio contains mortgages of the same expected duration.
Several classes of securities (called "tranches") are issued that have claims to different components of
the total cash flow generated by the portfolio. A theoretical foundation for such "stripping" of various
parts of a financial asset is laid in Section 3 with the development of Arrow-Debreu pure securities. See
also Hakansson (1976) for a theory of "stripping" in his development of the "superfund".

12 For specific applications to insurance products and underwriting, see Brennan and Schwartz
(1976) and Kraus and Ross (1982).

13 See the general derivation of CCA in Merton (1977).
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environment where the Modigliani-Miller Theorems obtain with respect to ordinary busi-
ness firms. Although mainly of theoretical interest, the analysis does provide some founda-
tion for real-world policies that selectively discriminate between intermediaries and other
firms when deciding on government bailouts and loan guarantees and when setting regula-
tions.

With all the continuous-time model seems to offer, its application to the theory of
intermediation nevertheless carries with it an apparent paradox. In the standard model,
investors are entirely indifferent as to whether or not derivative securities are created,
because investors can themselves use the dynamic portfolio strategies of CCA to replicate
the payoff patterns to these securities. Thus, each derivative security is redundant, and
because it adds nothing new to the market, creation of such a security provides no social
benefit. Of course, in the real world, the prescribed dynamic replications may not be fea-
sible. But, the CCA methodology is valid only if the payoffs to the derivative security can
be reproduced by trading in existing securities. Hence, we have the Hakansson paradox:
CCA only provides the production technology and production cost for creating securities
that are of no consequence.'4

Much the same paradox applies to the mutual-fund theorems of the continuous-time
model: investors are again simply indifferent between selecting their portfolios from a
group of funds that span the optimal-portfolio set or from all available securities. It would
thus seem that the rich menu of financial intermediaries and derivative securities observed
in the real world has no important economic function in a frictionless environment where
investors have the same information, can trade continuously, and face no transactions costs
or taxes.

Such indifference is indeed the case if all investors can gather information and transact
without cost. Hence, some type of information or transactions-cost structure in which finan-
cial intermediaries and market makers have a comparative advantage with respect to other
investors and corporate issuers is required to provide a raison d'être for financial inter-
mediation and markets for derivative securities.15

With this in mind, I begin the formal analysis in Section 2 by using the Cox-Ross-
Rubinstein (1979) binomial model to derive the production technology and cost for creating
a derivative security in the presence of transactions costs. The derived costs of hedging both
long and short positions in the same derivative security provides an endogenous specifica-
tion of the relation among bid-ask price spreads for derivatives and their underlying securi-
ties. For an empirically-relevant range of investor transactions-cost, we show by example
that the induced spreads in derivative prices can be substantial, and thereby, suggest the
prospect of significant benefits from efficient intermediation.

14 In the context of option securities, Hakansson (1979, p. 722) calls this "The Catch 22 of Option
Pricing." In discussing the CCA methodology, he writes, "So we find ourselves in the awkward position
of being able to derive unambiguous values only for redundant assets and unable to value options
which do have social value." (p. 723).

15 For example, in Merton (1978), the cost of surveillance by the deposit insurer is, in equilibrium,
borne by the depositors in the form of a lower yield on their deposits. If all investors can transact
costlessly, then none would hold deposits and instead would invest directly in higher-yielding UST
bills. Thus, to justify this form of intermediation, it is necessary to assume that at least some investors
face positive transactions costs for such direct investments in the market.
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Although analytically tractable, even the simple binomial pricing model is greatly com-
plicated by the explicit recognition of transactions costs. As we know from the work of
Constantinides (1986), Leland (1985), and Sun (1987), incorporation of such costs in the
continuous-time model is considerably more difficult.16 Moreover, development of a satis-
factory equilibrium theory of allocations and prices in the presence of transactions costs
promises still more complexity because it requires a simultaneous endogenous determina-
tion of prices, allocations, and the least-cost form of financial intermediation and market
structures.

To circumvent all this complexity and also preserve a role for intermediation, I turn to
a continuous-time model in which many investors cannot trade costlessly, but the lowest-
cost transactors (by definition, financial intermediaries) can. In this model, standard CCA
can be used to determine the production costs for financial products issued by interme-
diaries. However, unlike in the standard zero-transaction-cost model, these products can
significantly improve economic efficiency. If the traded-security markets and financial-
services industry are competitive, then equilibrium prices will equal the production costs of
the lowest-cost producers.'7 It is shown in Section 5 that in this environment, a set of
feasible contracts between investors and intermediaries exists that permit all investors to
achieve optimal consumption-bequest allocations as if they could trade continuously
without cost. Thus, this model provides a resolution of the Hakansson paradox by showing
that mutual funds and derivative securities can provide important economic benefits to
investors and corporate issuers, even though these securities are priced in equilibrium as if
they were redundant.

In sum, the analysis shall demonstrate the versatility of the continuous-time model in
applications ranging from a detailed micro production theory for individual products, to
risk management and control for the entire intermediary, and on to broad functional roles
for intermediation. All of this is a part of a larger agenda to use the model as a unifying
framework for a general theory of the financial-services industry. Along that line of
thought, I shall conclude with a brief afterword that touches upon application of the conti-
nuous-time model to policy and strategy issues in intermediation. With this overview as a
guide, I turn now to the substantive analysis.

2. Derivative-Security Pricing with Transactions Costs

In this section, we examine the effects of transactions costs on derivative-security pri-
cing by using the two-period version of the Cox-Ross-Rubinstein (1979) binomial option-

16 With diffusion processes and proportional transactions costs, investors cannot trade conti-
nuously and therefore, cannot perfectly hedge derivative-security positions. The reason is that with
continuous trading, transactions costs at each trade will be proportional to dz , where dz is a
Brownian motion. However, for any non-infinitesimal T, J dz = , almost certainly and hence,
with continuous trading, the total transactions cost is unbounded with probability one.

17 More generally, standard CCA will provide a close approximation if the "mark-up" per unit
required to cover the intermediary's transactions costs and profit is sufficiently small that from the pers-
pective of its customers' behavior, the additional cost is negligible. Of course, a tiny margin applied to
large volume can produce substantial total profits for the financial-intermediation industry.

230



pricing model.18 As illustrated in Figure 1, the initial stock price S(0) is given by S0. At time
1, the stock price will equal either S11 or S12. If S(1) = S11, then at time 2, S(2) will equal
either S21 or S22. If S(1) = S12, then S(2) will equal either S23 or S24. R denotes the return per
dollar invested in the riskless security and is constant over both periods. To capture the
effect of transactions costs, we assume that a commission must be paid on each purchase or
sale of the stock and that the commission rate is a fixed proportion r of the dollar amount
of the transaction. Equivalently,

Figure 1. Tree Diagram of Possible Stock-Price Paths
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18 The binomial model is, of course, a discrete-time model. If, however, the time interval between
successive price changes is h; the magnitudes of the price changes between successive periods, S(t + h)
- S(t), are proportional to \/i; and the probability of each of the two possible changes is .50 + 0(\/i),
then Cox, Rubinstein, and Ross (1979) have shown that in the limit as h dt, continuous time, the
binomial option-pricing model converges to the Black-Scholes continuous-time model. This same
limiting process was used by Bachelier (1900) as one of his arguments to justify his option-pricing
model. And, along the way, he also used it to derive the Fourier partial differential equation as the
governing equation for the probabilities of diffusion processes.

19 Satisfaction of these conditions ensures that one is never unambiguously worse off to pay the
transactions costs necessary to exactly hedge the position instead of saving the costs and not hedging
the position. However, under the hypothesized conditions of the preceding footnote with (S12 - S) IS0
E > 0, (1) will fail for all time intervals h < h 4r21[(1 - r)AJ2. This reflects the remark in foot-
note 16, that it never pays to trade continuously in the presence of transactions costs.
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we could assume a bid-ask spread in which investors pay the ask price for the stock, S (t)
(1 + r)S(t), when they buy and receive the bid price, 5b (t) (1 - r) S(t), when they sell.
There are no costs for transacting in the riskiess security.

As shown in Cox, Ross and Rubinstein (1979), the array of possible stock prices must
satisfy certain conditions to rule out the possibility of arbitrage or dominance opportunities
between the stock and the riskiess security.19 The corresponding set of restrictions in the
presence of transactions costs can be written as:



(la) 511< S0R < (1 r)S121(1 + r)
(ib) S21 <S11R < (1 r)S221(1 + T)
(ic) S23 < S1R < (1 r)S24/(1 + r)

Consider an intermediary that sells to a customer a call option with exercise price E
and expiration date two periods from now. The terms of the option require cash settlement
in which the customer is paid the in-the-money value of the call, S(t) - E, if the call is exer-
cised. In the case where prices are quoted as a spread, the stock price is determined by the
average of the bid and ask prices, S(t) [Sa(t) + Sb(t)]/2 = S(t).

The production cost for manufacturing the call option is determined by deriving a
dynamic portfolio strategy in the stock and riskless security that exactly replicates the
payoff to the option. By following this strategy, the intermediary can completely hedge all
the risk of this liability. In determining the cost, we assume that the intermediary has no ini-
tial position in the underlying stock and that all stock held at the expiration date of the
option is sold in the market.2°

If S(t) = S and the commission rate is r, then let N(S,t;T) denote the number of shares
of stock held in the portfolio at time t after adjusting the portfolio to the desired position.
If N(S,t;r) <0, then the portfolio is short N(S,t;x) shares. Let B(S,t;r) denote the
amount of the riskless security held in the portfolio after the payment of the transactions
costs associated with adjustments to the portfolio at time t. If B(S, t;r) <0, then the portfo-
lio has borrowed $ I

B(S, t,r) . Let F(S, t;r) denote the value of the portfolio before pay-
ment of transactions costs incurred at time t.

We derive the replicating portfolio strategy by beginning at the expiration date and
working backwards in time in a dynamic-programming-like fashion. If 5(1) = S11, then to
exactly match the payoff to the option at t = 2, the portfolio composition must satisfy:
N(Sj1,1;r)(1 - r)S21 + B(S11,1,r)R = H(S27) in the event S(2) = S21, and N(Sjj,1,r)(1 -
+ B(Sjj,1;r)R = H(S22) in the eventS(2) = S22. H(S) = Max/0,SEJis the schedule of pay-
ments to the customer at expiration and we have taken account of commissions paid on the
sale of the stock in the portfolio. From the matching conditions, we have that:

N(S11, 1,r) = [H(S22) - H(S21)]/[(1 - r) (S22 S21)]
= N(Sjj,1;0)I(1 -

and

B(S1j,1;r) = [H(521)522 - H(522)521]/[R (S22 - S2)]
= B(Sii,1;0).

Because S> we tentatively assume (and verify later) that in the event 5(1) = S11,
the portfolio holdings of the stock should be reduced from the initial position N(So,0;r),
established at t = 0. Hence, for 5(1) = the intermediary will incur a transaction cost of

20 Because commissions are paid for both purchases and sales of the stock, this assumption pro-
duces the most "conservative" (i. e., highest) estimate of the cost. In practice, an intermediary with an
ongoing business of writing options on this stock would avoid the double costs of liquidating stock at
the expiration of one option and repurchasing stock to hedge the new issue of another. Hence, the
inventory of stock held by the intermediary will affect its marginal cost of producing options. Therefore,
the prices derived here provide the outerbound on the bid-ask spread.
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r[N(So, O;r) - N(S11, 1;r)JS11 to adjust the portfolio. Therefore, from (2a) and (2b), the total
resources required in the portfolio at time 1 to support this strategy can be written as :21

(2c) F(S1j,1;r) =N(S11,1;r)S11 + B(S11,1;r) + r[N(S0,O;r) - N(Sji,1;T)JS11
= F(S11,1;O) + rN(So,O;r)Sjj.

If instead at t = 1, S(1) = S12, then at t = 2, S(2) will equal either S23 or S24. By the same
analysis leading to (2a) and (2b), we have that:

N(S12,1;'r) =[H(S24) - H(S23)]/[(1 - r)(S24 - 523)]

and
=N(S12,1;O)I(1 -

B(S12, 1T) = [H(S23)S24 - H(S24)S23]/[R (S24 - S23)]
= B(512,1;O)

Because S12 > 5o, we assume that in the event 5(1) = S12, the stock holdings in the
portfolio should be increased from their level at t = 0. Hence, the intermediary will incur a
transaction cost of r[N(S12, 1;r) - N(S0, 0;r)]S12 to adjust the portfolio. From (3a) and (3b),
the total portfolio value required at t = 1 is :22

F(S12,1;r) = N(512,1;r)S12 + B(512,1;v) + r[N(S12,1;r) - N(So,0;r)]S12
= F(512, 1;0) + r[2N(S32, 1;T) - N(S0, 0;r)]532

By inspection of (2a) and (3a), N(S(1),1;r) = N(S(1),1;0)/(1 - r), and therefore, the
number of shares of stock held is larger with transactions costs than in the no-cost case.
From (2b) and (3b), B(S(1),1;r) <0, and the amount borrowed is independent of the level
of transactions costs. From (2c) and (3c), F(S(1),1;r) exceeds F(S(1),1;0), the amount
required to fund the portfolio with no transactions costs.

To exactly replicate the return on the option from t = 0 until expiration, the portfolio
strategy at t = 0 must produce a portfolio value of F(Sjj,1;x) at t = 1 if S(1) = S11 and a
value of F(512,1;r) if 5(1) = S12. Because F(S(1),1;r) includes the transactions costs for port-
folio changes at t = 1, this funding requirement can be met if N(S0, 0;T)S(l) + B(50, 0;r)R =
F(S(1), 1; r). It follows that N(50, 0;r) = [F(S12, 1;t) - F(S11, I ;r)](S 12 - S11) and that B (So,0;r)
= [F(S11, 1;0)S12 - F(512, 1;0)S11]/[R(512 - S11)] - [N(50, 0;x) (1 - - N(S0, O;0)]SH/R. By subs-
titution from (2c) and (3c) and the rearrangement of terms, we have that:23

(4a) N(S0, 0;T) = N(S0, 0;0) +2r[N(S12, 1;r)S12
- N(50, 0;0) (S +S12) /2] / [(1 +r)S1-(1-r)S11]

21 As discussed in footnote 20, the resources required to fund the portfolio depend on the inven-
tory of stock held by the intermediary. Thus, if the same option were just being created at t = 1, (2a)
and (2b) would still apply, but the transaction cost paid would be rN(Sji, 1;r)S11. Hence, the required
funding for the portfolio would be F(Sn,1;0) + 2vN(Sjj,1;r)Sjj.

22 As in the preceding footnote, if the portfolio were just now being created, (3a) and (3b) would
still apply, but the transaction cost paid would be vN(S12,1;r)S12. The corresponding funding for the
portfolio would be F(S12, 1;0) + 2rN(S 12, 1;v).

23 Using (2a) and (3a) with H(S) = Max [0, S - Ej, we have from (4a) that N(S11, 1;v) < N(S0, 0;r)
<N(S12, 1;r). Hence, the direction of changes in the portfolio, tentatively assumed in the derivation of
(2c) and (3c), is verified.
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and
B(S0, 0;r) = B(S0, 0;0) - [N(S0, 0;r) (1 - - N(S0, 0;0)]Sj IR.

Because N(S12,1;0) > N(So,0;0) and S12> S11, we have from (4a) and (4b) that N(So,0;v) >
N(S0, 0;0) > 0 and that B(S0, 0;v) <B(S0, 0;0) <0. Hence, the presence of transactions costs
causes a larger long position in the stock and additional borrowing in the replicating portfolio.

The initial investment in the portfolio required to undertake these positions (including
the transaction cost of rN(So,O;r)S0) can be written as:

F(S0, O;r) = F(S0, O;0) +[N(So, 0;r)-N(So, 0;O)][So-Sij/R]
+rN(So,O;r)[So+Sjj/RJ.

Because N(S0,0;r) > N(S0,0;O) > 0 and S0 > S11/R, we have by inspection of (4c) that
F(S0, O;r) > F(S0, O;O) .We thus verify that an increase in the cost of producing a call option
caused by commissions charged in the stock market increases the option price charged by
the intermediary. In a competitive financial-services industry, the ask price for the call
option is its production cost, F(So,0;T).

To explore further the spread in call-option prices induced by transactions costs in the
stock market, consider a customer who would like to sell a call option to the intermediary.
To determine the (maximum) price to bid for the call option, the intermediary solves for the
portfolio strategy with a return that exactly hedges the payoffs it would receive from hold-
ing the call option. If there were no transactions costs, the replicating strategy would be the
exact mirror-image of the one used to hedge a short position in the call option. That is, the
intermediary would hold short positions in the stock given by -N(S(t), t;0) < 0, and hold
positive amounts of the riskless security given by -B(S(t),t;0) > 0. The portfolio would
require a negative initial investment of -F(S0, 0,0) and this net cash flow to the intermediary
at t = 0 would be the maximum amount that it would pay to the customer for the call
option.

Although the qualitative features of the replicating portfolio will be the same with
transactions costs, the magnitudes of the positions held will not be the same because the
intermediary must pay the commissions no matter which side of the transaction it under-
takes. Applying the same analysis used to derive (2)-(4), we have that:

N'(So,O;r) = -N(So,0;-r)
B' (So,0;v) = -B(So,0;-r)
F' (S0, 0;v) = -F (So, 0;-t)

where the prime on each variable denotes the positions and amounts required to hedge a
long position in a call option. By inspection of (4a)-(4c), it is readily apparent that
N(So,O;T), B(So,0;r) and F(So,0;r) are not even-functions of r. Therefore, it follows from
(5a)-(5c) that for r> 0, the replicating strategy to hedge a long position in a call option is
not simply the reverse of the replicating strategy to hedge a short position in a call option.

We can however say more. From (la), (1 - r)512> (1 + r)511 and from (3a) and (4a),
N(512, 1;0) > N(S0, 0;0). Using this condition in (4a), we have that:

(6) 0 < N(So,0;-r) <N(So,0;0) <N(So,0;r).

Hence, the number of shares held short to hedge a long call position is fewer than the
number held long to hedge a short call position. From manipulation of (4c), it can also be
shown that:
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0 < F(S0, 0;v) <F(S0, 0;O) <F(S0, 0;i).
That is, the minimum price at which the intermediary would sell a call option exceeds the
maximum price at which the intermediary would buy a call option. The zero-transactions-
cost price of the option is between the two.

At the outset of our analysis, we saw that with symmetric proportional transactions
costs, the average of the bid and ask prices of the stock, S(t), is equal to the stock price with
no transactions costs, S(t). In a competitive financial-services industry, the bid price for the
call option is given by F(So,0;r). In this environment, the average of the bid and ask prices
of the call option, F(S0, 0;r), is equal to [F(S0, 0;r) + F(S0, 0;r)]/2. From the conditions lead-
ing to (6) and (4c), it can be shown that 0 < F(S0, 0;O) - F(S0, O;.-.r) <F(S0, 0;r) - F(S0, 0;O).

It follows that:
(S0, 0;v) > F(S0, 0;O).

That is, the average of the bid and ask prices of the option is a biased-high estimate of
its zero-transactions-cost price.24 Thus, symmetry of the bid and ask prices of the stock
around its zero-transactions-cost price does not imply a corresponding symmetry for the bid
and ask prices of the call option.

To provide some indication of the size of the effect on option prices induced by transac-
tions costs in the underlying stock, consider the following numerical example of an at-the-
money, two-period call option: the exercise price is $ 100; the interest rate is 5 percent; and
the array of stock prices is 5o = $ 100; S11 = $ 90; S12 = $115; S21 = $ 70; 522 = $ 110; S23

= $ 90; S24 = $ 140. The bid and ask prices for the option, F(100,0,r) and F(100,0;v) , along
with the initial number of shares required to hedge the position, are presented in Table 1
for transactions costs of a tenth of a percent, a half of a percent, and one percent. With trans-
actions costs in that range, the effect on the initial hedge ratio of shares of stock per option
is small. For r= .01 versus the zero-cost case, the difference in the number of shares is less
than 3 percent. The asymmetry between the bid and ask prices is also small. For v = .01,
the average of the bid and ask prices is $ 15.63 versus $ 15.61 for the r=0 case. However,
the effect of transactions costs on the levels of the bid and ask prices is substantial. The per-
centage premium of the ask price above the zero-cost price is approximately linear in r and
equal to lOr. Thus, the percentage premium is about 1 percent for r = .001 and 10 percent
for r = .01. Similar results hold for the percentage discount of the bid price below the zero-
cost price. Hence, the percentage spread between the bid and ask price is approximately
20r. Although the price of the stock is much larger than the option price, the dollar spread
between the bid and ask prices of the option is larger than the corresponding spread for the
stock. Dollar spreads of $ 0.20, $ 1.00, and $ 2.00 for the stock induce respective spreads in
the option prices of $ 0.31, $1.53, and $ 3.07.

Care should always be exercised in drawing strong inferences from a single example of
a simple model. Nevertheless, these findings seem to indicate that for investors facing high,
but empirically-relevant, levels of transactions costs for trading stocks, the cost of syntheti-
cally creating their own option contracts and other derivative securities can be prohibitively
high.

24 The magnitude of the bias is 0(r2), and therefore, typically quite small.
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One would, of course, expect that the costs for financial intermediaries to transact in
stocks are considerably lower than for most investors. Further, even the lower transaction-
cost numbers in Table 1 may significantly overstate the actual costs to intermediaries that
create options as an ongoing business. As discussed in footnotes 20-22, the calculations
leading to Table 1 assume that the intermediary carries no inventory of either stocks or
options and that each position is perfectly hedged. As we discuss in Section 4, a more-com-
plete analysis would take account of the opportunities for intermediaries to create and opti-
mally manage such inventories to net out many of the transactions otherwise required to
hedge individual option exposures. Moreover, for controlling the risks of intermediaries
with derivative-security liabilities contingent on many different stocks, diversification may
provide a cost-reducing alternative to a complete hedge of each position.

In summary, the two-period binomial model illustrates how bid and ask prices for
derivative securities can be endogenously determined from the transaction-cost structure of
their underlying securities. The analysis shows that the percentage spreads in the produc-
tion costs of derivative securities can be many times larger than the spreads in their
underlying securities. Hence, even with modest transactions costs for investors in traded
securities, there is an economic function for financial intermediaries that specialize in the
creation of derivative securities and take advantage of economies of scale to produce them
at a greatly reduced cost.

3. Production Theory for Zero-Transaction-Cost Financial Intermediaries

As we have seen, transactions costs among investors and corporate issuers are virtually
a requirement to justify an important economic role for financial intermediation 25 Howe-
ver, as we have also seen, explicit recognition of such costs can cause even the most simple
of models to become extraordinarily complex. As suggested in the introduction, a happy
compromise is to assume that some agents face significant transactions costs, but that finan-
cial intermediaries, as the lowest-cost transactors in the financial markets, do not. Hence,
for the balance of the paper, we proceed under that assumption and develop the general
theory for production and pricing of derivative securities by intermediaries.

An Arrow-Debreu pure state-contingent security is a security that pays its holder $ 1 if
a particular state of the world obtains at a particular point in time and otherwise, pays
nothing. More than a generation ago, Arrow demonstrated that the payoff structure for any
state-contingent security can be exactly replicated by a portfolio combination of pure securi-
ties. Hence, to avoid arbitrage, the equilibrium price of the state-contingent security can be
expressed as a weighted sum of the prices of these pure securities.26 As I have discussed

25 Information costs together with agency problems that prohibit the direct sale of information to
investors can, of course, justify certain types of financial intermediation such as mutual funds. Regula-
tion and special features of the tax laws may also induce the creation of specialized financial instru-
ments and institutions. However, in the absence of transactions costs (which may themselves be indu-
ced by information-gathering Costs), it is difficult to explain the complex structure of financial interme-
diaries and their wide scope of activities that we observe in the real world.

26 See the classical works of Arrow (1953; 1964) and Debreu (1959) for the original development
of pure state-contingent securities. There is an enormous literature based on the Arrow-Debreu model
[cf. Radner (1972) and Merton (1982, Section 5)1.
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elsewhere,27 it was recognized from the outset that the Black-Scholes approach to option
pricing could also be applied to the pricing of derivative securities in general. However, it
was not until later that these two theories of valuation were explicitly connected. Ross
(1976b), Hakansson (1976), Banz and Miller (1978), and Breeden and Litzenberger (1978)
were among the first to show that combinations of options could be used to create pure
securities and that these pure securities could be used to price derivative securities. In this
section, we derive the natural analog to Arrow-Debreu pure securities in the continuous-
time model and demonstrate their application to the pricing of contingent-claim securities.

Merton (1977, Section 2) derives the price of a general derivative security with payoffs
that are a function of a traded asset's price and time. Under the usual frictionless-market
assumptions [(A. 1)(A.6) there], it is shown that the price of the derivative security,
Fly, t], will satisfy:

(9) 0 = aF11 + [rVDj]F1rF+ F2 + D2,

for 0 V(t) <V < V(t) and t < T, subject to the boundary conditions

(lOa) F[V(t),t] = f[V(t),t]
(lob) F[V(t),t] = g[V(t),t]
(lOc) F[V,T] = h[V].
Subscripts on Fin (9) denote partial derivatives with respect to Vand t. D1(V,t) and D2(V,t)
denote the cash-flow rates paid to the holders of the traded asset and its derivative security,
respectively, a2 is the instantaneous variance rate of the return on the traded asset and r is
the riskless interest rate (assumed to be constant over time). The limited liability of the
traded asset implies that V(t) = 0 only if V(t + r) = 0 and D1(0,t + x)= 0 for all r > 0.
Without loss of generality, we can assume that D2(0,t) = 0.28 The functions D2, f, g and h
specify the payoff schedule for the derivative security.

In the analysis to follow, we assume that the stochastic process governing the dynamics
of the traded asset is such that prob { V (r) = 0 V(t) > 0} = 0 for t r < oc ,29 Let
r[V(t), t;E, T] denote the price at time t of the particular derivative security with a payoff
structure given by: D2 = 0, and for V(T) = V and E> 0:

(11) 2r[V,T;E,T] = 6(E V)
where 6(x) denotes the Dirac delta function with the properties that 6(x) = 0 for x and
6(0) is infinite in such a way that J6(x)dx = 1 for any a < 0 < b.3° We now show that the

27 Merton (forthcoming, Chapters 10 and 14).

28 Because V(t) = 0 implies that V(t + r) = 0 for r > 0, the capitalized value of any promised pay-
ments, D2(0,t + r), can be incorporated into the termination function, g[0,tJ. Thereby, we can formally
set D2(0,t + r) = 0 without loss of generality.

29 That is, we assume that V(t) = 0 is an inaccessible boundary for finite t. For example, this
assumption is satisfied if the underlying asset has a proportional payout-rate policy, Dj(V,t) = p(t)V, 0

p(t) M, where M < for all t and a is a constant. General mathematical conditions for inaccessi-
ble boundaries are given in Karlin and Taylor (1981, pp. 226-250).

306(x) is not a function in the usual sense and instead, belongs to an extended class called "general-
ized functions." Cf. Dettman (1969, pp. 228-229).
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derivative securities defined by (11) for various values of E and T are essentially Arrow-
Debreu pure securities, extended to an environment with a continuum of states defined by
the price of the traded asset and time.31

Let dE > 0 denote the infinitesimal differential of the parameter E. Consider a portfolio
strategy that at time t purchases dE units of each of the continuum of derivative securities
with parameter values ErIE1, E2J and 0 < E1 < E2. If the portfolio is held until time T and
V(T) = V, then from (11), the value of the portfolio is given by:

E2

J ó(E-V)dE=1 if E1<V<E2
E1

= 0 otherwise.

The cost of acquiring this portfolio at time t is J 2 r[V(t), t;E, T]dE.

If we undertake the particular limiting strategy where E2= E + dE/2 and E1 = E - dEI2,
then from (12), the value of the portfolio is, in the limit, $ 1 if V(T) = and $ 0, otherwise.
By the Mean-Value Theorem, the cost of the portfolio at time t is r[V(t), t;E, TidE. Thus,
for E > 0, ir[V(t),t;E, TIdE is the price at time t of an Arrow-Debreu state-contingent
security that pays $1 at time T if V(T) = E and nothing otherwise.32

Consider the limiting portfolio strategy in which E2 oc and E7-0. From (12) and the
assumption that V(T) > 0 with probability one, the value of the portfolio at time Twill be
$ 1 for all possible values of V(T). Therefore, to rule out arbitrage between the riskless
security and the derivative securities, their prices must for all V(t) and t < T, satisfy

r(T-t)
= [V(t)tE T]dE.

0

Because all possible payoffs to each of the derivative securities are nonnegative, the no-
arbitrage condition requires that r[V,t;E, TI 0. Hence, from (13), we have that
.r[V, t;E, TI is a bounded function in the limit as V - oo

If at time t, we construct a portfolio that holds EdE units of each of the continuum of
derivative securities with parameter values Er(0,00), then from (11), the value of the port-
folio at T is given by J EÔ(E - V)dE V for V(T) V. An investment in one unit of the

31 In the usual applications of the Arrow-Debreu model, the number of states is countable, and the
payoffs to the pure Securities are contingent on "states of nature." That is, which state is realized is
assumed to be unaffected by the actions of economic agents, either individually or collectively. We do
assume here that the actions of any one agent have no effect on the time path of V(t). However, V(t)
is a price and hence, is endogenously determined within the economic system. Thus, unlike the usual
case, the state-contingent securities here depend on a state-space description that is controlled by the
collective actions of economic agents.

32 As is well known for state-contingent prices in the standard Arrow-Debreu model, the
{r[V,t;E, TJ} have a functional Structure like that of a conditional probability density function. As with
the probability density for a diffusion process, v is an order-one function, but the probability that V(T)
= E is infinitesimal, if V(t) = E is not an absorbing-barrier point for t T. Hence, the value of a secu-
rity that pays a finite amount only in that state is also infinitesimal.

This result is a well-known property of pure securities in the Arrow-Debreu model. Cf. Merton
(1982, Section 5).
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traded asset at time t will also be worth V(T) at T. However, in addition, that investment
will also receive all payouts to the asset, {Dj}, between t and T. Hence, to avoid arbitrage
opportunities between the traded asset and the derivative securities, their prices must
satisfy:

cc

V(t) f t[V(t), t;E, T]EdE.
0

From (14) and the nonnegativity of r, we have that ir[ V,t;E, TIE/V is a bounded func-
tion in the limit as V - 0. Therefore, for E> 0 and fixed, r[ V,t,E, TI/V is bounded in the
limit as V - 0.

From the general derivation in Merton (1977), to avoid arbitrage opportunities,
'r[V,t;E,T] must satisfy (9) with D2 = 0, V(t) = 0, and V(t) = cc for all E> 0 and t < T.
The boundary conditions required for a unique solution are that r[V, t;E, TI/V is boun-
ded and that (11) is satisfied. Thus, under the hypothesized frictioriless-market conditions
{(A.1)(A.6) in Merton (1977)1, we have determined the prices of a complete set of pure
state-contingent securities, where the state space is defined by the price of the traded asset
and time.

In the context of this section, r[V, t;E, TJ is the production cost to a zero-transaction-
cost financial intermediary for creating this security at time t when V(t) = V. From Merton
(1977), the production technology for replicating the payoffs to the security calls for a total
portfolio investment at time t of r[V, t;E, TI dollars with (Br[V, t;E, TJ/V) V dollars in the
traded asset and the balance in the riskiess security.

The connection between these pure state-contingent securities and the theory of finan-
cial intermediation can be made apparent by examining the general class of derivative
securities with payoff structures given by (lOa)(lOc), with V(t) = 0 and V(t) = cc for all t.
It is well known from the Green's functions method of solving linear differential equations,
that the solution to (9), subject to these boundary conditions can be written as

Tcc cc

F[V, tI = f J D2(E, T).7r[V, t;E, r]dEdr + .f h[EI2T[V, t;E, TIdE.
tO 0

Just as in the standard Arrow-Debreu model, the payoff structure to this derivative security
can be expressed as a linear combination of the payoff structures of the pure state-contin-
gent securities. Thus, these securities provide the fundamental "building blocks" for cons-
tructing more-complex securities. The term "building blocks" is apt because none of these
pure securities, taken individually, is likely to be demanded by any customer of the interme-
diary. Nevertheless, once an intermediary has determined the production costs for the com-
plete set of these state-contingent securities, it can use simple quadrature in (15) to calcu-
late the production cost for any derivative security with V(t) = 0 and V(t) = cc for all t.

Equation (15) is a powerful tool for the evaluation of derivative-security prices. It can-
not, however, be applied to securities for which there is a positive probability that either
V(t) V(t) or V(t) V(t) for some t < T. To see why, consider the example of an American
put option. As shown in Merton (1973a, Theorem 13), there always exists at each point

240

See Dettman (1969, Chapter 5).



in time, a sufficiently small, but positive stock price, such that it pays to exercise the put
immediately. Let {V(t) > 0) denote the early-exercise schedule of stock prices, such that
the put option is exercised at tif V(t) V(t). From (lob), g[V(t), tJ = X - V(t) and from
(lOc), h[V] = Max [0,X - V], where X is the exercise price of the put. If V(t) is a continuous
function oft, then a naive application of (15) might suggest that the put price can be written as:

T X
(16) Fly, t] = J [X - V(r)]r[V, ;V(r), r]dr + J [X - E]r[V, t;E, T]dE.

t 0

However, (16) gives an incorrect evaluation. For times tj and 2 such that t I <t T,
the events that V(t1) = V(t1) and V(t2) = V(t2) are not mutually exclusive. Equation (16)
implies that if both events occur, the put holder would receive payments of [X - V(t1)] at t =
t1 and [X Y(t2)I at t = 2. But, of course, if the put is exercised at t = t1, it cannot also be exer-
cised at t = (2. Thus, when early exercise is possible, (16) overstates the value of the put.3

The American put option is an example of a contingent-claim security with a path-depen-
dent payoff structure. That is, looking forward from the perspective of date t, the payoff at
time T> t depends not only on the price of the underlying asset at r, V(i), but also on the time
path followed by the asset's price between t and r. In contrast, the payoff to the pure state-
contingent security given by (11) depends only on the price of the traded asset at date T and
therefore, is not path-dependent.36 Thus, to have the right to a payment of [X - V(r)] dollars
at time r, contingent on both V(r) = V(r) and V(s) > V(s) for all se[t, r), is not the same as
owning [X - V(x)]dv units of a pure security that, collectively , pay [X - V(r)] dollars at time
r, contingent only on V(r) = V(r). It is that lack of equivalence that causes (16) to fail as a
valuation formula.

The pure-securities approach to valuation can be modified to accommodate derivative
securities with path-dependent payoffs. To do so, one constructs a set of state-contingent secu-
rities that are also path-dependent by replacing the payoff function (11) with the condition that
ar[V, T,E, T] = 6(E - V) if V(t) < V(t) < V(t) for all t < T and r[V, T,E, T] = 0 otherwise.37
With this modified set of pure securities, one can use quadrature in an equation like (15) or
(16) to determine the prices of all derivative securities with the same specified schedules,
{V(t) } and { V(t)). Note, however, that a different set of pure securities is required for each
specification of {V(t)} and {V(t)}. Unfortunately, these schedules tend to be specific to
each particular derivative security.38 Hence, with path-dependent payoff structures,

Equation (16), with V(t) 0 does provide the correct price for an European put option, because
x[V,t;0,rJ = 0fort r Tand V> 0.

36 Path-independent and path-dependent processes are directly related to Markov processes. The
returns on a security with path-dependent payoffs will not be a Markov process in V(t). Because their
payoffs are path-independent, pure state-contingent securities' returns are Markov processes in V(t).

Formally, we define an indicator variable X(t) such that X(t) = 1 if V(s) < V(s) < '(s) for ails <
and X(t) = 0, otherwise. The path-dependent pure-security payoff function becomes x[V,X, T;E, TI =
X6(E - V). Although not Markov in V(t) alone, x[V(t),X(t),t;E, TI does follow a Markov process in V(t)
and X(t). The general method of expanding the number of variables to convert a non-Markov process to
a Markov process is discussed in Cox and Miller (1968, p. 262).

3 Consider, for example, a collection of American put options on the same traded asset. From Mer-
ton (1973a, Section 8), the optimal early-exercise boundary will depend on both the exercise price and the
expiration date. Thus {V(t)} will be different for each one of these derivative securities.
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there will generally be no computational advantage for this technique over the direct solu-
tion of (9), subject to boundary conditions (10), for each individual derivative security.39

Whether or not the derivative security is path-dependent, the intermediary requires
only two traded assets, the risky asset and the riskless security, to synthesize the derivative
security. It thus needs only two traded assets to create any one of the uncountable number
of pure Arrow-Debreu securities. Hence, we see that a market structure that permits
frequent trading can substantially reduce the number of different security markets required
to service a given set of allocations.40

4. Risk Management for Financial Intermediaries

Financial intermediaries, like other firms, issue stock and other liability instruments to
investors in order to raise capital for operations. However, intermediaries are different
from other business firms because they create explicit liabilities whenever they sell their
products. Although intermediaries do act as agents in some transactions, their primary
function is to act as principals and provide financial instruments and products that cannot
be efficiently supported by trading in organized secondary markets.4' The purchasers of
these products are therefore de facto liabilityholders of the intermediary. Indeed, as we all
know, the vast bulk of a typical intermediary's liabilities are held by its customers.

In general, customers, unlike investors in the firm, prefer to have the payoffs on their
contracts as insensitive as possible to the fortunes of the firm itself. For example, a custo-
mer who buys a warranty on a new car from an automobile manufacturer wants the repairs
paid for in the event that the car is defective. In fact, the customer's contract pays for repairs
in the joint contingency that the car is defective and the automobile manufacturer is finan-
cially solvent. Even if an actuarily-fair reduction in the price of the warranty were made to
reflect the risk of insolvency, it is still likely that the customer would prefer the warranty
with the least default risk.42 As with customers of automobile manufacturers, so with

Breeden and Litzenberger (1978) demonstrate the direct connection between the pricing
theories of options and pure securities. They show that a pure security is achieved as the limit of a
"butterfly" spread in call options as the exercise prices of the options converge to each other. Also see
Merton (forthcoming, Chapter 14).

40 Radner (1972) was the first to formally show that dynamic trading could in principle reduce the
number of different securities required to achieve an Arrow-Debreu complete-markets equilibrium
allocation. Duffie and Huang (1985) provide a general proof that a Radner-type equilibrium can be
achieved with a finite number of securities in a continuous-trading environment with continuous
sample-path processes.

41 In effect, the test is whether the bid-ask spread charged by the intermediary is smaller than the
one that market makers would charge the customer if the instrument were traded in an organized
market. A stereotypical financial intermediary purchases and issues nontraded financial instruments to
its customers, and uses the financial markets to raise capital and to hedge its positions. As in the case
of mutual funds, the intermediary may also create "pools" of traded assets for its customers if their
individual demands for these assets are not an economic lot size for direct market purchases and sales.

42 Further discussion of this assertion is provided in Section 5. Much the same point can be made
with respect to the viability of organized futures and forward markets as discussed in Merton (forth-
coming, Chapter 10). Regulations on capital requirements, collateral, guarantees and insurance pur-
chased from external sources, and escrows of the intermediary's assets are among the devices used to
insulate customers from the business risk of the intermediary.
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customers of financial intermediaries. Thus, the success of an intermediary depends not
only on charging adequate prices to cover its production costs, but also on providing ade-
quate assurances to its customers that promised payments will be made. Hence, even in
theory, an important part of the management of financial intermediaries is the measure-
ment and control of the risk exposures created by issuing their financial products.

As we have seen, Contingent Claims Analysis can be used to determine the production
process and cost for an intermediary to create virtually any financial product that has the
properties of a derivative security. To match any specific payoff function, the intermediary
need only set down the appropriate boundary conditions in (10), solve (9), and follow the
prescribed rules. Therefore, it is in principle no more difficult to create derivative securities
with specialized payoff patterns than it is to create ones with standard patterns (e. g., call
options). CCA thus provides the means for intermediaries to create custom financial pro-
ducts in an "assembly-line" fashion. In such an environment, intermediaries will have a
diverse array of complex financial assets and liabilities. This diversity and complexity makes
measurement of the risk exposure for intermediaries a difficult task, even in a theoretical
model. CCA can be used to significantly reduce the difficulty of that task.

Consider an intermediary that issues derivative securities on n different traded assets.
Let Vk denote the price of asset k with dynamics specified as:

dVk = [UkVk - D]dt + GkVkdZk,
where ak and 0k are the expected rate of return and standard deviation of return, respecti-
vely and D is the payout rate on asset k, k = 1.....n. For i = l,...,mk and k = I.....n, let
F[V, t] denote the solution to (9) subject to boundary conditions (10) that are appropriate
for the ith type of derivative security, which is contingent on the price of traded asset k. If
Vk(t) = Vk at time t, then F[Vk,t] is the unit production cost to the intermediary and it is
also the value to the intermediary of owning one unit of derivative security i. From Ito's
Lemma and (9), we have that the dollar return to the intermediary from owning one unit of
the derivative security between t and t + dt can be written as

dFki+Didt = (F1[Vk, t] (akr) Vk+ rF"1[ Vk, t])dt + F[Vk, t]UkVkdZk
= F'[Vk, t](dVk+Ddt) + (Fkz[Vk, t]F'[Vk, t] V)rdt,

where is the payout rate on derivative security i and subscripts on F denote partial deri-
vatives as in (9). By inspection of (18), owning one unit of derivative security i between
and t + dt produces the same dollar return as holding F[Vk, t] units of traded asset k and
(Fki[Vk, tJ - F[Vk, t]Vk) dollars of the riskless security over the same period.

If at time t the intermediary owns Mk! units of this derivative security,44 then its exposure
from this position between t and t + dt is equivalent to owning units of the traded asset
k and Bf dollars of the riskless security where MkF1[Vk, t] and B, Mkj(Fkt[Vk, t] -
F[Vk, tJVk). Adding up the exposures from all types of derivative securities (contingent on
the price of asset k), we have that the total exposure from these positions between t and t +
dt is equivalent to owning N( TkNt) units of asset k and B 7kB) dollars in the
riskless security. Thus, the intermediary can express its entire risk exposure on the mk

By Ito's Lemma, dFi = (Fi + a V FI2)dt + dVk. By substituting for (F' + avFtjI2)
from (9) and rearranging terms, we arrive at (18).

If Mkl < 0, then the intermediary has a short position (i.e., a liability) of I M5 I units of the deri-
vative security.
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different types of derivative securities in terms of the risk exposure to just two traded secu-
rities: asset k and the riskiess security.45

The intermediary can, of course, make this conversion for all derivative securities in its
portfolio. If W(t) denotes the net value of the financial-security holdings of the intermediary
at time t, then we have that:

W(t) = T' Mkj(t)FkifVk,t] + '] Nk(t) Vk + B(t)

where B(t) is the dollar amount of the riskless security held at t and Nk(t) is the number of
units of traded asset k held at , k = 1.....n. Thus, from (19), CCA provides the means for
continuous valuation of the intermediary's portfolio, even if the bulk of its financial pro-
ducts and liabilities are not traded in organized secondary markets.

From (17), (18) and (19), the dollar return to the intermediary's portfolio between
and t + dt can be written as:

dW = 7 M,., (dFki + D dt) + ) N,, (dVk + D dt) + rBdt
= (N + Nk) (dVk + Ddt) + rIB + 7 B]dt
= [ (N +Nk) Vkak + (B + B)rJdt + (N + Nk) ukVk dzk.

By inspection of (20), we have that the intermediary's risk exposures to the Jmk different
derivative securities and the n traded assets can be expressed in terms of risk exposures to
the n traded assets alone. Hence, by the application of CCA, risk management of the inter-
mediary's complex portfolio can be reduced to the management of a relatively-simple port-
folio containing only traded assets.

The analysis leading to (20) assumes no transactions costs. It can nevertheless be used
to identify management policies that reduce the volume of hedging transactions and there-
by, reduce the impact of such costs on financial intermediation. The derivation of bid-ask
price spreads in Section 2 overstates the effect of transactions costs on an active financial
intermediary, because it assumes no inventories of either traded assets, or other derivative
securities. To perfectly hedge its entire portfolio, the intermediary need only hold inven-
tories of traded assets that are sufficient to hedge the net exposures created by its financial
products. In the context of (20), a perfect hedge requires only that Nk = N, k = 1.....n.

To further illustrate the point, consider an intermediary with current exposures that
are completely hedged. Now, suppose it issues call options on asset k with an equivalent
exposure of Nk and issues put options on asset k with an equivalent exposure of NkJ.
Because for these instruments, Nk < 0 and NkJ> 0, the dollar transaction in asset k requir-
ed to jointly hedge these new exposures, (Nk + NkJ) I V, is less than (INkiI + NkJ )Vk,
the dollar amount required if each new exposure is treated as an isolated transaction. Thus,
by offering a mix of "bullish" and "bearish" products, the intermediary can reduce the
volume of hedging transactions in traded assets. If necessary, the intermediary can adjust
its bid and ask prices for selected financial products so as to induce its customers to buy ones
that reduce the overall need for hedging transactions.

° In practice, restating the risk exposures in these terms may be beneficial, even if mk = 1. For
example, many managers may have difficulty in assessing the exposure of a short position of a six-month
call option on 1000 shares of stock, with an exercise price of $ 110 per share, when the stock is currently
selling for $ 100. Assuming that F = $ 8 and F1 = 0.40, they would perhaps understand better the equiva-
lent risk-exposure statement, that they are short 400 shares of stock and have $ 32,000 in the riskiess
security.
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Even in the absence of new business, transactions in traded assets are required if the
intermediary is to maintain a hedged position against its current inventory of financial pro-
ducts. If the policy is to maintain Nk = N, then by Ito's Lemma, we have that:

1 a2Nf aN aN
dN = -[ aV av + ]dt - aVk dVk.

By inspection of (21), the volume of transactions induced by unexpected changes in traded-
asset prices is proportional to the absolute magnitude of N/ a Vk. Hence, the size of trans-
actions caused by unanticipated changes in traded-asset prices can be minimized if the inter-
mediary can maintain a hedged portfolio with aN(/ avk close to zero. If we neglect the
effect of new business (i.e., dMk1 = 0, i = 1.....mk, k = 1.....n), then from the definition
of N, we have that:

aN
avk 7kMkF[Vk,t].

If the production cost for a derivative security of type i is a strictly convex function of V,
then Fij[V, t] > 0. If it is a strictly concave function, then F51[Vk,t] < 0. Thus, by offering
a mix of "convex" and "concave" products, the intermediary can reduce the volume of
transactions in traded assets that is required to maintain a hedged portfolio.

In the parlance of option-pricing analysis,46 the hedge ratio, Nk, = F[Vk,t], is called
the "delta" of the derivative security i and the change in the hedge ratio, aNkIavk
Fj[l/,t], is called the "gamma" of derivative security i. The gamma of the intermediary's
aggregate position, aN / a Vk, characterizes the degree of local convexity or concavity of the
position with respect to Vk. If N = Ni, then the intermediary is perfectly hedged against
any small ("local") changes in Vk. If, however, this locally-hedged position is such that N/
avk > 0, then the intermediary will gain from any large ("nonlocal") changes in Vk,
whether up or down.47 Similarly, if a Nfl avk < 0, the intermediary will lose from any large
change in Vk. Thus, for Nk = Nf, the gamma of the aggregate position measures the inter-
mediary's exposure to large moves in Vk. Our assumptions about the dynamics of traded-
asset prices are such that nonlocal movements cannot occur. Such assurances cannot, of
course, be given for the behavior of real-world asset prices. Hence, the assessment of one's
exposure to convexity is an important element of risk management for practitioners.48 Our
analysis also neglects taxes. However, CCA analysis and the resulting prescriptions for risk
management by intermediaries can be modified to include taxes along the lines of Scholes
(1976) and Constantinides and Scholes (1980).

46 Cf. Cox and Rubinstein (1985, pp. 222-235).

If H[Vk,t] denotes the value of the intermediary's position, then by Taylor's Theorem, H[Vk +
X,t] - H[V5,t] = HJ[Vk,t]X + H11[V,t]X212, where V is some number satisfying V - V6 I X I. If
Nk = Nf, then Hl[Vk, t] = 0. Hence, the change in the value is positive (negative), if H11[V, tj > 0 (<
0) within the region of change.

The risklessness of the derived hedges is, of course, contingent on a correct specification of the
asset dynamics. As in Cox and Ross (1976) and Merton (1976), CCA techniques can be adopted to for-
mally recognize the possibility of nonlocal changes (i.e., "jumps" or "gaps") in asset prices. As is often
the case, real-world applications of CCA are a compromise: practitioners typically assume the model
presented here and then using (22), adjust their holdings to create the desired "gamma" exposure to
nonlocal movements in prices.
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As noted at the outset, risk management is important in large part because customers
are better served by products from intermediaries that have negligible default risk. Howe-
ver, especially (but not exclusively) because of transactions costs, perfect hedging of an
intermediary's entire portfolio can be a suboptimal policy. In such cases, diversification can
be used as a risk-management alternative to transacting in the traded assets. From (20), the
instantaneous variance of the dollar return on an intermediary's portfolio can be expressed
as (N + Nk)(N + NJ)akaJQkJVkVJ, where Pk] is the instantaneous correlation coeffi-
cient between returns on asset k and asset j. Diversity among the products offered and
diversity among the underlying traded assets are essentially the two ways by which diversi-
fication can reduce the variance of the portfolio. As we have seen, a diverse product mix
can decrease the absolute magnitude of the net exposure to each traded asset. Among
traded assets with positively correlated returns (Pkj > 0), a product mix that leads to NN
< 0 will also reduce the volatility of the intermediary's portfolio. For product mixes that
lead to NZN > 0, the intermediary can reduce portfolio variance by offering these products
on traded assets with relatively small correlations among their returns (i.e., Pkj << 1).

Regulation can be beneficial to both financial intermediaries and their customers if it
can reduce expenditures by customers on information gathering and monitoring. Regula-
tion, whether beneficial or not, can significantly influence risk-management policy, even for
an intermediary that can transact without cost. One common form of regulation is to
require the intermediary to maintain a minimum level of net worth or capital if it is to conti-
nue in business.49 If the intermediation franchise has a positive net present value, then regu-
lations of this type can cause value-maximizing financial intermediaries to exhibit risk-
averse-like behaviour in the management of their financial assets. In choosing among finan-
cial assets and liabilities with the same net present values, an intermediary will prefer the
mix that minimizes the probability of violating the regulatory constraint, because that
choice maximizes the value of its franchise.5°

Given the "cliff-edge" nature of the regulatory constraint, one risk-management stra-
tegy that meets this objective is to systematically maintain a put-option position on the
entire portfolio of net financial assets. By selecting an exercise price larger than the mini-
mum net-worth requirement and a time until expiration of sufficient duration, the inter-
mediary can protect itself against violation of the regulation and provide adequate time to
raise any necessary additional capital. Although occasionally referred to as an insured-
equity, or protective-put strategy, this risk-management strategy is most commonly called
portfolio insurance.51

To implement this strategy, the intermediary could purchase insurance from another
firm. However, as a minimum-cost transactor, it may find it more cost-effective to syntheti-
cally create its own portfolio insurance by using CCA techniques. By pursuing this route,
the intermediary, in effect, creates a captive, portfolio-insurance subsidiary that sells the

Such provisions are common in the regulation of insurance companies.

50 See, for example, Merton (1978) on the investment behavior of banks covered by deposit
insurance.

5' Cf. Leland (1980), Brennan and Solanki (1981), and Rubinstein (1985). There are a number of
variations of the basic portfolio-insurance idea. For instance, having the exercise price of the put option
grow at a specified rate over time can guarantee a minimum positive rate of return on the portfolio.
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put to the parent and undertakes dynamic strategies to hedge its liability. One advantage of
this approach is that the intermediary retains any mark-up or spread that would otherwise
be paid to an external issuer of the insurance. This saving includes any non-competitive
profit to the issuer and the "deadweight" costs of redundant information gathering and
surveillance that often arise in arms-length transactions. An external insurer of the inter-
mediary's portfolio would surely place restrictions on the types of assets and liabilities held
in the portfolio. Thus, self-insuring also allows greater flexibility in the intermediary's
investment policy. The main disadvantage is, of course, that the self-insurer retains the risk
that the dynamic hedging strategies fail to replicate the payoffs to a put option on the port-
folio.52 But, given their presumed financial expertise and continuous involvement in the
financial markets, intermediaries are, almost surely, the best-suited among individuals and
institutions to bear this risk.

5. On the Role of Efficient Financial Intermediation in the Continuous-Time Model

As is evident from the preceding analyses, the continuous-time model provides a rich
analytical framework for developing a theory of financial intermediation that encompasses
both the general functional structure and the specific operational procedures of financial
intermediaries. Perhaps less apparent is that the existence of a well-functioning financial-
intermediation sector in the economy can do much to justify the continuous-time model
with its frictionless-market assumptions as a relevant mode of analysis for the study of gene-
ral financial economic behaviour. We thus close our formal analysis with an investigation of
this more-subtle side of the symbiotic relationship between the continuous-time model and
financial intermediation.

The optimal consumption and investment rules for individual investors derived in
Breeden (1979), Cox, Ingersoll and Ross (1985), Merton (1971; 1973b) and Solnik (1974)
are valid only if investors can trade continuously with no transactions costs. Real-world
financial markets in well-developed economies are open virtually all the time, and there-
fore, the assumption of continuous trading is a reasonable approximation to real-world tra-
ding opportunities. However, it is also readily apparent that in the real world, individual
investors generally face significant transactions costs for trading in the asset markets. This
observation surely raises a question about the robustness of the continuous-time model's
prescriptions as an approximation to feasible behavior in the real world. In this section, we
show that with efficient financial intermediation, all investors can achieve the identical
consumption-bequest allocations that they would have chosen if they could have traded
continuously without cost. We also show that the aggregate demands for traded assets are
the same as the ones that obtain in the frictionless-market model. Thus, the consumption

52 Cf. the discussion in footnote 48. In recent years, several real-world institutional investors have
adopted portfolio insurance as a risk-management strategy for both their equity and fixed-income
portfolios. Although some purchased the insurance from intermediaries, the great majority chose to
create their own by trading in stock- and bond-index futures and traded-options on these futures. The
skills of both the insurers and the self-insurers in implementing these strategies were given an extreme
test on Black Monday, October 19, 1987, when the Dow Jones Industrial Average fell 508 points
(22.6%). By any standard, this unprecedented decline represented a "nonlocal" movement in traded-
asset prices. The facts on how they did are not as yet known [cf. Rubinstein (1988)]. It is, however, a
safe prediction that those with a positive gamma on their otherwise hedged portfolios did well, and
those with a negative gamma did poorly.
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and asset demands derived in these cited earlier models are shown to apply in a more-
realistic one with transactions costs.

In Merton (1977), the pricing function for a derivative security was derived by using the
techniques of dynamic portfolio theory, developed in Merton (1971). Let C(t) denote the
consumption rate of the investor and let w(t) be the fraction of the investor's portfolio allo-
cated to the risky traded asset. If W(t) denotes the value of the investor's portfolio at time
t, then from Merton (1977, eqn. (4)), we have that:
(23) dW = {[w(a - r) + C} dt + wWadz,
where a and a are assumed to be functions of V and t only. To derive the replicating port-
folio for a particular derivative security requires that we choose: (i) w(t) = F1 [V(t), t]V(t) /
W(t); (ii) C(t) = D2(V(t),t); and (iii) W(0) = F[V(0),O]. It follows that to rule out arbitrage,
W(t) = F[V(t), t] for all t, where Fly, t] is the solution to the partial differential equation (9).

In this section, we "reverse" this process. Instead of searching for a feasible portfolio
that exactly replicates the payoffs to a particular derivative security, we search for a feasible
derivative security with payoffs that exactly match the payoffs to a particular investor's opti-
mal portfolio. Suppose that a blueprint for constructing such a security can be found and
that the price charged by a financial intermediary for the security does not exceed the inves-
tor's budget constraint. Then, as an alternative to continuously trading assets to achieve his
optimal consumption-bequest allocation, the investor can buy the appropriate derivative
security from the intermediary and achieve his optimal allocation without ever trading
again.53 If information-acquisition and transactions costs are smaller for the intermediary
than for the investor, then the availability of such derivative securities makes it possible for
the investor to achieve welfare-improving allocations that would not otherwise be feasible
if the investor had to trade directly in the asset markets.

To derive the terms of the derivative security that provides the optimal consumption-
bequest allocation for a particular investor, we use the Cox-Huang (forthcoming) approach
to the optimal consumption-investment problem. Although the explicit development here
assumes a single risky asset and a riskless asset, the results can be generalized to the case of
n assets.54

Let X(t) denote the price per share of a mutual fund with an investment policy to
follow the growth-optimum portfolio strategy and pay no dividends to its shareholders.55
The dynamics of X(r) for a single risky asset can be written as:

That investors need only transact once to achieve their lifetime optimal allocation is a well-
known feature of the intertemporal version of the Arrow-Debreu model with complete markets. That
this result obtains here is no coincidence because the proposed set of derivative securities is equivalent
to a complete market. See Merton (forthcoming, Chapter 16) for analysis and discussion.

Cf. Merton (forthcoming, Chapter 16).

The growth-optimum portfolio maximizes the expected logarithmic rate of growth of the port-
folio. In the continuous-time model, this portfolio is instantaneously mean-variance efficient [cf.
Merton (forthcoming, Chapter 6)1. The mutual-fund theorems of the continuous-time theory predict
that investment companies with growth-optimum portfolio strategies are natural financial products to
be offered by intermediaries. In the single risky-asset case, an unambiguous statement of the invest-
ment policy for such funds is: to undertake continuous trading so as to hold the portfolio fraction
w(V(t),t) in the risky asset, where w(V(t),t) (a(V(t),t) - r)/a2(V(t),t). If the funds are "open-ended"
and thereby, required to either redeem or issue shares at net asset value, then the no-dividend policy
of the funds does not matter to their shareholders.
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(24) dX = (2 + r)Xdt + Xdz,
where j = (V, t) (a - r) / a. If C* (t) denotes the investor's optimal consumption rate at
time t and W* (T) denotes his optimal bequest of wealth, then Cox and Huang (forth-
coming) have shown that there exist functions G and H such that:

C*(t) = G(X(t), V(t),t)
and

W*(T) = H(X(T),V(T))

where G and H depend parametrically on X(0), V(0), and the investor's initial wealth,
W(0). Moreover, for any feasible consumption plan, G and H are nonnegative, and
G(O,V,t) = G(X,O,t) = H(O,V) = H(X,O) = Oforallt T.

It follows from (25 a) and (25b), that to match the optimal consumption-bequest alloca-
tion of the investor, the derivative security must pay out at a continuous dividend rate of
G(X(t),V(t),t) for t < T and make a lump-sum payment of H(X(T),V(T)) at time T. The
derivation of the production technology and production cost to create this security follows
along the general lines presented in Merton (1977). However, the development here is
somewhat more complicated, because the value of the derivative security depends on the
prices of two risky traded assets in addition to the riskless one.

Define F[X,V,t] to be the solution to the linear partial differential equation:

1
(26) [u2XF11 + 2wXVF12 + a2 V2F] + rXF1 + rVF2 + F3rF+ G(X, V t) = 0,

subject to the boundary conditions:

F[0,V,t] = 0

F[X,0,tJ = 0
FIX, V, T] = H(X, V),

where subscripts on F in (26) denote partial derivatives with respect to X, V, and t.

Let P(t) denote the value of a portfolio that makes continuous payouts at the rate
G(X(t), V(t),t) and follows an investment strategy of allocating $ w1 (t)P(t) to the growth-
optimum portfolio, $ w2 (t)P(t) to the risky asset, and the balance of the portfolio to the
riskiess asset, where :56

w1(t)P(t) = F1[X(t),V(t),t]X(t)
and

w2(t)P(t) = F2[X(t),V(t),t]V(t)

It follows that the dynamics of P(t) can be written as:
(29) dP = F1dX + F2dV + {r(PF1XF2V)G(X,V,t)}dt.

In the single risky-asset case here, the growth-optimum fund is just a prescribed mix of the tra-
ded risky asset and the riskless asset. Therefore, as is evident from (24), the instantaneous return on
the fund is perfectly correlated with the return on the risky asset. Thus, in this case, we can rewrite
(28a) and (28b) in terms of a single combined position in the risky asset: namely, hold
$[w(V(t),t)w1(t)P(t) + w2(t)P(t)] in the risky asset (and the balance of the portfolio in the riskiess
asset) where w(V(t),t) is defined in footnote 55.
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Because Fis twice-continuously differentiable, we can use Ito's Lemma to express the
stochastic process for F[X(t), V(t),t] as:

1
dF = F1dX+F2dV+ { [2X2F11+2iaXVF12+a2V2F2J+F} dt.

But, F satisfies (26). Hence, we can rewrite (30) as:

dF = F1dX+F2dV+ {r(FF1XF2V)G(X,V,t)} dt.

Let Q(t) P(t) - F[X(t),V(t),t]. From (29) and (31), we have that:

dQ = dPdF
= r(PF)dt
= rQdt.

The solution to (32) for any t is Q(r) = Q(0)exp[rt]. Therefore, if we choose the initial
investment in the portfolio so that P(0) = F[X(0),V(0),O], then Q(0) = 0 and Q(t) 0 for
all t T. It follows that for all t T:

P(t) = F[X(r),V(r),tJ

Thus, we have derived a dynamic portfolio strategy that exactly replicates the payoffs of a
derivative security that makes continuous payments at the rate G(X(t), V(t), 1) for t < T and
has a final payout of H(X(T), V(T)) at time T. The production technology for creating this
security is given by (28a) and (28b). The cost of producing the security at time t is
F[X(t), V(t),t].

The payoffs of the derivative security exactly match the consumption-bequest alloca-
tion of the investor's optimal continuous-trading strategy. Hence, the investor can achieve
this allocation by simply buying the security, provided that the price of the security does not
exceed his budget constraint. But, Cox and Huang (forthcoming) have shown that the
investor's optimally-invested wealth, W(t), can be expressed as a function of X(t), V(t), and

and that this function satisfies our partial differential equation (26), with boundary condi-
tions (27). Therefore, W(t) = F[X(t),V(t),tJ, and in particular, W(0) = F[X(0),V(0),0].
Purchase of the derivative security by the investor is thus always feasible.

Having both derived the procedure for creating this type of security and established the
feasibility of its purchase by the investor, we now examine the role of financial intermedia-
tion in making the continuous-time model more robust. Assume an institutional environ-
ment with a competitive financial-services industry, in which financial intermediaries pay no
transactions costs and consider an investor who must pay significant transactions costs to
trade in the asset markets. Let the investor solve for the optimal lifetime consumption-and-
investment program that he would choose if he could trade continuously with no trans-
actions costs. Using the technique of Cox and Huang (forthcoming), this optimal program
can be expressed as a stream of contingent payments, G(X(t),V(t),t) for t < T and a final
payment of H(X(T), V(T)) at time T. By assumption, the investor cannot implement this
strategy by trading directly in the asset markets. The investor can, however, negotiate with
an intermediary for the purchase of a custom-designed derivative security with payoffs
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specified by G and H. By assumption, financial intermediation is a competitive industry,57
and therefore, price equals the marginal cost, F[X(0), V(0),O]. Thus, if such derivative secu-
rities are generally available from intermediaries, all investors can achieve optimal
consumption-bequest allocations that are identical to the ones they would have selected if
they could trade continuously with no transactions costs.58

If the creation of these securities is to provide a meaningful extension to the robustness
of the frictionless-market version of the continuous-time model, the assumptions about
institutional structure and the partitioning of information sets among agents that are neces-
sary for wide-spread distribution of these securities must be plausible. It is, for example,
unlikely that trading in derivative securities of this type could be supported in organized
secondary markets.59 The wealth of any one investor is small and the particular security
demanded by each investor will in general be unique in terms of its specified payout struc-
ture, G and H. The structure of these securities is however ideally suited for broad distribu-
tion by financial intermediaries. After the sale of such a security, an intermediary can use
the proceeds to finance the hedging of its liability by trading continuously in the asset
markets according to the rules (28a) and (28b). As in the preceding section, the nature of
these trading rules are such that hedging of custom-designed derivative securities is no more
difficult than hedging of standard ones. The intermediary simply aggregates its individual
exposures, as calculated from (28), across all its outstanding securities and then establishes
positions in a relatively small number of traded assets to hedge its net exposure.

Wide-spread availability of these derivative securities requires arms-length trans-
actions, and these can only be implemented if the contracts create no important moral-
hazard problem for either party. The contingent payments on each derivative security depend
only on time and the prices of the growth-optimum mutual fund and the risky asset. All
three are observable, and hence, verifiable, by the investor and the intermediary. Provided
that both the investor and the intermediary are price-takers in the traded-asset markets,
neither can affect the time path of either X(t) or V(t). Hence, there is no inherent moral
hazard to either party in these contracts.

To establish and evaluate the terms of the derivative security, each party needs a specific
body of information. Successful implementation of these contracts thus requires that the

In the spirit of footnote 17, the purely competitive assumption for financial intermediaries can
be somewhat relaxed without significantly affecting the results. That is, provided that the unit mark-up
for non-competitive intermediary profits is a small fraction of each investor's wealth, the optimal allo-
cation achieved through intermediation will be close to the competitive one because C* (t) is a conti-
nuously differentiable function of the investor's wealth.

Cox and Huang (forthcoming) show that the investor's optimal-portfolio demand for the risky
asset at time t is given by { F1[X(t), V(t), t](a - r)X(t) / a2 + F2[X(t), V(t), t] V(t) } , with the balance of his
wealth held in the riskless asset. If an intermediary uses hedging rules (28a) and (28b), it follows from
footnote 56 that the intermediary's demands for traded assets to hedge the derivative security are
identical to those the investor would select if he could trade continuously without cost.

This does not imply that the security could not be redeemable. The duration of the derivative-
security is the lifetime of the investor, T. The magnitude of the liability as assessed by the intermediary
at any time t( T) is F[X(t), V(t),t] = W(t). Hence, at any time t, a competitive intermediary would be
willing to repurchase the security from the investor for W(t). By such a sale, the investor can therefore
recover the same wealth that he would have had if he had been able to trade continuously during the
time interval [O,t].

251



task of acquiring the needed information by the respective parties be a reasonable one. To
create and price the derivative security, the intermediary need only know the schedules
G(X(t), V(t), t) and H(X(T), V(T)), which are specified by the investor at the time that the
security is created. The intermediary need not know either the investor's preferences, or
even that the purpose of the security is to provide an optimal lifetime allocation. Because
G and H 0, the only contractual payment by the investor to the intermediary is the
initial one, F[X(0), V(0),0]. Thus, we have, as a derived result, and not as an assumption,
that this type of derivative security provides limited liability for the investor. It follows that
to price and hedge these securities, the intermediary does not require monitoring of the
investor's endowment or credit-worthiness. We thus conclude that the informational requi-
rements for intermediaries to produce these securities are reasonable.

The information set required by the investor to determine the functions G(X, V,t) and
H(X, V) is surely reasonable, because it is no larger than the one he would use to solve for
his optimal consumption and investment program in the absence of such intermediation
opportunities. Moreover, this is the only information the investor needs, provided that
there is no uncertainty about the ability of the issuing intermediary to make the promised
contingent payments. The prospect of default on the customer-held liabilities of inter-
mediaries raises two important issues. First, if there is significant default risk, then deriva-
tive securities with identical promised payments, but issued by different intermediaries, are
no longer perfect substitutes. Hence, to evaluate these securities, the investor requires
information about the credit-worthiness of the issuing intermediaries. Therefore, default
risk imposes on the investor a burden of additional information acquisition, albeit perhaps
not an unreasonable one.

A second and more serious issue is that default risk reduces the functional efficiency of
the derivative securities sold to individual investors. These investors want securities with
payments (contingent on X, V, and t) that match their optimal consumption-bequest allo-
cations. Unless the risk of default on these contracts is negligible , their payments are, de
facto, also contingent on the value of the issuing intermediary and its entire structure of out-
standing liabilities. The suboptimality of the contracts induced by this unwanted depen-
dency underscores the distinction drawn in Section 4 between the liabilities of the interme-
diary held by its customers and the liabilities held by its investors. In the model here, only
zero-cost transactors would trade in the asset markets. Hence, these are the only investors
to have direct holdings of the stock and other general liabilities of individual financial inter-
mediaries. As shown in the proof of the Modigliani-Miller Theorem in Merton (1977),
default risk on liabilities held by zero-cost transactors causes no loss in efficiency because
such investors can, if they choose, use continuous-trading strategies in the asset markets to
hedge this risk. In contrast, the customers of intermediaries are investors who buy the
custom-designed financial products of the intermediaries precisely because they cannot
transact costlessly in the asset markets. Unlike investors in intermediaries, customers
cannot use trading strategies in the asset markets to shed their unwanted exposure to the
fortunes of the intermediaries whose products they buy.

Customers can reduce the effects of bankruptcy risk by buying a security with promised
payments of G(X(t), V(t), t) IN and H(X(T), V(T)) IN at a price of F[X(t), V(t), ti/N from
each of N financial intermediaries. Such diversification efforts alone may not, however, be
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sufficient to eliminate the adverse effects of default.6° Because default risk reduces the use-
fulness of their financial products, intermediaries have an incentive to apply risk-manage-
ment techniques, make institutional arrangements, and support regulations, all designed to
minimize the probability of default on customer-held liabilities. This incentive would of
course exist in any model of financial intermediation. What distinguishes the continuous-
time model is that the theory provides a feasible set of trading rules for each intermediary
to unilaterally reduce the risk of default on its own products to a negligible level.61 Hence,
there exists a feasible institutional structure and partitioning of agents' information sets to
support the creation of optimal default-free contracts, such that each investor can buy his
entire lifetime consumption-bequest allocation in a single transaction.

In Merton (1973b), an intertemporal equilibrium model of allocations and asset prices
is developed for an economy with frictionless markets where all investors can trade conti-
nuously without cost. This model has a simple financial sector with no explicit derivative-
security markets or financial intermediaries, and further assumes that all business firms are
financed entirely by equity. However, as noted at the outset here, derivative securities,
mutual funds, and corporate liabilities, with payoffs that can be replicated by continuous
trading in existing assets, serve no important function in a frictionless environment in which
all agents can trade continuously without cost. Because every investor can trade conti-
nuously, each investor can synthesize the payoff patterns of these financial instruments,
using the existing set of traded assets alone. Hence, any allocation chosen by the investor
after such instruments are added to the menu of investments could have been achieved
before their introduction. Thus, the addition of these financial instruments into that model
would leave unchanged the equilibrium time paths of consumption, production, and asset
prices.

It follows that equilibrium in a frictionless-market model that explicitly includes all
financial markets, intermediaries, and corporate-liability structures can be analyzed in two
separate parts: in the first, the intertemporal model with a simplified financial sector is used
to determine real-sector allocations and asset prices. In the second, the equilibrium dyna-
mics of asset prices as determined in the first part, are used together with CCA pricing
methods, to find the equilibrium prices of derivative securities, financial products, and cor-
porate liabilities. Such a separation among sectors of the economy is generally called
dichotomy. Dichotomy occurs here because many of the financial securities, markets, and
institutions are redundant, and hence, much of the financial sector "doesn't matter".62

60 The degree of success of this strategy in statistically eliminating the risk of default depends on
the extent that the Law of Large Numbers applies. Valid application of this theorem requires not only
that the number of intermediaries, N, is large, but also that the events of default among the selected
intermediaries are sufficiently statistically independent. Because many economic events that affect the
fortunes of one intermediary also affect the fortunes of others, the required independence assumption
may not be satisfied.

61 In the model here, these rules are given by (28a) and (28b). For the corresponding rules with n
assets, see Merton (forthcoming, Chapter 16).

62 The conditions under which the creation of a new financial instrument or market can change
equilibrium allocations are discussed in Breeden (1979), Cox, Ingersoll and Ross (1985), and Merton
(1973b; forthcoming). If a set of existing securities and markets leads to an equilibrium that is an
unconstrained Pareto optimum, then any additional securities or markets will be redundant.
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In the model of this section, the financial sector does matter, because not all agents can
trade continuously without cost.63 As we have seen, there exists an institutional structure of
well-functioning and competitive financial intermediaries such that every investor can
achieve the same consumption-bequest allocation that he or she would have selected in a
frictionless-market environment. Although these investors need only transact once to buy
their optimal allocation, the issuing intermediaries must transact continuously in the asset
markets to hedge their customer-held liabilities. As discussed in footnote 58, the increments
to a financial intermediary's hedging demands for traded assets that are induced by the sale
of an optimal-allocation contract to an investor will, at every point in time after the sale, be
identical to the optimal-portfolio demands that this investor would have chosen in a fric-
tionless-market model. Hence, the individual consumption functions and aggregate
demand functions for traded assets in this model can be computed as if all investors could
trade continuously without cost. It follows that the equilibrium real-sector allocations and
asset prices will be the same as the ones derived in the Breeden-Cox-Ingersoll-Ross-
Merton-Solnik models.

It would seem therefore that the same dichotomy derived in the frictionless-market
case applies also to our model with transactions costs. In a formal-computational sense, it
does. We can still solve for the equilibrium asset-price dynamics in the frictionless-market
model, and then compute the prices of derivative securities, mutual funds, and corporate
liabilities using CCA. There is, however, one significant difference: the first-part calcula-
tion of equilibrium real-sector allocations is valid if and only if there exists a sufficiently rich
set of securities and intermediaries in the financial sector to make these allocations feasible
for agents who cannot trade without cost. Because of this conditioning, perhaps a more-
appropriate term for this separation is "quasi-dichotomy".

In summary, our manifest hypothesis is that the continuous-time model is a useful tool
of analysis for both the theory and practice of financial intermediation. With the assump-
tion that not all agents can trade continuously without cost, a significant economic role is
established for derivative-security markets and financial intermediaries in the model.
Somewhat paradoxically, we find that if intermediation is efficient, then derivative securi-
ties and the financial products of intermediaries will be priced as if they are redundant.'
Under these conditions, quasi-dichotomy obtains, and equilibrium real-sector allocations
and asset prices can be derived from the frictionless-market version of the model. Thus, we
arrive at a second - perhaps more-latent - hypothesis: as real-world financial intermediation
becomes increasingly more efficient, the continuous-time model's predictions about actual
financial prices, products and institutions will become increasingly more accurate. In short,
reality will eventually imitate theory.

63 The term "transactions costs" can, of course, mean more than just the bid-ask spread or commis-
sions paid for buying and selling assets. For example, if an investor literally traded his portfolio conti-
nuously, he would have no time to do anything else Because investment management and financial
intermediation involve primarily information processing and security trading, there are significant
economies to scale. One would thus expect substantially lower costs for the individual investor to use
intermediaries instead of transacting directly in the asset markets.

4Thus, our model provides a resolution to "The Catch 22 of Option Pricing" discussed in footnote
14. Although the equilibrium prices of options and other derivative securities satisfy the redundancy
condition of CCA, they are nevertheless needed to support the equilibrium allocations, and hence,
their elimination would reduce social welfare.
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6. Afterword

The focus of my remarks has been on the theory of intermediation. Allusions to prac-
tice were concentrated on the micro, quantitative applications of the continuous-time
model to financial-product technologies and risk management. As I said at the outset, this
was indeed my intent. Still, I cannot wholly resist the temptation to call attention to the
model's potential for addressing broader issues in the practice of intermediation. And so an
afterword that shall ever so briefly touch upon implications of the model for intermediation
policy and strategy in the hope that it will lead others, better qualified, to explore this
matter elsewhere.

Derivative securities have long been an integral part of the financial markets. Indeed,
from Joseph de la Vega's 1688 treatise detailing the workings of the Amsterdam stock
exchange, it appears that options and securities quite similar to modern financial futures
contracts dominated trading activities in this leading financial center of the seventeenth-
century world. But, most would mark the creation of the Chicago Board Options Exchange
in April 1973 as the start of the current wave of financial innovations involving derivative
securities. The seminal Black-Scholes theory of option pricing coincidentally appeared in
print just a month later. The succeeding fifteen years have witnessed an unprecedented pro-
liferation of organized trading markets in both equity and fixed-income derivative instru-
ments. In turn, these markets made possible the creation of a wide range of financial pro-
ducts, many custom-designed to meet selected needs of investors and issuers. Concurrently,
mainstream financial institutions increasingly adopted quantitative techniques, including
computerized trading strategies, to help manage their portfolios, often on a global scale.
These changes have been accompanied by an explosion of trading volume in just about
every sector of the financial markets. Of course, all this everyone knows.

There are some in the financial and regulatory communities - I assume, by self-selec-
tion, none here - who see all this alleged innovation as nothing more than a giant fad,
driven by institutional investors and issuers with wholly unrealistic expectations of greater
returns with less risk, and fueled by financial-services firms and organized exchanges that
see huge profits from this vast activity. Perhaps. There have surely been instances of finan-
cial products and trading strategies that have not delivered in practice the performance
promised in theory. But, notwithstanding such examples, there is another, quite different
interpretation of the events of the preceding decade.

From the perspective of our theory, these same facts about change are seen as con-
sistent with a real-world dynamic path evolving toward an idealized target of an efficient
financial-market and intermediation system. On this premise, these changes can be inter-
preted as part of a "financial-innovation spiral". That is, the proliferation of new trading
markets makes feasible the creation of new financial products; to hedge these products,
producers trade in these new markets and volume expands; increased volume reduces
marginal transactions costs and thereby, makes possible further implementation of new
products and trading strategies, which in turn leads to still more volume. Success of these
trading markets encourages investment in creating additional markets, and so on it goes...
spiralling toward the theoretically limiting case of zero marginal transactions costs and
dynamically-complete markets.

Consider now a small sampling of the implications for strategy and policy from this
view of the process. In this scenario, aggregate volume expands secularly and trading is

255



increasingly dominated by institutions. As more institutions employ dynamic strategies to
hedge their product liabilities, incentives rise for expansion to round-the-clock trading that
permits more-effective implementation of these strategies. Supported by a potentially limit-
less technology for creating financial products, financial-services firms will increasingly
focus on providing individually-tailored solutions to their client's investment and financing
problems.

Whether the financial-intermediation industry becomes more concentrated or more
diffuse in this scenario is not clear. The central functions of information and transactions
processing would favor economies of scale. Similarly, from the analysis in Section 4, the
greater opportunities for netting and diversifying risk exposures by an intermediary with a
diverse set of products would suggest a decline in hedging-transactions-per-dollar-of-
product-liability as size increases. On the other hand, expansion in the types of organized
trading markets, reductions in transactions costs, and continued improvements in infor-
mation-processing and telecommunications technologies will all make it easier for a greater
variety of firms to serve the functions of a financial intermediary. Continuing the scenario,
existing intermediaries will be capable of offering a broader range of financial products and
servicing a wider geographic area. Traditional institutional identifications with specific
types of products are likely to become increasingly blurred. Geo-political advantages
currently enjoyed by some financial institutions will be reduced.

Along that hypothesized path of development, the need to distribute a larger-volume
and more-diverse set of products promises continued relative growth of the sales activity
within financial intermediaries. The trading activity is also likely to expand to meet the
execution requirements for implementing more-complex product technologies. As in other
innovating industries, competition to create new products and to find new ways to produce
established ones at lower costs could make the research-and-development activity the life-
blood of the financial intermediary. As we know, many but not all of these changes have
been underway and further, this represents one scenario, growing out of our model of the
intermediation process.

The dramatic increases over the past decade in the size and complexity of transactions
together with the global-linking of financial markets have, however, raised concerns about
macro credit risk and the possibility of broad financial-market "breakdown." The crash in
world stock markets last October surely heightened those concerns. The changes in practice
projected by the theory imply, ipso facto, further increases in the interdependence among
institutions and markets in the financial system. Moreover, as discussed in Sections 4 and 5,
minimizing the default risk for customer-held liabilities of financial intermediaries is a key
element in our theory of efficient intermediation. As also noted, much the same point can
be made about markets for standardized instruments, such as options and futures. Thus, the
theory selectively concurs with the belief that credit risk is a major macro issue for financial
markets.

Time, not source material, is the scarce resource for discussion of the credit-risk issue
on this occasion. I shall therefore not even try to summarize the various detailed lines of
inquiry that show promise for finding policy solutions that are congruent with evolution to an
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efficient financial system.65 Instead, I use my time to comment on a single guideline for
policy that is central from the perspective of the theory.

The overriding theme of the theory has financial innovation as the engine driving the
financial system on its prospective journey to efficiency and complete risk-sharing markets.
With its focus on product innovation, this theory largely abstracts from the concurrent
changes in financial infrastructure (including institutional and regulatory practices, organi-
zation of trading facilities, and the communication and information processing systems for
transactions) required to support realization of this journey. But, perhaps the single most
important implication for policy is the explicit recognition of the interdependence between
product and infrastructure innovations and of the inevitable conflicts that arise between the
two.

As an analogy of supreme simplicity, consider the creation of a high-speed passenger
train, surely a beneficial product innovation. Suppose however, that the tracks of the cur-
rent rail system are inadequate to handle such high speeds. In the absence of policy rules,
the innovator, either through ignorance or a willingness to take risk, could choose to fully
implement his product and run the train at high speed. If the train subsequently crashes, it
is, of course, true that the innovator and his passengers will pay a dear price. But, if in the
process the track is also destroyed, then those, such as freight operators, who use the
system for a different purpose will also be greatly damaged. Hence, the need for policy to
safeguard the system. A simple policy that fulfills that objective is to permanently fix a safe,
but low speed limit. But, of course, this narrowly-focused policy has as a rather unfortunate
consequence that the benefits of innovation will never be realized. An obviously better, if
more-complex, policy solution is to facilitate the needed upgrading of the track and at the
same time, to set transient limits on speed, while there is a technological imbalance between
the product and its infrastructure.

As in this hypothetical rail system, the financial system is used by many for a variety of
purposes. When treated atomistically, financial innovations in products and services can be
implemented unilaterally and rather quickly. Hence, these innovations take place in an
entrepreneurial and opportunistic manner. In contrast, innovations in financial infra-
structure must be more coordinated and therefore, take longer to implement. It is thus
wholly unrealistic to expect financial innovation to proceed along a balanced path of
development for all elements in the system. It is indeed possible that at times, the im-
balance between product innovation and infrastructure could become large enough to jeo-
pardize the functioning of the system. Hence, the need for policy to protect against such
breakdown. But, as we have seen, a single-minded policy focused exclusively on this
concern could derail the engine of innovation and bring to a halt the financial system's trip
to greater efficiency.

From abstract mathematics to concrete policy evaluations, this has surely been a song
of unbridled praise for the continuous-time theory of finance. But, having opened discus-
sion of that theory's relevance to the real world, due diligence requires that I not close it
without some qualifying caveats.

65 These range from finding feasible mechanisms to centralize (or at least coordinate) the clearing
systems and global standards of collateral for all major markets, a line more rooted in the disciplines of
political science and systems analysis than finance, to the risk management of macro "jumps" in asset
prices, a subject very much in the mainstream of current finance research.
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It is a dictum that financial markets will not long let stand prices that violate arbitrage.
However, unlike with true arbitrage, the derived price relations in the continuous-time
model are delicately conditional on the assumed stochastic processes for the underlying
securities and on the opportunity to trade continuously. Hence, with only conditional arbi-
trage, there are no assurances in the real world of an inexorable and swift convergence of
actual prices to their theoretical model values. Thus, the simple, but powerful argument of
no violation of true arbitrage cannot be invoked to, a priori, validate the model.

Validation must therefore rely on traditional a posteriori assessments. As we shall hear
much about empirical study of the model in the conference sessions to come, I simply note
here that the cumulative statistical evidence appears encouraging, but also contains many
anomalies. The clinical evaluations from more than a decade of widespread and ongoing
application of the continuous-time model by practitioners seem to provide inferentially
favorable evidence of a different sort. But, those who see the last decade of innovations as
a fad are also likely to interpret this evidence as merely an instance of a self-fulfilling
prophecy, serving only to confirm their hypothesis. Even without accepting such a polar
view, we must surely concede that practitioners, like academics, are not immune from
following the paths of error. Thus, although the prognosis may be good, the continuous-
time model as an empirical hypothesis, strictly speaking, remains unproved. In a word, as
our Chinese friends might put it, these are interesting times for finance theory and for
finance practice.

That is, the proclamation that the model is widely used induces each practitioner to use it only
because he believes that all others are and therefore, that prices will conform to the model, indepen-
dently of its economic validity. As formulated in R. K. Merton (1948), the concept of the self-fulfilling
prophecy applies only if the prophesized event would not have occurred in the absence of its public pro-
clamation. Hence, even if widespread public knowledge of the model's adoption leads others to use it,
there is no self-fulfilling prophecy if as our theory predicts, the model is economically valid without the
proclamation.
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