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ABSTRACT

It is shown that an eddy diffusion hypothesis suggested by

Smagorinsky for use in numerical solutions of turbulent flow

problems is consistent with the existence of an inertial sub-

range at the smallest resolvable scale of the numerical model.

The arbitrary constant, assumed by Smagorinsky to be of order

unity, is shown to be a unique function of the constant of the

Kolmogoroff energy spectrum function. An alternative hypothesis,

involving an explicit turbulent intensity, is introduced as a

possible improvement for flows with large space and time variations

of turbulent stress.





On the Application of the Eddy Viscosity Concept in the Inertial

Sub-range of Turbulence

Despite persistent efforts by fluid dynamicists and mathematicians

the problem of obtaining useful analytic solutions of turbulent flow

equations remains formidable. By comparison to the slow progress of

analytic theory, the development of digital computers continues to

proceed at a rapid pace. Thus the "brute force" methods of solution

of fluid dynamics problems become more attractive, in spite of the

difficulty of obtaining generalized results and the many annoying,

purely numerical difficulties, Numerical methods have become virtually

indispensible for solutions of non-linear two-dimensional or quasi-

two-dimensional problems, such as occur in large-scale atmospheric

and oceanic dynamics. Fully turbulent three-dimensional initial-

boundary value flow problems are now just beginning to be approachable

for computer solutions. It is still totally inconceivable that a

computer could resolve both the energy containing and dissipative

scales in a high Reynolds number regime, but it is not at all unlikely

that the limits of resolution could extend from the largest energy

containing scale into the inertial sub-range.

It is the purpose of this paper to describe and rationalize

methods of simulating the turbulent energy exchange between the scales

of motion explicitly computed and the dissipation scale, through an

assumed idealized inertial sub-range. The methods are not entirely

new, having been used previously, although somewhat inappropriately

in two-dimensional computations, by Smagorinsky (1963, 1965) and
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Lilly (1962). It is e not intended to present a complete theory,

but only to partly rationalize some methods or recipes which have

already been found moderately successful, but are believed to be

most valid in computational models only now becomging accessible.

For purposes of simplification we consider incompressible flow

of a fluid of constant density. The continuous Eulerian equations

of fluid motion and the continuity equation, in standard tensor

subscript notation , are written as follows:

-- ; •. ;• @( d - ' -O (1)

S = o (2)

These, together with appropriate initial and boundary conditions,

define a particular fluid motion problem with, in general, a unique

solution. Numerical approximations to the equation may be obtained

in various different ways, but in several respects the most direct

and flexible is the finite difference grid network approach. The

variables a , are defined at the centers of cubes of side

and are considered to represent averages of UL , f over the volume

of the corresponding cube, that is

L- ) x3 +
L.,( ,, ,. _ (3)- h ,.

The derivative expressions in equations (1)and similarly for P
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and (2) are then replaced by numerical approximations and time

integration accomplished by some appropriate numerical method. It

is not the purpose here to describe or discuss these numerical approx-

imations except to note that, in principle, they may be made as

accurate as desired, within certain limitations imposed by wave number

aliasing in the non-linear terms. In any case, methods are available

which conserve kinetic energy within the non-linear and pressure

gradient terms. These aspects have been discussed in a previous paper

(Lilly, 1965). The problem to be attacked here is the treatment of the

Reynolds stresses, resulting from substitution of

(A L U L

/ » (4)

into (1) and (2) and then averaging over the grid cube. When this is

done and the usual Reynolds postulates are made, the averaged equations

may be written

S() - (5)
-^- aXj ul -)

rc; - ( u -± T;) (6)

._ (7)

where S is the Kronecker delta. The term /i has been combined

with pressure and removed from the Reynolds stresses so that the latter

will vanish in isotropic turbulence. The problem of representing the
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small-scale turbulence effects by functions of the explicit variables

is thus formally similar to the general problem of prediction of

turbulent stresses from mean flow functions. The difference is that

the "mean" flow is itself variable in space and time and is defined

artificially within a computationally convenient volume. The adequacy

of the Reynolds postulates is therefore in some doubt. It probably

depends on the existence of sufficient scale separation between the

energy containing motions and the grid interval,

We now introduce a standard eddy-viscosity hypothesis, relating

the eddy stresses to mean flow gradients. The eddy coefficient is

assumed to be proportional to the product of the velocity scale

(grid-interval) and turbulent velocity magnitude, where the latter

is determined in one of two ways, of ascending complexity. The

principle justification of this hypothesis arises from the results

to follow, which show unambiguous and necessary relationships between

the numerical proportionality coefficients required and the value of

the coefficient o( in the Kolmogoroff universal equilibrium spectral

function. The eddy-viscosity hypothesis, for incompressible flow,

consists of replacing (6) by the following:

, K( -) (8)

where f is an eddy viscosity coefficient, variable in space and

time ,



Upon multiplication of (5) by j , with use of (8), we may

obtain the mean flow kinetic energy equation, as follows:

(t X*- ) e ±

(9)

The first term on the right represents the diffusion of mean energy

by turbulence, and the second is the transfer of mean flow (large

scale) energy to that of smaller scales. This transfer is always

in the direction of decreasing the large scale flow if K is positive,

For simplicity in the following derivations we define the positive

transfer term 5 to be the product of K and the squared deformation

tt nsor
*mE of the large scale flow, i.e.

S = K (10)

bx, a* X;

Smagorinsky's method -- analytic

We now introduce a formula for K consistent with dimensional

analysis and mixing length theory and similar to thatsuggested and

used by Smagorinsky (1963), It is

Si (12)

where k is a constant of order unity, analogous to the Von Karman



constant of boundary layer turbulence theory. The brackets () denote

some form of averaging sufficient to assure stability of velocity

covariances, If the turbulence is reasonably homogeneous then the

averaging could appropriately be over all space. Otherwise an average

over an ensemble of flows with identical initial values of 4u would

seem optiesal, except that substitution of (8) for the Reynolds stresses

effectively eliminates the ensemble variance. Smagorinsky considered

the mesh box itself to be the appropriate averaging interval, in which

case the bracket average becomes equivalent to the bar average.

The bracket average of (10) may now be written as

(13)

in which the approximation presumably improves as the spatial averaging

area is increased. In the remainder of this section we relate

Pe(p to the energy dissipation rate through the velocity auto-

correlation functions and the Kolmogoroff -5/3 power spectrum

appropriate to the inertial sub-range of isotropic homogeneous tur-

bulence, The relationship obtained appears to justify the use of

(8) and (12) with k specified as a unique function of Kolmogoroff's

universal constant o( , provided that the grid separation lies

within the inertial sub-range of turbulence and that within a bracket

averaging region the turbulence is essentially homogeneous. For

actual numerical solution by finite difference methods the derivatives

in (8) and (12) are replaced by finite difference- formulae, which are
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shown to be equally appropriate provided that the value of k is

adjusted slightly.

The bracket average of equation (11) may be expanded into the

following component terms

For isotropic turbulence the first three terms of (14) must be equal,

as must the last three. The fourth term may be expanded into:

(15)

Again, for isotropic turbulence, the first and second terms on the

right have the same value. For evaluation of the third term we

introduce another assumption on the bracket average, that is

K . •.> \('x, x- - ± <( 2. (16)

The first equality is strictly true only if the average extends over

all space, the second is a consequence of continuity and isotropy.

Under these assumptions (14) may be written

<[e > ) 3 < >) (17)

To evaluate these terms, we first expand them into their original

definite integral forms, i.e.



S8 -

/I _ -c ... (-.• .• j^y
X% 4r (18)

-da

_> X) (19)

yec.o,

where y and i are three-dimensional dummy variables and dy• dy,~,dp,

etc. Integration over , and a, may be performed immediately and the

result written in terms of covariance functions as follows:

2. .

j / h -( A (20)

_aG = identical except ,l v. RN (21)

where (;) L I (V ( ) ( -(-) (22)

In this potation for the covariance function the first argument

represents the location of the function and the second the separation

of its components. Within a mesh box we assume that the covariance

is spatially constant, so that the first and last terms of the integrals

are equal. The second and third terms are also equal since and 3
o*4 (.i.)

can be interchanged. Equations ( 2 1)Athen can be simplified into

x / (24)
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in which only the second argument of the covariance function is

retained. By use of equations (3.4.5), (3.4.6), and (3.4.16) of

Batchelor (1956) the covariance functions may be written in terms

of the longitudinal velocity correlation function -) and the energy

spectrum function E(H) as follows:

" . } (25)

where is the scalar wave number. We now assume that, when Xr is

of order unity, E£() is given by the Kolmogoroff function

2/3 -/3

(26)

where E) is the average dissipation rate and o( is a dimensionless

constant. With this choice of the spectrum function the integrand

becomes infinite at H=0 . To avoid this difficulty, which is purely

mathematical since E()- 0 in reality, we subtract the correlation

function with argument r=O from both sides of (25). Since

(,,)= ()= (/3) oE) H  , the singularity at the origin is then

cancelled out when (26) is substituted. Equation (25) may then be

integrated to yield:

) ( (27)

Substitution of (27) into (23) and (24) then leads to the expressions

S- (29)
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The integrals in (28) and (29) have been evaluated numerically

to third decimal accuracy. Pond, Stewart, and Burling (1963) obtained

a measured value of the constant o( = 1.41, with perhaps a 10% error

to be expected. By use of this value we evaluate the above relations

and (17) as follows:

\( (30)

x,/ (31)

() (32)

The fact that (.l-/ax,) t) 1 Gl/a,"")) can also be shown by an extension

of Taylor's (1935) proof for the unaveraged quantities. This represents

a check on the correctness of the rather tedious calculations involved.

The defining characteristic of the inertial sub-range is that the

kinetic energy transfer across wave numbers is equal to the dissipation

rate. We therefore assume (E) -(5) in (13). Upon substitution of

(32) into the right side, the dimensional quantities cancel out and

we are left with a requirement on the constant k , that is

S4  (33)

Since k is proportional to o( , we may expect (33) to be in error

by something under 10%.

Finite difference approximations

Equations (5), (7), (8), and (12) could be integrated by any of

several numerical methods. If, for example, the velocity components
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were expressed as a sum of Fourier components then the above evaluation

of k would be appropriate, provided that the bracket average is taken

over all computation space and the turbulence is essentially homogeneous.

If the equations are approximated by finite difference formulae and

the bracket average taken over a smaller volume in inhomogeneous

turbulence, then k must be evaluated from the particular finite

difference approximations used. If, as in Smagorinsky's (1965)

computations, we replace all derivatives by differences across one

grid interval, then the squared deformation tensor in (11) and sub-

sequently is replaced by

S• =  A (A ÷ ) ^(34)

where p [(,+ ) - P(xr,- .) (35)

for any variable (x.) . Equations (12) -(19) remain essentially

unchanged except for the replacement of differences for derivatives,

but the reduction in integral order in (20) and (21) cannot be

accomplished. The expression analogous to (20 is

while that similar to (23) is the following

(. 36)

while that similar to (23) is the following

ca -
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After substitution of (27) into (37) and into a similar relation

for (, U , the final integral expressions are

Evaluation of the integrals leads to the results

IAO) > 5 70  (40)
(41)

(42)

k 2 230
(43)

Here there is no reason to expect an even ratio between (40) and (41).

As might be expected, the truncation errors of finite differencing

lead to some decrease of magnitude of the derivatives, which is

compensated for by an increase in the viscosity coefficient. It is

interesting to note that in recent integrations of the general

circulation equations Smagorinsky ism, on empirical grounds, a value

of k = 0.2$. The agreement with (43) may be fortuitous and perhaps

is related to L. F. Richardson's (1926) discovery that large-scale

quasi-two-dimensional atmospheric motions seem to conform to the

same scale relationships as ------ , - en.a--,·rr,..I =a •-i -~ or

three-dimensional isotropic turbulence.
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Turbulent energy method

The use of Smagorinsky's method rests on an implicit assumption

that an equilibrium inertial sub-range is developed instantly as soon

as velocity gradients appear. In highly inhomogeneous flows, it

may be important to consider the lag between changes of the mean

flow gradients and the turbulent response. It appears to be possible

to at least partly take account of these transients by defining and

predicting changes in a small scale turbulent energy parameter which

is only indirectly related to the mean flow gradients. In place of

(12) we assume an eddy viscosity proportional to the turbulent

intensity,

K k ET (44)

where k~ is now another constant, to be determined below, and

ET: (45)

Formal replacement of the terms of the bracket average of (45) by

correlation functions leads to the relations

L- ^

- ....^ • (46)

in which we have again assumed the Kolmogoroff spectrum function.

The integral, which already appeared in (38), has the numerical

value 0.761 h , so that (46) becomes

((47)
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A time dependent differential equation for E, may be written

(see e.g. Hinze, 1959, equation 1-99) in the tensor notation, as

Ct (uET) iJh ' ((4 (+ 'a)=
D-t - l  ;L ( 1 j (48)

r. - PAr

This equation is not practical for numerical solution because of the

unknown triple correlation terms and the requirement for high resolution

in the viscous terms. We substitute for it an equation in which the

triple-correlation terms are replaced by an eddy diffusion, and the

averaged dissipation is computed from (47), that is

S»( jE»r) - S.(KQ K DJ7D"r - <-; h "(49)

The first term on the right, the transfer from the explicit flow, is

taken directly from (10). An equation similar to this has been

derived in a somewhat different context by Prandtl (1945) and used

by Emmons ( ) and others. The diffusion coefficient for turbulent

energy, K , apparently cannot be determined from the isotropic

turbulence assumptions. It is not likely to be of any great signifi-

cance, except as a device for assuring smoothness of the Et field.

The assumption KF= K is probably satisfactory. The coefficient

kv appearing in (44) can be unambiguously determined by requiring

that (12) hold in steady-state homogeneous turbulence. In those

conditions the bracket average of (49) becomes

S·) - m<(Er A~ ,(50)



- 15 -

By elimination between (32), (44), (47), and (50) we find that

# 1. (.9o)3(51)
k v -~ = ( 5 1 )

If d" is replaced by Deý-

finite difference result is

.671?
,v 1 -..

in (49) and (50) the corresponding

(52)

Discussion

The above results bear some resemblance to certain previous

theoretical models, in particular those of Kovasznay (1948) and

Heisenberg (1948), for the energy transfer function. It can be

shown, from (25), that the integral for almost any reasonable energy

spectrum function is dominated by the region of the spectrum near

Hr = 1. Thus, typically,

o(o) - R" "[(>r) oC r- £(-') (53)

The result of the averaging integrations, by dimensional analysis,

must therefore yield

<oef2> 0C
v-, E (;l)

(54)

or, for Smagorinsky's method,

(s> Oc LE 0;
(55)

1I
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This is essentially identical to Kovasznay's hypothesis for the

energy transfer across the wave number H = ^ . On the other hand

Heisenberg's transfer function can be written in the form

(S) K() 2 E()d (56)

where the integral is the contribution to mean square vorticity (or

deformation) from all wave numbers lower than h and K( ) is an

eddy viscosity obtained from an integral expression involving only

scales smaller than ' , i.e.

K( H(57)

where J is a constant. The expressions developed in the turbulent

energy method are closely related to these, identical when the Kolmogoroff

spectrum function is valid for a I .

Kovasznay's and Heisenberg's formulae have been criticized on

various grounds, both theoretical and practical. Kraichnan ( )

suggested that, if applied to time integration of a complete energy

spectrum, Heisenberg's equations would be unstable. This objection

cannot hold for the application considered here, that is for the

transfer qf kinetic energy to scales smaller than those computed by

direct integration of the large scale dynamic equations. It is

easily seen, from equation (49), that oscillations of E, are always

damped. The dissipation term, being of a higher degree in E, than

either the transfer or advection terms, always tends to force K ,
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computed from (44), to approach the value given by Smagorinsky's

method, from (12). This can be shown more rigorously by a perturbation

expansion and has been verified by some unpublished integrations of

thermal convection problems.
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