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Abstract The potential of the Levenberg–Marquardt method combined with an
explicit Runge–Kutta method for non-stiff systems, and, an implicit Rosenbrock
method for stiff systems to investigate burning velocities using explosion bombs was
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explored. The implementation of this combination of methods was verified on three
benchmark test problems, and, by the application of two integral balance models to
laminar hydrogen-air and methane-air explosions. The methodology described here
was subsequently applied to quantify the coefficients of a turbulent burning velocity
correlation for a methane-air explosion in the decaying flow field of the standard 20-
litre explosion sphere. The outcome of this research indicates that the usefulness of
the 20-litre sphere can be extended beyond the measurement of practical explosion
parameters. When combined with the methodology in this paper, turbulent burning
velocity correlations can be assessed in different parts of the Borghi-diagram.

Keywords Deflagration · Burning velocity · Flame thickness · Least-squares
minimisation · Stiff integration

1 Introduction

Knowledge of the laminar and turbulent burning velocity has become a prerequisite
for the assessment of explosion hazards [1–8]. Various experimental methods exist
for the determination of the burning velocity [9, 10]. These are the Bunsen flame
method, the flat flame method, the stagnation flame method, and the outwardly
propagating flame method. The latter include the constant volume bomb method
(centrally ignited flame, double kernel method) and the constant pressure bomb
method (soap bubble method, dual chamber method [11]). The present paper con-
centrates on using the constant volume bomb method. In this method a combustible
mixture is ignited to deflagrate from the centre of an explosion vessel outwards.
Two approaches exist to determine the burning velocity from such experiments
[9, 10]: methods that rely on a combination of direct imaging of the flame trajectory
and measuring the pressure-time history, and, methods relying on the pressure-time
history alone. Expressions for the determination of the burning velocity from optical
cinematography of the flame radius combined with pressure-time recordings are
given in [10, p. 443]. Methods that extract the laminar burning velocity from pressure-
time recordings only are given in [9, p. 271]. The method described here belongs
in the latter category, whereby the burning velocity is determined by least-squares
fitting a differential equation for the pressure development via its numerical solution
to experimental pressure time-curves.

This paper is organised as follows. Section 2 describes the application of the
Levenberg–Marquardt method in conjunction with a Runge–Kutta and a Rosen-
brock method to three benchmark test problems. A particular problem encountered
with the explosion models in this work, and integral balance models in general, is
the occurrence of stiffness. Least-squares fitting differential equations requires the
model to be augmented with additional differential equations (Appendix C). But
this may result in a stiff system, even when the original model is non-stiff. When
this happens it becomes necessary to resort to so called ‘stiff integration methods’.
The Rosenbrock method [12, 13] is considered to be appropriate for stiff systems.
Combining the Levenberg–Marquardt method with numerical integration methods
for differential equations is not straightforward and prone to error. Therefore it is
the purpose of this section to provide a verification of the implementation of this
combination of methods.

Section 3 describes the explosion models applied in this work: a thin-flame def-
lagration model (Eqs. 32 and 33) where the conversion of reactants into combustion
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products occurs in a flame zone of zero thickness, and, a three-zone deflagration
model (Eqs. 34–39 and 34–43) with a non-zero flame thickness. The models are
equipped with correlations (Eqs. 32, 38 and 39) for the effect of pressure and tem-
perature on the laminar burning velocity and laminar flame thickness. For turbulent
deflagrations, Eqs. 40 and 41 are implemented for the transient behaviour of the
turbulent burning velocity and turbulent flame thickness. While more advanced
integral balance models exist in the literature (e.g. [14]), the thin-flame and three-
zone deflagration models were selected because they are easier to implement into
the numerical methods described in Appendices A, B and C.

Section 4 presents an analysis of turbulent burning velocity and turbulent flame
thickness correlations. The availability of a satisfactory turbulent flame propaga-
tion model is of crucial importance for the analysis of pressure-time traces of
a turbulent explosion. Difficulties with the assessment of such correlations al-
ready begin with forming an accurate picture of what might constitute a turbulent
flow [15–17], even for an inert fluid without combustion. Then there is also the
question of which turbulence features to apply. Turbulent flames have properties
such as an overall propagation rate of the flame brush and its thickness. The
consequential energy release is determined on a micro-scale by a local burning
velocity and the total flame surface area of flamelets. All this depends on an
interplay between turbulence, thermodynamics, chemical kinetics, diffusion rates of
components and heat effects. Because a detailed description due to the dynamics
involved is not feasible, the overall effect is expressed by a turbulent burning
velocity.

When a turbulent flow field is characterised by its turbulence intensity, vrms, exper-
imental data appear to correlate according to a relationship of the form SuT/Su L =
f (vrms/Su L). Similarly, when the turbulence intensity, vrms, and the turbulence macro
length scale, ℓt, are used then experimental data are seen to correlate as SuT/Su L =
f (vrms/Su L, ℓt/δL). Tuning of model coefficients is required to establish agreement
between predictions and experimental observations. To assess the appropriateness
of existing correlations, several quantitative models proposed over the period 1940–
2012 are collected (Table 1) and compared with experimental data (Fig. 5). While
these correlations are supported by experimental data, and/or, rigorous theoretical
derivation, their form suggests that they are specific instances of more general ones,
yet to be discovered. However, no such universal expressions have been derived
from ‘first principles’ [18]. Due to the absence of a satisfactory correlation for the
turbulence conditions in this work, dimensional analysis is applied to obtain a set
of expressions for the turbulent burning velocity and the turbulent flame thickness,
Eqs. 40 and 41. Their coefficients are estimated by curve-fitting them to experimental
burning velocity data (Fig. 7).

Section 5 describes the determination of the laminar burning velocity from
the pressure-time traces of confined deflagrations. The integral balance models of
Section 3 are least-squares fitted to the pressure-time trace of an initially quiescent
stoichiometric hydrogen-air and methane-air mixture. The resulting laminar burning
velocities are compared with literature data to verify the implementation of the
models into the numerical methods. Next, the possibility to determine the laminar
burning velocity from turbulent deflagrations, and, the assessment of turbulent
burning velocity correlations, are explored by analysing the pressure-time curve of a
turbulent methane-air explosion in a decaying flow field. A final section summarises
the findings and conclusions arising from this work.
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Table 1 A compilation of turbulent burning velocity models for premixed flame propagation in
chronological order of appearance

Model Reference

(1) SuT
Su L

= 1 + v,
rms

Su L
[42, 43]

Note: Analysis of instantaneous laminar flame area within a turbulent flame brush. Instantaneous
laminar flame area is assumed to increase linearly with v

,
rms.

(2) SuT
Su L

=
√

1 +
(

v,
rms

Su L

)2

[44, 45]

Note: Analysis of instantaneous laminar flame area within a turbulent flame brush. Distorted laminar
flame is assumed to consist of conical bulges. Effect of turbulence taken into account by surface area
ratio between cone mantle and cone base.

(3) SuT
Su L

= 1 + v,
rms

Su L
Same as (1). [46]

(4) SuT
Su L

= 1 +
√

5
12

v,
rms

Su L
(5) SuT

Su L
= 1 +

√
2

(

v,
rms

Su L

)
1
2

Note: Time-scale analysis of r.m.s. displacement [47] within interaction time between flame element
and turbulent eddy. Equation 3: weak turbulence (ℓt/v

,
rms ≫ δl/Su L) Eq. 4: intermediate turbulence

(ℓt/v
,
rms ≈ δl/Su L). Equation 5: strong turbulence (ℓt/v

,
rms ≪ δl/Su L).

(6) SuT
Su L

=

√

1 +
(

2v,
rms

Su L

)2

[48]

Note: Analysis of intersection between eddies and laminar flame. Eddies assumed to have diameter
ℓt and a sinusoidal velocity profile characterised by v

,
rms [36].

(7) SuT
Su L

= 1 + C
(

v,
rms

Su L

)2

[49]

Note: Analysis interaction of laminar flame with isotropic turbulence [36, 49].

(8) SuT
Su L

= 1 +
(

v,
rms

Su L

)2

[50]

Note: Analysis of the longitudinal displacement of the reactive-diffusive zone by turbulence in an
Eulerian frame of reference.

(9) SuT
Su L

=

⎧

⎨

⎩

1
2

⎡

⎣1 +
[

1 + C
(

v,
rms

Su L

)2
]

1
2

⎤

⎦

⎫

⎬

⎭

1
2

[51]

Note: An extension of model (8) with thermal expansion taken into account [37].

(10) SuT
Su L

= C
(

v,
rms

Su L

)n
C = 3.5, n = 0.7 [52]

Note: Analysis of flame-turbulence interaction. Turbulence characterised by single velocity scale and
single length scale [37].

(11) SuT
Su L

= f (K) where K = CRe
− 1

2
ℓt

(

v,
rms

Su L

)2

[53]

Note: C = 0.157. Two-eddy theory. Rate of burning equal to product of rate of eddy decay and
amount of mixture that reacts chemically during eddy lifetime. Localized reaction rate within an
eddy is expressed by laminar burning velocity [53]. K is the Karlovitz stretch factor [34].

(12) SuT
Su L

= C
(

v,
rms

Su L

)

C = 2.1 [54]

Note: Monte Carlo solution of a modelled transport equation for the joint probability density
function (pdf) of velocity and reaction progress variable [54].

(13) SuT
Su L

= Re
3
2
ℓK

(

v,
rms

Su L

)
1
2 [55]

Note: Analysis of exchanges of state (burned or unburned) between adjacent fluid elements along a
discretized line element in the streamwise direction [55].
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Table 1 (continued)

Model Reference

(14) SuT
Su L

=
{

β
[

1 −
(

1 − β−1
)

exp
(

−α
v,

rms
Su L

)]}D−2

[56]

Note: Fractal modelling of laminar flame surface with fractal dimension D = 2.32–2.40 [56–59], outer
cutoff ℓo=ℓt , and inner cutoff ℓi=ℓK . Reℓt =ρv

,
rmsℓt/μ, α=(At/Reℓt )

1/4 and β = (At/Re3
ℓt
)1/4. At =

0.37 from turbulent pipe flow data [53, 56, 60].

(15) SuT
Su L

= v,
rms

Su L
[61]

Note: Fractal modelling of laminar flame surface in turbulent flow. Flame surface: outer cutoff ℓo=ℓt

and inner cutoff equal to Gibson length scale, ℓi=ℓG. [62].

(16) SuT
Su L

= exp
[

v
,
rms
2 /Su

2
T

]

[18, 63]

Note: Analysis of very thin reaction zone in a turbulent flow field [18]. Flame represented by scalar
field G(x, t) which propagates according to [64, 65] ∂G/∂t + v · ∇G = Su L |∇G|. Reference [18]
derives (16) by dynamic re-normalisation group analysis to G-equation. Reference [63] derives (16)
from two distinct expressions for turbulent flame brush thickness while assuming exponential growth
of interface between parcels of reactants and products.

(17) SuT
Su L

= 1 + C
(

v
,
rms/Su

1/2

L

)

C = 5.3 [66]

Note: Curve fit to experimental burner data (turbulence by perforated plate) [66].

(18) SuT
Su L

= 1 + CRe
1
4
ℓt

(

v,
rms

Su L

)
1
2 = 1 + CRe

1
4
δL

Da
1
4

(

v,
rms

Su L

)
3
4 [37]

Note: C = 4
√

2/15 ≈ 0.6. Application of two distinct expressions for the turbulent flame brush thickness
in conjunction with an estimate of the mean distance the flame must travel to consume the
mixture between dissipative vortex tubes and the relationship λT/ℓt=

√
15Re−1/2

ℓt
[15, 16]. The Taylor

microscale, λT , is the spacing between the vortex tubes. Curve-fitting to more than 200 data points
for 15 mixtures reported by eight different research groups gave a value of C = 0.62 [37].

(19) SuT
Su L

= 1 + Su
1/4

L

(

v,
rms

Su L

)

= 1 +
(

δLvrms
ℓt

)
1
4 Da

1
4

(

v,
rms

Su L

)

[67]

Note: Curve fit to experimental turbulent burning velocities of methane-air, hydrogen-air and
methane-hydrogen-air mixtures in fan-stirred vessels (65 l spherical bomb and 1 m3 cylindrical
vessel).

(20) SuT
Su L

= CLe−0.3Re0.15
ℓt

(

v,
rms

Su L

)0.4

C = 1.534 [34]

Note: Curve fit to 1650 experimental data points by 20 different groups [34, 68].

(21) SuT
Su L

= 1 + CDa
1
4

(

v,
rms

Su L

)

C = 0.51 [69]

Note: Analysis of flame front motion from solution of Favre-averaged governing equations in
spherical coordinates with Bray-Moss-Libby formalism as closure model [70–72] and a model for
local combustion failure [69].

(22) SuT
Su L

= 1 +
(

v,
rms

Su L

)1/2

= 1 +
(

ℓt
δL

)
1
4 Da

1
4

(

v,
rms

Su L

)
3
4 [73]

Note: Experimental analysis of a downward propagating premixed methane-air flame through a
nearly isotropic turbulent flow field in a tube [73].

(23) SuT
Su L

= 1 + C
(

ℓt
δL

)1/4 ( v,
rms

Su L

)3/4

= 1 + CDa
1
4

(

v,
rms

Su L

)

[74]

Note: C = 4
√

2/15 ≈ 0.6. Application of a model originating from Refs. [37, 75] to upward propagating
potato starch dust-air flames in a tube [74, 76].

(40) SuT
Su L

= 1 + C′Daa′ ( v,
rms

Su L

)b ′

[This work]

Note: Dimensional analysis. Simplification of equation (46).

A comparison with experimental turbulent burning velocities is given in Fig. 5
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2 Application of the Levenberg–Marquardt Method in Conjunction

with an Explicit Runge–Kutta and an Implicit Rosenbrock

Method to Three Benchmark Test Problems

This section describes the application of the Levenberg–Marquardt method in
conjunction with a Runge–Kutta and the Rosenbrock method to three benchmark
test problems. The individual methods, and the methodology to combine them in
order to cope with systems of differential equations are given in Appendices A, B
and C. The purpose of this section is solely to verify their implementation (Algorithm
1 in Appendix C) and assess the computational cost when stiffness occurs.

The first benchmark problem is taken from [19]. It consists of a system of two
autonomous ordinary differential equations,

dy0

dx
= (2a0 − a1)y0 + (2a0 − 2a1)y1 y0(0) = 1 (24)

dy1

dx
= (−a0 + a1)y0 + (−a0 + 2a1)y1 y1(0) = 0 (25)

which can be solved analytically. The solution is

y0(x) = 2ea0x − ea1x (26)

y1(x) = −ea0x + ea1x (27)

A synthetic data-set (Fig. 1) containing random data was generated using Eqs. 26
and 27. The spread in y0 and y1 was introduced by generating random deviates with
a Gaussian distribution in the parameters a0 and a1:

P(ak)dak = 1

σak

√
2π

exp

[

− (ak − μak
)2

2σ 2
ak

]

dak. (28)

The parameters were assigned values of a0 = −1 and a1 = −1000. A total of 15,000
realisations were computed by the Box–Muller transform [20–23] at 30 discrete
instances xk, each containing 500 realisations of y0 and y1. Thus, at each loca-
tion xk:

μk
y j
(xi) = 1

M

M−1
∑

i=0

yi
j(xk) and σ k

y j
(xk) =

√

√

√

√

1

M

M−1
∑

i=0

[

yi
j(xk) − μy j

(xk)
]2

(29)

where M = 500 and 0 ≤ k < M. Each histogram in Fig. 1 depicts the frequency
distribution of 15,000 realisations and a comparison with the probability distribution
(solid curve) given by Eq. 28. The classical and extended Levenberg–Marquardt
method were subsequently applied to fit algebraic Eqn. 26 and 27, and, differential
Eqs. 24 and 25 to the synthetic data-set. The iteration-tableaus in Appendix D
indicate that the extended method is capable of recovering the parameters ak and the
standard errors ǫak

to the same extent as the classical method. The iteration-tableaus
show that the values of ak, dak, and χ2(a) are almost identical. The application of the
perturbation (89)–(91) instead of the analytical solution to determine the additional
initial conditions of system (84) does not distort the iteration sequence. It must be
noted, however, that despite being more advanced, the Rosenbrock method needs
about 15 % more integration steps than the Runge–Kutta method to cope with
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Fig. 1 Synthetic data-set for y0 and y1 according to systems (24) and (25) with random values of
a0 and a1. The frequency distributions of a0 and a1 are shown in the lower part. Each data point
indicated by solid markers in the upper-part is the mean value of 500 realisations. The error-bars are
twice the standard deviation. The solid curves represent y0 and y1 resulting from Eqs. 26 and 27 with
a0 = −0.1 and a1 = −1000. The frequency distributions of a0 and a1 have mean values μa0

= −1.0

and μa1
= −1000, and, standard deviations σa0

= −0.1 and σa1
= −100

system (24)–(26). This happens because, in the absence of a stability challenge by
stiffness, the Runge–Kutta method benefits from its higher accuracy (5th-order) in
comparison with that of the Rosenbrock method (4th-order).

A more challenging benchmark problem is one describing a chemical kinetics
model [23–25]:

∂y0

∂x
= −a0 y0 − a1 y0 y2 y0(0) = 1

∂y1

∂x
= −a2 y1 y2 y1(0) = 1

∂y2

∂x
= −a0 y0 − a1 y0 y2 − a2 y1 y2 y2(0) = 0 (30)

with a0 = 0.013, a1 = 1000, a2 = 2500
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Figure 2 shows the iteration-tableau of the extended Levenberg–Marquardt
method with the Rosenbrock method, and, the model-data match between sys-
tem (30) and a synthetic data-set. Obviously, this problem challenges the stability of
the Runge–Kutta method. Computing the solution for {a0 = 0.013, a1 = 1000, a2 =
2500} required 131,948 integration steps and 791,688 derivative evaluations. The
Rosenbrock method needs only 82 steps and 328 derivative evaluations. A synthetic
data-set (xi, ŷ

i
j, σ̂

i
j) consisting of 80 realisations with σ̂

i
j = 0.03 × ŷ

i
j was generated

with {a0 = 0.013, a1 = 1000, a2 = 2500}. The iteration-tableau demonstrates the abil-
ity of the extended method to resolve these parameters when applied with an initial
guess {a0 = 0.008, a1 = 900, a2 = 2200}.

An even more challenging problem concerns a catalytic fluid bed [24, 26, 27]:

∂y0

∂x
= b 1(y2 − y0) + b 2 y1exp[b 0 − a0/y0] y0(0) = 761

∂y1

∂x
= a1[y3 − y1{1 + exp[b 0 − a0/y0]}] y1(0) = 0

∂y2

∂x
= b 3 − b 4 y2 − b 5 y0 y2(0) = 600

∂y3

∂x
= b 6 + b 7 y1 − b 8 y3 y3(0) = 0.1 (31)

Fig. 2 Iteration-tableau of the extended Levenberg–Marquardt method with the Rosenbrock
method when applied to fit system (30) to a synthetic data-set. Initial conditions from pertur-
bation (89)–(91). Prerequisites (Algorithm 1): maxits = 9, χ̃2

crit = 10−9, λ = 10−3, hinit = 10−4,

ǫrel = 10−3, and ǫabs
j = 10−12
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with

a0 = 1500, a1 = 1880, b 0 = 20.7, b 1 = 1.3, b 2 = 10400, b 3 = 1752

b 4 = 269, b 5 = 267, b 6 = 0.1, b 7 = 320, b 8 = 321

A synthetic data-set (xi, ŷ
i
j, σ̂

i
j) consisting of 250 realisations with {σ̂ i

0 =
10.0, σ̂

i
1 = 0.001, σ̂

i
2 = 10.0, σ̂

i
3 = 0.001} was generated with {a0 = 1500, a1 = 1880}.

The iteration-tableau in Fig. 3 shows that these parameters can be recovered with
an initial guess {a0 = 1600, a1 = 2000}. The middle part of this figure shows how
the stability of the Runge–Kutta method is challenged by system (31). The solution
by the Runge–Kutta method requires 1,000,002 steps and 6,000,012 derivative eval-
uations to cover only a part of the integration domain (10-15 ≤ x ≤ 10-4) until the

Fig. 3 Iteration-tableau of the extended Levenberg–Marquardt method with the Rosenbrock
method when applied to fit system (31) to a synthetic data-set. Initial conditions from perturbation
(89)–(91). Prerequisites (Algorithm 1): maxits = 9, χ̃2

crit = 10−9, λ = 10−3, hmin = 10−30, ǫrel =
10−3, and ǫabs

j = 10−6
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computation is overtaken by numerical instability. The Rosenbrock method is able
to compute the solution over the entire domain (10−15 ≤ x ≤ 104) with only 483 steps
and 1,932 derivative evaluations, and, without becoming unstable.

3 Models for the Pressure Development of Confined Deflagrations

Two models for the pressure development of confined deflagrations are applied
here. Detailed derivations of these models may be found in [28–30]. The first model,
the so called thin-flame-model, assumes a flame zone of zero thickness and can be
stated as:

dP

dt
= 3 (Pmax − P0)

(

4π

3 Vv

)
1

3

[

1 −
(

P0

P

)
1

γ Pmax − P

Pmax − P0

]
2

3 (

P

P0

)
1

γ

Su (32)

where P0 denotes the initial pressure, Pmax the maximum explosion pressure, γ the
specific heat ratio, Vv the volume of the explosion vessel, and, Su the burning velocity
which may either be a laminar burning velocity Su L or a turbulent burning velocity
SuT . For confined explosions the laminar burning velocity Su L can be modelled as a
function of the pressure by:

Su L

Su
◦
L

=
(

P

P0

)β

(33)

where β = 0.6 for hydrogen-air mixtures [30] and β = 0.13 for methane-air mixtures
[29]. The model constituted by Eqs. 32 and 33 will be applied to the pressure-time
traces of the laminar hydrogen-air and methane-air deflagrations.

The second model, the so called three-zone-model, assumes a flame zone of non-
zero thickness, δ. For a fully developed flame, this model may be stated as

dP

dt
= Pmax − P0

Vv

(

P

P0

)
1
γ 4π

3
Su

[

r3
f − r3

r

δ

]

(34)

where Su the burning velocity (either laminar, Su L, or, turbulent, SuT), δ the flame
thickness (either laminar, δL, or turbulent, δT), r f the front boundary of the flame,
and, rr the rear boundary of the flame. Explicit expressions for the flame boundaries
rr and r f may be obtained by solving Eq. 26 of [28] to obtain:

r f = δ

2
+ 31/3

6

(

9a +
√

3
√

27a2 + δ6

)1/3

− (31/3 δ)2

6

(

9a +
√

3
√

27a2 + δ6

)1/3
(35)

rr = r f − δ (36)

where

a = 3Vv

π

⎡

⎣1 −
(

P0

P

)
1
γ Pmax − P

Pmax − P0

⎤

⎦ (37)
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Laminar flame propagation can be modelled by a set of two equations [29], one
for Su = Su L and one for δ = δL:

Su L

Su
◦
L

=
(

P

P0

)c+ γ−1
γ −1+α

(38)

δL

δ◦
L

=
(

P

P0

)c−α

(39)

Here Su
◦
L and δ◦

L denote the laminar burning velocity and laminar flame thickness
at reference conditions of pressure and temperature. The constants c and α are
substance specific and can be estimated from the temperature exponent of the
laminar burning velocity using Eq. 81 from [29]. With a temperature exponent of
1.89 [29] it is seen that c = 0.25 for a stoichiometric methane-air mixture. With a
temperature exponent of 1.4 [30], c = 0.11 for a stoichiometric hydrogen-air mixture.
A comparison between Eqs. 38 and 33 then reveals that α = 0.59 for a stoichiometric
methane-air mixture and α = 1.2 for a stoichiometric hydrogen-air mixture. The
model constituted by Eqs. 34–39 will be applied to the pressure-time traces of the
laminar hydrogen-air and methane-air deflagrations.

For turbulent flame propagation, i.e. Su = SuT and δ = δT , four additional equa-
tions are needed, namely, one for the turbulent burning velocity (Eq. 40), one for
the turbulent flame thickness (Eq. 41), one for the turbulence intensity (Eq. 42), and,
one for the turbulence length scale (Eq. 43):

SuT

Su L

= 1 + C′Daa′
(

v,
rms

Su L

)b ′

(40)

δT

δL

= 1 + C′′Daa′′
(

ℓt

δL

)b ′′

(41)

v,
rms

v,
rms
◦ =

(

t

t0

)n

(42)

ln

[

ℓt

ℓ◦
t

]

= a1ln

(

t

t0

)

+ a2

[

ln

(

t

t0

)]2

(43)

The constants in Eq. 42 are [31]: t0 = 60.0 ·10−3 (s), v,
rms
◦ = 3.75 m s−1 and n = −1.61.

The constants in Eq. 43 are [32, 33]: t0 = 58.8 ·10−3 (s), ℓt
◦ = 12.845·10−3 m, a1 =

−3.542 and a2 = 1.321. The values of C′, C′′, a′, b ′, a′′ and b ′′ in Eqs. 40 and 41 are
addressed in Section 4. The model constituted by Eqs. 34–43 will be applied to the
pressure-time trace of the turbulent methane-air deflagration in a standard 20-litre
explosion sphere. Equations 42 and 43 are specific to the decaying turbulent flow
field in a standard 20-litre explosion sphere. Figure 4 shows a comparison between
these correlations, and, experimental v,

rms and ℓt data.
Heat losses near the wall, changes in the shape of a relatively slowly rising

flame ball, or, turbulence modification that accompanies pressure and temperature
variations during flame propagation, are not explicitly taken into account by this
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Fig. 4 Decay of the turbulence intensity, v,
rms, and the macro length scale, ℓt , in the standard 20-litre

explosion sphere [31, 32]

model. Such effects are implicitly present in parameter values obtained by least-
squares fitting.

4 Models for the Turbulent Burning Velocity and Flame Thickness

The availability of a satisfactory correlation for the turbulent burning velocity is of
crucial importance to determine the laminar burning velocity from the pressure-time
trace of a turbulent deflagration. Table 1 shows a compilation of several turbulent
burning velocity models proposed over the period 1940–2012. This is merely a subset
of all that could be found in the literature. Similar compilations may be found in [36–
38]. To assess the applicability of these models, a comparison was made between
their predictions and experimental turbulent burning velocities of a 9.52 vol %
methane-air mixture and a 40 vol % hydrogen-air mixture in a fan-stirred explosion
bomb [34]. The reason for selecting these data is that, in addition to experimental
turbulent burning velocities in a nearly isotropic turbulent flow field, the turbulence
intensity, v,

rms, and the turbulence macro length scale, ℓt, are also measured. The
latter quantities must be known quantitatively to predict the turbulent burning
velocity by the models in Table 1. Figure 5 shows an inter-comparison between
various models in Table 1. These were computed using the following inputs.

• For the 9.52 vol % methane-air mixture: fractal dimension D = 7/3, Su L = 0.37

m s−1 [30], δL = 1 mm [39–41], LeCH4 = 0.975 [34], ρ = 1.1226 kg m−3, μ = 1.80 ·
10−5 kg m−1 s−1.

• For the 40 vol % hydrogen-air mixture: fractal dimension D = 7/3, Su L =
2.64 m s−1, δL = 351.8 µm, LeH2 = 3.23 [34], ρ = 0.736 kg m−3, μ = 1.81 · 10−5

kg m−1 s−1. Su L and δL were obtained by solving the instantaneous governing
Eqs. 50–53 for a 40 vol % hydrogen-air mixture with the kinetic scheme given in
Fig. 6.

It is seen that no two models render the same results. Large differences exist
between the predicted turbulent burning velocities. The same figure also contains
a compilation of experimental turbulent burning velocities [34]. The scatter in the
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Fig. 5 Comparison between models listed in Table 1 and experimental turbulent burning velocities
measured in a fan-stirred explosion bomb [34]. Inputs needed to compute the models are given in
the text. Key: a Eq. 2, b Eq. 8, c Eq. 14, d Eq. 16, e Eq. 18, f Eq. 19, g Eq. 20, h Eq. 21, i Eq. 22, j
Eq. 23, k Eq. 40

experimental data is indicated by the shaded region. Mean values are indicated by
solid markers, connected by a solid line. A comparison with the experimental data
reveals that none of the models is able to predict turbulent burning velocities that
coincide with the mean values. At best only some of the models are able to produce
values that fall within the experimental data scatter. This obscures the choice of a
satisfactory turbulent flame propagation model.

Given the aforementioned, it is attempted here to apply the turbulent flame
propagation model defined by Eqs. 40 and 41. This model may be obtained via
dimensional analysis by expressing the departure of the turbulent velocity from the
laminar burning velocity, SuT − Su L, as a function of the laminar burning velocity
Su L, the laminar flame thickness δL, the root-mean-square value of the velocity
fluctuations v,

rms, the turbulence macro length scale ℓt, the density ρ, the dynamic
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Fig. 6 Reaction mechanism [35] for hydrogen-air combustion, numerical solution of Eqs. 50–53 for
velocity, temperature and species profiles across the flame zone (φ = 1.0, Su

◦
L=2.106 m s−1, initial

conditions: 1 bar and 298.15 K), and, determination of laminar flame thickness from temperature
profile (Tad

f
= 2386.3 K, δ◦

L = 402.9 μm)
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viscosity μ, the diffusion coefficient D, the thermal conductivity λ, the specific heat
ĈP , the radiant flux q0 at a reference temperature T0, the pressure p, the reference
temperature T0 and the gravitational acceleration g:

SuT − Su L = f
(

Su L, δL, v,
rms, ℓt, ρ, μ,D, λ, ĈP, q0, p, T0, g

)

(44)

= D′ [Su L
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]m

(45)

Invoking the dimensions of the quantities involved and solving system (45) for
dimensional homogeneity results in a = 1 − c − f − g − h − 3 j − 2k − 2l − 2m, b =
−d − f − g − h + m, e = − f − h − j − k and i = −h + l. Hence,

SuT − Su L
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(46)

where Bo denotes the Bodenstein number, Sc the Schmidt number, Le the Lewis
number, Bz the Boltzmann number, Ma the newtonian Mach number, Ec the Eckert
number, Fr the Froude number and, Da the Damköhler number.

A similar analysis can also be made for the departure of the turbulent flame
thickness from the laminar flame thickness, δT − δL:

δT − δL = f
(

Su L, δL, v,
rms, ℓt, ρ, μ,D, λ, ĈP, q0, p, T0, g

)
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Henceforth, a = −c − f − g − h − 3 j − 2k − 2l − 2m, b = 1 − d − f − g − h + m,
e = − f − h − j − k and i = −h + l so that

δT − δL

δL
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Together, Eqs. 46 and 49 constitute a turbulent flame propagation model with
twenty constants: a′, a′′, b ′, b ′′, c′, c′′, d′, d′′, e′, e′′, f ′, f ′′, g′, g′′, h′, h′′, i′, i′′,
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D′ and D′′. This model may be simplified into Eqs. 40 and 41 where C′ and
C′′ are composition specific factors equal to C′ = D′Boc′

Scd′
Lee′

Bz f ′
Mag′

Ech′
Fri′

and C′′ = D′′Boc′′
Scd′′

Lee′′
Bz f ′′

Mag′′
Ech′′

Fri′′ . Although dimensional analysis does not
reveal anything about the value of D′ and D′′, experience shows that such constants
are equal to unity when the set of inter-dependent quantities is complete and when
the functional dependence on each dimensionless group is a power-law.

The completeness of the set of inter-dependent quantities may be inferred from
the instantaneous governing equations for mass, species, momentum and energy.
When these equations are restated in dimensionless form (see Eqs. 149–167 of [33]
for details) by means of a length scale, L, a velocity scale, U , and, a chemical time
scale, τc, the result becomes

∂ρ∗

∂t∗
+ ∇∗ ·

(

ρ∗v∗) = 0 (50)

∂
(

ρ∗v∗)

∂t∗
+ ∇∗ ·

(

ρ∗v∗v∗) = −Ma2∇∗ p∗ + Ma2

Re
∇∗ · τ ∗ + 1

Fr

N
∑

i=1

ρ∗Yi f ∗
i (51)

∂
(

ρ∗Yi

)

∂t∗
+ ∇∗ ·

(

ρ∗v∗Yi

)

= 1

Re Sci

∇∗ 2Yi + Ma2Da ẇ∗
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ρ∗v∗h∗) = Ma2Ec
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∂p∗

∂t∗
+ v∗ · ∇∗ p∗
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+ Ma2Ec

Re
τ ∗..∇∗v∗

+ Ma2

Re Pr
∇∗ 2T∗ − Ma2

Bz
∇∗ · q∗

− 1

Re Sci Fr

N
∑
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ρ∗Yi f ∗
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Notice that Le = Sc/Pr where Pr denotes the Prandtl number, and, that Bo = ReSc
where Re denotes the Reynolds number. All non-dimensional groups in system
(50)–(53), namely {Bz, Da, Ec, Fr, Ma, Pr, Re, Sc}, are covered by those appearing
in correlations Eqs. 46 and 49, namely {Bo, Bz, Da, Ec, Fr, Le, Ma, Sc}.

The dimensional analysis Eqs. 44–49 reveals that the constants {a′, b ′, a′′, b ′′} in
Eqs. 40 and 41 are not independent from each other. They are inter-related via
b ′′ = b ′ = c + d, a′ = d and a′′ = −c. Equations 46 and 49 also show that c′′ = c′ = f −
g − h, d′′ = d′ = f , e′′ = e′ = h, f ′′ = f ′ =− j, g′′ = g′ =−2k, h′′ = h′ =−1 − j and i′′ = i′ =
−m which implies that the constants C′ and C′′ have identical dependencies on
{Bo, Sc, Le, Bz, Ma, Ec, Fr}. Since D′′ = D′ = 1, this implies that C′′ = C′. It is also
worthwhile to notice that {c′, c′′, e′, e′′, f ′, f ′′, g′, g′′, h′, h′′, i′, i′′} do not depend on
{c, d}. Effects of physical/chemical properties on SuT and δT are therefore singled
out into C′ and C′′ while the influence of flow properties (v,

rms, ℓt) is captured via
{a′, a′′, b ′, b ′′}.
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Fig. 7 Application of Eq. 40 to experimental mean turbulent burning velocities [34] in Fig. 5. The
value of C′, a′ and b ′ for each curve is given in the text

A comparison of Eq. 40 with Eqs. 18–23 in Table 1 indicates that a′ = 1/4.
The values of {C′, b ′, C′′, a′′, b ′′} may then be found by curve-fitting Eq. 40 to the
experimental data in Fig. 5. This is done in Fig. 7. It appears that there are two
combustion regimes where {C′, a′, b ′, C′′, a′′, b ′′} assume distinct values.

• For the turbulent methane-air mixture {C′ = (6.65 ± 0.99) · 10−3, a′ = 1/4, b ′ =
2.376 ± 0.049, C′′ = 6.65 · 10−3, a′′ = −2.13, b ′′ = 2.38} when 5.25 m s−1 ≤ v,

rms ≤
8.56 m s−1 (Curve 1) and {C′ = (0.528 ± 0.025), a′ = 1/4, b ′ = 0.988 ± 0.013,

C′′ = 0.528, a′′ = −0.738, b ′′ = 0.988} when 9.39 m s−1 ≤ v,
rms ≤ 16.83 m s−1

(Curve 2). There is an abrupt transition in the region 8.56 m s−1 ≤ v,
rms ≤

9.39 m s−1.
• For the turbulent hydrogen-air mixture {C′ = 0.129 ± 0.006, a′ = 1/4, b ′ = 1.87,

C′′=0.129, a′′= − 1.62, b ′′=1.87} when 5.25 m s−1≤v,
rms≤9.39 m s−1 (Curve 3)

and {C′ = 0.437 ± 0.012, a′ = 1/4, b ′ = 0.946 ± 0.016, C′′ = 0.437, a′′ = −0.696,

b ′′ = 0.946} when 10.22 m s−1 ≤ v,
rms ≤ 17.66 m s−1 (Curve 4). A sudden change

occurs when 9.39 m s−1 ≤ v,
rms ≤ 10.22 m s−1.

With both mixtures, the exponent b ′ assumes a value close to 2 in the low
turbulence regime so that Eq. 40 resembles Eqs. 7, 8 and 11 in Table 1. In the high
turbulence regime b ′ assumes a value close to 1 so that Eq. 40 bears resemblance
with Eqs. 18–23 in Table 1. The three-zone model with Eq. 40 and 41 as the turbulent
flame propagation model will be applied to the pressure-time trace of a turbulent
methane-air deflagration, measured in a standard 20-litre explosion sphere (Section 5).

5 Determination of the Laminar Burning Velocity from the Experimental

Pressure-Time Traces of Confined Deflagrations

The experimental pressure-time traces of three confined deflagrations were
analysed, namely, (i) a laminar stoichiometric hydrogen-air explosion in a 169
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Fig. 8 Explosion equipment and pressure-time traces of hydrogen-air and methane-air deflagrations.
Upper-left and middle-left: The 169 millilitre explosion cylinder [30]. Upper-middle and middle-
middle: The strengthened 20-litre explosion sphere [77–79]. Upper-right and middle-right: The
standard 20-litre explosion sphere [32, 80]. Lower-left: Pressure-time trace of a laminar stoichiometric
hydrogen-air mixture in the 169 millilitre explosion cylinder. Lower-middle: Pressure-time trace of
a laminar stoichiometric methane-air mixture in the strengthened 20-litre explosion sphere. Lower-
right: Pressure-time trace of a turbulent stoichiometric methane-air mixture in the standard 20-litre
explosion sphere
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millilitre cylindrical explosion vessel [30], (ii) a laminar stoichiometric methane-
air explosion in the strengthened 20-litre explosion sphere [77–79], and, (iii) a
turbulent stoichiometric methane-air explosion in the standard 20-litre explosion
sphere [32, 80]. The experimental equipment and pressure curves are shown in Fig. 8.
All mixtures were ignited to deflagration by means of a centrally located electric
spark. Details of the equipment and experimental procedures followed are given in
[29, 30, 32, 77–80].

The thin-flame models (32) and (33) and the three-zone model (34)–(39) were
applied to the pressure-time traces of the laminar hydrogen-air and methane-air
explosions. To minimise the effect of buoyancy, to ensure a fully developed flame
zone in the beginning of the dataset, and, to avoid effects of flame-wall interaction,
only a subset of the pressure-time traces was used. The model-data match and the

Fig. 9 Application of the thin-flame model (32) and (33) and three-zone model (34)–(39) to the
experimental pressure-time traces of the laminar hydrogen-air (40 vol %, φ = 1.52) and laminar
methane-air (9.52 vol %, φ = 1.0) explosions. Levenberg–Marquardt method with Rosenbrock
method. Numerical Jacobian. Initial conditions from perturbation (89)–(91). Upper tableaus: thin-
flame model. Lower tableaus: three-zone model
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Fig. 10 Application of the three-zone model (34)–(43) to the experimental pressure-time trace
of the turbulent methane-air (9.52 vol %, φ = 1.0) explosion. Levenberg–Marquardt method with
Rosenbrock method. Numerical Jacobian. Initial conditions from perturbation (89)–(91). Upper-
part: Iteration-tableau and model-data match. Lower-part: Borghi diagram [81]

iteration-tableaus of Algorithm 1 with maxits = 6, χ̃2
crit = 10−3, λ = 10−3, hinit =

10−4, ǫrel = 10−4 and ǫabs
j = 101 are shown in Fig. 9. The laminar burning velocities

obtained by the thin-flame model are: Su
◦
L = 2.085 ± 0.016 m s−1 for the stoichio-
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metric hydrogen-air mixture and Su
◦
L = 40.24 ± 0.037 cm s−1 for the stoichiometric

methane-air mixture. A compilation of laminar burning velocities of hydrogen-air
and methane-air mixtures collected from the literature is given in [29, 30]. Laminar
burning velocities in these compilations, which are believed to be the most accurate
ones, have a magnitude of Su

◦
L = 2.1 − −2.2 m s−1 for the stoichiometric hydrogen-

air mixture and Su
◦
L = 37 − −40 cm s−1 for the stoichiometric methane-air mixture.

Both laminar burning velocities obtained by the thin-flame model are close to the
values obtained from the literature. That of hydrogen-air is slightly below the lower
limit and that of methane-air is slightly above the upper limit.

To apply the three-zone model (34)–(39) it was necessary to have an estimate of
the laminar flame thickness, δ◦

L, in Eq. 39. For stoichiometric methane-air mixtures
estimates of 1 mm have been reported for δ◦

L [39–41]. For hydrogen-air mixtures
there are no such measurements. To find an estimate for δ◦

L of the hydrogen-
air mixture, the instantaneous governing Eqs. 50–53 were solved with the kinetic
mechanism in Fig. 6 using the CANTERA Suite of Numerical Algorithms [82]. From
the numerical solution, shown in Fig. 6, it was found that Su

◦
L = 2.106 m s−1 and

δ◦
L = 402.9 µm for a stoichiometric hydrogen-air mixture at initial conditions of 1

bar and 298.15 K. The laminar burning velocities obtained by least-squares fitting
the three-zone model (34)–(39) are: Su

◦
L = 2.087 ± 0.016 m s−1 for the stoichio-

metric hydrogen-air mixture and Su
◦
L = 38.51 ± 0.036 cm s−1 for the stoichiometric

methane-air mixture. In these calculations the laminar flame thickness of hydrogen-
air and methane-air were held at fixed values of δ◦

L = 402.9 µm and δ◦
L = 1 mm.

While the laminar burning velocity of the hydrogen-air mixture remains slightly
below the lower limit of the range of literature values (2.1–2.2 m s−1), that obtained
for the methane-air mixture is seen to fall within the range of literature values
(37–40 cm s−1).

The three-zone model (34)–(43) was also applied to determine the laminar
burning velocity from the pressure-time trace of a turbulent stoichiometric methane-
air explosion in a standard 20-litre sphere. For this calculation, the prerequisites in
Algorithm 1 were: maxits = 6, χ̃2

crit = 10−3, λ = 10−3, hinit = 10−4, ǫrel = 10−4 and
ǫabs

j = 101. The model-data match, illustrated by Curve 3 in Fig. 10, was obtained with
the constants {C′ = 0.238, a′ = 1/4, b ′ = 7/4, C′′ = 0.238, a′′ = −3/2, b ′′ = 7/4} in
the turbulent flame propagation model (40) and (41). The resulting laminar burning
velocity is Su

◦
L = 0.374 ± 0.036 m s−1, which is within the range of literature values

(37–40 cm s−1). The same figure also shows the calculated pressure-time curves
obtained with the constants belonging to Curves 1 and 2 in Fig. 7. A large discrepancy
exists between these curves and the experimental data. The reasons behind, and
implications of this disparity are addressed in the next section.

6 Conclusions

The classical Levenberg–Marquardt method, originally developed for algebraic
models involving a single dependent variable, was extended to cope with systems
of differential equations involving multiple dependent variables (Appendix C). An
explicit Runge–Kutta method for non-stiff systems, and, an implicit Rosenbrock
method for stiff systems were embedded into the extended method. To verify
its implementation, this combination of methods was applied to three benchmark
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test problems, namely, systems (24)–(25), (30) and (31). Synthetic data-sets were
generated for these systems with specified model parameters. In all cases, and
even with the occurrence of stiffness, the extended method was able to recover
the parameters with a minimal computational effort (Section 2). As a further test,
two integral balance models (Section 3) were applied to experimental pressure-time
traces of a laminar hydrogen-air and methane-air explosion (Fig. 9). The resulting
laminar burning velocities are in agreement with literature values.

The turbulent three-zone model (34)–(43) was applied to the pressure-time trace
of a stoichiometric methane-air explosion in the decaying turbulent flow field of the
standard 20-litre sphere. For this it was necessary to quantify {C′, a′, b ′, C′′, a′′, b ′′} in
the Eqs. 40 and 41. A comparison between Eq. 40 and experimental data in Fig. 7
revealed that two distinct sets of constants exist within the operating conditions
of the fan-stirred explosion bomb (shaded region in Fig. 10). Application of these
constants to the pressure-time curve measured in the 20-litre sphere resulted in a
large discrepancy (Curves 1 and 2 in Fig. 10). The reason behind this discordance
is that the operating conditions of the 20-litre sphere (shaded region in Fig. 10) are
very different from those in the fan-stirred bomb, and, {C′, a′, b ′, C′′, a′′, b ′′} assume
distinct values. The pressure curve measured in the 20-litre sphere can only be
matched (Curve 3 in Fig. 10) with the following constants: {C′ = 0.238, a′ = 1/4, b ′ =
7/4, C′′ = 0.238, a′′ = −3/2, b ′′ = 7/4}.

The existence of disparate coefficients at different locations within the Borghi-
diagram implies a consequential need for research into their values. The exper-
imental data used in Fig. 10 are limited to a time span covering only 2.25 ms.
Hence the turbulence conditions cover a very small part of the Borghi-diagram.
But the operating conditions of the standard 20-litre sphere much wider (Fig. 10).
The usefulness of this equipment may therefore be extended beyond its widespread
application to determine practical explosion parameters. For example, combustible
mixtures could be investigated at different ignition delay times to reveal more about
{C′, a′, b ′, C′′, a′′, b ′′} in other parts of the Borghi-diagram.

It must be emphasized that a spherical flame shape is pivotal to the validity of
the models applied here. For a stoichiometric methane-air mixture, the turbulence
conditions in the standard 20-lite sphere do not cause the flame to deviate substan-
tially from its spherical shape within this brief time span. But when, for example, the
burning velocity becomes much lower due to a lean or rich gas composition, the flame
shape may deviate from the assumed spherical geometry. Optical verification of the
flame shape is then required to scrutinise the applicability of the integral balance
models deployed in this work.

7 Nomenclature

The symbols used throughout this paper are explained below. When a symbol
represents something else than stated here, or when a symbol in the text is not
explained here, or when it represents more than one quantity, its precise meaning
is clarified by the text. Wherever possible and convenient we used the notation by
[19, 83].
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Latin Symbols
ĈP Constant pressure specific heat. [J kg-1 K-1]
f i Body force f i acting on the i-th species. [N]
g Gravitational acceleration g. [m s-2]
h Microscopic enthalpy h [J kg-1]
p Microscopic pressure. [Pa]
P Macroscopic pressure. [Pa]
Pmax Maximum explosion pressure. [Pa]
q Radiant flux. Radiant fluxes emitted from reaction [W m-2]

zones are often described as q = ǫσ T4 [84, p. 646]
where σ denotes the Stefan–Boltzmann constant
and ǫ is the emissivity.

r f Front boundary of the flame zone. [m]
rr Rear boundary of the flame zone. [m]
Su Burning velocity. [m s-1]
Su L Laminar burning velocity. [m s-1]
Su

◦
L Laminar burning velocity at reference conditions. [m s-1]

SuT Turbulent burning velocity. [m s-1]
T Temperature [K]
v Microscopic velocity. [m s-1]
v,

rms Root-mean-square value of the velocity fluctuations. [m s-1]
Vv Volume explosion vessel [m3]
ẇi Chemical source of the i-th species. [kg m-3 s-1]
Yi Mass fraction of the i-th species [−]

Greek Symbols
γ Specific heat ratio. [−]
δ Flame thickness [m]
δL Laminar flame thickness [m]
δ◦

L Laminar flame thickness at reference conditions [m]
δT Turbulent flame thickness [m]
λ Thermal conductivity. [W m-1 K-1]
λT Taylor micro length scale [m]
μ Dynamic viscosity. [Pa s]
ν Kinematic viscosity. [m-2 s]
ρ Density. [kg m-3]
τ τ = μ

(

∇v + (∇v)†
)

+
(

κ − 2

3
μ
)

(∇ · v) I denotes [N m-2]
the shear stress tensor. κ denotes the bulk viscosity.

Other Symbols
Di Fickian diffusion coefficient of the i-th species. [m2 s-1]

Scales
ℓG Gibson length scale [m]
ℓK Kolmogorov length scale [m]
ℓt Turbulence macro length scale [m]
L Length scale. [m]
M Molecular mass. [kg mol−1]
τc Chemical time scale. [s]



304 Flow Turbulence Combust (2013) 91:281–317

τK Kolmogorov time scale [s]
τt Turbulence macro time scale [s]
υK Kolmogorov velocity scale. [m s-1]
υt Turbulence macro velocity scale. [m s-1]
U Velocity scale. [m s-1]

Dimensionless Independent Variables and Operators
t∗ Physical time t over L/U . [−]
∇∗ Nabla operator divided by the reciprocal length scale, ∇/L−1. [−]

Nondimensional Dependent Variables
ρ∗ Density ρ divided by p/U2. [−]
v∗ Velocity v divided by the velocity scale U . [−]
p∗ Microscopic pressure p divided by ρ U2. [−]
τ ∗ Shear stress tensor τ , divided by μU/L. [−]
f ∗

i Body force f i on the i-th species divided by the magnitude [−]
of the gravitational force g.

Yi Mass fraction of the i-th species. [−]
ẇ∗

i Chemical source ẇi divided by ρ(L/U)/τc. [−]
h∗ Enthalpy h divided by ĈP T0. [−]
T∗ Temperature T divided by a reference temperature T0. [−]
q∗ Radiant flux q divided by the magnitude of the radiant [−]

energy flux q0 at a reference temperature.
Dimensionless Groups

Bo Bodenstein number, UL/D. Bo = Re Sc. It is the mass [−]
transfer analogue to the Peclet number, Pe.

Bz Boltzmann number, ρ U ĈP T0/q0. [−]
Da Damköhler number, (L/U)/τc = ℓt Su L/υtδL. [−]
Ec Eckert number, U2/ĈP T0. [−]
Fr Froude number, U2/gL. [−]
Ka Karlovitz number, τc/(L/U) = υKδL/ℓK Su L. [−]
Lei Lewis number of i-th species, λ/ρ ĈPDi. Le = Sci/Pr. [−]
Ma Newtonian Mach number, U/

√
p/ρ. [−]

Pe Peclet number, ρ ĈPUL/λ. Pe = Re Pr. [−]
Pr Prandtl number, μĈP/λ. [−]
Re Reynolds number, ρ UL/μ. [−]
Sci Schmidt number of i-th species, μ/ρDi. [−]

Appendix A: Least-Squares Minimisation and the Levenberg–Marquardt Method

Least-squares minimisation [19, 83, 85, 86] is a strategy whereby the parameters of
a model are adjusted to obtain the closest match with a data collection. In this work
the model is defined by the system

y
(

a, b, x, y
)

= y j

(

a, b, x, y
)

0 ≤ j < ny (54)
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containing ny equations. It may either consist of ny algebraic equations, or, contain
the primitives of ny ordinary differential equations. With algebraic equations, the
system y j

(

a, b, x, y
)

takes the form

y j

(

{a0, . . . , ama−1}, {b 0, . . . , b mb−1}, {x0, . . . , xnx−1}, {y0, . . . , yny−1} \ {y j}
)

(55)

with ma parameters a = [a0, . . . , ama−1], mb constants b = [b 0, . . . , b mb−1], nx

independent variables x = [x0, . . . , xnx−1], and, ny dependent variables y =
[y0, . . . , yny−1]. Each algebraic equation indexed by j may contain any of the de-
pendent variables on its right hand side except for y j. Implicit dependence of the
j-th equation y j

(

a, b, x, y
)

on y j is not permitted. If each equation in system (54)
represents the antiderivative of an ordinary differential equation (cf. system (72)),
there is only one independent variable x. Each member then takes the form

y j

(

a, b, x, y
)

= y j

(

{a0, . . . , ama−1}, {b 0, . . . , b mb−1}, {x}, {y0, . . . , yny−1}
)

=
∫ x, y(a,b,x,y)

x∗, y∗(a,b,x∗,y∗)

∂y j

(

a, b, x, y
)

∂x
dx

=
∫ x, y(a,b,x,y)

x∗, y∗(a,b,x∗,y∗)
f j

(

a, b, x, y
)

dx (56)

with ny initial conditions [x∗, y∗(a, b, x∗, y∗)]. Equation 56 makes it possible to
incorporate a system of ordinary differential equations via its numerical solution.

The data collection to be matched consists of N realisations:

(xi, ŷ
i
j, σ̂

i
j) 0 ≤ i < N, 0 ≤ j < ny (57)

Each realisation ŷi
j has a measurement error causing it to be scattered randomly

around the mean values ȳi
j that would be obtained by averageing a large number

of ŷi
j. The scatter in ŷi

j is assumed to have a Gaussian distribution with a standard

deviation σ̂ i
j. For a scalar function y(a, b, x), where a denotes the parameter set to

be adjusted, [19, 23, 83] define a quantity χ2 as

χ2
(

a, b, x, y, ŷ, σ̂
)

=
N−1
∑

i=0

[

ŷi − y(a, b, xi)

σ̂ i

]2

(58)

The summation over i spans all realisations in the data collection (Eq. 57). A
minimum in this so-called chi-square implies the closest match between the model
y(a, b, x) and the data collection

(

xi, ŷi, σ̂ i
)

. The condition of a minimum in χ2,
obtained by differentiating Eq. 58 with respect to a and setting the result equal to
zero, leads to a set of ma algebraic equations with ma unknowns [a0, . . . , ama−1]. Its
solution yields the parameters amin that render the closest match between the model
y(a, b, x) and the data collection

(

xi, ŷi, σ̂ i
)

.
In the present work the dependent variable is not a single valued scalar but a

vector y containing ny elements. This makes it necessary to modify the chi-square.
Following [19, 23, 83], but now with the dependent variable being a vector,

χ2
(

a, b, x, y, ŷ, σ̂
)

=
N−1
∑

i=0

[

ŷi
j − y j(a, b, xi, y)

σ̂ i
j

]2

0 ≤ j < ny (59)
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Here χ2 is a vector containing ny elements [χ2
0 , . . . , χ2

ny−1]. But then something unde-

sirable happens: application of the condition for a minimum in χ2 results in an over-
determined system of ny × ma equations with only ma unknowns [a0, . . . , ama−1]. To
overcome this, the chi-square is modified here to become a scalar quantity, χ̃2, taken
to be the sum of the elements of χ2:

χ̃2
(

a, b, x, y, ŷ, σ̂
)

=
ny−1
∑

j=0

N−1
∑

i=0

[

ŷi
j − y j(a, b, xi, y)

σ̂ i
j

]2

(60)

The elements of χ2 are all positive numbers whose sum is assumed to be a global
minimum at the optimal model-data match. The condition for a minimum in χ̃2 then
leads to

0 =
ny−1
∑

j=1

N−1
∑

i=0

[

ŷi
j − y j(a, b, xi, y)

σ̂ i
j
2

][

∂y j(a, b, xi, y)

∂ak

]

0 ≤ k < ma (61)

containing ma equations and ma unknowns [a0, . . . , ama−1] so that it can be solved to
find closest model-data match.

The set of algebraic Eq. 61 may be linear or non-linear in the unknowns a. For a
linear system there are well-established methods to compute the solution. However,
if system (61) contains one or more non-linear equations then it becomes necessary
to resort to procedures that approximate a iteratively. Procedures to achieve this
are the gradient-descent method [86], the Gauss–Newton method [86], and, the
Levenberg–Marquardt method [19, 23, 83, 85, 86] which is a hybridisation between
the former two. Detailed derivations of the latter are given in [19, 83, 85, 86]. For the
purpose of this paper it will suffice to consider this method on the basis of a second
order Taylor expansion of χ2 in the χ̃2 − a parameter space:

χ̃2(a + da) = χ̃2 (a) + ∇χ̃2

a

· da + 1

2
da · ∇∇χ̃2

a

· da + . . . (62)

This can be applied to compute amin from an initial guess acur:

χ̃2(amin) = χ̃2(acur) + ∇χ̃2

acur
· da + 1

2
da · ∇∇χ̃2

acur
· da (63)

If the initial guess, acur, is very close to amin so that χ̃2(acur) ≈ χ̃2(amin) then the
increment da leading to amin may be calculated from Eq. 63 as

da = −2

[

∇∇χ̃2

acur

]−1

· ∇χ̃2

acur
(64)

This defines the Gauss–Newton method for solving non-linear least squares prob-
lems, and, the Newton method for calculating the roots of algebraic equation systems.
Unless the initial guess, acur, is very close to amin there is no guarantee that the
difference between χ̃2(acur) and χ̃2(amin) in Eq. 63 is small enough to enable Eq. 64 to
render an increment da that improves acur to obtain amin. Equation 64 will therefore
only work when the initial guess acur is provided using a priori knowledge of amin,
or, another numerical method is applied to improve a poor initial guess. Such a
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procedure follows from the total differential of Eq. 63 while neglecting the third term
on its right hand side (notice that da = anext − acur):

dχ̃2(anext) = dχ̃2(acur) + d

[

∇χ̃2

acur

]

· da =⇒ da =
[

∇∇χ̃2

acur

]−1

· ∇χ̃2

acur
(65)

The quantity anext denotes the improved parameter set that converges iteratively
to amin. Then, from Eq. 65 an expression is obtained which resembles the iteration
sequence of the gradient-descent method [19, 86]:

anext = acur +
[

∇∇χ̃2

acur

]−1

· ∇χ̃2

acur
(66)

The magnitude of inv[∇∇χ̃2(acur)] can be altered adaptively to ensure that
χ̃2(anext) < χ̃2(acur) [86].

The Levenberg–Marquardt method combines Eqs. 64 and 66 by means of a
relative weighting factor, λ, called the Marquardt damping factor [83]. This is done to
adapt the relative contribution of the third term in Eq. 63 depending on the proximity
between acur and amin. Obviously, the Hessian matrix ∇∇χ̃2(acur) causes imprecision
in da when acur is far away from amin. It needs to be damped out so that Eq. 63
renders Eq. 66. Conversely, when acur is very close to amin, it is desirable to compute
da using Eq. 64 to benefit from its higher accuracy. In this case the third term in
Eq. 63 must be amplified to render Eq. 64. A gradual transition between Eqs. 64 and
66 may be accomplished via

[

∇∇χ̃2

acur
− 2λ diag{∇∇χ̃2

acur
}
]

· da = ∇χ̃2

acur
(67)

When λ is made so large that the off-diagonal components on the left hand side
become negligible compared to the diagonal components, it is seen that Eq. 67
reduces to

− 2λ diag{∇∇χ̃2

acur
} · da = ∇χ̃2

acur
(68)

=⇒ anext = acur − 1

2λ
diag{inv[∇∇χ̃2

acur
]} · ∇χ̃2

acur
(69)

A methodology capable of switching smoothly between Eqs. 64 and 69, via Eq. 67
while varying λ dynamically is given in [19, 83]. Its implementation is given by
Algorithm 1 in Appendix C.

Expressions to compute ∇χ̃2
∣

∣

acur and ∇∇χ̃2
∣

∣

acur in Eq. 67 may be derived by
differentiating Eq. 60 with respect to the parameters a. Differentiating Eq. 60 once
yields:

∂χ̃2

∂ak
a

= −2

ny−1
∑

j=1

N−1
∑

i=0

[

ŷi
j − y j(a, b, xi, y)

σ̂ i
j
2

][

∂y j(a, b, xi, y)

∂ak

]

0 ≤ k < ma (70)
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and differentiating Eq. 70 once more gives (0 ≤ k < ma, 0 ≤ l < ma):

∂2χ̃2

∂ak∂al
a

= 2

ny−1
∑

j=1

N−1
∑

i=0

{

1

σ̂ i
j
2

[

∂y j(a, b, xi, y)

∂ak

][

∂y j(a, b, xi, y)

∂al

]

−
[

ŷi
j − y j(a, b, xi, y)

σ̂ i
j
2

][

∂2 y j(a, b, xi, y)

∂ak∂al

]}

(71)

For high accuracy applications ∂2χ̃2/∂ak∂al may be computed using Eq. 71. But then
the computation of ∂y j/∂ak and ∂2 y j/∂ak∂al requires ny × ma + ny × ma2 derivative
evaluations which may become burdensome. In the present work ∂2χ̃2/∂ak∂al is
computed by employing the first term on the right hand side only so that only
ny × ma derivative evaluations are required. Details of how to compute ∇χ̃2

∣

∣

acur and
∇∇χ̃2

∣

∣

acur for systems of differential equations are given in Appendix C.

Appendix B: The Runge–Kutta Method and the Rosenbrock Method

For the system of ordinary differential Eq. 54, denoted here by

d y
(

a, b, x, y
)

dx
= f
(

a, b, x, y
)

, (72)

the Runge–Kutta method estimates the solution, yn+1, at a next step, xn+1 = xn + h,
as the sum of the current solution yn and a linear combination of a set of corrections
kn

r as

yn+1 = yn + h

R
∑

r=1

crk
n
r . (73)

The corrections kn
r have to be found by solving

kn
r = f

(

a, b, xn + αrh, yn + h

R
∑

s=1

βrsk
n
s

)

(74)

in r = 1, . . . , R successive stages. The number of stages, R, the constants αr and βrs,
and, the coefficients cr determine the accuracy of the method. It is conventional to
present αr, βrs, and cr in a Butcher-tableau [13, 87–89] as:

α β

cT
=

α1 β11 β12 β13 · · · β1s

α2 β21 β22 β23 · · · β2s

α3 β31 β32 β33 · · · β3s

· · · · · · · ·
· · · · · · · ·

αr βr1 βr2 βr3 · · · βrs

c1 c2 c3 · · · cs

r = 1, . . . , R

s = 1, . . . , R

αr =
R
∑

s=1

βrs

R
∑

r=1

cr = 1

(75)

The fill pattern of βrs determines whether the method is explicit or implicit, and,
the extent of implicitness [89, 90]. When βrs = 0 for r ≤ s, the method is explicit. If
βrs = 0 for r < s and at least one βrr �= 0 then the sequence is referred to as a diagonal
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Table 2 Butcher-tableaus of the Runge–Kutta and Rosenbrock method. Runge–Kutta method:
values of αr , βrs, c5th

r (fifth-order accurate) and c4th
r (fourth-order accurate) are from [91, 92]

Runge–Kutta method. Equations (73) and (76).
s 1 2 3 4 5 6

r αr βrs

α β

cT = 1 0 0 0 0 0 0 0

2 1/5 1/5 0 0 0 0 0
3 3/10 3/40 9/40 0 0 0 0
4 3/5 3/10 −9/10 6/5 0 0 0
5 1 −11/54 5/2 −70/27 35/27 0 0
6 7/8 1631/55296 175/512 575/13824 44275/110592 253/4096 0

c5th
s 37/378 0 250/621 125/594 0 512/1771

c4th
s 2825/27648 0 18575/48384 13525/55296 277/14336 1/4

Rosenbrock method. Equations (73), (78) and (79).
s 1 2 3 4 1 2 3 4 γrr = 1/2

r αr β∗
rs γ ∗

rs γr

α β∗ γ ∗ γ

cT = 1 0 0 0 0 0 0 0 0 0 1/2

2 1 1 0 0 0 −4 0 0 0 −3/2
3 3/5 24/25 3/25 0 0 186/25 6/5 0 0 121/50
4 3/5 24/25 3/25 0 0 −56/125 -27/125 −1/5 0 29/250

d4th
s 19/18 1/4 25/216 125/216

d3rd
s 98/108 11/72 25/216 0

Rosenbrock method: values of αr , β∗
rs, γ ∗

rs, γrr , γr , d4th
r (fourth-order accurate) and d3rd

r (third-order
accurate) are from [93]

implicit Runge–Kutta method. When βrs = 0 for r < s, all diagonal elements βrr �=
0, and identical, then it is termed a singly diagonal implicit Runge–Kutta method.
Whenever βrs �= 0 if r > s it is called an implicit Runge–Kutta method. This paper
employs an explicit Runge–Kutta method as defined by the constants in Table 2 for
which the update sequence of successive corrections Eq. 74 simplifies into

kn
r = f

(

a, b, xn + αrh, yn + hβr1kn
1 + hβr2kn

2 + . . . + hβr−1,r−1kn
r−1

)

(76)

whereby each new correction kn
r is computed from the previous ones, {kn

1, . . . , kn
r−1}.

The Rosenbrock method is a linearised form of the diagonal implicit Runge–Kutta
method. The latter has a Butcher-tableau with βrs = 0 for r < s and at least one βrr �=
0 so that the update sequence of the correction factors kn

r becomes:

kn
r = f

(

a, b, xn + αrh, yn + hβr1kn
1 + hβr2kn

2 + . . . + hβrr k
n
r

)

(77)

The non-zero βrr make it difficult to compute the correction factors because they
appear on both sides of Eq. 77. Obtaining kn

r requires an implicit solution at each
stage. To avoid the difficulty and computational burden of having to solve an implicit
non-linear algebraic system, it was proposed [12, 13] to linearise the diagonal implicit
Runge–Kutta method. By letting

E = I − hγrr

∂ f

∂ y

∣

∣

∣

∣

(xn,yn)

and f x = ∂ f

∂x

∣

∣

∣

∣

(xn,yn)

(78)
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Eq. 77 can be linearised [13, 93] into (r = 1, . . . , R; s = 1, . . . , r − 1):

E · kn
r = f

(

xn + αrh, yn + h[β∗
r1kn

1 + . . . + β∗
rsk

n
s ]
)

+ (γ ∗
r1kn

1 + . . . + γ ∗
rsk

n
r ) + hγr f x (79)

so that each new correction kn
r can be obtained from the previous ones,

{kn
1, . . . , kn

r−1}. The problem independent constants αr, β∗
rs, γ ∗

rs and γr are given in
Table 2.

To ensure stability of the integration methods it is necessary to implement
adjustable stepsize control while imposing a global relative error tolerance ǫrel on
the increment yn+1

j − yn
j and absolute error tolerances ǫabs

j on yn+1
j . This can be

accomplished as follows. First, a set of scaling factors ηscal
j has to be computed as

ηscal
j = max{ǫabs

j , ǫrelabs[yn+1
j (htry)]} (80)

where htry denotes an attempted stepsize. Next, the truncation error ǫn+1(htry) needs
to be computed via

ǫn+1(htry) =
{

h
∑6

r=1(c
5th
r − c4th

r )kn
r Runge–Kutta

h
∑4

r=1(c
4th
r − c3rd

r )kn
r Rosenbrock

(81)

The scaling factors ηscal
j are subsequently used to find the scaled error of the ‘worst

offender equation’, ǫcrit, via:

ǫcrit = max

⎡

⎣

∣

∣ǫn+1
0 (htry)

∣

∣

ηscal
0

, . . . ,

∣

∣

∣
ǫn+1

j (htry)

∣

∣

∣

ηscal
j

, . . . ,

∣

∣

∣
ǫn+1

ny−1(htry)

∣

∣

∣

ηscal
ny−1

⎤

⎦ (82)

Once ǫcrit is found, the stepsize can be adjusted by [91]

h =
{

S htry(ǫ
crit)−1/p if ǫcrit ≤ 1

S htry(ǫ
crit)−1/q if ǫcrit > 1

(83)

Here, S=0.9 denotes a safety factor. For the Runge–Kutta method p = 5 and q = 4.
For the Rosenbrock method p = 4 and q = 3. When ǫcrit > 1, the stepsize is reduced
by a ∝ hq scaling. When ǫcrit ≤ 1, the stepsize is increased by a ∝ hp scaling.

Appendix C: Combining the Levenberg–Marquardt Method with the Runge–Kutta

Method and the Rosenbrock Method

This section describes the combination of the Levenberg–Marquardt method with
the Runge–Kutta and the Rosenbrock method. An algorithm for least-squares fitting
a system of differential Eq. 56 may be obtained by inspecting Eqs. 60, 67, 70 and 71
to compute χ̃2(acur), ∇χ̃2

∣

∣

acur and ∇∇χ̃2
∣

∣

acur . For a system of algebraic equations, the
y j(a, b, xi, y) needed to compute χ̃2(acur) by Eq. 60 can be obtained from Eq. 55. The
quantities ∂y j(a, b, xi, y)/∂ak needed to compute ∇χ̃2

∣

∣

acur and ∇∇χ̃2
∣

∣

acur via Eqs. 70
and 71 can be obtained by differentiating Eq. 55 with respect to a.
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To find y j(a, b, xi, y) and ∂y j(a, b, xi, y)/∂ak for a system of differential Eq. 56
consisting of ny members, it is necessary to formulate an extended system consisting
of ny + ma × ny equations as

d

dx

[

yp

(

a, b, x, y
)]

= gp

(

a, b, x, y
)

0 ≤ p < ny + ma × ny (84)

where the functions gp

(

a, b, x, y
)

are related to f j

(

a, b, x, y
)

in system (56) as

gp

(

a, b, x, y
)

= f j

(

a, b, x, y
)

0 ≤ j < ny, p = j (85)

gp

(

a, b, x, y
)

=
∂ f j

(

a, b, x, y
)

∂ak

0 ≤ j < ny, 0 ≤ k < ma, (86)

p = ny + ma× j + k

System (84) can be solved numerically by the Runge–Kutta or the Rosenbrock
method. Once the solution y has been obtained, the first ny components can be used
to compute χ̃2(acur) by Eq. 60. The components ranging from ny + 1 to ny + ma × ny

contain the quantities ∂y j(a, b, xi, y)/∂ak so that ∇χ̃2
∣

∣

acur and ∇∇χ̃2
∣

∣

acur may be
computed by Eqs. 70 and 71.

Each equation in system (84) must be provided with an initial condition. With
ny differential equations and ma parameters, the members of system (84) indexed
by 0 ≤ p < ny contain the model, and, those by ny ≤ p < ny + ma × ny contain the
derivatives with respect a. For 0 ≤ p < ny the initial conditions (x∗, y∗

p) are known
from the problem formulation:

yp

(

a, b, x, yp

)

= y∗
j

(

a, b, x∗, y∗
j

)

0 ≤ j < ny, p = j (87)

However, the initial conditions corresponding to ∂y j/∂ak,

yp

(

a, b, x, yp

)

=
∂y∗

j

(

ak, b, x∗, y∗
j

)

∂ak

0 ≤ j < ny, 0 ≤ k < ma

p = ny + ma× j + k
(88)

must be found numerically. This is done by taking the finite difference between the
initial conditions y∗

j(a, b, x∗, y∗
j) and a numerically computed perturbed solution at

y j(a + �a, b, x∗, y∗
j) for 0 ≤ j < ny as:

yp

(

a, b, x, yp

)

=
∂y∗

j

(

ak, b, x∗, y∗
j

)

∂ak

≈
y j(ak + �ak, b, x∗, y j) − y∗

j(ak, b, x∗, y∗
j)

�ak

(89)
The perturbed solution is obtained by numerically integrating the original system
(72) from x∗ to x1 = x∗ + �x and from x∗ to x2 = x∗ + 2�x, and then by extrapolat-
ing the resulting y j(ak + �ak, b, x1, y j) and y j(ak + �ak, b, x2, y j) as

y j(ak + �ak, b, x∗, y j) = y j(ak + �ak, b, x1, y j) (90)

+ x∗ − x1

x2 − x1

[

y j(ak + �ak, b, x2, y j) − y j(ak + �ak, b, x1, y j)
]

(91)

where 0 ≤ j < ny and 0 ≤ k < ma.
Complications may arise when the initial conditions of the augmented system (84)

dependent on the parameter set a. To see why, it is helpful to write the Levenberg–
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Algorithm 1 Implementation of the Levenberg–Marquardt method in conjunction
with the Runge–Kutta method and the Rosenbrock method

A: Prerequisites Define i to index data collection (xi, ŷi
j, σ̂

i
j). Define its (< maxits).

Define χ̃2
crit (value < 1). Define χ̃2

0
. Define χ̃2

old. If dif ferential model: Subdivide

(xi, ŷi
j, σ̂

i
j) into {[x0, x1], [x1, x2], . . . , [xi, xi+1]}. Define stepsizes hmin (= 10−30), htry,

hnext, and hinit (> hmin). Define istp (< maxstp).
B: Initialisation Set i = 0 and its = 0. Set λ = 10−3 [19] in system (67). Provide initial
guess in acur. If dif ferential model: Set istp = 0. Set htry and hnext equal to hinit. Impose

ǫrel on increment yn+1
j − yn

j , and, ǫabs
j on yn+1

j .
C: Iteration

C.1: Dif ferential model

C.1.1: Set istp = 0. Set xn = xi. If (i = 0 ∧ istp = 0) then set yn at xn equal
to initial conditions y j(a, b, x0, y j0

). If Rosenbrock method then compute Jacobian,
∂ f /∂ y

∣

∣

(xn,yn)
, and ∂ f /∂x

∣

∣

(xn,yn)
in Eq. 78.

C.1.2: Set htry = hnext. Compare htry with [xn, xi+1]. If htry > xi+1 − xn then set htry

equal to xi+1 − xn. If htry < hmin then spawn error message and exit.

C.1.3: Integrate system (84) to obtain y. Runge–Kutta method. Compute kn
1, kn

2, . . . , kn
r

using Eq. 76 with htry. Rosenbrock method. Update the conditioning matrix E in Eq. 78
and compute kn

1, kn
2, . . . , kn

r by solving Eq. 79 using htry. Set xn+1 = xn + htry. Compute

solution yn+1
j of system (84) at xn+1 = xn + htry using Eq. 73.

C.1.4: Compute ǫcrit using Eqs. 80–82. Apply ǫcrit to adjust integration stepsize via
Eq. 83:

C.1.4.1: If ǫcrit ≤ 1 then set hnext = Shtry(ǫ
crit)−1/p. If ǫcrit > 1 then set hnext =

Shtry(ǫ
crit)−1/q.

C.1.4.2: Increase istp by one. If (istp < maxstp) then return to step C.1.2. If
(istp = maxstp) then spawn error message and exit.

C.1.5: Increase i by one. If i < nx − 1 return to C.1.1. If i = nx − 1 proceed to C.2.

C.2: Evaluate χ̃2(acur), ∇χ̃2
∣

∣

acur and ∇∇χ̃2
∣

∣

acur using acur and
(

xi, ŷi
j, σ̂

i
j

)

.

C.2.1: If algebraic model: evaluate {yi
0
, . . . , yi

ny−1
} by Eq. 55. If dif ferential model: use

{yi
0
, . . . , yi

ny−1
} computed by step C.1.

C.2.2: Compute χ̃2(acur) by Eq. 60, ∇χ̃2
∣

∣

acur by Eq. 70, and, ∇∇χ̃2
∣

∣

acur by Eq. 71.

C.2.3: If its = 0 then store χ̃2(acur) in χ̃2
0

and χ̃2
old.

C.3: If χ̃2(acur) ≤ χ̃2
old:

C.3.1: If χ̃2(acur)/χ̃2
0

≤ χ̃2
crit then set λ = 0.

C.3.2: If χ̃2(acur)/χ̃2
0

> χ̃2
crit then decrease λ by a factor 10.

C.4: If χ̃2(acur) > χ̃2
old: Increase λ by a factor 10.

C.5: Store χ̃2(acur) obtained from step C.2.2 into χ̃2
old. Solve system (67) to obtain da.

Update acur with da as acur ← acur + da.
C.6: Increase its by one. If its<maxits return to step C.2.1. If its=maxits spawn
warning that χ̃2(acur) > χ̃2

old and χ̃2(acur)/χ̃2
0

> χ̃2
crit.

C.7: Estimate covariance matrix [19] by computing inv[∇∇χ̃2(acur)] in system (67).
Return acur, and, standard errors ǫak

as square-root of diag[inv[∇∇χ̃2(acur)]]. Exit.
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Marquardt update sequence as a∗ → a(0) → a(1) → . . . → a(k) → . . . → amin with a∗

denoting the initial guess, a(k) denoting the k-th update, and, amin the parameter set
rendering the optimal model-data match. Prior to each update of a(k), the increment
da is determined by integrating system (84), computing ∇χ̃2

∣

∣

a(k) and ∇∇χ̃2
∣

∣

ak , and,
solving Eq. 69. When the dependence of the initial conditions on a(k) is not taken into
account, this results in a da which points in a direction other than the projection of
the steepest descent of the χ̃2 response surface onto the parameter space. Successive
updates of a(k) then become so distorted that the algorithm continues indefinitely
without getting any closer to amin.

Appendix D: Comparison Between the Classical and Extended Method

Iteration-tableaus of the classical and extended Levenberg–Marquardt method when
applied to fit differential Eqs. 24 and 25, and, the analytical solution (26) and (27) to
the synthetic data-set in Fig. 1. Prerequisites (Algorithm 1): maxits= 9, χ̃2

crit = 10−3,
λ = 10−3, hinit = 10−5, ǫrel = 10−6, and ǫabs

j = 10−12. Confidence levels from [94].

Confidence levels

For a 99 %, 98 %, 96 %, 95 %, 90 %, 80 %, and 50 % confidence interval multiply the standard errors
ǫa1

and ǫa2
with the confidence levels: z99 %=2.58, z98 %=2.33, z96 %=2.05, z95 %=1.96, z90 %=1.645,

z80 %=1.28, z80 %=0.6745.

Confidence level, p 99 % 98 % 96 % 95 % 90 % 80 % 50 %
Confidence coefficient, zp 2.58 2.33 2.05 1.96 1.645 1.28 0.6745
Confidence interval, a0 ± zpǫa0

−0.999 −0.999 −0.999 −0.999 −0.999 −0.999 −0.999
a0=−0.999; ǫa0

=0.021 ±0.054 ±0.049 ±0.043 ±0.041 ±0.035 ±0.027 ±0.014
Confidence interval, a1 ± zpǫa1

−994.4 −994.4 −994.4 −994.4 −994.4 −994.4 −994.4
a0=−994.4; ǫa0

=16.4 ±42.3 ±38.2 ±33.6 ±32.1 ±26.98 ±21.0 ±11.1

Classical Levenberg–Marquardt method. Equations (26) and (27).

iter. λ a0 da0 ǫa0
a1 da1 ǫa1

χ̃2(a)

init. guess a0=−1.2 a1=−1200 221.682

0 10−3 −0.997 2.03·10−1 −988.8 2.112·102 0.49656
1 10−4 −0.999 −1.82·10−3 −994.4 −5.511·100 0.37567
2 10−5 −0.999 −5.73·10−7 −994.4 −6.731·10−2 0.37566
3 10−6 −0.999 −2.68·10−8 −994.4 −6.821·10−4 0.37566
4 10−7 −0.999 −2.86·10−10 −994.4 −6.891·10−6 0.37566
final: 0.0 −0.999 −2.90·10−12 0.021 −994.4 −6.961·10−8 16.4 0.37566

Extended Levenberg–Marquardt method with Runge–Kutta method. Equations (24) and (25). Init.
cond. from perturbation (89)–(91).

iter. λ a0 da0 ǫa0
a1 da1 ǫa1

χ̃2(a) integr. deriv.
steps eval.

init. guess a0=−1.2 a1=−1200 221.682 508 3048

0 10−3 −0.997 2.033·10−1 −988.8 2.112·102 0.49656 951 5706
1 10−4 −0.998 −1.816·10−3 −994.4 −5.511·100 0.37568 880 5280
2 10−5 −0.998 −5.735·10−7 −994.4 −6.730·10−2 0.37566 869 5214
3 10−6 −0.998 −2.677·10−8 −994.4 −6.821·10−4 0.37566 869 5214
4 10−7 −0.998 −2.863·10−10 −994.4 −6.892·10−6 0.37566 877 5262
final: 0.0 −0.998 −2.911·10−12 0.021 −994.4 −6.961·10−8 16.4 0.37566 861 5166
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Extended Levenberg–Marquardt method with Rosenbrock method. Analytical Jacobian. Equations
(24) and (25). Init. cond. from perturbation (89)–(91).

iter. λ a0 da0 ǫa0
a1 da1 ǫa1

χ̃2(a) integr. deriv. Jacbn.
steps eval. eval.

init. guess a0=−1.2 a1=−1200 221.682 506 2024 506

0 10−3 −0.997 2.033·10−1 −988.8 2.112·102 0.49657 1010 4040 1010
1 10−4 −0.998 −1.816·10−3 −994.4 −5.511·100 0.37568 1002 4008 1002
2 10−5 −0.998 −5.750·10−7 −994.4 −6.731·10−2 0.37567 995 3980 995
3 10−6 −0.998 −2.679·10−8 −994.4 −6.822·10−4 0.37567 1000 4000 1000
4 10−7 −0.998 −6.115·10−10 −994.4 −6.900·10−6 0.37567 997 3988 997
final: 0.0 −0.998 −1.194·11−11 0.021 −994.4 −6.981·10−8 16.4 0.37567 1000 4000 1000
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