
On the Application of the
Service-Oriented Architectural Style

to
Heterogeneous

Application Landscapes

Dissertation
zur Erlangung des Grades

des Doktors der Naturwissenschaften (Dr. rer. nat.)
der Fakultät

Wirtschaftsinformatik und Angewandte Informatik
der Otto-Friedrich-Universität Bamberg

vorgelegt von
Helge Hofmeister

Bamberg,
Dezember 2008

1. Gutachter: Prof. Dr. Guido Wirtz, Otto-Friedrich Universität Bamberg
2. Gutachter: Prof. Dr. Mathias Weske, Hasso-Plattner-Institut Potsdam

Tag der Disputation: 3. April 2009

Abstract

This thesis investigates the application of the service-oriented architectural style
in the context of industrial enterprises. This style provides a commonly perceived
paradigm to organize distributed software systems. However, beyond the attention
this style attracts, little description exists on what differentiates service orientation
from already more mature styles, such as component orientation.
This dissertation argues that the service-oriented style is an approach that central-
izes control over distributed functionality that is provided by the application systems
of an organization. This means that service orientation is a paradigm for application
integration. Moreover, we argue that it is not possible to fully formalize the inherent
principles of service orientation as part of an architectural style description. In fact,
soft design principles are a differentiator of this style. These principles, however,
are rarely implied in the context of industrial enterprises. This is why we analyze
how such design principles could be objectively described and what attention should
be paid to them. This analysis is performed by categorizing the potential benefits
of this style and assigning the respective principles to the identified benefits. Sub-
sequently, a reference architecture is defined on the basis of these findings. This
architecture focuses on structuring service-oriented applications — so-called com-
posite applications.
In order to apply the defined reference architecture in the context of actual projects,
we describe a design methodology for composite applications. This design method-
ology focuses on predominantly using business processes to design various types of
services and their interconnections as they are described by the reference architec-
ture. To achieve this, a service design algorithm is included that derives services
for business processes by incorporating the results of a statistical analysis of service
design principles.
The deliverable of this methodology is the platform-independent design of a com-
posite application that incorporates the restrictions of the application landscape
in which a composite will be deployed. To allow the realization of composite ap-
plications, we informally map the platform-independent reference architecture to a
platform that is widely used in industrial enterprises. This mapping is, together with
the design methodology and the reference architecture, applied to an industry-scale
use case. This way the applicability of the concepts is demonstrated.

Zusammenfassung

Diese Dissertation untersucht, wie der service-orientierte Architekturstil von
großen Konzernen angewandt werden kann. Dieser Architekturstil strukturiert ver-
teilte Systeme. Neben allgemeiner Aufmerksamkeit sind jedoch nur wenige Beschrei-
bungen verfügbar, die zeigen, wie sich dieser Stil von anderen – so z.B. von dem der
Komponentenorientierung – absetzt.
Die vorliegende Arbeit beschreibt, dass der service-orientierte Stil ein Ansatz zur
Kontrollzentralisierung ist. Dabei zentralisiert er die Kontrolle über der Funktionali-
tät, die von den Applikationssystemen einer Organisation bereitgestellt wird. Daher
kann er auch als Integrationsansatz verstanden werden. Zusätzlich ist es nicht mög-
lich, alle Prinzipien des service-orientierten Stils als Architekturstil zu beschreiben.
Tatsächlich stellen weiche Designprinzipien das Alleinstellungsmerkmal dieses Stils
dar. Diese Prinzipien werden allerdings von großen Organisationen kaum verinner-
licht. Diese Dissertation untersucht deshalb den Stellenwert der einzelnen Prinzipi-
en und beschreibt, wie sie objektiviert werden können. Diese Untersuchung wird
dadurch betrieben, dass die möglichen Vorteile dieses Architekturstils zunächst ka-
tegorisiert werden. Danach werden diesen potentiellen Vorteilen die Prinzipien zuge-
wiesen, die zu ihrer Erlangung beitragen. Auf Basis dieser Analyse wird danach eine
Referenzarchitektur erstellt. Diese Architektur beschreibt eine Struktur für service-
orientierte Applikationen, so genannte composite applications, die es erlaubt weiche

Designprinzipien zu berücksichtigen.
Um diese Referenzarchitektur auf reelle Problemstellungen anwenden zu können,
wird außerdem eine Methodik zum Design von composite applications beschrieben.
Im Fokus dieser Methodik steht es, Geschäftsprozesse als Ausgangspunkt für das
Design von Services zu benutzen und deren Verbindungen zu beschreiben. Dabei
orientiert sie sich an den möglichen Verbindungen, die von der Referenzarchitektur
definiert werden. Um dies zu erreichen ist ausserdem ein Algorithmus für das Design
von Services enthalten. Dieser Algorithmus leitet aus Geschäftsprozessen Services
ab und berücksichtigt dabei die Ergebnisse einer statistischen Auswertung, die die
Wiederverwendbarkeit von Services als Untersuchungsziel hat.
Das Resultat dieser Methodik ist das plattformunabhängige Design einer composite
application. Dieses Design ist an einem Geschäftsprozess orientiert, berücksichtigt
aber auch die Einschränkungen der Systemlandschaft, in der die Applikation betrie-
ben werden soll. Um auf der Basis eines solchen Designs eine composite application
erstellen zu können, ist weiterhin eine informelle Abbildung der plattformunabhän-
gigen Architektur auf eine häufig eingesetzte Plattform in der Arbeit beschrieben.
Zusammen mit der Methodik und der Referenzarchitektur wird diese Abbildung
dann auf ein industrielles Fallbeispiel angewandt. Auf diese Weise wird die Anwend-
barkeit der beschriebenen Konzepte demonstriert.

Contents

1 Introduction 1

1.1 Problem Statement . 1

1.2 Approach . 3

1.3 Thesis Structure . 4

2 Service-Oriented Architecture 6

2.1 Application Integration . 7

2.2 SOA as a Paradigm for Control Centralization 9

2.3 SOA Defined . 10

2.4 Platform Requirements for the Service-Oriented Architectural Style 17

3 Assessing the Application and Applicability of SOA 19

3.1 Potential Benefits and Trade-Offs of SOA 19

3.2 Assessing Design Quality . 21

3.2.1 Assessing Modifiability . 23

3.2.2 Assessing Reliability . 42

3.2.3 Assessing Usability . 47

3.3 Assessing the Suitability of SOA . 47

4 Is There Reuse by Design? A Quantitative Approach 50

4.1 Candidate Metrics for Reusable Service Design 50

4.2 Introduction to the Case Study . 64

4.3 On the Candidate Metrics’ Discriminative Power 66

4.4 Conclusion . 68

5 A Reference Architecture for Composite Applications 71

5.1 Outline of the Architecture . 72

5.2 Events . 74

5.2.1 Event Relations . 75

5.2.2 Realizing Data Visibility using Event Types and Relations 77

5.3 Heterogeneous Application Systems . 78

5.4 Connectivity to Application Systems . 79

5.5 Eventing System . 82

5.6 Data Repository . 86

5.7 Data Exchange and Data Transformation Layer 92

5.7.1 Data Service . 93

5.7.2 Validity Service . 98

5.7.3 Heterogeneity Service . 99

5.7.4 Trigger Service . 101

5.7.5 Routing Service . 103

5.7.6 Integration In-Flow . 105

5.7.7 Integration Out-Flow . 108

5.7.8 Realizing Interactions using Integration Flows 113

5.8 Service Coordination Layer . 122

5.9 Business Process Orchestration Layer . 128

5.9.1 Workflow System for Service Orchestration 128

5.9.2 Decision Service . 131

5.10 Service Registry . 133

5.11 Summary . 135

6 Designing Composite Applications 136

6.1 A Meta-Model for Services . 137

6.2 Composite Application Design – A Step-by-Step Process 138

6.2.1 An Example Scenario . 139

6.2.2 Step 1: List all Business Process Activities 140

6.2.3 Step 2: Create Enterprise Service Candidates 141

6.2.4 Step 3: Match Suitable Service Methods and Derive Missing Service
Method Candidates . 143

6.2.5 Step 4: Describe Service Orchestration 153

6.2.6 Step 5: Create Service Coordination Description 154

6.2.7 Step 6: Refine Candidate Methods 155

6.2.8 Step 7: Analyze QoS Requirements of Service Coordinations 158

6.2.9 Step 8: Design of Application Services 160

6.2.10 Step 9: Exchange and Transformation Design 162

6.2.11 Step 10: Revise Service Coordination Description 164

6.2.12 Step 11: Revise Enterprise Service Candidates 165

6.2.13 Step 12: Define Events . 165

6.2.14 Step 13: Data Repository Design 166

6.2.15 Step 14: Finalize Service Orchestration 167

6.2.16 Step 15: Finalize Exchange and Transformation Design 168

6.2.17 Step 16: Pass over to Implementation 170

6.3 Summary . 170

7 Platform-Specific Reference Architecture 172

7.1 Elements of the SAP NetWeaver Platform 173

7.1.1 SAP Web Application Server . 173

7.1.2 SAP Exchange Infrastructure . 174

7.1.3 SAP Composite Application Framework 176

7.1.4 SAP Enterprise Portal . 177

7.2 Platform-Specific Reference Architecture for SAP NetWeaver 178

7.2.1 Eventing System . 179

7.2.2 Data Repository . 180

7.2.3 Connectivity to Application Systems 183

7.2.4 Data Exchange and Data Transformation Layer 185

7.2.5 Service Coordination Layer . 194

7.2.6 Business Process Orchestration Layer 195

7.2.7 Service Registry . 197

7.2.8 Centralizing the User Interface . 197

7.3 Summary . 199

7.4 Conclusion . 201

8 A Case Study 202

8.1 The Business Case . 202

8.1.1 Requirements . 203

8.1.2 On the Suitability of SOA for the Use Case 204

8.1.3 Application Landscape and Constraints 207

8.2 Design of the Composite Application . 208

8.2.1 Step 1: List all Business Process Activities 208

8.2.2 Step 2: Create Enterprise Service Candidates 209

8.2.3 Step 3: Match Suitable Service Methods and Derive Missing Service
Method Candidates . 209

8.2.4 Step 4: Describe Service Orchestration 210

8.2.5 Step 5: Create Service Coordination Description 211

8.2.6 Step 6: Refine Candidate Methods 211

8.2.7 Step 7: Analyze QoS Requirements of the Service Coordinations . . 213

8.2.8 Step 8: Design Application Services 213

8.2.9 Step 9: Exchange and Transformation Design 215

8.2.10 Step 10: Revise Service Coordination Description 220

8.2.11 Step 11: Revise Enterprise Service Candidates 221

8.2.12 Step 12: Define Events . 221

8.2.13 Step 13: Data Repository Design 222

8.2.14 Step 14: Finalize Service Orchestration 223

8.2.15 Step 15: Finalize Exchange and Transformation Design 225

8.2.16 Step 16: Pass over to Implementation 225

8.3 Analysis of the Design . 227

8.4 The Composite Application . 230

8.4.1 Observations from the Development Phase 230

8.4.2 Look and Feel . 231

8.5 Summary and Conclusion . 233

9 Related Work 236

9.1 Incorporated Work . 236

9.1.1 Reference Architectures . 236

9.1.2 Service Design and Design Methodologies 238

9.1.3 Design Assessment Metrics . 240

9.2 Complementary Work . 240

9.2.1 Reference Architectures . 240

9.2.2 Service Design and Design Methodologies 244

9.3 Summary . 247

10 Conclusion 248

10.1 Summary . 248

10.2 Future Work . 249

10.3 Conclusion . 250

References 251

Index 266

List of Figures 268

List of Tables 271

Appendix A-1

A BNF of the ACME Language A-1

B Raw Data For the Analysis of Chapter 4 A-6

C Complete Agreement Management Process Model A-8

D Metrics for Step 6 of the Case Study A-9

1 Introduction

1 Introduction

Classical application integration is a substantial part of a large organizations’ information
technology (IT) landscape in terms of resources, time and budget. As a rule of thumb,
practitioners estimate that 20% of project costs are integration costs. In addition to
project costs, integration projects increase complexity within an IT landscape. This causes
an overall increase in the total costs of IT ownership. However, even more strategically
important than cost is the flexibility of an IT landscape in terms of how it can respond
to changes in business models and processes.

Integrating different application systems to support certain business requirements is a
fairly inflexible mechanism. This is due to the fact that integration systems do not (and
should not) implement business logic. Furthermore, they are adapted to multiple appli-
cation systems that do implement this business logic. Evolutions in business that lead to
changes on an IT level consequently require modifications of (back-end) application sys-
tems. These changes usually affect interfaces to other application systems as well. Thus,
integration systems need to be changed fairly frequently. Additionally, new business mod-
els or mergers and acquisitions draw special attention to the integration systems as they
allow for connectivity among different intra- or inter-organizational entities.
As a result, changes in business models usually affect several application and integra-
tion systems. Making changes to these systems is a costly and, more importantly, time
consuming business.

In order to reduce the complexity of integrated application systems, the concept of con-
solidation was proposed (cf. [1]). Consolidating both application and integration systems
aimed at reducing complexity by first eliminating the need for interfaces among applica-
tion systems and second by standardizing interface development and maintenance.
To avoid consolidation leading to highly complex application systems, organizations were
more or less forced to use standard software (global players especially chose that approach).
By doing so, particular competitive process-related advantages of an organization were
not supported anymore by the IT systems. This is why large organizations kept a va-
riety of commercial-off-the-shelf software (COTS) and home-grown applications in their
application landscape. These systems were integrated using integration systems.

1.1 Problem Statement

Service-oriented architecture (SOA) or service orientation (SO) is an architectural style
that allows the construction of applications that reuse distributed functionality of hetero-
geneous application landscapes. Applications that reuse functionality and expose their
functionality as web-based applications are so-called composite applications (cf. e.g. [2]).
Together, SO and composite applications promise to protect investments in legacy land-
scapes by reusing the existent functionality while allowing for the incorporation of recent
business changes.

Garlan identified uncertainty about the control model as a major issue when building sys-
tems that reuse existing parts (cf. [3]). This issue persists when building service-oriented
composite applications.
One way to address this issue is the concept of Business Process Integration Oriented

Distributed and Mobile Systems Group 1

1 Introduction

Application Integration (BPIOAI) introduced by Linthicum (cf. [4]). This concept cen-
tralizes the control model outside the participating application systems and uses business
processes as the central control instance over distributed functionality. This functionality
can be exposed by the means of services that have a formally described interface (cf. [4]).

Papazouglou stated that an SOA allows business process-centered control over distributed
services by introducing process-centered service aggregation, or so-called service orches-
tration. The latter is introduced as a part of a service-oriented architecture. It serves as
a mechanism for aggregating basic services to more specialized services (cf. [5]).
From the proposed aggregation of services, another possible benefit for the industry can
be identified: required changes for functional enhancement can be realized as additional
services that are aggregated together with services that expose standard functionality
of COTS. Such aggregators could thus provide the required functionality which is typi-
cally offered by separate systems. This way SO could also contribute to keeping COTS
unmodified – which is a major aspect of today’s IT governance (cf. [6, pp. 69f.]).

SO obviously comes along with some promise that could be beneficial both for industry
companies and for software/IT services companies. However, these groups’ perception of
SO is today mainly influenced by promises of vendors (examples are SAP [7], IBM [8],
Oracle [9] and IONA [10]). Also, science has begun to approach the topic (cf. e.g. [11], [5],
[4], [12], [13] to name a few). In the meantime, even an addition to the service-oriented
architectural style is intensively researched: the area of semantic service provisioning and
consumption is an interesting topic that shows first promising results (eg. [14]).

However, the gap between fundamental research, vendor promises and customer still exists
and seems to be growing. One reason for this is that companies have not yet determined
how to approach the topic and how to make the beneficial ideas of SO tangible. On the
other side, there are still no concepts available that point out what could make SO bene-
ficial for the industry and IT suppliers, how they could leverage these potential benefits
and how this new way of application development could be approached (even if software
vendors would pretend the opposite). Today, there is little information available about
how to structure problems in such a way that service orientation can be beneficial. Fur-
ther, there are few ways to structure composite applications such that service-oriented
principles are incorporated while actual requirements are realized in a heterogeneous ap-
plication landscape.
This analysis is shared by Schelp and Winter. In a recent analysis they state that “ex-
isting literature does not sufficiently address the integration layer and its importance for
decoupling business related structures on one hand, and IT related structures on the other.
This decoupling however is a necessary precondition for buffering changes and supporting
alignment, hence for contributing to agility on a sustainable level” [15, p. 68].

The objective of this thesis is to analyze existing work in the domain of service orientation,
identify gaps between the current state of research and real-life requirements and to fill
these gaps with concepts that make service orientation applicable.

Distributed and Mobile Systems Group 2

1 Introduction

1.2 Approach

The findings of this thesis were partially developed during a BASF IT Services project
that addressed service orientation. BASF IT Services is an IT services provider that
generates large portions of its revenue through industry customers. Thus, evaluating the
service-oriented architectural style seemed promising to the company because of the inte-
gration issues described above.
In order to analyze the impact SO could and should have on application integration, the
application landscape, business process support, application governance and the realiza-
tion of web-based applications, BASF IT Services decided to start with a first analysis
of this architectural style. As there was little experience in terms of requirements engi-
neering, design and programming, a project was launched in 2004 that would provide
experience in the area of SO and process-based application development. This experience
took both a conceptual approach as well as an implementation approach.

This thesis is related to this project. The requirements of the project were used as exem-
plary industry requirements to develop and verify the concepts presented in this thesis.
By incorporating these concepts back into the project allowed to analyze their value for
the company and to prepare the introduction of SO into companies such as BASF IT
Services and its customers.
Essential to achieving this objective is the structuring of application development and ap-
plication integration from an architectural point of view. This will be done by constraining
and detailing the service-oriented architectural style as it is commonly described today.
By providing more structure, constraints and guidance, SO will become more applicable
in real life. Further, by using this approach, it will also be possible to determine what
aspects of an SOA are related to the architectural style and what aspects are actually
introduced by soft design principles that can not be formalized as elements of a style.
In order to apply SO with all its principles, a reference architecture will be defined that
structures composite applications. Additionally, a design and development methodology
is required. Only methodological support will help organizations internally propagate
these concepts and comply with the principles this style comes along with. Finally, the
developed concepts need to be evaluated with regards to their applicability.

First, an appropriate definition of the service-oriented architectural style will be given.
By analyzing existing work, a formal model of an SOA will be established and described
using an architectural description language (ADL). Additionally, how vendor platforms
can support the application of this style will be described.
Based on this description, it will become clear that the assumed benefits of SO can not
be fully captured by these descriptive means as they are too generic.
Accounting for this descriptive deficiency, a framework will be established that supports
the analysis of how SO can provide additional benefits to software engineering. This will
be done by identifying key metrics that describe how certain principles of service orien-
tation can be measured. The discussion of these metrics will also be used to describe
service-oriented principles in greater depth.
Reusability is one of the commonly accepted principles of service orientation. In order
to determine whether the design of services can influence their reusability, a quantitative
analysis will be performed, that will investigate the significance of reusability to this ar-
chitectural style.
Having highlighted what service-oriented principles mean and what they can and can not

Distributed and Mobile Systems Group 3

1 Introduction

improve, a detailed, constrained and therefore tangible blueprint for composite applica-
tions will then be presented. This blueprint aims to support projects in their application
of the service-oriented architectural style and to leverage the identified concepts. To make
it possible to apply the blueprint to actual problems, a design methodology will also be
presented. This design methodology can be used in real-life settings to drill-down on
business processes and to derive a design for composite applications. In conjunction with
the reference architecture, this is a major contribution of this thesis.
In order to evaluate the previously identified concepts, a case study will be presented. This
case study was conducted during 15 months at BASF IT Services and involved around 20
project members. In order to realize the use case, a generic mapping of the architectural
blueprint to a strategic SOA platform of BASF IT Services will be given.
Based on these findings, the design of the use case will be described. By analyzing this
use case it will be possible to assess how the service-oriented style could contribute to the
success of realizing cross-system applications. Additionally, it will help to verify whether
the presented concepts provide an additional value compared to using the more generic
definition of an SOA.

1.3 Thesis Structure

This thesis reports on the background and main steps sketched above.

First, the meaning and definition of an SOA will be analyzed in chapter 2. Based on
the identified common understanding, SO will be defined as an architectural style. Addi-
tionally, a methodology will be introduced that supports the categorization of composite
applications and SOA platforms.

As these definitions demonstrate, only a generic part of the definition of service orienta-
tion can be formalized as an architectural style. Not all service-oriented principles can be
captured by such definitions.
In chapter 3, potential benefits and trade-offs of SO will be introduced and discussed.
This will be achieved by detailing potential benefits and analyzing how they can be lever-
aged. Based on the identified potential, basic measures and more complex metrics for the
assessment of service-oriented design will be introduced. To support future projects, an ap-
proach will be presented that can be used to evaluate the suitability of the service-oriented
style for given requirements.

Chapter 4 will provide a quantitative analysis of a web service-based component architec-
ture. The analysis will determine whether service design can influence service reuse and
how much attention should be given to the design of the actual services. The objective
is to identify design principles that are significant discriminators for the re-usability of
services. Based on these findings, recommendations for design methodologies will be made
that can be incorporated into actual design methodologies.

In chapter 5, the identified benefits and requirements for an applicable service-oriented
style will be used in order to define a reference architecture for composite applications.
This reference architecture will allow business process-centered reuse of legacy functional-
ity and define a structure on top of the basic service-oriented architectural style. It will
allow the structuring of composite applications and the integration of all principles of ser-
vice orientation into actual projects. The reference architecture will be described without

Distributed and Mobile Systems Group 4

1 Introduction

any reference to actual target platforms and service standards. This is why it allows for
designing composite applications in a platform-independent way. While the description
of the reference architecture is independent from any platform, the reference architec-
ture emphasizes the notion of heterogeneous application landscapes. This is achieved by
integrating several mechanisms that allow for realizing composite applications in hetero-
geneous application landscapes.

A step-wise design methodology for composite applications will be presented in chapter 6.
This methodology incorporates the findings of chapters 3 and 4. It allows for designing
composite applications and services in alignment with the reference architecture of chap-
ter 5. The steps of the methodology combine a top-down approach that uses business
requirements for the design of a composite application with the bottom-up integration
of constraints that arise from the actual application landscape. By incorporating these
constraints, the platform-independent design is adjusted for a specific target platform.
By integrating key metrics of chapter 3 into the methodology, reaching compliance with
service-oriented principles will be optimized.
This approach will also introduce a problem-oriented meta-model for services. This model
will, in conjunction with the findings of chapter 4, facilitate the integration of legacy sys-
tems into service orchestrations that underlie composite applications and support reusabil-
ity of certain types of services.

The composite application reference architecture will be mapped to an actual platform
in chapter 7. By using the findings of chapters 5 and 6, this platform-specific reference
allows for the realization of service-oriented solutions for actual business requirements.
The platform that is relevant for BASF IT Services will be chosen as the target platform
of this mapping.

In chapter 8, the described concepts will be applied to a case study. The suitability of the
service-oriented style for the given requirements will then be discussed. Subsequently, the
design methodology of chapter 6 will be applied to these requirements. The result will be
the design of an actual composite application for an actual business problem as described
in chapter 5.
The metrics that are introduced in chapter 3 will be applied to the design to provide a
quantitative evaluation of the design and to assess the applicability of metrics in that
context. Finally, a composite application that is based on the elaborated design will be
described in order to demonstrate the applicability of the concepts.

The findings and contribution of this thesis in contrast to related work will be discussed
in chapter 9.

Chapter 10, the conclusion, will analyze and synthesize the concepts elaborated upon
throughout the thesis.

The main achievements of this work have been published in a series of international
conferences over the last years (cf. [16], [17], [18], [19], [20], [21], [22]).

Distributed and Mobile Systems Group 5

2 Service-Oriented Architecture

2 Service-Oriented Architecture

Service-oriented architecture (SOA) is a kind of software architecture that is mainly visi-
ble within the industry because software vendors often push this concept into the market
(cf. e.g. SAP [7], IBM [8], Oracle [9], IONA [10]).
Even if the diffusion of this concept is purely driven by marketing and thus could be
ignored, organizations deploying products from vendors that switched to SOA-like plat-
forms need to be prepared. This is because future updates of their standard software
will involve service-oriented principles. Hence, only because of the market power of some
software vendors, companies need to deal with this paradigm.
An architectural style is a “collection of conventions that are used to interpret a class of
architectural descriptions” [23, p. 320]. Such an architectural description consists of com-
ponents, connectors, compositions of components and connections (aka configurations),
properties and constraints (cf. [24]).
In an SOA, the components are services. Connectors are the calling relations among those
services that all rely on a common protocol (cf. [4, p. 218]). However, component is a
rather overloaded term. Szyperski gave a widely referenced definition of what a compo-
nent is: “A software component is a [...] unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can be deployed
independently and is subject to composition by third parties” [25, p. 50].
Following the definition of services as the components of SOA, services are individual
units that exist autonomously and expose their functionality via self-describing interfaces
(cf. [11], [5]). By this definition it becomes obvious that component orientation and ser-
vice orientation become almost identical approaches.
Cerventes et al. identified in [12] the difference between components and services in that
services are abstract descriptions of components that become concrete during runtime
through dynamic lookups. Fowler notes that components are actually services intended
to be used locally while services are used remotely (cf. [26]).
Erl states that how the elements of the service-oriented architectural style are designed
distinguishes service orientation from component orientation (cf. [11, p. 36]).
Despite these definitions, the fact that an SOA can be realized (and, more important, is
realized) using open and easily understandable standards like the XML-based SOAP [27]
also contributes to the diffusion of this style. Services that are accessible via the SOAP
protocol are referred to as web services (cf. [5]).

Birman and Vogels discussed whether or not web services are distributed objects (cf. [28]
and [29]). The discussion is based on topics like life-cycles of objects and web services,
reliability of services and service referenciation. The common understanding is that web
services are not yet distributed object-based systems because they still lack certain as-
pects that industry-proof software has to fulfill. This, however, is not important from a
methodological point of view and time has brought additional so-called WS-* standards
(e.g. [30]) that address these issues.
Does that mean that SOA will solely force organizations to SOAP-enable their software
components to implement this new architectural style? This actually depends on the
way that the existing components are designed and used. Beside registries and remoting,
service orientation is an architectural style that emphasizes the building of applications
by (re-) using distributed functionality which were not realized as components initially.
SOA concerns functionality as it can be found in heterogeneous application landscapes.
Service-oriented applications that are built on top of legacy functionality are called com-

Distributed and Mobile Systems Group 6

2 Service-Oriented Architecture

posite applications (cf. [2]). Landscapes that are (re-) used by composite applications
consist of both a variety of commercial-off-the-shelf software (COTS) and home-grown
applications.
In a non-service-oriented landscape, these applications are of course usually already inte-
grated with each other in order to achieve certain functionalities. The paradigm used for
integration does, however, vary.

2.1 Application Integration

Today, different paradigms are deployed to support business processes that span multiple
systems. Linthicum identified four approaches to application integration (cf. [4, pp. 6-19])
that describe these paradigms. This section gives an overview of these approaches and
highlights typical advantages and disadvantages.

Portal-Oriented Application Integration Portal-Oriented Application Integration
does not focus on automating the connections between application systems. It aims to
allow a user to interact with different application systems without much effort. For that
sake, it does not aim at automating the conjuncted support of different application systems
for an abstract task. Furthermore, different application systems need to be unified into
one single user interface.
While allowing for quick results, this integration approach can not be considered to support
the realization of cross-system processes. The reason is that it does not aim at automation.
Furthermore, it facilitates manual work. Providing centralized portals with access to
different back-end systems is a commonly appreciated approach as it frees workers from
the requirement of knowing details about the actual system landscape, though.

Information-Oriented Application Integration Information-Oriented Application
Integration (IOAI) approaches intend to provide simple mechanisms to automatically
exchange information between different application systems.
This can be achieved using different categories of IOAI: Data Integration and Interface
Processing.

• Data Integration. Linthicum does not group data replication and data federation
into one major group. The approaches described below are very similar, though.
Both aim at allowing different application systems which are using databases to
operate on the same sets of data. Integration is thereby done by one application
system writing a data entity to a database and another application system reading
the data entity.
Technically this can be done in the following ways:

Data Replication. Linthicum defines data replication as “simply moving data
between two or more systems” [4, p. 7]. Because different application systems use
different databases, the application systems could operate on the same set of data
even if the data schemes differ whenever the databases are replicated. Replication
is realized using an additional layer above the database functionality. This layer
communicates changes from one database to another replicated database through

Distributed and Mobile Systems Group 7

2 Service-Oriented Architecture

messages.
Data replication is widely applied today. This is because it allows for failure tolerant
set-ups that do not require all systems to be available. The described layer above the
databases is usually an Enterprise Application Integration (EAI) integration server
in addition to database mechanisms such as triggers. The EAI platform delivers
data as scheduled. The trigger or a similar mechanism transfers the data from a
transfer space within the database to the productive data area of the database.
This approach has two drawbacks. On one hand, the integration is not performed in
real-time but on a time-scheduled base. The replication is usually performed once
per day. In case of changes that become necessary (for instance due to business
events), clerks that have to perform these changes need to know whether the data
was already replicated when they perform such a change.
The described scheduling does usually de-couple data transfer from functionality of
the application system that operates on the database. This is how the complexity
of the EAI integration platform can be controlled. On the other hand, the control
of integration is distributed. At least the EAI platform and the database internal
transfer mechanism are both controlling the integration. This renders such solutions
into hardly modifiable constructs.

Data Federation. This approach describes “the integration of multiple databases
and database models into a single, unified view of the database” [4, p. 7]. Here, an
additional layer is used to make different applications virtually operate on a local
database which, in reality, is a set of distributed databases.
A benefit is that this approach, “allows access to any connected database in the
enterprise through a single, well-defined interface” [4, p. 9].
This integration principle is rarely used within commercial organizations. There are
two reasons: differing data formats of application systems need either to be unified
or converted on the fly. The first approach is hardly achievable due to the immense
efforts that would be necessary. The second approach leads to a runtime overhead
that has negative effects on the performance of the applications. This is because
any data accesses is not only performed remotely but also converted. As database
operations are usually very fine granular, the performance is affected negatively.
A further obstacle that comes with this solution is that the integration is achieved
implicitly by multiple applications operating on the same set of data. This tightly
couples the applications and prohibits the definition of a clear point of control. Es-
pecially when integrating COTS, this approach is hardly applicable.

There are non-technical constraints related to the autonomy of the participating
organizations. Such constraints include that organizations will rarely grant external
partners access to their databases. If further common data schemes are required,
data integration is not feasible. This is why data integration approaches are only
useful for application integration within a single organization.

An integration approach that is more applicable to inter-organizational integration is
interface processing. This approach is, of course, also applicable for the integration
of application systems within organizations.

• Interface Processing. This approach does not only focus on data. Interface
processing uses well-defined application interfaces to access data and functions of
application systems as well. Interface processing is a mechanism that uses functions
of application systems to extract information and communicate it to other applica-

Distributed and Mobile Systems Group 8

2 Service-Oriented Architecture

tion systems (cf. [4, p. 10]).
If those functions are described by structural interfaces, the integration approach is
described as Service-Oriented Application Integration (SOAI) (cf. [4, p. 10]).
The distinction of the interface processing and the SOAI is obviously blurred. In
their genuine form, interface processing is a message-based approach that is used for
the transmission of discrete sets of data among application systems. SOAI describes
discrete function calls instead of messaging. But of course, processing data can also
involve functionality that operates on the exchanged data. This is why the two
approaches are not easy to distinguish.
SOAI has the advantage of combining integration and application logic while inter-
face processing usually distinguishes between integration and business functionality
(cf. [4, p. 10]). In this basic form, both approaches share one major downside:
the connected application systems all share the control of overall integration. Thus,
changing the underlying business process necessarily involves modifying application
systems.

2.2 SOA as a Paradigm for Control Centralization

In [3] Garlan identified a lack of certainty about the control model as a major issue when
building systems by re-using existing parts. As the described integration paradigms im-
plicitly combine data and functionality of application systems with each other, the control
model can not be obvious.
One way to resolve the issue of uncertainty about the control model is the concept of
Business Process Integration Oriented Application Integration (BPIOAI) that is also in-
troduced by Linthicum in [4]. This concept centralizes the control model outside the
participating application systems and uses business processes as the central control in-
stance over distributed functionality. This functionality can be exposed by means of
services that have a syntactically described static interface. Hence, it can be considered
as an extended concept in addition to SOAI (cf. [4, pp. 55ff.]).
Papazouglou identified the business process-centered re-usability of business functionality
as a major benefit of SO (cf. [5]). Service orientation allows for such business process
based configurations1 by introducing the concept of service orchestration. Orchestration
is a specialization of service aggregation that assembles basic services in a process-oriented
way to higher-level services (cf. [5], [31]).

We consider BPIOAI that relies on (possibly aggregated) services as a way to realize the
service-oriented architectural style, since it describes a control model for the integration
of application systems using services. This means that we see service orientation as an
architectural style that allows for developing applications by (re-)using existing software.
Hence, it is a process-centered application integration principle.
Other inherent features of an SOA are shown in figure 1. These include service discov-
ery, monitoring and management. The most important implication of this description is,
however, the layered specialization of basic services to managed composite services. The
specialization of services to more problem-oriented services is achieved by the concept of
aggregation.

1In terms of an architectural description language.

Distributed and Mobile Systems Group 9

2 Service-Oriented Architecture

Figure 1: Service-Oriented Architecture according to [5]

Another aspect of SO is that aggregation of services can be used to realize changes that
are required for functional enhancement of legacy COTS-based applications. By aggregat-
ing services that expose standard functionality with custom-made services that add the
required functionality, SO could contribute to keep COTS unmodified. This is a major
objective of today’s IT governance.

2.3 SOA Defined

To our knowledge, the service-oriented architectural style has not yet been defined for-
mally. This section introduces a definition of service orientation with the minimum set of
required components, connections and constraints. This definition underpins the further
elaborations of this thesis. However, it is not used to decide whether a given architecture
is compliant with this architectural style.
Based on this definition, it is possible to describe which concepts are incorporated into
the service-oriented style while being optional for other distributed computing concepts.
It will also discuss the fact that not all aspects of service orientation can be captured
through a style description. Based on this identified delta, metrics are defined in chapter
3 that measure both compliance to adherent service-oriented principles of a given design
as well its SOA-specific qualities. Since a major portion of service orientation is the de-
signing of services and thus can not be formalized by an architectural style, service design
is discussed in more depth in chapter 4.

There exist different languages for the purpose of describing architectural styles (cf. [24]).
We chose ACME [32] as the architectural description language for three reasons. First,
ACME is considered a universal architectural description interchange language (cf. [24],
[32]). Thus, the language unifies different approaches of architectural description and is
therefore a universal mechanism for such descriptions. Second, ACME-models can be
analyzed using first-order relational logic (cf. [33]). This will allow, if required, for a more

Distributed and Mobile Systems Group 10

2 Service-Oriented Architecture

fundamental access to the analysis of the design of composite applications. For instance
it could be verified that a given design is created using the service-oriented style. And
third, (recent) tool-support for ACME exists (cf. [34]). This allows the definition done
here to be usable in actual projects and shows that the ACME project is still active and
supported.

Yanchuk et al. state that the most basic occurrence of an SOA is a client-server architec-
ture (cf. [35]). We use the basic definition of the client-server style in order to approach
the definition of the service-oriented style.
As a foundation for further definitions, the client-server architectural style is described in
listing 1 using ACME language on the basis of the definition given in [32].

Listing 1: The Client-Server Architecture Style according to [32]
STYLE c l i e n t S e r v e r = {

COMPONENT Type Cl i en t = {
PORT send−r eque s t : RPCPort ;

}
COMPONENT Type Server = {

PORT rece i v e−r eque s t : RPCPort ;
PROPERTY hasState : BOOLEAN;
PROPERTY s t a t e : SET {} ;
PROPERTY fun c t i o n a l i t y : SET {} ;

}
CONNECTOR Type Rpc = {

ROLE c a l l e r : C l i entRo le ;
ROLE c a l l e e : Se rv i c eRo l e ;
PROPERTY asynchronous : boolean ;
PROPERTY pro to co l : CommunicationProtocol ;

}
ROLE Type Cl i entRo le ;
ROLE Type ServerRole ;
PROPERTY Type CommunicationProtocol = SEQUENCE <>;
PORT Type RPCPort = {

RULE ru l e1 = INVARIANT FORALL c : C l i en t in S e l f . Components |
EXISTS r : Rpc in S e l f . Connectors |
attached (c , r) ;

RULE ru l e2 = INVARIANT FORALL s : Server in S e l f . Components |
EXISTS r : Rpc in S e l f . Connectors |
attached (s , r) ;

}
}

Listing 1 shows that systems shall, in order to comply with the client-server style, consist
of two types of components: Clients and Servers. Clients send requests to servers using
Remote Procedure Calls (RPC) in a synchronous or asynchronous fashion. It is implicitly
included in this definition that clients and servers can be distributed among different
machines in a network.

Distributed and Mobile Systems Group 11

2 Service-Oriented Architecture

Listing 2: The Service-Oriented Architecture Style (Part I)
STYLE se rv i c eOr i en t ed EXTENDS c l i e n t S e r v e r WITH {

COMPONENT Type Se rv i c e = {
PORT deployab le : DeploymentPort ;
PROPERTY r e a l i z a t i o n : Language ;
PROPERTY pro to co l : CommunicationProtocol ;

}
COMPONENT Type Agent = {

PORT deployment : DeploymentPort ;
PROPERTY canExecute : Language ;
PROPERTY canCommunicate : CommunicationProtocol ;
PROPERTY phys ica lAddres s : Address ;
// Every s e r v i c e that i s deployed on a plat form . . .
RULE canExecute = INVARIANT FORALL s : S e rv i c e in S e l f . Components ,

a : Agent in S e l f . Components ,
d : Deployment in S e l f . Connectors |

attached (s , d) AND attached (a , d)−>

// . . . needs to be executab l e the re . . .
(s . r e a l i z a t i o n == a . canExecute) AND
// . . . and i t s p ro to co l must be supported
(s . p ro to co l == a . canCommunicate) ;

}
CONNECTOR Type Deployment = {

ROLE deployee : deployeeRole ;
ROLE deployTarget : deployTargetRole ;

}
ROLE Type deployeeRole ;
ROLE Type deployeTargetRole ;
PORT Type DeploymentPort = {

// Every s e r v i c e needs to be deployed to an agent :
RULE dep loyAl l = INVARIANT FORALL s : S e rv i c e in S e l f . Components ,

a : Agent in S e l f . Components |
EXISTS d : Deployment in S e l f . Connectors |
attached (s , d) AND attached (a , d) ;

}
[. . .]

Listing 2 introduces the service-oriented style as a specialization of the client-server style.
A distinction is made between the services and the agents that execute the services. This
distinction allows for a more transparent distribution of services within a landscape of
agents. In turn, this implies that services represent an abstract set of functionality unless
they are deployed on an agent. We refer to this abstract set of functionality as service
type (cf. [36]).
A constraint of that style is that services can (and must be) deployed on appropriate agents.
Appropriate thereby refers to two characteristics: first, the realization of a service must
be compatible with the runtime environment of the agent it is deployed on. Second, the
communication protocol a service relies on must be supported by the agent as well. The
configuration of service and agent forms a resource that provides or consumes functionality
that exists in a given set of systems.

The notion of providing and/or consuming functionality is expressed in listing 3 which
is a continuation of listing 2. Two components extend the client and server components:
serviceConsumers that use functionality that is exposed by a serviceProviders. Service
providers are stateless. This is an important aspect of services in comparison with com-
ponents. It is one of the service-oriented principles stated in [11]. However, as Erl states,

Distributed and Mobile Systems Group 12

2 Service-Oriented Architecture

services should be stateless to a certain extent (cf. [11, p. 308]) as statelessness is not
always possible. This is especially true if services are used to change data in back-end
systems. The service instance that performs an action should, however, not be important.
Hence, the services themselves should be stateless in the sense that they do not preserve a
conversational state. Their operations do not have to (but should) be idempotent, though.
Service consumers and service providers are connected by serviceCalls. Such a connection
implies a type a service needs to have. There is, however, no constraint from the archi-
tectural style point-of-view that a service consumer needs to be capable of dealing with
certain types of providers.
Additionally, call-back facilities are introduced. These facilities may also exist in client-
server architectures but are crucial for SOAs. Hence, as a constraint of a serviceCall,
asynchronous calls require a call-back connection from the provider to the appropriate
consumer.
An additional constraint on connections between service providers and consumers is that
all connections need to rely on the same (arbitrary) protocol. This principle facilitates
exchangeability of services and eases recomposability of service aggregations.

On top of this basic structure of the service-oriented style, there are other important
components. One of these components is the ServiceRegistry. A service registry allows
for dynamic lookup of service references during runtime of a system. Service consumers
may use this feature in order to determine the actual agent upon which a service provider
is deployed. This lookup is usually based on the syntactic description of the service
provider’s interface. However, more recent approaches extend the idea towards semantic
service lookups (eg. [14]). Here, enriched lookups are used in order to lookup matching
services. From an architectural style point of view such approaches do not have an impact.
ServiceAggregation is a component that acts both as a service consumer and as a service
provider. It uses other service providers to, in turn, expose the aggregated functionality
as a service provider. Service aggregators, in contrast to basic service providers, can
have a state and do not need to by stateless. From the design point of view, service
aggregations do offer more problem-oriented functionality to other service consumers. In
parallel, aggregators act as mediators. The mediator pattern was introduced by the Gang
of Four in [37] as a pattern for object-oriented systems. The essence of this pattern is
also true for service orientation. This is the notion that the interaction among a set of
objects or services are encapsulated. This is why the set of services that are encapsulated
by an aggregator/mediator can change their interaction independent of other services. As
a consequence, aggregators promote loose coupling.
A specialization of service aggregation is service orchestration. A service orchestration
aggregates basic service providers following a certain process or workflow. That process
is a set of steps (and branches) that describes the way service providers are aggregated.
Every step of such a process must correspond to a service provider that is aggregated to
a more specialized service provider (cf. [11, pp. 200-207]).

Listing 3: Structure and Constraints of the Service-Oriented Style (Part II)
[. . .]

COMPONENT Type Se rv i c eProv ide r EXTENDS Serv ice , c l i e n t S e r v e r . Server WITH {
PORT r e c e i v eCa l l : S e r v i c eCa l l I n ;
PORT replyToCal l : Serv iceCal lOut ; // f o r asynchronous c a l l −back
PORT r e g i s t e r : Serv iceCal lOut ; // f o r r e g i s t e r i n g with a r e g i s t r y
PROPERTY ca l lBack : Se rv i c eRe f e r ence ;
PROPERTY opera t i on s : SET;
RULE s t a t e l e s s = INVARIANT hasState == f a l s e ; // s t a t e l e s s n e s s
// f u n c t i o n a l i t y i s exposed by ope ra t i on s :

Distributed and Mobile Systems Group 13

2 Service-Oriented Architecture

RULE exposeAl l = INVARIANT FORALL op IN ope ra t i on s |
EXISTS f IN f u n c t i o n a l i t y |

OP == f ;
}
COMPONENT Type ServiceConsumer EXTENDS Serv ice , c l i e n t S e r v e r . C l i en t WITH {

PORT s e r v i c eCa l l : Serv iceCal lOut ;
PORT cal lBackPort : S e r v i c eCa l l I n ; // f o r asynchronous c a l l −back
PORT serv iceLookup : Serv iceCal lOut ; // f o r r e g i s t e r i n g with a r e g i s t r y

}
COMPONENT Type Se rv i c eReg i s t r y EXTENDS Serv i c eProv ide r WITH {

PORT r e c e i v eRe g i s t r a t i o n : S e r v i c eCa l l I n ; // No c a l l −back as cons ide r ed sync .
PORT lookup : S e r v i c eCa l l I n ; // No c a l l −back as cons ide r ed sync .

}
COMPONENT Type Serv i ceAggregat ion EXTENDS Serv i ceProv ider , ServiceConsumer WITH {

PROPERTY changableState : SET;
// Abbv . : i n t e r f a c e s that are aggreagted :
PROPERTY aggr ega t edSe rv i c e s : SET { type : TypedInter face } ;
RULE aggrega teEx i s t en t = INVARIANT FORALL c a l l IN agg r ega t edSe rv i c e s |

EXISTS p : Se rv i c eProv ide r in S e l f . Components ,
con : S e r v i c eCa l l in S e l f . Connectors |

attached (p , con) AND attached (c a l l , con) ;
RULE canHaveState = INVARIANT hasState == true OR hasState == f a l s e ;

}
COMPONENT Type Se rv i c eOrche s t r a t i on EXTENDS Serv i ceAggregat ion WITH {

PROPERTY proce s s : Process ;
RULE hasSe rv i c e = INVARIANT FORALL step IN proce s s |

EXISTS s e r v i c e IN agg r ega t edSe rv i c e s |
s tep . type == s e r v i c e . r e c e i v eCa l l . t yped In t e r f a c e ;

}
CONNECTOR Type Se rv i c eCa l l EXTENDS c l i e n t S e r v e r . Rpc WITH {

ROLE c a l l e r : ServiceConsumerRole ;
ROLE c a l l e e : Se rv i c eProv ide rRo l e ;
// f o r every asnc . c a l l the re must be a c a l l −back port
RULE ca l lBack = INVARIANT FORALL con : S e r v i c eCa l l in S e l f . Connectors |

con . asynchronous == true −>

EXISTS ca l l ba ck : S e r v i c eCa l l in S e l f . Connectors |
ca l l ba ck . c a l l e r == con . c a l l e e ;

// a l l p r o t o c o l s o f a system must be the same
RULE commonProtocol = INVARIANT FORALL c , d in S e l f . Connectors |

c != d −>

c . p ro to co l == d . p ro to co l ;
}
ROLE Type ServiceConsumerRole ;
ROLE Type Serv i c eProv ide rRo l e ;
PORT Type Se rv i c eCa l l I n EXTENDS c l i e n t S e r v e r . RPCPort WITH {

PROPERTY typed In t e r f a c e : Inter faceType ;
}
PORT Type Serv iceCal lOut EXTENDS c l i e n t S e r v e r . RPCPort WITH {}
PORT Type Reg i s t r a t i on EXTENDS Serv iceCal lOut WITH {

PROPERTY se rv i c eRe f e r en c e : S e rv i c eRe f e r ence ;
}
PROPERTY Type Inter faceType = SEQUENCE <dataTypes . interfaceName >;

PROPERTY Type Se rv i c eRe f e r ence EXTENDS Address WITH {
i n t e r f a c e : Inter faceType ;

}
PROPERTY Type Process = SET { s tep } ;

}

Distributed and Mobile Systems Group 14

2 Service-Oriented Architecture

As described by Garlan et al. in [38], styles expressed using ACME can also be described
using OMG Unified Modeling Language (UML) (cf. [39]) models. This will be the way
architectural sketches will be described throughout this thesis. In order to sketch out
certain architectural concepts, the UML-components shown in figure 2 will be used. The
components shown are a simplification of the ACME language constructs and are solely
meant for illustration purposes.

Figure 2: Some Elements of the ACME Definition Represented as UML Components

The definition of the service-oriented style can only be a first approach to capture what
an SOA is, what it means, how to apply it and how to use it. This is due to the fact
that the definition given above could be true for component-oriented systems as well. The
difference between SO and component orientation is the way how services are built and
composed — not the fact that they can be built and composed.
Analyzing the eight service-oriented principles given by Erl (cf. [11, p. 37]), only four
can be fully captured by the definition of the architectural style. These are composability,
statelessness, service contract and discoverability.
The other four principles are loose coupling, autonomy, abstraction and reusability. These
principles, that are more soft design principles compared to the style elements formalized
by the architectural style, are discussed in more detail next.
“Loose coupling is a condition wherein a service [consumer] acquires knowledge of another
service [provider] while still remaining independent of that service [provider]. Loose cou-
pling is achieved through the use of service contracts that allow services to interact within
predefined parameters” [11, p. 297]. This definition refers to the fact that a service con-
sumer solely relies on functionality that is provided elsewhere by a defined service provider
rather than on a specific service provider. This principle is important to make services
composable since the assumptions about the services are minimized. In turn, composing
services by the means of aggregator promotes loose coupling, too. This is because aggre-
gators reduce the dependency of a service consumer to a dependency on the respective
service aggregator(s) rather than on all aggregated service providers.
When referring to loose coupling, it is shown that service consumers depend on contracts
rather than on service providers. The existence of service contracts is part of the style defi-
nition. This is achieved by introducing typed interfaces and references to service providers
that are deployed on agents. The way these contracts are “design[ed] is extremely impor-
tant” [11, p. 295] — the how is more important than the fact that it exists.
“Autonomy requires that the range of logic exposed by a service exists within an explicit

Distributed and Mobile Systems Group 15

2 Service-Oriented Architecture

boundary. This allows the service to execute self-governance of all its processing. It also
eliminates dependencies on other services, which frees a service from ties that could in-
hibit its deployment and evolution [...] Service autonomy is a primary consideration when
deciding how application logic should be divided up into services and which operations
should be grouped together within a service context. Deferring the location of business
rules is one way to strengthen autonomy and keep services more generic. Processes gener-
ally assume this role [...]” [11, pp. 303f.]. From the point of view of style, only the required
preconditions can be established by introducing service providers and service orchestra-
tions. How functionality is assigned to (basic) service providers and service orchestrations
is a design decision that is not covered by the style definition, though. It is part of a
design approach for a composite application.
“There is no limit to the amount of logic a service can represent [...] Operation granularity
is therefore a primary design consideration that is directly related to the range and nature
of functionality being exposed by the service [...] Operations [...] collectively abstract the
underlying logic. Services simply act as containers for these operations” [11, pp. 298f.].
Erl’s explanation of abstraction by service design indicates that the common principle of
abstraction in software engineering is also a crucial part of an SOA. This style supports
abstraction as interface-level abstraction by hiding underlying processing details of ser-
vice providers’ realizations from service consumers (cf. [11, p. 299]). In addition, services
are considered as business relevant tasks that support the achievement of business goals
(cf. [5]). This way of abstracting processing details to business-related tasks is also beyond
the definition of style.
“Service orientation encourages reuse in all services [...] By applying design standards that
make each service potentially reusable, the chances of being able to accommodate future
requirements with less development effort are increased” [11, p. 292]. This principle is
neither new nor specific to SO. However, that services can be “reused everywhere and by
anybody” [5, p. 2] is a very well noted principle. As stated by Erl, the reuse only comes
with the way services are designed and are again not part of the style definition.
These latter four service-oriented principles often gain most of the attention that is given
to this architectural style. This might be caused by disenchantment among users regard-
ing the level of support COTS and home-developed software reach with regards to actual
business needs. It is because of this that the biggest part of concerns about an SOA relate
to business issue-motivated service design.
There is, however, one major trade-off to be dealt with when approaching the way SO
is described and observed. This is that SOA obviously affects the perception of how ser-
vice designers abstract from technical issues and focus on business issues. The design of
services is what is perceived as a major benefit. On the other hand service orientation
is, as discussed above, a principle of integrating legacy systems and reusing their func-
tionality. Designing how legacy systems should be built and (re-)used is obviously not
influenced ex-post. This is why this basic definition of the service-oriented architectural
style is not sufficient in the context of heterogeneous application landscapes. In order
to realize all principles of an SOA here, a more detailed and applicable description of
how heterogeneity and consistency can be addressed is required. This will be done by
the reference architecture that is introduced in chapter 5. It describes a blueprint for
composite applications and emphasizes the integration of heterogeneous landscapes and
business process-centered control centralization while considering the identified benefits
and trade-offs of chapter 3. In order to apply these mechanisms and to support designers
to stick with the described design principles, a design methodology for service-oriented
systems is introduced in chapter 6.

Distributed and Mobile Systems Group 16

2 Service-Oriented Architecture

2.4 Platform Requirements for the Service-Oriented Architec-
tural Style

It is not possible to describe one single platform on which composite applications can
be executed. As outlined above, distribution is an inherent characteristic of an SOA.
Therefore, there is little limitation to the platform that can be used. Every agent in a
service-oriented landscape could be realized using different technologies.
There is, however, the need to use a central platform for service orchestration if the
control of a system should be centralized. This agent hosting the service orchestration (or
aggregation) component uses distributed services that are often provisioned by another
central element – the so-called Enterprise Service Bus (ESB) (cf. e.g. [5], [40]). An ESB is
often considered a mediator between service consumers and service providers (cf. [41], [42]).
The benefit of introducing such a mediator into the architecture is that the complexity
of a distributed system becomes better manageable (cf. [43, p. 38]). An ESB is, however,
not part of the basic service-oriented architecture style, while an orchestration platform
is.

Composite applications are applications or services that aggregate service providers to
more specific functionality (cf. [44] or [5]). In this thesis, composite applications are
understood as applications that aggregate basic service providers and expose their func-
tionality with the notion of a user interface. Whether a composite service underlies such
an application is not defined. In order to expose such an user interface we also consider
a web-based portal as a part of an SOA platform.2

A portal and an orchestration platform would allow for the realization of composite appli-
cations that are built following the service-oriented style.
This description of platform requirements is less restrictive than the description of Tsai et
al. (cf. [40]). The architecture classification given in [40] is, being a sub-set, compatible
with the point of view taken above, though. [40] classifies SOA platforms by four dimen-
sions: structure, runtime re-composition capability, fault-tolerance and system engineering
support.
The structure of a composite application running on a platform can either be static (S) or
dynamic (D). ‘Static’ refers to the fact that all components of a composite application are
fixed and known before runtime. A dynamic structure of a composite application indicates
that parts (esp. services) of the respective application can by dynamically recombined.
A platform can offer means for re-composing composite applications. This feature might
either be supported (R) or it may be not supported (N). If the feature is supported, ex-
isting services can be replaced at runtime with other services. This replacement is not
achieved by changing aggregations. Furthermore, this feature refers to the dynamic lookup
facilities coming along with service registries.
The fault-tolerance capability of a platform can either be FN (no fault-tolerance), FB
(fault tolerant communication backbone; ESB) or FC (fault-tolerant control service). Un-
fortunately, the authors do not specify the exact semantics of FB and FC. FC seems to
refer to a composite application that can deal in the central control instance with faults of
any kind. FB seems to refer to an ESB that ensures reliable communication and buffering.
System engineering support refers to the degree an SOA platform supports the develop-
ment of composite applications. SY thereby refers to an SOA platform that supports
system engineering. SN to the opposite case.

2The user interface that is realized with a portal is considered as a service provider.

Distributed and Mobile Systems Group 17

2 Service-Oriented Architecture

In order to categorize different platforms, single dimensions can have arbitrary character-
istics. This is indicated by “XX”.

Figure 3: SO Architecture Evaluation Roadmap [40]

Figure 3 shows a tree from the most basic service-oriented architectural style (S, N, FN,
SN) to more sophisticated styles as they are all described in [40]. This evaluation roadmap
can be considered as the continuation of the style definition. This is because it adds
features like fault-tolerance and provides an ordered set of constraints that are applied to
the service-oriented style in addition to the given definition.

In order to realize a composite application according to the definition of the service-
oriented architectural style as it was provided in this chapter, using a platform (D, R, XX,
XX) is the minimal requirement. The reason thereof is that the given style definition does
focus on design principles. It does not incorporate principles for fault tolerance and the
support of building composite applications.
This means that the given definition of the service-oriented style would not allow for failure
tolerant applications. As reliability is crucial and its absence can prohibit the application
of service-oriented principles in the context of commercial organizations, the definition of
a refined service-oriented style as it is provided by the reference architecture of chapter 5
is required to bridge this gap.

Distributed and Mobile Systems Group 18

3 Assessing the Application and Applicability of SOA

3 Assessing the Application and Applicability of SOA

Everything that can be counted does not necessarily count; everything

that counts can not necessarily be counted

A. Einstein [45]

When discussing service-oriented architectures in the context of a company like BASF IT
Services, it is crucial to discuss the advantages and disadvantages this architectural style
can provide for the company. This does not necessarily involve the discussion of economic
impacts such as saving potentials or additional turnover. If a company that is both an IT
service provider and an expert in the needs of industry customers, discussions about an
architectural style can also focus on architectural benefits.

In order to identify these architectural benefits, we will analyze what was identified in
chapter 2 to distinguish service orientation from component orientation or the client-
server style. Grouping these aspects within a structure of quality characteristics will help
to identify what overall quality aspects the service-oriented style can contribute to. For
each of the identified categories it is then possible to define (basic) measures and more
complex metrics (which might be defined using the basic measures) that indicate the
extent to which a design supports the respective quality aspect3.
When defining metrics, emphasis is placed on eased applicability of the respective metrics.
This is important so as to ensure that the metrics are applied in actual projects. The
drawback to this approach is, of course, that the metrics can at times oversimplify given
circumstances or produce incorrect conclusions due to underlying assumptions not being
true for a given use case. This is why several metrics are defined in order to generate overall
conclusions that are based on several indicators. Only through a frequent application of
such metrics can experience in interpreting them be gained.

Defining the overall quality aspects of service orientation will also help outline a frame-
work that can support the assessment of given requirements in terms of an advantageous
application of the service-oriented style prior to its application. Based on this qualita-
tive framework companies are able to then assess whether the application of the service-
oriented style might be advantageous for a given requirement.

3.1 Potential Benefits and Trade-Offs of SOA

Quality is a nonfunctional aspect of software engineering. Therefore, any given software
can reach “a certain quality”. A quality attribute is a non-functional characteristic that
represents the degree to which a given software system possesses a desired combination of
attributes (cf. [48]). In order to best analyze quality attributes, it is necessary to group
these attributes into categories of qualities. The ISO standard 9126 provides six so-called
characteristics with according sub-categories that refer to quality aspects of software
(cf. [49]).
The following list describes, on a qualitative level, how service-oriented principles could
improve the degree to which software fulfills the actual quality characteristic.

3The difference between a ‘measure’ and a ‘metric’ is that a measure confers to an extent a system
possesses a certain attribute (e.g., measured as a simple count) whereas a metric describes a quantitative
measure of the degree to which a system possesses an attribute (cf. [46] and [47]).

Distributed and Mobile Systems Group 19

3 Assessing the Application and Applicability of SOA

• Maintainability. “Maintainability is the capability of the software product to be
modified. Modifications may include corrections, improvements or adoptions of the
software to changes in environment, and in requirements and functional specifica-
tion” [49]. Lee and Lee have shown in a quantitative evaluation that – according to
stakeholders of software development projects – maintainability is the most impor-
tant quality characteristic when it comes to component-based software development
(cf. [50]).
In [51] Bengtsson et al. narrow the definition of maintainability down to modifi-

ability by excluding bug-fixing and related activities. They define modifiability of
a software system as “[...] the ease with which it can be modified to changes in the
environment, requirements or functional specification” [51, p. 2].
As stated before, SO aims at centralizing control over loosely coupled, stateless and
autonomous services. The place where required changes need to be adopted is in
such an architecture easier to locate than in a monolithic application. In particular,
the explicit control model combined with rarely interacting basic components eases
the application of changes to a software system. This is because changes will poten-
tially affect the few components of a system that are in an obvious (aggregation-)
relation with each other.
This is why modifiability is not only an important aspect for stakeholders; it is also
a characteristic to which service-oriented principles could contribute.

• Functionality. A software has to deliver certain functionalities to its users. Service
orientation, as a “distinct approach to separate concerns” [11, p. 32], can support
software creators as it allows them to focus on functional aspects while realizing re-
quirements. That said, as software is considered to deliver the required functionality
(and here we focus on non-functional attributes), service orientation can solely sup-
port how fast the functional requirements are met. This is, in turn, a non-functional
aspect of software engineering. We consider this aspect to be clearly related to the
characteristic of modifiability, as it describes how easy requirements can be realized.

• Reliability. Two main characteristics of reliability are the fault tolerance of a sys-
tem and how it can recover from failures. The latter is referred to as recoverability.
Considering fault tolerance, it is important to define “failure”. Christian gave a clas-
sification of failures in [52]. Failures that we consider as specific sources of issues
are failures that do not concern the correctness of computations. Further, we con-
sider omission failure and the related crash failure as well as the timing failure as
crucial. This is because the inherent distribution of a service-oriented architecture
introduces many depends on relations among the components (cf. [52]). Failures to
single services might render complete applications unavailable. Additionally, physi-
cal distribution of components might lead to timing failures. Hence, when talking
about failure-tolerance the service-oriented principle might lead to a decreased qual-
ity in terms of failure tolerance and special attention needs to be paid.
The same is true for recoverability. For a distributed system, recovering from fail-
ures might impose more effort than it is true for monolithic systems. In contrast
to other distributed systems, service-oriented applications rely on stateless services.
Hence, recoverability might be easier to achieve.
In sum, reliability becomes more endangered than improved by applying service
orientation. In conducting a trade-off analysis, this should be balanced with the
potential benefits.

Distributed and Mobile Systems Group 20

3 Assessing the Application and Applicability of SOA

• Usability. ISO 9126 defines usability as “a set of attributes that bear on the ef-
fort needed for use and on the individual assessment of such use, by a stated or
implied set of users [...and...] the capability of the software product to be under-
stood, learned and liked by the user, when used under specified conditions” [49]4.
Considering processes rather than products as assets to be utilized, service-oriented
applications can improve the usability of processes as described by the standard.
This is because composite applications put a single web-based user interface on
top of a user interface-independent implementation of business processes. Hence,
a user does not necessarily need to know which systems are involved in an actual
business process and how they are integrated with each other. Looking at today’s re-
ality, clerks often need to know under which conditions (especially time) and among
which systems information is exchanged and how business events should be handled
accordingly. Eliminating burdens on clerks could decrease required learning efforts
and result in higher user acceptance. Hence, SO can – like other architectural styles
– increase usability.5

• Efficiency. The term efficiency refers to the ratio between the performance a
software system can reach and the resources it uses for reaching that performance
level (cf. [49]). Due to services being discoverable, service-oriented applications can
use scheduling mechanisms for resource allocation without including this concern in
the composite application. Here, however, this principle is considered a specializa-
tion of service orientation. Architectures like the Open Grid Services Architecture
(OGSA) [54] aim to define means for job management and resource management for
web services. This is beyond the service-oriented architectural style and therefore
considered beyond the scope of this paper. Hence, it is assumed that efficiency is a
quality characteristic that is not concerned by (genuine) service orientation.

• Portability. Portability refers to the quality of a software to be easily transferred
between environments (cf. [49]). As SO applications are not monolithic applications,
portability does not play a major role when analyzing them. Portability of the single
components is not affected by the application of service orientation. Portability
is therefore not considered a quality characteristic that is affected by the service-
oriented architectural style.

To summarize, it can be assumed that the service-oriented architectural style influences
the quality of software systems in terms of modifiability, reliability and usability. The
major impact is assumed to be on the modifiability of systems. This is why the following
analysis of quality characteristics emphasizes modifiability before examining reliability
and usability.

3.2 Assessing Design Quality

This section proposes and describes metrics and measures that might be used to assess the
quality of a system’s design. Measures are simple mechanisms that provide values that
can be computed by more complex metrics. The values that can be computed using the

4cited from [53, p. 5].
5In contrast to other architectural styles that can also address the multi-interface issue, service orien-

tation could address this issue by additionally improving e.g. modifiability.

Distributed and Mobile Systems Group 21

3 Assessing the Application and Applicability of SOA

presented means are considered to provide an estimation of the extent to which a software
system might fulfill the according quality characteristic. In presenting these means, we
focus on characteristics specific to the service-oriented architectural style. This section
does not aim to fully describe the assessment of software design.
Having defined what the term quality means in the context of software systems, the defini-
tion of the term design is still needed. Brathall and Runeson defined in [55] a taxonomy of
properties for software architectures (TOPSA). [55] differentiates three orthogonal dimen-
sions of software architecture: abstraction level, dynamism and aggregation level. These
three dimensions form the so-called TOPSA space (cf. [55, p. 2]). The abstraction level
dimension can have from two up to an arbitrary amount of abstraction levels. The actual
code is referred to as the “realizational” level. Each more abstract level is referred to as
“conceptional”. [55] suggests the abstraction levels “{FunctionalUnit, ConcurrentStateMa-
chine,SoftwareProcess}” [55, p. 4]. For the aggregation levels the following fragmentation
is proposed: “{System, Subsystem,Component, Class}” [55, p. 4]. The fragmentation sets
for both dimensions are on the ordinal scale. Using these definitions, we can define that
a design that is assessed at an arbitrary point in time6 τ by the means defined below has
to be (at least) TOPSA(τ) ≤ [FunctionalUnit, Static, Component]7 or “closer” to the ac-
tual executable implementation. A software architecture of this quality we refer to as
the design of the system that is represented at the lowest level in the TOPSA space. To
summarize these definitions: assessing service-oriented quality of a design means applying
the means given below to a design of a software system.

In order to consider the fact that systems that are built using a service-oriented style
are built by (partially) re-using COTS-based services, all metrics that are defined for the
assessment of service-oriented designs need to deal with a certain lack of knowledge about
the single services. Only by treating the single services as black-boxes and analyzing
them from an outside point of view, will the metrics be applicable in the context of COTS
integration. An additional consideration is the effort that needs to be put into calculating
the metrics: if it relies on source code (that is often not accessible) or is just too complex,
the metrics would just not be used in the context of a commercial organization.

All measures and metrics that are presented below are first introduced by describing
their respective purpose. After presenting the applicable formula, the mechanism of the
formula and the according value range are introduced. If applicable, the actual metric
is also analyzed in terms of satisfying some basic “desiderata” – properties a measure or
metric of a certain class should have.
Beyond indicating the value range of a metric and providing rules for the interpretation
of these values, it is desirable to give fixed thresholds. As described in [56], Boolean
discriminant functions are supportive when assessing design in terms of fulfilling quality
aspects. At this point in time the empirical base for analyzing existent systems is non-
existent. This is because building (real) composite applications is still a long-term project
that is quite expensive – and today there are hardly any existing applications that could
be analyzed. Additionally, fixing thresholds for metrics requires the categorization of
actual software systems. These categories indicate whether the respective system fulfills
a certain quality characteristic. For some quality characteristics, such as modifiability

6This includes the important notion that assessing a system is always an action at a certain point in
time. Hence, each presented metric (implicitly) includes as a variable the time when they are measured.
This becomes especially important as soon as re-usability and re-use are considered.

7While using definition from [55], a component is in the service-oriented style the actual (outside)
description of service.

Distributed and Mobile Systems Group 22

3 Assessing the Application and Applicability of SOA

or usability, this can only be a subjective and qualitative fragmentation. Deducing fixed
values based on a purely subjective categorization is also questionable. For this reason,
this chapter only describes rules for the interpretation of values that are derived from
overall design metrics. The metrics will then, in turn, be applied to the case study that
is presented in chapter 8. In order to get an understanding of the reasonable thresholds
for the presented metrics, this chapter should also be considered.

3.2.1 Assessing Modifiability

Analyzing prior work, measuring and assessing the modifiability of software systems is ba-
sically measuring the complexity of the system (cf. [55], [57]). Usually this solely involves
measuring complexity as a directly composable attribute of the single components.
In order to measure the complexity of a service-oriented system we propose the following
measures and metrics that are complementary to other complexity measures.
First, we introduce four very simple measures for measuring the size of a system. In [58]
Briand et al. have described six properties size measures and metrics for systems should
satisfy. These “desiderata” are introduced while discussing the first relevant size measure.
After introducing four size measures, the concept of object coupling is transferred to ser-
vices. Based on these basic measures, a new complexity metric SSC is introduced and
evaluated.8

Afterwards, another aspect of maintainability is discussed: how well a system deals with
its complexity.

A modular (finite) system is described in the following as a tuple Ω =< E, R, M >.
E denotes the elements of the system Ω. R denotes the relations among those elements.
M is a collection of modules of Ω in a way that (cf. [58, p. 70]):

∀e ∈ E(∃m ∈ M(m = < Em, Rm > ∧ e ∈ Em)) ∧
∀mi, mj ∈ M(mi = < Emi, Rmi > ∧ mj = < Emj, Rmj > ∧ Emi ∩ Emj = ∅)

OuterR(m) defines the inter-module relations a given module m is involved in.

For a service-oriented system this can be interpreted as follows: methods of services are
considered to be the elements of a system (E). Relations among these methods, such
as calling relations (irrespective of any communication semantics), are the relations of a
system (R). Services are considered as modules (M) that group methods together.
Ω.Ψ is then defined as the set of all service types in a given system Ω: Ω.Ψ ⊆ E × E.
Ω.R denotes the calling relations among the services of Ω: Ω.R ⊆ Ω.Ψ × Ω.Ψ.

The following size measures are described using these conventions.

• Number of Services (NS) NS(Ω) = |Ω.Ψ|.
Mechanism NS is a simple count of all services in a system. It is a size measure
that only considers the pure count of services in a system.

8According to [59], the coupling of a system is an indicator for its complexity. This becomes also
visible by analyzing the metric properties in [58]. There, coupling and complexity metrics only differ in
terms of the symmetry property that is defined for complexity but not for coupling metrics. The concept
of symmetry addresses the conventions that are used to describe a system. As such conventions are not
included here, coupling is considered a valid measure for complexity.

Distributed and Mobile Systems Group 23

3 Assessing the Application and Applicability of SOA

Value range NS is limited to the range of [0, +∞[

Discussion NS is a simple first measure of a system’s complexity: the more services
are meant to be used in a system, the more complex (and less modifiable) the system
might be. In its simplicity, NS is a basic measure that can be used within other
measures and metrics – for complexity measures and metrics for other characteristics.
It is also suitable to weight values of more complex metrics as it provides the context
in which these metrics should be analyzed.

The following properties are desirable for size measures and metrics. They are introduced
by evaluating NS and are subsequently used to analyze the other size measures as well.

Size.I (cf. [58]) a size measure or metric should satisfy is non-negativity. It demands
that a size measure χ(Ω) is not negative: χ(Ω) ≥ 0 (cf. [58, p. 71]). NS satisfies this
property as it is a count of elements.

Size.II Is the null value property: Ω = ∅ ⇒ χ(Ω) = 0 (cf. [58, p. 71]). As NS(Ω) =
|Ω.Ψ|, NS(∅) = 0 holds true and NS satisfies Size.II.

Size.III Is the module additivity property: s1 ⊆ Ω and s2 ⊆ Ω and Ω.Ψ = Ψs1 ∪ Ψs2

and Ψs1 ∩ Ψs2 = ∅ ⇒ χ(Ω) = χ(s1) + χ(s2) (cf. [58, p. 71]). As NS(Ω) = |Ω.Ψ|, the
compound can be calculated as NS(s1 ∪ s2) = |Ψs1| + |Ψs2|. Then, (Ψs1 ∩ Ψs2 = ∅) ⇒
(|Ψs1| + |Ψs2| = |Ψs1 ∪ Ψs2|). Hence, NS satisfies Size.III.

Size.IV demands that the size of a system Ω can be determined by the knowledge of the
size of its disjoint parts se =< s, Re >9: χ(Ω) =

∑

s∈Ω.Ψ χ(se) (cf. [58, p. 71]). Size.IV

is a consequence of Size.III (cf. [58, p. 71]). Hence, NS satisfies Size.IV.

Size.V is the monotonicity property: Ω′ =< E ′, Ω′.R′ > and Ω′′ =< E ′′, Ω′′.R′′ > and
Ω′ ⊆ Ω′′ ⇒ χ(Ω′) ≤ χ(Ω′′). Monotonicity follows from the properties Size.I - Size.III
(cf. [58, p. 71]). Hence, NS satisfies Size.V.

Size.VI “From the above properties, Size.I - Size.III, it follows that the size of a
system [Ω =< E, Ω.R >] is not greater than the sum of the size of any pair of its modules.
[...]” [58, p. 71]. Hence, NS also satisfies Size.VI.

Using these properties, more size measures for service oriented systems can be described
and analyzed:

• Service Consumers (SC) Ω.C is the set of all service types that consume (oper-
ations of) service providers in a system Ω. SC(Ω) = |Ω.C|; Ω.C ⊆ Ω.Ψ.

Mechanism SC is a simple count of all service consumers in a system.

Value range SC is limited to the range of [0, +∞[

Discussion As NS, SC is a basic measure that is used in more complex metrics.

Ω.C is defined as Ω.C ⊆ Ω.Ψ. Therefore it exists a set Ω.S ′ consisting of non-service
consumers in a form Ω.Ψ = Ω.C ∪ Ω.S ′ and Ω.C ∩ Ω.S ′ = ∅. Denoting a system
S ′ =< Ω.Ψ \ Ω.S ′, Ω.R \ Ω.R′ > that equals a system Ω in all elements, besides

9 [58] does not use the notion of a modular system. Despite this, the notion of a system is equivalent
to the above definition.

Distributed and Mobile Systems Group 24

3 Assessing the Application and Applicability of SOA

the elements Ω.S ′ and their relations among themselves and other elements Ω.R′

as Ω \ Ω.S ′ we can state that SC(Ω) = NS(Ω \ Ω.S ′). As |Ω.Ψ \ Ω.S ′| ≥ 0 holds
true and deducting a positive integer from NS is a linear transformation, it can be
concluded that the properties Size.I - Size.VI are satisfied by SC.

• Service Providers (SP) Ω.P is the set of all service types in a system Ω that expose
operations that are consumed by service consumers. SP (Ω) = |Ω.P |; Ω.P ⊂ Ω.Ψ

Mechanism SP is a simple count of all service providers in a system.

Value range SP is limited to the range of [0, +∞[

Discussion As NS, SP is a basic measure that is used in more complex metrics.
Ω.P is defined as Ω.P ⊆ Ω.Ψ. Therefore it exists a set Ω.S ′ with non-service
providers in a form Ω.Ψ = Ω.P ∪ Ω.S ′ and Ω.P ∩ Ω.S ′ = ∅. Hence, SP (Ω) =
NS(Ω \ Ω.S ′). As |Ω.Ψ \ Ω.S ′| ≥ 0 holds true and deducting a positive integer
from NS is a linear transformation, it can be concluded that the properties Size.I
- Size.VI are satisfied by SP .

• Service Aggregators (SA) Ω.A is the set of all service types in a system Ω
that both act as service provider and service consumer. SA(Ω) = |Ω.A|; Ω.A ⊆
Ω.C, Ω.A ⊆ Ω.P, Ω.A = Ω.C ∩ Ω.P .

Mechanism SA is a simple count of all service aggregators in a system. Service
aggregators are – as defined by the service-oriented architectural style – sub-types
of both service providers and service consumers.

Value range SA is limited to the range of [0, +∞[

Discussion As NS, SA is a basic measure that is used in more complex metrics.
The fact that the sets of consumers and providers overlap in the set of all aggregators
is an interesting mechanism that is used in some more complex metrics. The SA
value is the most interesting value of the basic measures as it slightly indicates how
a systems complexity is made up and addressed.

As the set of a system’s aggregators is defined as Ω.A = Ω.C ∩ Ω.P and Ω.Ψ =
Ω.C ∪Ω.P , SA can be described as SA(Ω) = SP (Ω) + SC(Ω)−NS(Ω.P \Ω.A)−
NS(Ω.C \ Ω.A). As SP (Ω) ≥ NS(Ω.P \ Ω.A) and SC(Ω) ≥ NS(Ω.C \ Ω.A),
NS is linear transformation of NS that is always positive. Hence, SA satisfies the
properties Size.I - Size.VI.

Next to these basic measures for the size of a system, the following coupling measures
and metrics are also applicable for measuring a system’s complexity and hence indicating
its modifiability.

• Coupling of Service (cos) Two components are “coupled if and only if at least
one of them acts upon the other” [60, p. 4]. As a service-oriented principle, services
should be “loosely coupled” (cf. [11]). As stated in listing 3, services expose solely
operations for interaction with other services. Hence, the Coupling Between Object
Classes metric (CBO) as defined in [60] is applicable for services as well. This metric
is defined as “a count of the number of other classes to which it is coupled” [60, p.
11]. Transferred to services that means that cos is defined as the count of services
a given service calls operations on. cos is a function of a given service. We denote
the cos of a service s ∈ Ψ as:

Distributed and Mobile Systems Group 25

3 Assessing the Application and Applicability of SOA

cos(s) = |{Ω.s} × Ω.Ψ| (1)

Mechanism Being a simple count, cos(s) is a basic measure for the complexity of
a single service. As services encapsulate their variables, in order to calculate cos(s)
it is only checked whether a service uses methods of another service. If so, the
value is increased by one. The number of methods a service is actually using is not
considered.

Value range [0, +∞[

Discussion Still treating a service as a black-box, calculating cos(s) requires some
sort of insight into the mechanisms of a given service. This will be possible to
analyze as this basic need to be documented exists for COTS-based services, too.
An absolute high value will indicate that the given service depends on many other
services. The impact on modifiability depends on the actual class of service that is
analyzed. High values for (sole) service consumers might indicate a low modifiability
while high values for aggregators might indicate the opposite. Note that cos(p) = 0
holds true for a (sole) service provider p.
As all measures and metrics that are presented here aim to assess the overall design
of a system and not of single services, this measure is sufficient as it is used in other
metrics. Of course, knowledge about how many methods of a service provider a
consumer is depending on is important for the design of a service. This is discussed
in more detail in chapter 4.
According to the ACME UML meta-model in figure 2, table 1 shows some topologies
and the corresponding cos-values.

cos(s1)=1;cos(p1)=0 cos(s1)=1;cos(a1)=2;cos(p1)=0;cos(p2)=0

Table 1: Examples of cos Values

In [61] nine properties a measure or metric that measures the complexity of a soft-
ware artifact should satisfy are discussed10. In [60] the analysis is conducted that
the CBO metric satisfies five out of the six relevant properties {non-coarseness,
non-uniqueness, design details, monotonicity, nonequivalence of interaction, inter-
action increases complexity}. Only the property interaction increases complexity
is not satisfied (cf. [60]). In order to facilitate the application of this measure in
the context of service-oriented systems, the cos-value of a service s is limited the
number of possible, unidirectional connections among all services of a system Ω:

cos(s) ≤ 2 × (
NS(Ω)

2) | s ∈ Ω.Ψ. Hence, the coupling between two services is limited
to 2.
On the other hand this leads to the effect that merging two services s′ and s′′

can decrease the number of couples of the new service s = s′ ∩ s′′ by more than

10 [61] actually introduced the properties [58] applied to (modular) systems.

Distributed and Mobile Systems Group 26

3 Assessing the Application and Applicability of SOA

|{Ω.s′}×{Ω.s′′}|. Hence, cos does not satisfy the monotonicity property a coupling
measure should satisfy.
Not satisfying this property can, however, be desirable under certain circumstances.
This is because the count of channels among services might sometimes not be as
important as the count of services another service is coupled with.
A metric that satisfies the monotonicity property is λ (see (3) below).

• Coupling to Service (cts) Being the opposite measure of cos, cts indicates how
many services are actually coupled to a certain service. Obviously, cts can only
be measured for service providers. This means that cts is defined as the count of
services that call operations on a given service. cts is a function of a given service.
We denote the cts of a service s ∈ Ω.Ψ as:

cts(s) = |Ω.Ψ × {Ω.s}| (2)

Mechanism Being a simple count, cts(s) is also a basic indicator for the complexity
of a single service. As services encapsulate their variables, in order to calculate
cts(s) it is only checked whether a service uses methods of the given service s. If
so, the value is increased by one. How many methods a service actually uses is not
considered.

Value range [0, +∞[

Discussion An absolute high value will indicate that the given service is a crucial
service that many other services depend on. The impact on modifiability is that such
a service is harder to modify as changes will have a higher impact on the remaining
part of the system as it would be the case for services with a lower cts-score.
Table 2 shows some topologies and the corresponding cts-values.

cts(s1)=0;cts(p1)=1 cts(s1)=0;cts(a1)=1;cts(p1)=1;cts(p2)=1

Table 2: Examples of cts Values

cts is the conversely value of cos. As such, the maximum cts value is limited to the
same boundary as cos:

cts(s) ≤ 2× (
NS(Ω)

2) | s ∈ Ω.Ψ. Being the reciprocal of cts satisfies the same proper-
ties. These are {non-coarseness, non-uniqueness, design details, nonequivalence of
interaction}.

• Inter-Service Coupling (λ) Let p.Π be the set of all receiveCall -ports of a service
provider p. The function π shall be the count of receiveCall -ports of a service
provider: π(p) = |p.Π|.11
Let c.Γ be the set of all serviceCall -ports of a service consumer. The function γ

11As a size measure π satisfies the properties Size.I-Size.VI

Distributed and Mobile Systems Group 27

3 Assessing the Application and Applicability of SOA

shall be the count of serviceCall -ports of a service consumer c: γ(c) = |c.Γ|.12
Let Ω.Λ be the set of all channels between receiveCall -ports and serviceCall -ports
in a system Ω: Ω.Λ ⊆ c.Γ × p.Π. The function λ is then defined as the cardinality
of Ω.Λ:

λ(c, p) = |c.Γ × p.Π| (3)

Mechanism λ(c, p) is the count of channels between the two services c and p.
c ∈ Ω.C and p ∈ Ω.P .

Value range The value range of λ is [0, +∞[

Discussion λ is equivalent to the CBO metric as defined in [60]. Therefore it
satisfies the same properties – including monotonicity.

• System’s Service Coupling (SSC) SSC measures the degree of coupling in a
given system Ω with regards to its modifiability. It is defined as:

SSC(Ω) =

∑

c ∈ Ω.C

cos(c)

SC(Ω) × SP (Ω)
| SC(Ω), SP (Ω) ≥ 1 (4)

Mechanism In order to indicate the overall coupling of a given system, the sum
of all single cos-values of a system’s service consumers is set in relation with the
maximum couplings that could occur in a system if no aggregators were used at all.
If service aggregators occur in a system Ω, they increase both SP (Ω) and SC(Ω).
This mechanism increases the denominator and therefore decreases the value of SSC
whenever service aggregators are deployed in a system. This is because aggregators
are considered to help decrease the overall coupling of services in a system (cf. the
discussion of the mediator pattern and aggregators in chapter 2.3).

Value range SSC is limited to the range of [0, 1]. As stated in the definition of
the service-oriented style, a service consumer needs to be coupled with at least one
service provider, 0 will never be seen for service-oriented systems, though.

Discussion The SSC metric indicates to which extent services of a system are
cross-linked. The fact that – by definition of the service-oriented architectural style –
services need to call each other, a SSC value of 0 is not reasonable. If a system scores
a relatively high SSC value this is an indication that a lot of interaction without
mediation between services takes place. As aggregators automatically decrease the
SSC value, a value close to 1 will indicate that a system is hard to modify as it
is very complex and not mediated. If a medium value is reached, other indicators
should be considered in order to assess the modifiability. This is because systems
with a certain level of functionality will need a certain level of coupling, too. Low
SSC values indicate a loosely coupled system. Such systems are considered to be
better modifiable than more coupled systems.
Examples for SSC-values are given in table 3.

Briand and Basili have described in [58] five properties to which a coupling metric
for a modular system should comply. In order to analyze the behavior of the SSC
metric more in detail, the metric will be checked against these five properties. For
this sake, the above definition of a system as a triple < E, R, M > and the relation
OuterR(m) are used.

12As a size measure γ satisfies the properties Size.I-Size.VI

Distributed and Mobile Systems Group 28

3 Assessing the Application and Applicability of SOA

SSC(Ω1) = 1 SSC(Ω2) = 0.5

Table 3: Examples of SSC Values

In order to analyze the presented coupling metric SSC, we consider methods of ser-
vices as the element of a system, relations among these methods as calling relations
(irrespective of any communication semantics) and services as modules that group
together sets of methods. This definition fulfills the given definition of element, re-
lation, module and system.
Taking a coupling metric α(Ω) (or α(m)), the first property Coupling.I is non-
negativity (cf. [58, p. 78]):

[α(m) ≥ 0 | α(Ω) ≥ 0]

As neither cos(m) nor SC(Ω) nor SP (Ω) can be negative, SSC obviously satisfies
Coupling.I.

Coupling.II is defined the following way (cf. [58, p. 78]):

∀m ∈ Ω(OuterR(m) = ∅) ⇒ α(Ω) = 0

Coupling.II defines that the coupling for a system without connections among its
modules shall be zero. As (∀c ∈ Ω | cos(c) = 0) ⇒ (SSC(Ω) = 0) holds true, SSC
satisfies Coupling.II.

Coupling.III is the monotonicity property. It describes that a new relation between
modules does not decrease the coupling (cf. [58, p. 78]): “Let MS ′ =< E, R′, M ′ >
and MS ′′ =< E, R′′, M ′′ > be two modular systems [...] such that there exist two
modules m′ ∈ M ′, m′′ ∈ M ′′ such that R′ − OuterR(m′) = R′′ − OuterR(m′′), and
OuterR(m′) ⊆ OuterR(m′′). Then,” [58, p. 78]

[α(m′) ≤ α(m′′) | α(MS ′) ≤ α(MS ′′)]

Measuring coupling as described by the SSC metric, R−OuterR(m) = ∅ holds true.
This is because internal calling relations of a single service are not considered. As
cos simply counts method calls13, the demand that OuterR(MS ′) ⊆ OuterR(MS ′′)
has the effect that

∑

m′ ∈ MS′ cos(m′) ≤∑m′′ ∈ MS′′ cos(m′′).14

Another case to consider is the fact that an additional relation can turn a service
consumer (or provider) into a service aggregator. The new relation would always
increase the cos value for one service, hence increase

∑

m ∈ MS cos(m) by 1. On the
other hand the new service aggregator would increase SC(Ω) × SP (Ω) by SC(Ω)
(or SC(Ω), depending on what service is changed). As SC(Ω) ≥ 1 and SP (Ω) ≥ 1,

13Additionally, it simplifies it in such a way that all methods a service s calls at another service p can
only contribute to the cos-value by 1.

14The values might be equal if another relation between two already coupled services is added.

Distributed and Mobile Systems Group 29

3 Assessing the Application and Applicability of SOA

SSC could be decreased if a channel turns a provider (or consumer) into an aggre-
gator:

a =
∑

c ∈ Ω.C

cos(c), b = SC(Ω) × SP (Ω)

a

b
≥ a + 1

b + SC(Ω)

a × (b + SC(Ω)) ≥ b × (a + 1)

ab + a × SC(Ω) ≥ ab + b

a × SC(Ω) ≥ b

SC(Ω) ≥ b

a

This means, as soon as more than SC(Ω)×SP (Ω)∑
c cos(c)

service consumers are deployed in a

system, turning a provider into an aggregator does not increase the complexity of
a system. Hence, there are circumstances under which SSC does not satisfy Cou-

pling.III. As the aim of the metric is to introduce the idea of service aggregators
as coupling-reduction mechanism, monotonicity can not be satisfied by SSC.

Coupling.V is a property that describes the merging of unrelated modules in a
system. It describes a (modular) system obtained by merging two non-interacting
modules as being as complex as the initial system. (cf. [58, p. 79]).
“Let MS ′ =< E,R,M ′ > and MS ′′ =< E, R,M ′′ > be two modular systems [...]
such that M ′′ = M ′ − {m′

1, m
′
2} ∪ {m′′}, with m′

1 ∈ M ′, m′
2 ∈ M ′, and m′′ /∈ M ′,

and m′′ = m′
1 ∪ m′

2. (The two modules m′
1 and m′

2 are replaced by the module m′′,
union of m′

1 and m′
2). If no relationships exist between the elements belonging to

m′
1 and m′

2 [...], then” [58, p. 79]15

[α(m′
1) + α(m′

2) = α(m′′) | α(MS ′) ≥ α(MS ′′)]

For the context of service-oriented systems that would mean that two services with
disjoint methods are merged together into one bigger service.
SSC does not satisfy Coupling.V. This is because the merger of two (unrelated)
services could even increase the SSC value for a system (what is also a violation of
Coupling.IV that demands that a merger of arbitrary modules should decrease or
not affect the coupling value (cf. [58, p. 78f.]):
By not superseding channels with the merge of services it is possible that
∑

m′ ∈ MS′ cos(m′) =
∑

m′′ ∈ MS′′ cos(m′′) while SC(Ω) × SP (Ω) is decreased. In
these cases the SSC-value is increased (as

∑

m′ ∈ MS′ cos(m′) ≤ SC(MS ′)×SP (MS ′)).
Thus, merging services only improves (decreases) the SSC value of a system, when-
ever (bi-directional) relations between services can be spared, too. There also exists
a trade-off, in that transforming aggregators into sole providers is considered nega-
tive since it results in higher SSC values.
If SSC would be the only rule by which a system is designed, the design would
lead to a decentralized and distributed system with numerous services that do not
interact heavily and are mediated by aggregators.
SSC violates (under certain conditions) Coupling.III - Coupling.V. As SSC in-
corporates the concept of aggregators as a mechanism to decrease complexity and

15Literal error in source was corrected.

Distributed and Mobile Systems Group 30

3 Assessing the Application and Applicability of SOA

increase modifiability, the aim of SSC is to reward the use of aggregators. Thus,
SSC supports loosely coupled services that are mediated, and are therefore easier
to modify than bigger services – even if it does not satisfy all the desiderata for
object-oriented coupling metrics.

In order to assess the coupling regardless of service aggregators, the metric that is pre-
sented next – SCF – should also be considered. Both metrics can indicate how heavily
services of a system interact and whether mediators are used or not. Especially if SA(Ω)
scores a relatively high value, other metrics (e.g., SCF and other complexity handling
metrics that are introduced later) should also be considered.

• Service Coupling Factor (SCF) In [59], Washizaki et al. have defined a com-
plexity metric called Component Coupling Factor (CCOF). As discussed in the in-
troduction, component orientation and service orientation are similar architectural
styles. Only differences exist between some “soft” design principles (cf. chapter 2).
Thus, the CCOF complexity metric can also indicate the complexity of a service-
oriented system. Using the notation used in this chapter, we define the Service
Coupling Factor (SCF) in complete analogy with CCOF as defined in [59]:

SCF (Ω) =

∑

c ∈ Ω.C

cos(c)

NS(Ω)2 − NS(Ω)
| NS(Ω) ≥ 2 (5)

Mechanism In order to indicate the overall coupling of a given system, the sum
over all single cos-values of a system’s service consumers is set in relation with the
maximum couplings that could occur in a system.
In contrast to SSC it does not consider the fact that aggregators decrease the
coupling of a system.

Value range SCF is limited to the range of [0, 1]. As by the definition of the
service-oriented style, a service consumer needs to be coupled with at least one
service provider, 0 will never be seen for service-oriented systems.

Discussion SCF is a metric designed for component-oriented systems that we ap-
ply to service-oriented systems, too. Consequently, this metric can not incorporate
service-oriented principles.
As discussed in [59], CCOF (and therefore SCF , too) satisfies the properties cou-
pling.I - coupling.IV. Hence, in contrast to SSC it satisfies the “merging of
modules” and “monotonicity”. This is because it does not include the notion of ser-
vice aggregators.
Relatively low SCF values imply a loosely coupled system while high values indi-
cate a dense coupling in a system. Especially when used in combination with SSC,
SCF can indicate how much the complexity of a system influences its modifiability.
Whenever a system possesses a high coupling in terms of the SCF value while the
SSC value indicates a low coupling, the system’s designer obviously tries to address
the high coupling by service-oriented principles. However, whether or not this is
beneficial is not indicated by these two metrics. In such cases other metrics that
assess the quality of aggregation should also be considered.
Examples of SCF values are shown in table 4.

Distributed and Mobile Systems Group 31

3 Assessing the Application and Applicability of SOA

SCF(Ω1) = 0.3 SCF(Ω2) = 0.25

Table 4: Examples of SCF Values

These presented metrics, especially SSC and SCF give an indication of a system’s com-
plexity and therefore modifiability. SSC additionally incorporates a mechanism that
reflects the fact that complexity can be addressed in order to reach higher levels of mod-
ifiability. The extent to which complexity is addressed can also be measured by non-
complexity metrics.

The following metrics are introduced in order to assess how well a service-oriented system
addresses its complexity. As the types of metrics that are discussed below have not been
described yet, there are no objective “desiderata” these metrics could be checked against.

• System’s CentraliZation (SCZ) SCZ describes to what extent a system is cen-
tralized. Control centralization is seen as a task for service aggregators.

κ(Ω) = 0.9 × (SC(Ω) − SA(Ω)) − (SA(Ω) − 1)2

SCZ(Ω) = 1 −

∑

c ∈ Ω.C

(cos(c)) −
∑

a ∈ Ω.A

(cos(a)) − κ(Ω)

∑

c ∈ Ω.C

(cos(c)) + (SA(Ω) − 1)2
(6)

Mechanism The basic mechanism of SCZ is to set the extent of a system’s con-
sumers’ coupling less the coupling of the aggregators in relation with the overall
consumers’ coupling. The more the aggregators are coupled, the smaller the value
gets. Hence, SCZ converges to a value of 1. In order to capture the fact that a
service consumer is always coupled with one service provider, the amount of (sole)
service consumers is deducted from the denominator. As the use of multiple service
consumers is a slight indicator for a de-centralized system, the number of consumers
is not deducted completely from the count of service consumers. As the excessive
use of (i.e., more than one) service aggregators is contrary to the idea of centraliza-
tion, a “punishment” for the excessive use of aggregators is also included. This is
reflected by the use of the supporting function κ.

Value range The value range of SCZ is]0, 1[.

Discussion SCZ addresses the need for control centralization in a system that (re-)
uses existing parts. Both, the BPIOAI approach (cf. [4]) as well as the discussion
in [3] demand to centralize the control on-top of existing functionality.
A high value of SCZ indicates that a system uses centralized components. With
regards to modifiability, a higher SCZ-value is better than a lower one. Important
to note is that a high value might be caused by central aggregators but can also be

Distributed and Mobile Systems Group 32

3 Assessing the Application and Applicability of SOA

caused by single, central (sole) service providers. This is why the SCZ value for
a system can also be high if a system is centralized without control centralization.
This can be the case if multiple service consumers use one single service provider.
Even if the control is completely de-centralized, this case leads to a high SCZ value.
This is acceptable since such a hub-and-spoke architecture is also easy to modify
(and of course, the system has a central component).
Using multiple centralization components decreases the SCZ value. This is why
service aggregators should not be deployed exhaustively. This is especially true for
multi-purpose services that act both as consumer and provider without explicit con-
trol purposes. This is why the metric includes a “punishment” for the excessive use
of aggregators.
A SCZ value close to 1 indicates a high degree of centralization. With regards to
an optimal modifiability, such a very high centralization might not be the optimal
design for any system, though. This is because a highly complex system that is
controlled from one instance might lead to an over-complex, and therefore unmod-
ifiable, central control instance. In these cases, a less centralized system might be
advantageous. Hence, there is a trade-off between complexity and centralization.
This is why the SCZ value of a system should be looked at with the knowledge of
SSC and SCF values as well as the knowledge of the absolute counts of the different
service types.
Also important to remember is that the metric is based on the assumption that an
aggregator centralizes the control of a system. This might not always be the case.
Whenever an application uses aggregators in order to adapt to external services,
aggregators might be used extensively while the control is centralized in one compo-
nent. In such cases, the SCZ value can be misleading. Examples for SCZ-values
are given in table 5.

SCZ(Ω1) = 0.3

SCZ(Ω2) = 0.943

Table 5: Examples of SCZ Values

Another indicator of the degree to which a system addresses its complexity is the level
of aggregation. Aggregation “... refers to if and to what extent a structure is made from
other structures” [55, p. 2]. Measuring the degree of aggregation within a system has to
analyze a system’s aggregators more in detail. However, in order to allow the metric to
be applicable for black-box COTS it does not analyze the internals of the aggregators.

• Extent of Aggregation (EOA) There are two metrics that indicate the degree

Distributed and Mobile Systems Group 33

3 Assessing the Application and Applicability of SOA

of a system’s aggregation. The first metric is the Extent of Aggregation (EOA):

EOA(Ω) =
∑

c ∈ {Ω.C\Ω.A}

∑

a ∈ Ω.A

λ(c, a)

∑

p ∈ Ω.P

λ(c, p)
(7)

Mechanism EOA relates the count of channels between non-aggregative consumers
and aggregators with the overall count of channels from non-aggregative consumers
to arbitrary service providers.

Value range The value range of EOA is [0, 1].

Discussion EOA describes the extent of hierarchy in the system: the ratio between
the count of channels that are mediated by aggregators and the total count of total
channels from sole service consumers to all service providers. Low values indicate
arbitrary channels among a system’s components while relatively high values indi-
cate a high degree of aggregation. Usually, a higher degree of aggregation is better
as it indicates that complexity is addressed. The EOA value of a system should be
looked at with the knowledge of SSC values as well as the knowledge of the absolute
counts of the different service types as these values indicate how much complexity
a system needs to deal with. Important to note is that EOA relies on a system
heavily using consumers. If an application is solely triggered by a service consumer,
the result might not be representative for the complete system.
Examples for EOA-values are given in table 6.

EOA(Ω1) = 0.143

EOA(Ω2) = 1

Table 6: Examples of EOA Values

Distributed and Mobile Systems Group 34

3 Assessing the Application and Applicability of SOA

• Density of Aggregation (DOA) DOA indicates to which extent the aggregation
in a system combines more basic services to more complex services:

DOA(Ω) =
∑

a ∈ Ω.A

ln(
γ(a)

π(a) + γ(a)
× 2) (8)

Mechanism DOA relates for each service aggregator the count of serviceCall -ports
to the overall count of the service’s ports. The value range for this ratio is]0, 1].
A value of ≥ 0.5 for an aggregator indicates that it consumes more ports than it
provides. By multiplying it by 2 and calculating the logarithmic value for this result,
such aggregators get a low positive score. For aggregators that offer more ports than
they consume, a relatively high negative value is the result.

Value range The value range of DOA is] −∞, +∞[.

Discussion By “punishing” the non-aggregative use of aggregators with relatively
high negative values while “rewarding” only low positive scores to “real” aggregators,
an overall positive value indicates proper use of aggregators. The absolute value of
this metric is irrelevant. Especially in combination with the SCZ the DOA value
can indicate whether centralization of a system goes along with a good aggregation.
Hence, for high SCZ values, the DOA value should be positive. If a negative DOA
meets a high SCZ value, a system might use improper centralization mechanisms
that decrease the level of modifiability.
Examples for DOA-values are given in table 7.

DOA(Ω1) = −0.405

DOA(Ω2) = +0.134

Table 7: Examples of DOA Values

Distributed and Mobile Systems Group 35

3 Assessing the Application and Applicability of SOA

• Aggregator CentraliZation (ACZ) ACZ indicates the degree of centralization
in a system by considering the use of mediating services. Mediators are identified
by the supporting measure AD.

AD(Ω, a) =

0 if 0.5 ≤ γ(a)

π(a) + γ(a)
≤ 0.6

1 otherwise
| a ∈ Ω.A

ACZ(Ω) =

1 if SA(Ω) = 1

1 −

∑

a ∈ Ω.A

AD(Ω, a)

SA(Ω)
otherwise

(9)

Mechanism ACZ combines the idea of control centralization via aggregators and
considers the actual density of an aggregation. An aggregator that might not com-
pose several services is indicated by an Aggregator Density (AD) of 0. AD incorpo-
rates the idea that little to no control is executed if the density of an aggregation
is low. Such an aggregator is considered to be a mediator. If services that consume
one service and also act as service providers should be seen as service mediators, the
AD measure needs to be adjusted accordingly (e.g., γ(a)

π(a)+γ(a)
= 0.5 or γ(a) = 1).

By relating the count of non-mediators with the overall count of service aggregators
in a system the ratio of such aggregators is calculated. By deducting this ratio from
1 the degree of centralization into non-mediators is indicated.

Value range The value range of ACZ is [0, 1].

Discussion ACZ can be used as a metric to interpret SCZ values. SCZ describes
to which degree a system mediates service calls and interprets the use of few aggrega-
tors as a centralization. Without considering the internals of an actual aggregator,
this can be a misleading interpretation. As the analysis of component internals
is considered to be hardly applicable in real-life settings, the interpretation of the
internals is supported by the ACZ metric. The ACZ metric incorporates the as-
sumption that control can only be exercised by a service aggregator whose count of
receiveCall -ports is disparate from the count of serviceCall -ports.
Values close to 1 indicate a high degree of centralization while values close to 0 indi-
cate a low degree of centralization in a system. A complete centralization in terms
of a ACZ-value of 1 can only occur if only one aggregator is used or only mediators
are used. In real-life settings this is unlikely to occur.
ACZ is valuable for the interpretation of the results of the SCZ metric for a given
system: if a system’s design scores a relatively low SCZ-value, a high ACZ-value
indicates that the mediators are used in the design of the system and that the de-
sign incorporates the idea of control centralization. However, if both the ACZ and
the SCZ values are low, the system does not follow a centralized control model. Of
course, this metric has also to be carefully applied. This is because it also solely puts
an interpretation of an externally visible structure over the actual internal structure
of a component that determines the visible part. However, in conjunction with the
SCZ, DOA and EOA values it is considered valuable.
Examples for ACZ-values are given in table 8.

Distributed and Mobile Systems Group 36

3 Assessing the Application and Applicability of SOA

ACZ(Ω1) = 0.75

ACZ(Ω2) = 0.25

Table 8: Examples of ACZ Values

The set of metrics described above can indicate to what extent a system is modifiable.
Another important influencing factor of modifiability is re-use. In discussing re-use it is
necessary to distinguish between to what extent a system is re-usable and to what extent
it re-uses functionality of other systems.
These two aspects of re-usability are different perspectives on the same phenomenon. The
degree of being re-usable can only be known ex-post while assessing to which extent a
system is (or will be) built using existent parts can be achieved ex-ante. If a system
is designed to re-use a large portion of its functionality, it can be assumed that the
initial implementation of the system will be faster than the alternative of starting from
scratch. In the introduction of this chapter it was defined that the quality characteristic
of functionality concerns basically how fast functionality can be realized. As re-use has a
high impact on this quality characteristic, it is discussed as a parameter of modifiability.
Besides the fact that re-usability and re-use can have positive effects on modifiability,
re-use can reduce cost (cf. [62]). This is why it is important to assess both re-use and re-
usability. The assessment of re-use is discussed in this chapter. Re-usability of a system’s
services is discussed in chapter 4. In both cases, considering re-use of services is the
most fine granular aggregation level. How services are designed internally and whether
services are realized by re-using entities that are not accessible as services is not discussed.
Additionally, verbatim re-use (cf. [63]) is the only way of re-use that is discussed here.

To assess to what extent a system Ω is built using existing parts, partitioning the sys-
tem is required. As defined above a (modular) service-oriented system can be defined as
Ω =< E, R, M > or Ω =< E, R, Ψ >, respectively. In order to determine ex-ante the
degree of reuse in a system, the sets Ψr and Ψn as well as Rr and Ra are important.
Ψr is the set of services that are shared among a system Ω and at least one other sys-

Distributed and Mobile Systems Group 37

3 Assessing the Application and Applicability of SOA

tem Ω′: Ω.Ψr ⊆ Ω′.Ψ | ∀ r ∈ Ω.Ψr . ∃ Ω′ 6= Ω, r ∈ Ω′.Ψ. Additionally, it is obvious
that the set of both new and re-used services compose the set of all services in a system:
Ω.Ψ = Ω.Ψr ∪ Ω.Ψn and Ω.Ψr ∩ Ω.Ψn = ∅.
This definition introduces the problem of delineating systems. We introduced the notion
of a system as a tuple of sets. However, in real world applications this definition is am-
biguous, as the borders of such distributed systems are blurred. Using services of “other
systems” could be considered a merge of two disjoint systems. This is why an applicable
mechanism for delineating systems is required for some discussions of re-use: a system
is a triple of methods, relations and services that is used in order to realize a business
process. If multiple implementations of business processes share elements, modules or
relations they are still considered disjoint systems16.
Still, re-use across systems can be ambiguous because the notion requires an initial posses-
sor. The decision of re-use can then only be made if the ownership of a service is known.
This is a governance problem and considered out of scope of this thesis. This is why we
incorporate the notion of time into re-use: if a service s that is used in a system Ω′ at the
time (τ − 1) is also used in a system Ω at the time τ , s is considered to be re-used in Ω.
This is why re-use can only be measured for a point in time.
In order to assess how services are re-used, two sets of relations need to be distinguished,
too. These relations are Rr ⊆ Ω.Ψr ×Ω.Ψr as well as Ra ⊆ Ω.Ψn×Ω.Ψr. Of course, these
sets are disjoint: Ra ∩ Rr = ∅ while Ra ∪ Rr ⊆ R.
Rr are the relations that exist between services that are used in multiple systems. The
relations might be either already part of another system Ω.Rr ⊆ Ω′.R or might be intro-
duced (partially or completely) by the new system.
Ra is the set of all relations that are added between the new services of a system and
the services that are shared with other systems. All relations a ∈ Ω.Ra are introduced
together with the system Ω. Ra can also be considered as the set of inter-system relations.

The following measures are introduced in order to discuss the concepts of re-use and to
propose means for assessing the extent of re-use in a system.

• Re-used Services (RS) RS is the count of services a system uses that are also
part of other systems at the time τ : RS(Ω, τ) = |Ω.Ψr| .

Mechanism RS is a simple count of elements.

Value Range The value range of RS is [0, +∞[

Discussion If a system is built by re-using existing parts, the required functionality
can be achieved faster. This is why an absolute high RS value indicates a better
modifiability of a system. However, if multiple systems heavily re-use certain ser-
vices, the modifiability of all systems might decrease under certain circumstances.
This is because changes to these services affect all other systems, too. This is why
RS is only a basic measure and needs to be evaluated with other metrics like the
MRR metric that is also introduced later in this chapter.

• Multi-used Services (MS) MS is the count of services in a system that are used
more than once at the time τ : MS(Ω, τ) = |Ω.X| |(cts(x) > 1) ⇒ (x ∈ Ω.X) ; x ∈
Ω.Ψ

Mechanism MS is a simple count of elements.

Value Range The value range of MS is [0, +∞[

16Which, of course, fits into the formal definition of a modular system, too.

Distributed and Mobile Systems Group 38

3 Assessing the Application and Applicability of SOA

Discussion MS is the amount of services that are used more than once. The fact
that a service is used more than once does not lead to the notion that this service
is re-used. Re-use is defined here as the use across system borders or the existence
prior to the creation of a system. This definition indicates MS ≤ RS.
However, this measure possesses some significance. A high MS-value is a good
indicator that a system consists of many re-usable services, as high cts-values in-
dicate that a service might be re-usable.17 Absolute high MS-values indicate that
changes to single services might effect large portions of a system. This effect can be
beneficial in terms of modifiability. Nevertheless, mediating these services by using
aggregators should also be considered. This is because mediation could reduce the
impact of changes to providers. If aggregators are used, the density of aggregation
(DOA) should be taken into account.

• Number of Usages (nou) nou is the count of systems a service is used in:
nou(s, τ) = |S| | ∀Ω ∈ S ; s ∈ Ω.Ψ

Mechanism For each system Ω for that a relation to a given service s is part of its
relations, nou is increased.

Value Range The value range of nou is [0, +∞[

Discussion If a service s is used at τ in nou systems, changes that are made to s
will not only effect the system the changes are required for but nou systems. This
is why a high value for this measure can indicate a decreased modifiability. This is
because changes can only be implemented by considering side-effects. On the other
hand, necessary changes (e.g., due to regulatory requirements) can be implemented
across systems more quickly and easily.
In order to address this trade-off, the concept of mediation shall be used. The re-use
through mediators is measured by the MRR value. Absolute high nou-values should
only occur for aggregators.

• Reused Connections (RECON) RECON is the count of relations between a
system and services that are also used in other systems. RECON(Ω, τ) = |Ω.Ra|
Mechanism RECON is the amount of connections (or channels) from a system to
services that are used also in other systems.

Value Range The value range of RECON is [0, +∞[

Discussion RECON is different from OuterR(m) as it does not assume fixed
system (module) boarders. It is defined as the cardinality of the set of all connections
from services that are introduced by one system and services that existed before. It
is a basic measure for more complex metrics.

• Mediated Re-Use (MRU) MRU indicates how many exclusively used aggre-
gators of a system Ω are connected with services that are shared across systems:
MRU(Ω, τ) = |Ω.Raa| | Ω.Raa ⊆ Ω.An × Ω.Ψpr | Ω.An ⊆ Ω.SA ; Ω.Ψpr ⊆
Ω.SP ; Ω.Raa ⊆ Ω.Ra

Mechanism MRU is the number of relations between exclusively-used mediators
of a system Ω and shared services. The aggregators that are used exclusively in a
system are a subset of the systems aggregators.

Value Range The value range of MRU is [0, +∞[

17Re-usability assessment is discussed more in depth in chapter 4.

Distributed and Mobile Systems Group 39

3 Assessing the Application and Applicability of SOA

Discussion As discussed, aggregators promote loose coupling and make mediated
services more independent from other parts of the system. This is why the negative
effects extensive re-use can have on modifiability, can be addressed by using me-
diators. High MRU -values indicate that mediators are introduced together with a
system. The alternative would be to also re-use aggregators. The preferable method
of mediation is dependent on the actual use case. MRU is one of the basic measures
that are used in the indicator for mediated re-use MRR.

• Re-Used Mediation (RUM) RUM indicates how many relations among exclusively-
used consumers to shared mediators exist in a system: RUM(Ω, τ) = |Ω.Rar| | Ω.Rar ⊆
Ω.Cn × Ω.Ψar | Ω.Cn ⊆ Ω.SC ; Ω.Ψar ⊆ Ω.SA ; Ω.Rar ⊆ Ω.Ra

Mechanism RUM is the count of relations among exclusively-used consumers (ag-
gregators and pure consumers) of a system Ω to shared aggregators.

Value Range The value range of RUM is [0, +∞[

Discussion RUM indicates the re-use of already mediated services. This design
option is more beneficial if quick first results are required when building a system.
For a long-term modifiability self-developed aggregators might be preferable, though.
The preferable option depends on the actual use case.

• Aggregator to Aggregator Re-Use (AAR) AAR indicates how many rela-
tions among exclusively-used aggregators to shared aggregators exist in a system:
AAR(Ω, τ) = |Ω.Raar| | Ω.Raar ⊆ Ω.An×Ω.Ar | Ω.An ⊆ Ω.A ; Ω.Ar ⊆ Ω.A ; Ω.Raar ⊆
Ω.Ra

Mechanism AAR is the count of relations among exclusively-used aggregators of
a system Ω to shared aggregators.

Value Range The value range of AAR is [0, +∞[

Discussion AAR indicates “double” mediation. High AAR-values arise whenever
mediators are used in systems to re-use services that are already mediated by aggre-
gators. This approach might only be advantageous for certain use cases. Generally,
AAR should indicate values close to 0.
AAR(Ω, τ) is always less or equal max(MRU(Ω, τ), RUM(Ω, τ)).

• Re-Use Ratio (RUR) RUR indicates whether a system is built using existing
parts or not:

RUR(Ω, τ) =
RS(Ω, τ)

NS(Ω)
(10)

Mechanism RUR is the ratio of re-used services to the overall count of services in
a system NS.

Value Range The value range of RUR is [0, 1]

Discussion RUR-values close to 1 indicate that systems are (to be) built using
large proportions of services. On one-hand side this will lead to rapid, cost efficient
realizations. However, future modifiability might be affected in a negative way by
this design option, as indicated by high RUR-values. This is why RUR should be
considered together with MRR as well as DOA in order to estimate the effects the
extensive re-use of services might have on the modifiability of the system.
An interesting notion is again the dependence on time: the RUR for a system can (as
with all re-use measures and metrics) change without modifying the system. Such

Distributed and Mobile Systems Group 40

3 Assessing the Application and Applicability of SOA

effects should be addressed by organizations by introducing governance structures
and processes.

• Mediated Re-Use Ratio (MRR) MRR is the ratio of mediated re-use to the
overall re-use:

MRR(Ω, τ) =
MRU(Ω, τ) + RUM(Ω, τ) − AAR(Ω, τ)

RECON(Ω, τ)
(11)

Mechanism As mediated re-use and re-used mediation are non-disjoint aspects of
a system, MRU(Ω, τ) + RUM(Ω, τ) might be greater than RECON(Ω, τ). This
is why the ratio between mediated re-use and the overall re-use is adjusted by
deducting AAR(Ω, τ) from the numerator.

Value Range The value range of MRR is [0, 1]

Discussion Aggregators promote loose coupling and make mediated services more
independent from other parts of the system. This is why an extensive re-use of
services that are not used directly but rather, are mediated by aggregators, indicates
an overall loose coupling in a system. Therefore MRR-values close to 1 indicate a
“good” sort of re-use and, in turn, a higher modifiability of the respective system.
Not included in the MRR-value is the point of mediation. But this is another
important aspect. Since this design decision is dependent on actual requirements,
it can only be given the notion that RUM and MRU values should be looked at
independently, too.

Having discussed and defined metrics that assess the degree of re-usability in a system,
it should also be considered to what extent it is re-usable. This is mainly a concern of
the design of the single services and not of the overall system. This aspect is discussed in
chapter 4.

All metrics that were described in the previous section indicate the modifiability of a
system – some as indicators for high modifiability, some as indicators of low modifiability.
An optimal mechanism would be to identify a boolean discriminant function (BDF) with
according thresholds for the single metrics in order to determine the modifiability of a
system that realizes the analyzed design (as described similar in [56]). This approach has
two problems. Realizing a significant application that goes beyond scientific prototyping
is cost intensive. This is why the first issue is to get relevant data for running regression
tests. A second issue is the required categorization of systems into “easy to modify” and
“hardly modifiable”. We do not consider such a fragmentation feasible, as it will heavily
reflect subjective parameters. This is why an aggregated discrimination function that
forecasts the modifiability of a system is considered unrealistic.
We believe that the introduced metrics can be better used to highlight certain aspects
for service-oriented design principles and their impact on modifiability. This is why a
qualitative description of inter-relations among the metrics is considered better applicable
than a quantitative discriminant function. As a rule it can be stated that if the metrics give
a “bad” picture of a design, a redesign is appropriate. If the picture is “good”, the design
can still be suboptimal. They are a necessary indicator but not sufficient indicators of
design quality. For the sake of demonstrating their applicability, the following case study
shows the metrics in the context of real-life requirements.

Figure 4 shows the presented metrics, their relations and trade-offs. It represents a graph-
ical summary of the discussions given for the single metrics in this section. In addition,

Distributed and Mobile Systems Group 41

3 Assessing the Application and Applicability of SOA

an approach to the interpretation of the metrics in the context of a realistic application
will be discussed in section 8.3.

Figure 4: Overview of Modifiability Metrics and their Dependencies

3.2.2 Assessing Reliability

As stated in the beginning of this chapter, applying service-oriented principles can have a
negative effect on the reliability of a system. In particular, omission failures, crash failures,
and timing failures of single services or their channels can effect multiple systems. How
much a system is effected by such failures is described as fault tolerance of a system.

Another important parameter that indicates a system’s reliability is the availability of
the overall system. In the following, a mechanism is described that allows for measuring
the availability of a service-oriented application. Afterwards, it is discussed how a service-
oriented system could deal with unavailabilities.

Empirical models that aim to estimate and improve software availability, such as the
Schneidewind software reliability model (cf. [64]), were proposed. Such models aim to

Distributed and Mobile Systems Group 42

3 Assessing the Application and Applicability of SOA

analyze failures that are caused by errors in a software system and that can be observed
by testing these systems. Observed failures are used in order to predict future failures of
the system and to describe the error correction process. Such models are complementary
to the (simple) metrics that are presented in this section. The aim of the metrics here
is not to improve the error rate of services. Rather, the impact a given design has on
the overall availability of a system should be assessable. The availability of single services
should of course be increased independently. This distinction is especially important since
a certain proportion of services will be provided by COTS.

Tsai et al. developed in [65] a software availability model for web services that is the basis
for the presented availability metrics. It describes both, atomic services and overall design
availability measures. The availability for a service18 S is dependent on the behavior the
service shows in the scenarios he is used in:

Avls =

∑

(wi × Avlscenarioi
)

∑

(wi)

wi is the execution rate of the corresponding scenario i. A scenario is triggered by events
and can trigger events by itself (cf. [65, p. 148]). The availability for each scenario can
be derived by testing the service under the respective scenarios. [66] proposes a method
that uses the data input profile of a scenario in order to derive the availability parameter
for a component in the respective scenario.
However, for customers of commercial applications the empirical estimation of software
components is not applicable overall. This is because failures that occur in systems,
modules or services lead to operative issues of the respective organization. This is why
all modules are operated on the basis of so-called service-level agreements (SLA). SLAs
are composed by the SLA for a platform a certain software system is deployed on and the
software itself. The SLA for the software is responded by the software manufacturer. As
we discuss the application of SO as an integration paradigm, the outlined approach for
deriving a service’s availability should be used by the manufacturer in order to define the
SLAs he is offering to his customers. The notion of availability is nevertheless important.
From the black-box viewpoint we take towards services, it is not relevant whether the
availability of a given service is measured or agreed on. This is why we assume that
each (sole) service provider that provides functionality for a service-oriented system has
an availability Avls. The availability of different services is assumed to be mutually
independent.

Singh et al. have presented in [67] an approach for availability prediction and assessment
of component-based systems. This approach treats components as black-boxes (cf. [68])
and is suitable for assessing design in the early development stage (cf. [69]). Additionally,
this model was integrated with UML (cf. [70]). This is why we extend this model with
dependencies among components in order to apply it to service-oriented systems.
The probability of a failure of a service can be denoted as: θsj = 1 − (1 − θs)

bpsj . This
simple description assumes regularity (cf. [69, p. 179]). This means that the service
s ∈ Ω.Ψ has a constant failure rate θs (1−Avls). This assumption fits with the notion of
SLAs. It needs to be considered, though, that the failure rates that are assumed by [67]

18Discussing availability involves both a service type and an agent. Thus, referring to services means
referring to usable resources. This implies that the availability of a service includes the availability of
hardware components and network availability.

Distributed and Mobile Systems Group 43

3 Assessing the Application and Applicability of SOA

are expressed in failures per execution of a scenario. In contrast, SLAs are sometimes
usage-independent. When using the notion of availability Avls and SLAs, it is assumed
here that SLAs are agreed on a per-usage basis.19

In the above description, bpsj describes the busy period of a service s in a scenario j. A busy
period simply indicates the number of calls a component receives and issues throughout
the actual scenario.

Considering the aggregation of sole service providers to a higher-level service as a scenario,
the availability of a service aggregator a ∈ Ω.SA can be then noted as:

Avlatom(a) =

(

∏

s∈P

(1 − θs)
λ(a,s)

)

× (1 − θa)
∑

s λ(a,s) | a ∈ Ω.SA (12)

P = {Ω.SP \ Ω.SA}

The availability of an aggregator is the product of the failure rates of the aggregated
service providers with regards to their busy time – which is derived from the coupling
between the aggregator and the provider – with consideration of the failure rate θa of the
service aggregator itself during its execution.20 In order to keep the assessment applica-
ble for COTS-based aggregators, each aggregated service is considered to be included in
every execution λ(a, s) times. This leads to a conservative assessment of the availability
of service aggregators as the probability of defect services not being used is ignored.
A special case is when service aggregators use service aggregators themselves. The avail-
ability of such an higher-level aggregator ∆ can then be noted as

Avl(∆) =

(

∏

s∈P

(1 − θs)
λ(∆,s)

)

×
∏

a∈Y

Avl(a) × (1 − θ∆)
∑

s λ(∆,s) (13)

∆ ∈ Ω.SA

∀a ∈ Y . {∆} × {a} ∈ Ω.R | a ∈ Ω.SA

P = {Ω.SP \ Ω.SA}

Avl provides a mechanism that can be used in order to assess how the availability of
a service aggregator is affected by the availability of the services it aggregates. Low
availability of the aggregator can either be compensated by changing the design of the
aggregator (while considering the modifiability metrics) or by changing the SLAs of the
used service providers — without the need to test the overall system.

19By using slightly different semantics than the one that was derived here from the ISO norm [49], [71]
differentiates availability and reliability in order to solve this issue (cf. [71, p. 362]). We assume that
the indicated availability describes the failures during a time interval (= the scenario). In order to avoid
confusion, we do not use the phrasing of reliability that is used in [71] for describing this quality property.

20This failure rate is assumed to be the SLA of the platform the aggregator is deployed on. If necessary,
the availability of the aggregator can be tested. In order to keep the application simple, this is not
incorporated into the presented approach.

Distributed and Mobile Systems Group 44

3 Assessing the Application and Applicability of SOA

The overall failure probability of a system is defined in [67] similar as:

θΩ = 1 −
K
∑

j=1

pj

(

N
∏

i=1

(1 − θi)
bpij

)

(14)

K is the set of all possible scenarios of a system. pj denotes the probability of the jth

scenario to be executed.
As we transferred the notion of scenarios to the scenario of service aggregation, the avail-
ability of service aggregators can be included in this overall picture.
If needed, the overall availability of a system should be derived using (14), though. This
is because, the availability metric for aggregators assumes that all aggregated services are
always used. This simplification is acceptable for aggregators. But for the overall system
availability this could be too pessimistic. In order to calculate the pj-values, the execution
path for every service consumer needs to be analyzed with a method as described in [70].

As stated in the introduction, availability of a system can be endangered by the appli-
cation of service orientation as a paradigm for distributed systems. The formulas (12)
and (13) are applicable to calculate – with respect to service-oriented principles – the
availability of service aggregators. This is an important mechanism because aggregators
are single-point-of-failures in a composite application while being helpful in terms of mod-
ifiability. In order to allow a system designer to assess how the use of aggregators that
improve modifiability effects the availability, these formulas should be used in order to
simulate how the availability of the single service providers effect the availability of the
aggregators. A statistical approach that allows for such simulations is described in [67].

However, the availability of a system can only be one aspect used to assess a system’s
reliability. As important as availability is a system’s tolerance to failures as well as how
it does recover from failures.
It is not the aim to describe how failure tolerant distributed systems must be built. Again,
the special notion of service orientation should be applied to prior work in this area in
order to derive indicators that help assessing the reliability of a service-oriented system.
When analyzing work in the area of fault-tolerant distributed systems (esp. [71, pp. 361-
413]), two things are important: that failures do not prohibit the atomicity of service
interactions and that a system can recover from failures. Discussing these issues, it is
assumed that a composite application that is analyzed will be executed using a common
protocol that incorporates failure tolerance on the communication layer. Hence, atom-
icity and recoverability are analyzed from an application-layer point of view. Gray and
Reuther discuss failure tolerance and recoverability in this way: “atomicity is more than
a mere definition; it requires precise specifications for two fundamental aspects of each
operation. One is the question of when and how the results of the operation are made
accessible. [...] The other aspect is [...] how the (partial) results of an operation that do
not complete successfully be rolled back such that no side effects (or only well-controlled
side effects) occur ” [72, p. 160]. This definition is also applicable for the service-oriented
architectural style. This is that services expose these operations that should complete
successfully (atomicity of service interactions) or be rolled back (recovering from failures).
These are the two remaining aspects that complete the picture of reliability.
In order to answer the question “when and how the results of the operation are made
accessible” [72, p. 160] in the context of aggregated services, two cases need to be distin-
guished. According to Grefen et al., two orthogonal transactional layers are required: one

Distributed and Mobile Systems Group 45

3 Assessing the Application and Applicability of SOA

for relatively short-living and one for long-living transactions (cf. [73]). The transactional
layer for short-living transactions can consist both of single services as well as of multi-
ple, distributed services. In both cases, the ACID (Atomicity, Consistency, I solation and
Durability) (cf. [72, pp. 166f]) properties need to be satisfied in order to achieve failure
tolerance. As soon as distributed services and their underlying application systems need
to ensure such a level of reliability, this needs to be addressed by the overall design. This is
why the design of a system needs to incorporate a protocol such as the two-phase commit
protocol (2PC) (cf. [72]). In order to allow for a distributed 2PC in a system, a coordina-
tor needs to be included in a system (cf. e.g. [71, p. 394]). Following the definition of the
service-oriented architectural style, such a coordinator might be an aggregator.
Thus, the simple assessment of a design is whether it incorporates a service aggregator
that is able to perform a distributed 2PC among service providers (including the underly-
ing application systems). If such an element is present in the design, this is an indicator
for a failure-tolerant design. If not, the software system might have limitations in terms
of reliability.

The remaining aspect of reliability corresponds to the transactional layer for long-running
transactions: recoverability. If a part of the system is unavailable or fails, the system has
to recover to a correct state (cf. [71, p. 401]). This can be achieved using two forms of
recovery: backward recovery or forward recovery. For backward recovery it is important
to mark certain states in a computation as checkpoints. In the event of failures, backward
recovery restores the state that was saved in a checkpoint (cf. [71, p. 401]). In order
to realize such checkpoints during run-time, a distributed snapshot of the system might
be used (e.g., by using the method described in [74]). For such snapshots, an arbitrary
process can notify all other entities in a distributed system to record their current state.
This way, an overall consistent state is recorded.
Service orientation has, however, the notion that services should be stateless. If that was
fully achieved in a system, no need for snapshots or other forms of coordination would
be required. This is unrealistic because stateless services can of course change the state
of their underlying application system. The conversational state should be kept by the
aggregators of a system. If the state of such aggregators would be mutually exclusively ac-
cessible by all participating services, ensuring a consistent state among all services would
be easy to achieve (cf. [75, p. 643]). However, changed states of connected application
systems can not be included in such a globally accessible state. This problem can be
addressed by forward recovery.
Forward recovery is a mechanism that can be used to reach a consistent state that is
different than the previous consistent state. How this is achieved is purely application
dependent as compensating transactions try to “semantically reverse what the original
sub-transaction has done” [72, p. 203]. Such compensation operations are important for
service-oriented applications as they are the sole mechanism that can reverse data that
was changed in back-end systems after a (probably distributed) short-living (ACID) trans-
action has been committed.
Long-running transactions that are compensated by forward recovery have relaxed ACID
properties. Meeting the long-term characteristics of global transaction, Grefen et al. re-
lax the properties of isolation and atomicity. Relaxed isolation is achieved by publishing
intermediated results to the global state of a system context (which is again easy if a
common store is available) (cf. [73]). Atomicity is relaxed by introducing compensating
transactions. Both context publication and compensating transactions are short-term
transactions. Thus, the fundamental support for global transactions is also formed by

Distributed and Mobile Systems Group 46

3 Assessing the Application and Applicability of SOA

ACID (short-term) transactions (cf. [73, p. 319]).
In order to assess the recoverability of a system it is therefore necessary to include com-
pensating service operations into the design. Together with a transaction coordinator for
failure tolerance, the existence of compensating services and a globally accessible data
store (that manages the state) can be an indicator of a system’s ability to recover from
failures.

3.2.3 Assessing Usability

Applying the service-oriented architectural style may also have impact on usability. How-
ever, it may not necessarily impact the usability of a system that is built. The impact
is on the usability of the supported business process. Such processes are often conducted
by using multiple back-end systems. The portal-based integration approach (see section
2.1) addresses this issue. Following this approach by integrating“all participating systems
through the browser, although it does not integrate the applications [...]” [4, p. 99], the
usability of the underlying process is increased. This is achieved by providing process
users with the ability to work with one application (the browser) in order to perform the
process’s tasks. However, this approach has notable weaknesses. The most crucial one
is that “information does not flow in real time and so requires human interaction. As a
result, systems do not automatically react to business events [...]” [4, p. 103].
The BPIOAI-approach addresses the issue of automated and explicitly controlled compu-
tation of business events. Using portals for the human-interaction with such processes
would combine the advantages while avoiding the (obvious) drawbacks of purely portal-
based integration. To assess the usability of a composite application, it is possible by
simply counting the user interfaces a user interacts with in order to perform tasks in a
business process. A specialization of this count, is to count the logins a user needs in
order to perform the tasks his role(s) in the process requires. The simple rule here is: the
fewer logins, the greater the usability of the system.
In order to focus on service-oriented principles, other usability characteristics such as the
ability of an application to be learned or liked is considered out of scope.

3.3 Assessing the Suitability of SOA

The above discussion highlighted potential benefits and trade-offs that the service-oriented
principle presents. When receiving requirements for new systems or change requests,
it is necessary for suppliers to assess whether the service-oriented architectural style is
suitable for quickly realizing the given requirements. Therefore an inexpensive mechanism
is required that allows for assessing the suitability as well as for explaining customers the
potential benefits of service orientation in the actual context without spending major
efforts.
Due to organizational as well as timing reasons, the use case underlying the case study
that is used in chapter 8 for applying, testing and verifying the concepts and findings
that are compiled in this thesis, was not chosen by using the approach presented here.
Furthermore, the methodology that is proposed here incorporates the experience made
with that first approach from a practitioner’s point of view.

In order to assess middleware architectures, [76] proposes a scenario-based evaluation

Distributed and Mobile Systems Group 47

3 Assessing the Application and Applicability of SOA

method that can be used for the evaluation of a middleware architecture (MEMS). It is a
methodology that was derived from the Architecture Tradeoff Analysis Method (ATAM)
[77]. MEMS is a method that consists of seven steps and involves the implementation of
prototypes that are used to compare different designs. We consider this approach as too
laborious in the context of fast requirement assessment. Important to notice, however, is
that the methodology is “founded on key scenarios that describe the behavior of a [...]
architecture with respect to particular quality attributes and in particular contexts” [76, p.
14]. In order to achieve this, key quality attributes that are determined in step 1 of MEMS
are applied to newly-generated key scenarios of the actual requirements. Based on this
application, prototypes for different alternatives are defined and realized. We believe that
the first two steps can already support the assessment of given requirements with regards
of service orientation.
Based on the quality attributes that are described in the sections 3.1 and 3.2, standard
scenarios have been derived. This fits with the first two steps of the MEMS methodology.
If a new change request is made or a new project is requested, the supplier can simply
assess whether these standard scenarios fit with the requirements. Based on this fit, a first
idea of the suitability of the service-oriented style can be generated and communicated to
the customer. The single scenarios are described according to the quality characteristics
that they profit from.

• Modifiability In order to assess whether the benefits of eased modifiability can im-
prove the realization of actual requirements, the following scenarios can be compared
to the requirements:

– Frequent Changes in Processes If the business process that needs to be
realized is subject to frequent changes, this is an indicator for the suitability
of service orientation.

– Frequent Changes of Process Tasks If the underlying business process
has several variants of its tasks, service orientation could be suitable. This
is because if an orchestration is used to realize the process, the orchestrated
services can easily be replaced – by the use of a registry, this replacement can
be performed transparently during runtime (cf. e.g. [14]).

– Outsourcing of Process Tasks If the execution of tasks could be (partially
or completely) outsourced, a centralized control can improve the flexibility of
the system in a way that allows for flexible outsourcing. As the process is not
executed by monolithic back-end applications, services that represent these
tasks can be called at the outsourcing partner. It does not matter whether the
tasks are fully automated or require human interaction.

– Use of a Shared Service Center If a company centralizes business process
execution into so-called shared service centers, service orientation can also be
supportive. Shared service centers execute supporting business processes (such
as human resources, billing etc.) on an enterprise-wide basis. If the process is
standardized while the single tasks vary for organizational entities (e.g., due to
local legal regulations), service orientation could be beneficial. In a solution for
such scenarios, the shared service center would provide the process orchestra-
tion for the de-centralized services that are exposed by the application systems
of the single organizational entities.

– Different Client Applications If the requirements articulate that different
client applications are necessary, service orientation can help. One example

Distributed and Mobile Systems Group 48

3 Assessing the Application and Applicability of SOA

could be a process that involves the purchasing of goods. Some suppliers might
offer a system-to-system interface, others might require a login into the supplier
portal of the ordering company. Thus, one can see that different applications
are required for fulfilling the same task. From an implementation point of
view, composite applications are agnostic to this aspect as services are solely
described from an interface point of view and accessible via a common protocol.
What type of application is therefore used for implementing the respective
service is not important.

• Reliability As previously described, reliability is a characteristic that needs to
be taken into consideration when designing composite applications. That is why
composite applications are not considered less reliable than other distributed ap-
plications. However, if requirements fit into the following usage scenario, service
orientation might not be an appropriate principle.

– Production Control If an application needs to control critical processes such
as shop-floor processes or logistic execution, alternatives to service orientation
should be evaluated as well. Because minimal unavailability of a control applica-
tion can stop the complete operative business of a company, highly replicated
monolithic applications might be more appropriate. However, if the control
involves multiple applications that need to be integrated, service orientation
might be a suitable integration paradigm.

• Usability Service orientation is not a principle that can be used to improve user
interfaces. As described above it can contribute to the usability of processes by
exposing a single user interface for users of that process.

– Process Requires Human Interaction in Multiple Back-end Applica-
tions Simply stated, if a process spans multiple application systems and users
need to interact with these application in order to fulfill their tasks, service
orientation can be suitable for improving the usability.

Clearly, these scenarios are rough descriptions of possible requirements. Further, the
mapping of requirements to these scenarios is a subjective task. But this is necessary
for keeping the concept applicable for real-life requirements. Only after a first evaluation
has indicated the suitability of the service-oriented style, a more detailed design can be
created and assessed using the means that were presented in section 3.2.

Distributed and Mobile Systems Group 49

4 Is There Reuse by Design? A Quantitative Approach

4 Is There Reuse by Design?

A Quantitative Approach

Service-orientation is a paradigm for reusing functionality that is exposed by (legacy) ap-
plication systems in business processes that possibly involve multiple application systems.
The functionality that is being reused is exposed through services. Discussions that in-
volve the design of services often include the notion of reusable services. The assumption
is that services can be designed in a way that increases the reusability of the designed
services.
Several design principles have been identified that support the design of reusable services.
Papazoglou et al. describe e.g. in [78] that a high service cohesion leverages the reusabil-
ity of a service (cf. [78, p. 417]). In addition he states that “low [service] coupling [...]
indicates a well-partitioned system that avoids problems of service redundancy and dupli-
cation” [78, p. 416]. Erradi et al. identify an appropriate service granularity as a design
principle that leverages reusability (cf. [79, p. 156]).
In the context of object-oriented design, Etzkorn et. al described in [80] that the reusabil-
ity of a class is achieved by a lack of coupling, a cohesive design and the appropriate size
of the class’s interface (cf. [80, p. 300]). Hence, the design principles that make up a
reusable software entity are very similar for both approaches.
Several approaches aim to design (reusable) services (cf. e.g. [11], [78], [81]). All of these
approaches respect the design principles of service cohesion, coupling and granularity to a
certain extent. What lacks, however, is an objective definition of these design principles.
Additionally, none of the known approaches have been quantified whether and to what
extent the single design principles really contribute to the reusability of services.

In order to analyze which design principles contribute to the reusability of services, a
set of metric candidates is presented. These candidate metrics are, in turn, applied to a
non-academic use case of a distributed application and analyzed using quantitative means
to derive the discriminative power of the single candidate metrics. This analysis aims to
frame the discussion of service reusability on an objective level that is more reliable than
the qualitative descriptions that underlie this discussion today. Further, this analysis is
not based on a survey that represents subjective opinions of “experts”. It is based on
objective data about reused services.
The objective of this analysis is to derive valid principles of service design from existent
service design approaches. The identified principles should be applicable to the definition
of methodologies that focus on applicability while considering the dimension of reusability.

4.1 Candidate Metrics for Reusable Service Design

All candidate metrics that are described here can be categorized by four dimensions. The
first dimension is the object a metric is applied to. Possible values are {field, opera-

tion, service}. The second dimension distinguishes whether the object a metric is ap-
plied to is analyzed as a black box or under consideration of its source-code: {internal,
external}. The third dimension describes the scope of the metric. In the domain
of service orientation, five different scopes are possible: {class-internal, service-

internal, aggregation-internal, system- internal, cross-system}. These dimen-
sions indicate the reference for the actual metric.

Distributed and Mobile Systems Group 50

4 Is There Reuse by Design? A Quantitative Approach

The fourth dimension describes four variants that describe the quality of objects that are
computed. For every object in {field, operation, service} it can be distinguished
which property of the object is computed: name and type (a), the respective semantics
of the variable (b), their semantic type (c) and their type (d).
Summarizing, a metric m is categorized by the vector MV(m) ≤ [{field, operation,

service}, {internal, external}, {class-internal, service-internal, aggre-

gation-internal, system-internal, cross-system}, {name and type, semantics

of variable, semantic type, type}].
The following example shall outline this fourth dimension: considering a service with
two methods, a metric y should be computed. The first three dimensions are classified
by MV(m) = [operation, external, service-internal, X]. Hence, the operations of a
given service should be analyzed from an outside point of view. The service that is to be
analyzed shall have the following two operations:

x: long getTimeDifferenceInMillis(String startDate, Date endDate)

y: Date getTimeDifference(long startDateInMillies, String endDate)

In the fourth dimension the following can be observed: considering variant (a), six different
variables are used. None corresponds with another one. Using (b), three different elements
can be distinguished: a time difference, a start date and an end date. Subsequently, (c)
would analyze two different variables: a point in time and a period of time. Considering
(d) there would be three variables: long, String and Date.
The alternative, (d), is the easiest to measure as it is un-ambiguous. However, the unique
use of types will degenerate any metric — especially if elementary data types are used.
(c) can only be measured if semantic types are introduced in a system. Dimensions (a)
and (b) rely on the use of a naming convention that names the same variable for the same
purpose always the same way. If such a naming convention is in place and the design is
made accordingly, same variables will have the same type and names if the same semantic
object is concerned. Applying variant (a) or (b) will not likely result in different values
for a given metric.

Services group sets of methods. The methods expose the underlying functionality to
arbitrary systems. Methods themselves provide a relation to their input values {Inpm}
and their output values {Outpm}. A basic measure that can be used in several candidate
metrics describes the intersection of these two sets among different operations.
(15) describes for a given parameter p its occurrences in the set of all input parameters
of all methods {M}. The set of all methods is determined by the actual scope of the
candidate metric.

υi(p, {M}) =

m∈{M}
∑

in∈{Inpm}
∑

1 | in = p (15)

(16) describes for a given parameter p its occurrences in the set of all output parameters
of all methods {M}.

υo(p, {M}) =

m∈{M}
∑

out∈{Outpm}
∑

1 | out = p (16)

(17) describes for a given parameter p its occurrences in the set of all parameters of all
operations {M}.

υt(p, {M}) =

m∈{M}
∑

tot∈{Outpm}∪{Inpm}
∑

1 | tot = p (17)

Distributed and Mobile Systems Group 51

4 Is There Reuse by Design? A Quantitative Approach

Based on the introduced principles, three classes of candidate metrics are analyzed in
terms of their influence on reusability. These three classes are the ones often referred to
in approaches to service design: cohesion, coupling and granularity.

Papazoglou et al. describe that “highly related functionality supports increased reuse
potential as a highly cohesive service module can be used for very specific purposes.” [78, p.
417].

Class-internal cohesion describes the functional relatedness of methods in their implement-
ing class. Whenever services are realized in an object-oriented way, class-internal cohesion
could be measured for any of the classes used for implementing the service. Metrics that
analyze class-internal cohesion are described in the following.

• Lack of Cohesion in Methods (LCOM) Chidamber et al. defined in [82] the
metric lack of cohesion in methods (LCOM) as “the number of disjoint sets [of
instance variables used by a method] formed by the intersection of the n sets.” [82, p.
204]. According to [83, p. 76], with {Ii} being the set of attributes used by a method
{Mi}, P = {(Ii, Ij)Ii ∩ Ij = ∅} and Q = {(Ii, Ij)|Ii ∩ Ij 6= ∅}. LCOM is defined as
described by (18).

LCOM(C) =

{

|P | − |Q| if |P | > |Q|
0 otherwise

(18)

Mechanism “LCOM is the number of pairs of methods in a class having no com-
mon attribute references, |P |, minus the number of pairs of similar methods, |Q|.
However, if |P| < |Q|, LCOM is set to zero” [83, p. 76]. High LCOM values indicate
a highly cohesive class while low values indicate a low cohesion for a class.

Value range LCOM is limited to the range of [0, +∞[

Discussion Considering LCOM , it becomes obvious that cohesion and uniqueness
are related properties. If the attributes of classes are clustered into disjoint sets so
that all sets are exclusively used by the respective methods, the cohesion is high.
Hence, unique methods from a parameter point of view increase the cohesion.
LCOM is applicable for several points within the MV-space: MV(LCOM) ≤ [opera-

tion, internal, {class-internal, service-internal},{name and type, se-

mantics of variable, semantic type, type}]. Of course, it always measures
class-internal relations. However, if services are realized using one class, LCOM is
applicable for services.

• Lack of Cohesion in Methods by Henderson-Sellers (LCOM∗) Henderson-
Sellers defined in [84] the metric LCOM∗ as follows: M = M1 ∪M2 ∪ ...∪Mn being
all methods of a class C, F = F1 ∪ F2 ∪ ... ∪ Fn being all attributes of class C, r(f)
is defined as the number of methods that access a field f :

r(f) = |M∗| | f ∈ Inˆf ∈ F ;∀mn ∈ M∗ ⇒ In 6= ∅

< r > is then the mean r for all fields of a class C:

< r >=

f∈F
∑

r(f)

|F |

Distributed and Mobile Systems Group 52

4 Is There Reuse by Design? A Quantitative Approach

LCOM∗ is defined (according to [85]) as described by (19).

LCOM∗(C) =

{

0 if |M | = 1
<r>−|M |

1−|M |
otherwise

(19)

Mechanism LCOM∗ is the relation between the amount of fields the methods of
a class use in average on-top of one field and the overall count of methods.

Value range LCOM∗ is limited to the range of [0, 2] (cf. [83])

Discussion LCOM∗ is applicable for several points within the MV-space: MV(LCOM∗) ≤
[operation, internal, {class-internal, service-internal}, {name and

type, semantics of variable, semantic type, type}]. Of course, it always
measures class-internal relations. If services are realized using one class, LCOM∗ is
applicable for services, though.
Of course, LCOM and LCOM∗ might generate different values for the same class.

“Cohesion is the degree of the strength of functional relatedness of operations” [78, p.
416]. Understanding “relatedness” as intersecting sets of parameters, methods or services,
measuring cohesion can also mean measuring “uniqueness” (cf. [60, p. 479]). If objects are
highly cohesive, their respective combination of parameters is also – to a certain extent –
unique within a scope.
In order to define candidate metrics for uniqueness that can be applied if services are
solely available from an outside view, three basic functions are required:

(20) describes for a certain parameter p and a set of operations {M} that is determined by
the scope of the metric, whether p is unique in that set. Important to note is that this
assumes that p itself is member of {M}. A value of 1 indicates a unique method.

isUniquei(p, {M}) =

{

0 if υi(p, {M}) > 1

1 otherwise
(20)

(21) is similar to (20). The sole difference is that the parameter is analyzed with regards
to all output parameters.

isUniqueo(p, {M}) =

{

0 if υo(p, {M}) > 1

1 otherwise
(21)

(22) finally describes whether a parameter p occurs more than once in the set of all
parameters of all operations.

isUniquet(p, {M}) =

{

0 if υt(p, {M}) > 1

1 otherwise
(22)

In conjunction with (15) - (17) allow (20) - (22) to analyze cohesion for service-oriented
systems without considering the actual source code of the services. The motivation for
that approach is given by Reijers. In [86] he proposes a cohesion metric for workflows
that is based on sharing information elements of workflow activities. These information
elements are visible as parameters of these activities. This metric can not, however, be

Distributed and Mobile Systems Group 53

4 Is There Reuse by Design? A Quantitative Approach

applied in all contexts. This is because it focuses on grouping methods into activities.
If an actual design does, however, not allow for analyzing the grouping of methods to
services, the metric is not applicable. It solely allows the analysis of the reuse of methods
themselves. This is why Reijers’ concept has to be transferred in order to be applicable
only to methods.
As outlined earlier, it is crucial to analyze services just by their interfaces. This is because
services are often black-boxes that can not be analyzed more in-depth than on the level
of their interfaces. The drawback to this is that relations among services are not obvious.

Briand and Basili have described in [58] four properties to which a cohesion metric for a
modular system should comply. In order to analyze the behavior of the introduced metrics
more in detail, the metrics should be checked against these four properties.
The basis for these properties of cohesion is, again, the definition of a modular system
that was introduced in chapter 3.
According to the procedure presented in section 3.2.1, methods of services are considered
to be the elements of a system. Relations among these methods, such as calling relations
(irrespective of any communication semantics), are the relations of a system. Services are
considered as modules that group together sets of methods.
The single properties are introduced while analyzing the first new cohesion metric UM

• Uniqueness of Methods (UM) Based on the presented basic metrics (20) - (22),
the Uniqueness of Methods (UM) for a method op can be proposed as a cohesion
metric as described in (23).

UM(op, {M}) =

p∈{Outpop}∪{Inpop}
∑

isUniquet(p, {M}) (23)

Mechanism UM is a count of unique parameters of a given method within the
actual scope.

Value range The value range of UM is [0, +∞[.

Discussion Stipulating that the uniqueness of a method is an indicator for its co-
hesiveness, UM is the most basic measure for that principle. High values indicate
highly unique methods. This is, in turn, an indicator for a cohesive method.
Considering UM as a cohesion metric, it should be evaluated against the four prop-
erties a cohesion metric should satisfy.
Taking a cohesion metric α(m), the first property Cohesion.I is non-negativity
and normalization (cf. [58, p. 77]): α(m) ∈ [0, Max]. UM obviously fulfills non-
negativity. However, the maximum value of UM is not normalized. This is achieved
by the Relative Uniqueness of a Method in a Service (NUM).
Cohesion.II is defined the following way (cf. [58, p. 77]): Rm = ∅ ⇒ α(m) = 0.
Cohesion.II is called Null Value. It describes that a module without relations to
other modules shall have a cohesion value of 0. Cohesion.II is not fulfilled by UM .
This is because connections among services can not be captured by considering the
methods of services. This is why a method with a unique signature might exist that
is not connected to any other service. Thus, in such a case the UM value might
be high. Of course, if services do not call each other directly but instead use an
aggregator for coordination, a relation among services is indicated if the output of
one method (partially or totally) corresponds with the input signature of another
method.

Distributed and Mobile Systems Group 54

4 Is There Reuse by Design? A Quantitative Approach

Cohesion.III is the monotonicity property. It describes that a new relation be-
tween modules does not decrease the cohesion: “Let MS ′ =< E, R′, M ′ > and
MS ′′ =< E, R′′, M ′′ > be two modular systems [...] such that there exist two mod-
ules m′ =< Em, Rm > and m′′ =< Em′ , Rm′′ > [...] such that R′ −Rm′ = R′′ −Rm′′

and Rm′ ⊆ Rm′′ [...]. Then, α(m′) ≤ α(m′′)” [58, p. 77]

As additional relations among services do not imply that methods of the services
are changed, additional relations within a system do not increase UM . Hence, UM
satisfies Cohesion.III.
Cohesion.IV is called cohesive modules. It states that putting together unre-
lated modules should not increase the cohesion of the new module compared with
the old modules: “Let MS ′ =< E, R′, M ′ > and MS ′′ =< E, R′′, M ′′ > be two
modular systems [...] such that there exist two modules m′ =< Em, Rm > and
m′′ =< Em′ , Rm′′ > [...] such that M ′′ = M ′ − {m′

1, m
′
2} ∪ {m′′} with m′

1 ∈
M ′, m′

2 ∈ M ′, m′′ /∈ M ′ and m′′ = m′
1 ∪ m′

2 [...]. If no relationships exist between
the elements belonging to m′

1 and m′
2, i.e. InputR(m′

1) ∩ OutputR(m′
2) = ∅ and

InputR(m′
2) ∩ OutputR(m′

1) = ∅, then max{α(m′
1), α(m′

2)} ≥ α(m′′)” [58, p. 77].
By definition, services are modules that group methods. If unrelated methods are re-
grouped this does not effect the UM -value at all. Hence, UM fulfills Cohesion.IV.
UM is applicable for several points within the MV-space: MV(UM) ≤ [operation,

external, {class-internal, service- internal, aggregation-internal,

system-internal, cross-system}, {name and type, semantics of variable,

semantic type, type}].

• Normalized Uniqueness of Methods (NUM) Based on UM , the Normalized
Uniqueness of Methods (NUM) can be defined as described in (24).

NUM(op, {M}) =

0 if|{Outpop}| + |{Inpop}| = 0
p∈{Outpop}∪{Inpop}

∑

isUniquet(p, {M})
|{Outpop}|+|{Inpop}|

otherwise

(24)

Mechanism The count of unique parameters is set into a relation with the overall
count of parameters a given operation uses. This normalizes the value range of the
metric.
High values indicate a unique method and therefore a high cohesion.

Value range The value range of UM is [0, 1].

Discussion Being a normalized version of UM , NUM also satisfies the properties
Cohesion.III and Cohesion.IV. Additionally, Cohesion.I is satisfied as the value
range is normalized. As is the case for UM , NUM does not satisfy Cohesion.II.
NUM is applicable for several points within the MV-space: MV(NUM) ≤ [operation,

external, {class-internal, service-internal, aggregation-internal,

system-internal, cross-system}, {name and type, semantics of

variable, semantic type, type}].

• Normalized Relative Uniqueness of Methods (NRUM) The Normalized Rel-

Distributed and Mobile Systems Group 55

4 Is There Reuse by Design? A Quantitative Approach

ative Uniqueness of Methods (NRUM) is defined by (25).

NRUM(op, {M}) = 1 −

p∈{Outpop}∪{Inpop}
∑

(υt(p, {M}) − 1)

m∈{M}
∑

t∈{Outpm}∪{Inpm}
∑

1

(25)

Mechanism In contrast to NUM and UM , NRUM does not consider whether the
binary property of parameters are unique or not. Furthermore NRUM relates the
count of (re-)usages of a parameter in all methods within the scope to the overall
count of all parameters of all methods within the scope.
For the sake of readability the case of a denominator-value of zero is not included
in the function. In such cases, the value shall be zero.

Value range The value range of NRUM is [0, 1]

Discussion In contrast to UM and NUM , NRUM “reacts” to parameters that are
only hardly reused. However, with a large scope, the actual usage count of param-
eters becomes irrelevant and NRUM approaches 1. This is why the absolute value
N should also be considered.
The property Cohesion.I is satisfied by NRUM , as its value range is normalized.
Cohesion.II is satisfied by NRUM if relations among services are exclusively real-
ized using aggregators. This is because in such cases input and output parameters
of the connected methods have to correspond (at least partially). A method that is
not connected at all with other services (resp. their methods), results in NRUM to
be zero. Important to note is that a zero value does not imply that relations with
other services do not exist. However, if no aggregators are used, NRUM does not
satisfy Cohesion.II.
With UM and NUM , additional relationships or regrouping do not effect the signa-
tures of methods. Hence, NRUM satisfies both Cohesion.III and Cohesion.IV.
NRUM is applicable for several points within the MV-space: MV(NRUM) ≤ [opera-

tion, external, {class-internal, service-internal, aggregation-

internal, system-internal, cross-system}, {name and type, semantics of

variable, semantic type, type}].

• Relative Uniqueness of Methods (RUM) The Relative Uniqueness of Methods
(RUM) is defined as described by (26).

RUM(op, {M}) =

p∈{Outpop}∪{Inpop}
∑

(υt(p, {M}) − 1) (26)

Mechanism RUM is the count of (re-)usages of a parameter in all methods within
the given scope.

Value range The value range of RUM is [0, +∞[.

Discussion Underlying the same mechanism as NRUM , RUM also indicates the
use of the parameters of a given method within the given scope. The value range is,
however, not limited in order to avoid large scopes to marginalize the usage count
of the single parameters. Low values indicate highly cohesive methods.
The property Cohesion.I is not satisfied by RUM since its value range is not nor-
malized. Cohesion.II is also not satisfied by RUM . In contrast to NRUM , the

Distributed and Mobile Systems Group 56

4 Is There Reuse by Design? A Quantitative Approach

lack of relations (in aggregated scenarios) results in a RUM value of one instead of
zero.
As for UM , NUM and NRUM additional relationships or regrouping do not effect
the signatures of methods. Hence, RUM satisfies both Cohesion.III and Cohe-

sion.IV.
RUM is applicable for several points within the MV-space: MV(RUM) ≤ [operation,

external, {class-internal, service- internal, aggregation-internal,

system-internal, cross-system}, {name and type, semantics of variable,

semantic type, type}].

Besides cohesion, coupling might influence the reusability of services. In contrast to the
coupling metrics presented in section 3.2.1 which measure the overall coupling of a system,
more granular metrics are required in the context of reuse. Additionally, the metrics need
to be applicable from an outside-view of the services.

Generally any action of one method on another method or field constitutes coupling
(cf. [60, p. 479]). As the control flow is not obvious when solely considering structural
interfaces, only the notion of the use of identical parameters can be used for analyzing
coupling.

While focusing on single services rather than a whole system, the following metrics should
also satisfy the notion of the properties Coupling.I - Coupling.V. They will be checked
according to the definition given in section 3.2.1.

• Input-Output Coupling of Methods (IOCM) The Input-Output Coupling of
Methods (IOCM) is defined as described by (27).

IOCM(op, {M}) =

i∈{Inpop}
∑

isuniqueo(i, {M \ {op}}) (27)

Mechanism IOCM is the count of input parameters of a given method that are
unique within the set of output parameters of a given scope. The intersection of
input and output parameters of the actual method is not included in the count.

Value range The value range of IOCM is [0, +∞[

Discussion If the output of a method y overlaps with the set of input parameters
of a method op, the two methods are considered to be coupled. Of course, this is
only an indirect implication, as two non-coupled methods could also have overlap-
ping sets of input and output parameters. However, as this is a way of estimating
coupling without having an insight into the services (and not even into the aggre-
gators) it is proposed as a candidate metric for the assessment of coupling. Low
values indicate high coupling while high IOCM -values indicate a low coupling of
the actual method within the given scope.
As the count of unique parameters can not be zero, IOCM obviously satisfies the
Nonnegativity property Coupling.I. As low IOCM -values indicate high coupling,
the Null Value property Coupling.II is not satisfied by IOCM . IOCM does,
however, satisfy the Monotonicity property Coupling.III. This is because addi-
tional relations among services are not reflected by the signature of the services.

Distributed and Mobile Systems Group 57

4 Is There Reuse by Design? A Quantitative Approach

The Merging of Modules property Coupling.IV is also satisfied. This is because
the merging of methods from different services into another service does not affect
the signatures of the respective methods. Property Coupling.V, Disjoint Module

Additivity, is satisfied for the same reason.
IOCM is applicable for several points within the MV-space: MV(IOCM) ≤ [opera-

tion, external, {class-internal, service-internal, aggregation-

internal, system-internal, cross-system}, {name and type, semantics of

variable, semantic type, type}].

• Relative Input-Output Coupling of Methods (RIOCM) The Relative Input-
Output Coupling of Methods (RIOCM) is defined as described by (28).

RIOCM(op, {M}) =

i∈{Inpop}
∑

υo(i, {M \ {op}}) (28)

Mechanism RIOCM also utilizes the principle of overlapping input and output
parameter sets. In contrast with IOCM , it is not a count of the binary property
uniqueness of the input parameters of a given method in a given scope. It is
actually a count of occurrences of the single input parameters within the set of
output parameters. The intersection of input and output parameters of the actual
method is excluded from that count.

Value range The value range of RIOCM is [0, +∞[

Discussion Low RIOCM -values indicate a low coupling while high values indicate
high coupling of the actual method. The indicated coupling is also indirect. This is
for the same reasons that apply to IOCM .
As RIOCM -values can only be zero or positive, RIOCM satisfies Coupling.I. Also
Coupling.II is satisfied if all relations among services are mediated by aggregators.
This is because in such cases relations are reflected by the signature of the services’
methods. If relations are not mediated, Coupling.II is not satisfied. In addition
RIOCM satisfies Coupling.III - Coupling.V for the same reasons that apply for
IOCM .
RIOCM is applicable for several points within the MV-space: MV(RIOCM) ≤ [oper-

ation, external, {class-internal, service-internal, aggregation-

internal, system-internal, cross-system}, {name and type, semantics of

variable, semantic type, type}].

• Normalized Input-Output Coupling of Methods (NIOCM) The Normalized
Input-Output Coupling of Methods (NIOCM) is defined as described by (29).

NIOCM(op, {M}) =

0 if|{Inpop}| = 0

1 −

i∈{Inpop}
∑

isuniqueo(i, {M \ {op}})
|{Inpop}|

otherwise

(29)

Mechanism NIOCM sets the count of unique input parameters (that are equiva-
lent to IOCM) into a relation with the count of input parameters of the respective

Distributed and Mobile Systems Group 58

4 Is There Reuse by Design? A Quantitative Approach

method. By subtracting the normalized value from one, a method that solely uses
unique parameters as input gets a NIOCM -value of zero.

Value range The value range of NIOCM is [0, 1]

Discussion High NIOCM values indicate a high coupling while low values indicate
a low coupling.
By reversing the values (high values for high coupling and vice versa) the idea of
satisfying Coupling.II is addressed. In mediated scenarios NIOCM satisfies that
property. According to IOCM , NIOCM also satisfies the properties Coupling.I

and Coupling.III - Coupling.V.
NIOCM is applicable for several points within the MV-space: MV(NIOCM) ≤ [oper-

ation, external, {class-internal, service-internal, aggregation-

internal, system-internal, cross-system}, {name and type, semantics of

variable, semantic type, type}].

• Normalized Relative Input-Output Coupling of Methods (NRIOCM) The
Normalized Input-Output Coupling of Methods (NRIOCM) is defined as described
by (30).

NRIOCM(op, {M}) =

i∈{Inpop}
∑

(υo(i, {M \ {op}})
m∈{M\{op}}

∑

o∈{Outpm}
∑

1

(30)

Mechanism NRIOCM sets the count of (re-)usages of all input parameters of a
given method within the set of output parameters of all methods in relation with all
output parameters of all other methods within the scope. The intersection of input
and output parameters of op is not included into the count.
Of course, the denominator could be zero for an empty system. For the sake of
readability NRIOCM is not noted as a split function. Whenever the denominator
is zero, the value of NRIOCM will also be zero.

Value range The value range of NRIOCM is [0, 1]

Discussion Analogous to RICOM , high NRIOCM values indicate a highly cou-
pled method while low values indicate low coupling. In order to normalize this
metric, RIOCM is set into relation with the count of all output parameters of all
methods within the scope excluding the actual method itself. The drawback of such
normalization is that a large scope blurs the (re-)use count of the parameters.
According to the discussion outlined for NIOCM , NRIOCM satisfies the proper-
ties Coupling.I and Coupling.III - Coupling.V. Coupling.II is also satisfied for
mediated scenarios.
NRIOCM is applicable for several points within the MV-space: MV(NRIOCM) ≤ [op-

eration, external, {class-internal, service-internal, aggregation-

internal, system-internal, cross-system}, {name and type, semantics of

variable, semantic type, type}].

• Output-Input Coupling of Methods (OICM) The Input-Output Coupling of
Methods (OICM) is defined as described by (31).

OICM(op, {M}) =

o∈{Outpop}
∑

isuniquei(o, {M \ {op}}) (31)

Distributed and Mobile Systems Group 59

4 Is There Reuse by Design? A Quantitative Approach

Mechanism The mechanism of OICM is the same as for IOCM but uses the
opposite sets of parameters: it counts unique output parameters with regards to the
set of input parameters of the methods within the scope.

Value range The value range of OICM is [0, +∞[

Discussion While IOCM indicates whether a method is dependent on the output
of other methods, OICM indicates the same but in the opposite direction. It in-
dicates whether there are methods that use the output parameters of op as their
input parameters.
Low OICM -values indicate high coupling while high OICM values indicate a low
coupling of the actual method within the given scope.
Utilizing the same mechanisms as IOCM , OICM satisfies the same properties
Coupling.I and Coupling.III - Coupling.V. Coupling.II is also not satisfied.
OICM is applicable for several points within the MV-space: MV(OICM) ≤ [opera-

tion, external, {class-internal, service-internal, aggregation-internal,

system-internal, cross-system}, {name and type, semantics of variable,

semantic type, type}].

• Relative Output-Input Coupling of Methods (ROICM) The Relative Output-
Input Coupling of Methods (ROICM) is defined as described by (32).

ROICM(op, {M}) =

o∈{Outpop}
∑

υi(o, {M \ {op}}) (32)

Mechanism As RIOCM , ROICM utilizes the principle of overlapping input and
output parameter sets and uses the count of occurrences of the single output pa-
rameters within the set of input parameters. The intersection of output and input
parameters of the actual method is excluded from that count.

Value range The value range of ROICM is [0, +∞[

Discussion Low ROICM -values indicate a low coupling while high values indicate
high coupling of the actual method. The indicated coupling is also indirect.
As RIOCM , ROICM satisfies Coupling.I. Also Coupling.II is satisfied if all re-
lations among services are mediated by aggregators. In addition ROICM satisfies
Coupling.III - Coupling.V.
ROICM is applicable for several points within the MV-space: MV(ROICM) ≤ [oper-

ation, external, {class-internal, service-internal, aggregation-

internal, system-internal, cross-system}, {name and type, semantics of

variable, semantic type, type}].

• Normalized Output-Input Coupling of Methods (NOICM) The Input-Output
Coupling of Methods (NOICM) is defined as described by (33).

NOICM(op, {M}) =

0 if|{Outpop}| = 0

1 −

o∈{Outpop}
∑

isuniquei(o, {M \ {op}})
|{Outpop}|

otherwise

(33)

Distributed and Mobile Systems Group 60

4 Is There Reuse by Design? A Quantitative Approach

Mechanism NOICM is the normalization of OICM . In order to indicate low
coupling with low values the fraction is deducted from 1.

Value range The value range of NOICM is [0, 1]

Discussion The values of NOICM are to be interpreted according to NIOCM .
Low values indicate that hardly any methods within the scope use the same pa-
rameters as their respective input parameters as the method op uses as output
parameters.
Utilizing the same mechanisms as NIOCM , NOICM satisfies the same properties
Coupling.I and Coupling.III - Coupling.V. Coupling.II is also only satisfied
in mediated systems. OICM is applicable for several points within the MV-space:
MV(NOICM) ≤ [operation, external, {class-internal, service-internal,

aggregation-internal, system-internal, cross-system}, {name and type,

semantics of variable, semantic type, type}].

• Normalized Relative Output-Input Coupling of Methods (NROICM) The
Normalized Output-Input Coupling of Methods (NROICM) is defined as described
by (34).

NROICM(op, {M}) =

o∈{Outpop}
∑

(υi(o, {M \ {op}})
m∈{M\{op}}

∑

i∈{Inpm}
∑

1

(34)

Mechanism NROICM sets the count of (re-)usages of all output parameters of
a method within the set of input parameters of all methods in relation to all input
parameters of all other methods within the scope.

Value range The value range of NROICM is [0, 1]

Discussion High NROICM values indicate a highly coupled method while low
values indicate low coupling. The value is normalized to the value range of [0, 1].
The extent to which the input parameters of the methods depend on the output
parameters of op is indicated as well.
According to the discussion outlined for NRIOCM , NROICM satisfies the prop-
erties Coupling.I and Coupling.III - Coupling.V. Coupling.II is also satisfied
for mediated scenarios.
NROICM is applicable for several points within the MV-space: MV(NROICM) ≤ [op-

eration, external, {class-internal, service-internal, aggregation-

internal, system-internal, cross-system}, {name and type, semantics

of variable, semantic type, type}].

• Normalized Total Coupling of Methods (NTCM) The Normalized Total Cou-
pling of Methods (NTCM) is defined as described by (35).

NTCM(op, {M}) =
{

0 if|{Inpop}| + |{Outpop}| = 0

1 − OICM(op,{M})+IOCM(op,{M})
|{Outpop}|+|{Inpop}|

otherwise
(35)

Mechanism NTCM indicates the ratio of both unique input and output parame-
ters of the given method.

Distributed and Mobile Systems Group 61

4 Is There Reuse by Design? A Quantitative Approach

Value range The value range of NTCM is [0, 1]

Discussion Instead of analyzing only one part of a methods parameters, NTCM
includes all parameters of all methods within the scope into the analysis. High val-
ues indicate a high coupling (and few unique parameters) while low values indicate
low coupling.
Being a compound of NIOCM and NOICM , NTCM satisfies the properties Cou-
pling.I and Coupling.III - Coupling.V. Coupling.II is also satisfied for medi-
ated scenarios.
NTCM is applicable for several points within the MV-space: MV(NTCM) ≤ [opera-

tion, external, {class-internal, service-internal, aggregation- inter-

nal, system-internal, cross-system}, {name and type, semantics of vari-

able, semantic type, type}].

• Normalized Relative Total Coupling of Methods (NRTCM) The Relative
Total Coupling of Methods (NRTCM) is defined as described by (36).

NRTCM(op, {M}) =
{

0 if|{Inpop}| + |{Outpop}| = 0
NRIOCM(op,{M})×|{Inpop}|

|{Inpop}|+|{Outpop}|
+ NROICM(op,{M})×|{Outpop}|

|{Inpop}|+|{Outpop}|
otherwise

(36)

Mechanism NRTCM is the weighted sum of NRIOCM and NROICM of a given
method op within the specified scope {M}.
Value range The value range of NRTCM is [0, 1]

Discussion NRTCM is the summarizing candidate metric for coupling. As both
NIOCM and NOICM are normalized, it is possible to weight these single metrics
to indicate the total coupling of a method. Low values indicate low coupling while
high values indicate high coupling.
According to NRIOCM and NROICM , NRTCM satisfies the properties Cou-

pling.I and Coupling.III - Coupling.V. Coupling.II is also satisfied for medi-
ated scenarios.
NRTCM is applicable for several points within the MV-space: MV(NRTCM) ≤ [op-

eration, external, {class-internal, service-internal, aggregation-

internal, system-internal, cross-system}, {name and type, semantics of

variable, semantic type, type}].

Legner et al. describe that the granularity of a service should be“oriented towards business
suitability” [87, p. 6]. This is of course a subjective design principle. Furthermore it
does not give any support to the definition of granularity. Erradi et al. approach the
quantitative analysis of service granularity. They state that granularity can be quantified
using “the number of components that are invoked through a given operation on a service
interface [and] the number of resources’ state changes like the number of database tables
updated” [79, p. 157].
Measuring the number of state changes a service causes from an outside point of view is
not possible. This is why the presented granularity metrics – similarly to the presented
cohesion and coupling candidate metrics – focuses on elements of the public structural
interface of services.

Distributed and Mobile Systems Group 62

4 Is There Reuse by Design? A Quantitative Approach

• Signature Size of Method (SSM) The Signature Size of Methods (SSM) is
defined as described by (37).

SSM(op) = |{Inpop}| + |{Outpop}| (37)

Mechanism SSM is a count of both the input parameters and output parameters
of a method.

Value range The value range of SSM is [0, +∞[

Discussion SSM simply indicates the count of parameters of a method. Obviously
low SSM -values indicate a low granularity while high values indicate a high granu-
larity. Important is the specification of the MV-space in which the metric is applied.
This is because the SSM -value can vary if, for example, not types but semantics of
parameters are measured. This is why SSM should be used very carefully.
Being a size metric, SSM needs to be evaluated against the six properties a size
metric should – according to [58] – satisfy. A more detailed description of these
properties is given in section 3.2.1.
The property Size.I a size metric should satisfy is non-negativity. It is obviously
satisfied by SSM .
Size.II is the Null Value property that demands a metric value of 0 for empty
systems. This property is also satisfied as SSM is a count of elements of a system.
Size.III is the module additivity property. In order to prove additivity for SSM
it is necessary to consider a method as a system and its properties as its ele-
ments. The joint SSM value for two methods op1 and op2 can then be calculated
as |{Inpop1} ∪ {Inpop2}| + |{Outpop1} ∪ {Outpop2}|. Since by definition the meth-
ods are disjoint, the above calculation can be resolved to |{Inpop1}| + |{Inpop2}| +
|{Outpop1}| + |{Outpop2}|. Hence, SSM satisfies Size.III.
As the properties Size.IV - Size.VI follow from the satisfaction of properties
Size.I- Size.III SSM also satisfies them.
SSM is applicable for several points within the MV-space: MV(SSM) ≤ [operation,

external, {class-internal, service-internal, aggregation-internal,

system-internal, cross-system}, {name and type, semantics of variable,

semantic type, type}].

• Signature Size Deviation of Method (SSDM) The Signature Size Deviation
of Methods (SSDM) is defined as described by (38).

SSDM(op, {M}) =

0 if SSM(op) = 0

(SSM(op)−

m∈{M}
∑ SSM(m)

|{M}|)2

SSM(op)
otherwise

(38)

Mechanism According to the variance of variates, SSDM indicates the distance
between an actual method’s granularity (expressed by SSM) and the mean granular-
ity within the scope. This value is set into a relation with the method’s granularity
in order to achieve comparability for various levels of granularity.

Value range The value range of SSDM is [0, +∞[

Discussion As stated by [79] services may be “offered at different levels with differ-
ent granularity. High-level business process functionality is externalized as coarse-
grained services for cross-LOB [line of business], cross-channel or external access.

Distributed and Mobile Systems Group 63

4 Is There Reuse by Design? A Quantitative Approach

These are realized by composing fine-grained services harvested from existing cus-
tom/legacy systems or packages” [79, p. 156]. Besides the implication of a service
meta-model, this quotation outlines that there is an appropriate granularity of ser-
vices (and their methods) according to the scope in which the granularity is mea-
sured.
If design principles are used in order to fix the general design of single services
and methods, SSDM can be used as an indicator that describes whether the ac-
tual method fits into the overall granularity that is used for methods in the scope.
However, the definition of that scope is crucial. It should be aligned with a service
meta-model in order to include services with equal scopes into the calculation.
As SSDM does not measure the actual granularity of a method it is not consid-
ered to be a size metric. Thus, no properties are checked for this candidate metric.
SSDM is applicable for several points within the MV-space: MV(SSDM) ≤ [opera-

tion, external, {class-internal, service-internal, aggregation-internal,

system-internal, cross-system}, {name and type, semantics of variable,

semantic type, type}].

As the above discussion revealed, not all metrics satisfy all desiderata for their respective
class of metric. This is due to the fact that all metrics were designed with focus on eased
applicability. As a consequence, they can be applied in the following to a productive
application. However, as the metrics do not all satisfy all desiderata, applying them
can only be an approach towards the assessment of whether the design principles they
represent have an impact on reusability of services.

4.2 Introduction to the Case Study

In order to investigate whether the presented candidate metrics – and the concepts they
stand for – are applicable for designing reusable services, they are applied to a real-life
project that was conducted independently of this research or any other SOA activities
within BASF IT Services.
The project is a multi-million dollar project that aims to unify the processes of organiza-
tional changes. For the sake of nondisclosure it is unfortunately not possible to describe
the processes in complete detail. However, the general software architecture can be out-
lined and the services can be roughly described.

The project consists of three layers: a user interface, a web service layer and various back-
end systems. The user interface acts as mediator and service orchestrator. All process
steps are backed up by one method of a web service.
The web services are exposed by the web service layer. No integration server is used.
Instead, J2EE components are exposed as web services. The exposure takes place by using
dedicated web service classes. These classes transfer the data via data transfer objects
to the session-bean layer of the J2EE part. This part in call interacts with the back-
end systems. In most cases this is achieved by accessing the databases of the respective
back-end systems. This architecture is outlined in figure 5.

The single web services are groupings of methods that are required by each process. Hence,
there is no dedicated grouping for reuse nor is there any actual reuse. The web service layer
is dedicated for each process. However, there is common functionality. Some methods

Distributed and Mobile Systems Group 64

4 Is There Reuse by Design? A Quantitative Approach

Figure 5: Architectural Sketch of the Application System

are used by multiple processes. These methods have the same name and signature as the
corresponding methods of other services. Their implementation on the level of session
beans is also reused.

The web services are named based on the respective process they support. Their methods
correspond to the process steps in the user interface. Unfortunately, it was determined
that every method has its own input and output parameters. However, same methods
have the same parameters and re-used methods can be identified.
Such a method looks like the following:

approveNewEmployeeReturn approveNewEmployee(ApproveNewEmployeeIn)

By breaking down the complex types of all methods there are only elements of the type
String. Fortunately, the elements of all types are formed using the same naming con-
vention. Hence, by considering the name of an element, the respective semantics of
that element is unambiguous. Therefore, in order to analyze the given implementation,
all metrics needed to be applicable in the MV-space at a point that satisfies these re-
quirements: [operation, {internal, external}, {class-internal, service- in-

ternal, aggregation-internal, system-internal, cross-system}, semantics of

variable].

In total, 87 processes are supported by the application system. Each process consists of
three to 20 steps. In order to apply the presented candidate metrics both, the source code
as well as the WSDL-files of the web services were considered. Randomly, 81 methods
were chosen out of 12 processes. Whenever two methods had the same name they were
considered reused. For every method all candidate metrics were calculated. The metrics
LCOM and LCOM∗ were calculated both for the session beans as well as for the data
access objects (DAO) using the tool eclipse metrics [85]. All other candidate metrics were
manually calculated using a spreadsheet. Based on this data, the discriminative power of
the candidate metrics was tested.

As the application does not incorporate service-oriented principles such as service aggre-
gation, the coupling metrics that were applied have to be interpreted accordingly.

Distributed and Mobile Systems Group 65

4 Is There Reuse by Design? A Quantitative Approach

4.3 On the Candidate Metrics’ Discriminative Power

Table 9: Group Statistics

Out of the 81 methods that were randomly chosen, 16 were reused21 and 29 were not
reused. This means that the average use of a reused method was 3.25. It was verified that
the 29 methods that were not reused were also not reused outside of the drawn sample.
Based on these values, a discriminant analysis was performed.22 Two groups were defined.
The first group (0) contained all methods that were not reused (used only once). The
second group (1) contained all methods that were used twice or more often.
For the methods of both groups, all the previously-described candidate metrics were cal-
culated. Methods represent the population of the analysis while the single candidate
represents the dependent attributes. For each group the mean and standard deviation
was calculated. These values are shown in table 9.

21Reused methods were counted as often as they were used.
22SPSS version 10.0.5

Distributed and Mobile Systems Group 66

4 Is There Reuse by Design? A Quantitative Approach

Table 10: Test of Discriminant Function based on Wilks’ Lambda

In order to analyze whether there was a significant difference between the two groups of
methods, a discriminant analysis was performed (Wilks’ Lambda). The analysis showed
that there was a significant discriminator that varied between the two groups (p = 0.041).
The qualitative properties of the discriminant function are shown in table 10.

In order to determine the significant attributes, an analysis of the means of the two groups
was performed. The results of this comparison of the two groups are shown in table 11.
This indicates that the two candidate metrics that are mainly responsible for the difference
between the two groups are SSM (p = 0.006) and RUM (p = 0.032).

Table 11: Test of Equality – Group Mean Values

A step-wise procedure was performed next to determine the most significant discriminant
function coefficient. The single steps select the most significant candidate metrics accord-
ing to their discriminant power. This was measured by calculating the Wilks’ Lambda
value for each candidate metric in every step. The single step for the selection of candidate
metrics were:

1. Choose candidate metrics with the lowest Wilks’ Lambda value that satisfies the
acceptance criterion (F-value of at least 3.84).

2. Choose candidate metrics with the second lowest Wilks’ Lambda value that satisfies
the acceptance criterion. If the combination of the first and the second candidate
metric have significant discriminant power, both candidate metrics are accepted. If
not, the first candidate metric is rejected.

3. The procedure stops as soon as no other candidate metrics satisfies the acceptance
criterion.

Distributed and Mobile Systems Group 67

4 Is There Reuse by Design? A Quantitative Approach

Table 12: Variables Included in the Analysis of Step 1

A summary of the (only) step for the presented candidate metrics is shown in table 12
and table 13. Table 12 indicates that SSM is considered in the first step for inclusion.
Table 13 shows the candidate metrics that were excluded from this step.
According to this step-wise analysis the most significant candidate metric that discrimi-
nates both groups of methods is SSM . Including additional candidate metrics into the
analysis does not improve the significance of the discriminate function.

The raw data for the analysis can be found in appendix B.

4.4 Conclusion

According to the step-wise procedure and the comparison of group mean values, two
candidate metrics have a certain discriminant power in terms of reusability: RUM and
SSM . This means that none of the coupling metrics introduced showed significance on
the reuse of a service method.

Granularity According to the statistics outlined above, the size of a method’s signature
influences the reusability significantly. For the group of methods that were not reused at
all, the mean SSM -value is 6.7 while the group of reused methods shows a mean of 12.9.
This means that methods of services should be cut in a way that allows them to compute
several parameters. As there was no significance for the SSDM metric, it can not be
stated whether there is an optimal distribution of input and output parameters of a
method.
Interesting to note is that more coarse-grained methods and services are likely to decrease
the overall amount of services. Even if not proven statistically, this is an important yet
trivial principle to consider when designing services: the less services exist within an
organization, the more easily the landscape of services can be managed.

Cohesion Cohesion also showed significance for re-usability. RUM , in particular, pos-
sesses the discriminant power to differentiate between reused methods and methods that
are not reused. The mean RUM -value for reused methods is 143.3 while the mean value
for methods that are not reused is 100. Hence, reused methods are less unique. Following
the argumentation from [60], reused methods would be less cohesive than methods that
are used only once.
This analysis contradicts the assumption described about cohesion. It can be stipulated
that a service method is more likely to be re-used if it uses common parameters, though.
This is an indicator for the benefit of using a global type system rather than designing
service methods by the principle of cohesion.

In sum, it can be said that the analysis of the accessible data did support the assumptions
about the impact of cohesion and coupling that are widely described.
Only the accepted fact that service methods should be coarse grained proved to have
significant influence on reusability. This leads to the conclusion that “over engineering”

Distributed and Mobile Systems Group 68

4 Is There Reuse by Design? A Quantitative Approach

Table 13: Variables NOT Included in The Analysis of Step 1

services with regards to their possible reusability will provide little benefit. Hence, a
service design methodology has to provide fast solutions in a problem-oriented manner.
While supporting fast design of services, this methodology should also respect the following
principles:

Distributed and Mobile Systems Group 69

4 Is There Reuse by Design? A Quantitative Approach

• Design services for a given use case. Do not design them for reuse.

• Analyze existing services before designing new ones. If reuse is possible, reuse
services.

• Keep services (especially their methods) coarse-grained.

• Include different levels of services. Each level should have its own level of granularity.

• Use a common type system. All services should use the same types, names and
semantics for their parameters.

The design methodology for composite applications that is discussed in chapter 6 includes
an approach for deriving suitable services. This service design methodology incorporates
the principles that have been identified by the analysis of this chapter.

Distributed and Mobile Systems Group 70

5 A Reference Architecture for Composite Applications

5 Standardizing the Application of the Service-Oriented

Style: A Reference Architecture for Business Process-

Oriented Composite Applications in Heterogeneous

Application Landscapes

The discussion in chapter 2 has shown that the difference between the service-oriented
and the component-oriented architectural style is minimal. The advancement made by
the introduction of service orientation is, however, crucial for the applicability of the
concept. On one hand, the eased understandability of protocols and platforms (such as
web services [36]) can not be underestimated for the success of an architectural style.
More interesting is the explicit platform neutral definition of concepts that are important
in the context of industrial and heterogeneous software landscapes, though.
Concluding the analysis of the service-oriented architecture in chapters 2 and 3, this
architectural style is beneficial if the functionality of back-end systems can be reused
in flexible, business process-oriented applications. Such composite applications are built
using services that are exposed by back-end systems.

Several approaches exist that aim to provide means for structuring composite applications.
They all describe a meta-model for a software architecture (cf. [88]) that incorporates
service-oriented principles to a certain extent. [11], for instance, proposes the use of dif-
ferent types and levels of services to build composite applications. The idea of using a
business process-like service orchestration is also included in this reference architecture. A
service interface layer, an orchestration layer, a business service layer and an application
service layer are described. The service interface layer is in between the business process
layer and the application layer. It describes a service mediation layer. There, emphasis is
put on abstraction. Application services describe functionality exposed by the application
layer while business services represent functionality that is used to reach business goals
by orchestrating in alignment with a business process.
Such a business process-oriented orchestration on top of services employs the idea of
control-centralization that is a major advantage of the service-oriented style. In order to
relate the orchestrated services with back-end services, multiple layers of service composi-
tion are proposed. [89] and [81] also define a reference architecture with multiple levels of
service compositions. So-called macro- and micro-workflows are used to reuse functional-
ity of back-end systems through services. Emphasis is put on the possible realization of
the workflow engines that are used to orchestrate the single services.
These models are conceptional frameworks that are meant to provide an understanding of
how composite applications should be designed. As outlined in [15], they lack, however,
a description of appropriate integration mechanisms that are a fundamental element of
service-oriented systems (cf. [15, p. 68]).
Since this is not their purpose, they also lack a more detailed description of the single lay-
ers. These approaches neither handle the issues of data, context nor transaction handling
as they were described as necessary in section 3.2.2.
This is because these approaches include best practices for designing composite applica-
tions. They do not describe how a composite application should be implemented.
An approach that includes implementation aspects is the composite application frame-
work WS-CAF [30]. Here, transactional security and separation of long-running and
short-running processes are incorporated. This approach describes a set of protocols that

Distributed and Mobile Systems Group 71

5 A Reference Architecture for Composite Applications

a runtime environment might use. It does not incorporate design principles of the service-
oriented paradigm at all. Furthermore, it is only platform independent on a very general
level: all platforms implementing the protocols are compliant.

In order to provide a structure that allows industry companies to leverage the advantages
of the service-oriented architectural style in the context of heterogeneous application land-
scapes, a reference architecture that helps both, to design and implement composite ap-
plications is presented in this chapter. The underlying design concepts are similar to the
ones of [11], [89], and [90] — they use multiple levels of abstraction in order to separate
the concerns of composite applications. In the approach presented here, special attention
is put on the ability of composite applications to utilize distributed and heterogeneous
application systems that are not necessarily accessible by the means of services.
The presented concepts are defined independently from any technology that may be used
to realize composite applications. This way, a development methodology becomes possi-
ble that can be used to design composite applications without being too limited by the
constraints of a platform for central components. Further, the reference architecture is
additionally designed in a way that a top-down methodology of composite application
development is feasible, service-oriented principles are supported and the resulting arti-
facts can be used for realizing a composite application. This methodology is presented in
chapter 6.
In terms of the Model Driven Architecture, the reference architecture that is described
below is twofold. It describes first a meta structure for platform-independent models of a
software architecture. Second, it contains a functional description as well as requirements
for a virtual machine that is used to execute a platform-specific model (cf. [91, p. 2-6]).

5.1 Outline of the Architecture

The soft design principles of the service-oriented architectural style that were identified in
chapter 2 are loose coupling, autonomy, abstraction and reusability. As described above,
reference architectures for service-oriented applications usually incorporate abstraction
by the notion of several layers. The reference architecture introduced here also incorpo-
rates this principle. It uses a central service orchestration layer that aggregates services
exposed by less abstract layers. The reference architecture allows for a business process-
based definition of this orchestration. For this sake it abstracts from“technical”details. It
includes a data repository for context handling that also participates in the management
of distributed transactions. This, of course, increases the extent of coupling between the
central elements of the composite application (cf. [6, pp. 185ff]). This is necessary to
create efficient composites that can be deployed on arbitrary platforms (cf. [6, pp. 191ff]).
The notion of an eventing system is used for consistency management within the context
and for de-coupling the different processes and tasks that are possibly supported by one
composite application.
By connecting these components, the reference architecture defines a second layer of ser-
vice aggregation — the service coordination layer. On this layer, if required, orchestrated
entities from the top layer can be described as aggregations of functionality that is ex-
posed by systems of the application landscape. It provides a mechanism for the mediation
of the services. This coordination includes the “details” of transactional management and
connects application systems either directly to the composite using the common service

Distributed and Mobile Systems Group 72

5 A Reference Architecture for Composite Applications

Figure 6: Reference Architecture for Composite Applications

protocol or by using the data exchange and data transformation layer. This layer ensures,
together with the layer of connectivity, various ways of interactions with back-end systems
while abstracting from communication semantics.

This reference architecture allows for defining service boundaries in a business-driven way.
Together with the design methodology of chapter 6, a business process and its functions
can be used to define the services for the single layers. The boundaries of these services
are determined by the business descriptions. This way, the principles of autonomy (cf.
chapter 2) and intersection points (cf. [15]) are incorporated.
As described in chapter 2, the use of aggregators promotes loose coupling. This is because
the interaction necessary for the provisioning of a service is encapsulated by them. By
including the layer of service coordination, this idea is incorporated into the reference
architecture. It encapsulates application system-specific coordination from the process
orchestration and includes loose coupling this way. The dedicated eventing system used
to manage processes also decouples the components of a composite that is aligned with
the reference architecture. By the means of the data exchange and data transformation
layer, loose coupling is promoted by the means of validating the actual content of service
interactions (cf. [6, p. 192]).
By providing the technical circumstances for dividing business-focused service consumers
(the orchestration), the architecture also allows a distinguished service meta-model that,
together with the findings of chapter 4, allows for the design of reusable services.
Finally, the data exchange and data transformation layer allows for another principle of
service orientation: reusing the functionality of back-end systems. The aspect of reusabil-
ity is then addressed by the service design methodology of chapter 6 that is based on the
reference architecture.

Distributed and Mobile Systems Group 73

5 A Reference Architecture for Composite Applications

5.2 Events

Business processes can be seen as event-driven computations of data (cf. [92]). In the con-
text of a business process-controlled service-oriented architecture, this simply means that
both, the data as well its computation are dependent on events. In order to outline how
the reference architecture allows composite applications that are based on it to operate
correctly on consistent data, the understanding of events as they underlie the architecture
is first presented.

Starting from scratch, an event can be defined as anything that happens. In a composite
application, an event is anything that happens and that is noteworthy for the composite
application. For instance, the change of the state in an application system that provides
functionality for a composite application is an event. Further, an event is always a result
of preliminary events that caused the change of the state. A relevant event as it is
defined here is if a certain state within a connected application system is reached and that
this situation has to be treated by a business process that is supported by a composite
application. Consequently, the understanding of an event is that it is an aggregation of
things that happened within an integrated system. Hence, an event is an aggregation of
pre-events.

Ferstl et al. describe integration as the task of integrating tasks (cf. [93, p. 220]). In [93]
a task is described from an outside view by events that cause the need for performing a
task, goals to be achieved by the task and a set of data called task object that is concerned
with the task’s performance. A task is performed by executing a solution procedure that
operates on the task object (cf. [93, pp. 89ff.]). A task is determined by a set of pre-events.
Transitively the solution procedure and the task object are also determined (cf. [93, p.
91]). As business processes describe the central control flow of composites, the solution
procedure is considered a certain business process. Thus, an event identifies a business
process.

In order to make use of this interpretation, an event needs to be described in greater detail.
Since the above argumentation involves states and changes of states, an understanding of
a system as a state space system is implied. A system Ω can be seen as a set of possible
state transitions within the Cartesian product of all states Z. Thus, a system Ω is defined
as Ω ⊆ Z × Z (cf. [93, p. 15]). Since a system is a set of transitions, an event E — that
is identified to be a state transition — is an element of a relation on Z : E ∈ Z × Z.
This understanding of an event is not operational. In order to use this definition of an
event, it would need to identify two states of an application system — which means
two sets of certain values occurring in an application system’s memory — as an event
that determines a solution procedure and therefore a business process within a composite
application.
By using abstraction, this issue can be overcome. Thus, events should be described by
types of events. A type of event is simply a set of different events indicating similar state
transitions. Essentially, this makes a type of an event named T being also a relation on
Z : T ⊆ Z × Z.
Consequently, an event type describes the actions which are to be performed and, more
importantly, what set of data is possibly affected.

Taking these ideas into account, some relations between event types can be used to de-
scribe relations between sets of actions and data that are modified by those actions. Such

Distributed and Mobile Systems Group 74

5 A Reference Architecture for Composite Applications

relations allow for the definition of rules that can support the design of composite appli-
cations.

5.2.1 Event Relations

Our model assumes four types of relations between event types: Concurrent (‖), blocks
(⊥), updates (⊢) and follows (⊲). Concurrent means that actions of instances of processes
computing events of those types compute on disjoint task objects. By defining a ‖ b, it
is expressed that a process A computing an event of type a will not modify data that is
needed by process B and vice versa. This is the default relation between event types.
The relations ⊥ and ⊢ are only reasonable between event types that lead to actions,
which are changing the data used by actions that are computing the other type of event.
a ⊥ b states that a process B handling an event of type b can not be started while a
process A that handles an event ~a23 is processed. Hence, a ⊥ b implies that ~b can not
be handled while ~a is active. This is because the changes that A is going to perform
would make further processing of ~b impossible.24 This relation has to be used whenever
the computation of events could affect each other in an unacceptable way.
The relation a ⊢ b implies that actions that are performed in order to compute ~b have to
make use of the state of A, indicating that the state is unidirectionally shared between
A and B. This relation can also occur bidirectional, meaning that A and B share their
states. The benefit of having such a relation is that loosely coupled services that have
disjoint memories – similar to different process instances – can easily share data without
sophisticated communication. The definition of this relation among different event types
changes the communication paradigm for the set of affected data from messaging to spaces
(cf. [94]).

Relation reflexive irreflexive symmetric antisymmetric transitive total

‖⊆Θ × Θ Ø
√ √

Ø
√

Ø
⊥⊆Θ × Θ

√
Ø Ø Ø

√
Ø

⊢⊆Θ × Θ Ø Ø Ø Ø
√

Ø
⊲ ⊆Θ × Θ Ø

√
Ø Ø

√
Ø

Table 14: Properties of Relations

The updates relation is an optimistic relation. This is because the actions that compute
events whose types are set into an update relation, can share the data read but should
not write the same data. This is because writing to the same data could lead to race
conditions and data inconsistency.
The follows relation indicates that an event of type ã is generated because of the processing
of an event of type a: a ⊲ ã. This causal relation is needed to allow a fine-granular
distinction of event types. An example of an event of type ã could be the generation of
an invoice by an ERP-system because of the arrival of an order (event of type a).
Considering again Z as all possible states, an event type T as T ⊆ Z × Z and the set of
all event types Θ as Θ ⊆ Z × Z (T ⊆ Θ), table 14 shows the properties of the described

23~a is an event of type a.
24Therefore an already running process instance B will have to fail if a process A becomes active.

Distributed and Mobile Systems Group 75

5 A Reference Architecture for Composite Applications

relations.25

One event type determines one (sub-) process. Hence, a relation called triggers (≫)
between an event type and a process type is introduced. ≫ is a surjection from the set of
all event types Θ into the set of all business processes types Φ so that ≫⊆ Θ×Φ. Hence,
a ≫ X implies that an event of type a triggers a process of type X. Alternatively, one can
say that whenever an event of type a occurs, a process ~X of type X has to be executed.
This relation can be used together with the relations between event types in order to define
simple rules that support the definition of guidelines for designing business processes.
These rules are described in table 15.

Nr. Rule name Rule
I. Process Unambiguity (a ⊲ c) ⇒ ((a ≫ X) ∧ (c ≫ X))
II. Single Event ((a ≫ X) ∧ (c ≫ X)) ⇒

((a ⊲ c)∨ (c ⊲ a)∨ (a⊥c)∨ (c⊥a)∨ ((a ⊢ c)∧ (c ⊢ a)))
III. Same Process Replication ((a ⊢ c)∧(d ⊢ c)) ⇒ ((a ≫ X)∧ (c ≫ X)∧ (d ≫ X))

Table 15: Process Rules

Rule number one, Process Unambiguity, states that events of two causally related event
types have to be processed by the same type of process. Rule number two, Single Event,
states that two events that are to be computed by the same process are either causally
related (and therefore executed one after another), blocking each other or updating their
states bidirectionally. In consequence, one process can only process one event at a time or
the memory of the processes must be shared. That achieves strict or sequential consistency
for the process’ private memory (cf. [71, pp. 299ff.]). This is because rule III defines that
memories can only be shared between services of the same process type.

The introduced definitions and relations also allow for the definition of rules between event
types only. Most of the rules that could be defined are dependent on the semantics of the
business processes. Hence, the procedure of implementing a composite application should
also include the rules that describe relations only between event types. Either way, some
rules can be defined independently of actual scenarios.
However, some rules are independent of any actual scenario. These rules, which can
be predefined, include rules that involve the set of data that is modified by processes.
Although they are general rules, most of them target data consistency.
The scenario-independent rules are introduced in table 16.

Rule IV defines relations ‖,⊥ and ⊢ as being mutually exclusive. Rule V states that each
two event types have to be in a relation to each other. The default relation is ‖.

By using rule VI, Unambiguity an unambiguous replication between the data repository
instances of different composite applications can be assured if required. Only instances are
addressed because rule III prescribes that all events that lead to a replication of memories
need to be handled by the same type of process.
The rules Serialization (VII) and Replication (VIII) are needed to guarantee data consis-
tency within a single composite application that realizes one process.

25Note that one event type can be defined to be in an updates relation with itself. This is, however,
not the default.

Distributed and Mobile Systems Group 76

5 A Reference Architecture for Composite Applications

Nr. Rule name Rule
IV. Exclusiveness ∀⊗∈{‖,⊥,⊢}.∀⊙∈{‖,⊥,⊢}.(a ⊗ c) ⇒ ¬(a ⊙ c); (⊗ 6= ⊙)
V. Totality ¬((a ⊗ b) ∨ (b ⊗ a)) ⇒ (a ‖ b); (⊗ ∈ {⊥,⊢} , (a 6= b))
VI. Unambiguity ((a ⊢ c)∧(x ⊢ c)) ⇒ ((a ⊢ x) ∧ (x ⊢ a))
VII. Serialization (a ⊥ c) ⇔ (c ⊥ a)
VIII. Replication (a ⊢ c) ⇔ (c ⊢ a)

Table 16: Event Type Rules

Events are important for the control of data consistency. In order to allow for a flexible re-
alization of a composite application on any platform, the context of a process is explicitly
kept as a shared memory for all elements of a composite application. This shared memory
– the so-called data repository that is described in chapter 5.6 – ensures data consistency
and potentially reduces communication overhead. In order to effectively realize a data
repository, an identifier of the relevant data is required. This identifier is introduced to
the reference architecture by the means of Event-objects. They can be seen as tickets or
message slips (cf. [95, pp. 301ff.]).
An Event is a data structure that represents business events within the composite ap-
plication. Events are categorized using event types. In order to capture this relation
an Event is associated with an EventType. Event-objects as well as EventType-objects
are identified by the use of unique numbers. These numbers are part of an event’s state.
These identifiers are generated respectively and put into the state the moment the Event

is generated. This is done using a special component of the reference architecture — the
eventing system that is introduced in chapter 5.5.

5.2.2 Realizing Data Visibility using Event Types and Relations

The representation and use of data in workflows is described in [96] through the notion of
workflow data patterns. Those patterns are categorized into four clusters. One of them
is the data visibility patterns (cf. [96, p. 358]). Seven different scopes of visibility have
been identified there. Six of those scopes can be realized by an appropriate definition of
event type boundaries and event relations. Since a composite application that is formed
by this reference architecture constitutes a workflow system, these data patterns might
be required for the realization of an actual composite application. The notions of event
types and a data repository are suitable for creating some of those patterns. How the
single data visibility patterns can be realized is described in the following.

• Task Data“Data elements can be defined by tasks which are accessible only within
the context of individual execution instances of that task” [96, p. 359]. Considering
a service orchestration as the workflow and every orchestrated service (enterprise
service; cf. section 6.1) as one task, by defining one event type per enterprise
service, the respective data is only visible within the services that are aggregated to
an enterprise service (coordination services and application services; cf. section 6.1).
If the visibility should be further restricted to single services that are aggregated,
additional event types need to be defined.26

26This weakens the principle of centralizing control into a service orchestration. This is why it is not
recommended to restrict the data visibility further than to enterprise services.

Distributed and Mobile Systems Group 77

5 A Reference Architecture for Composite Applications

• Block Data “Block tasks [...] are able to define data elements which are accessible
by each of the components of the corresponding sub-workflow” [96, p. 360]. If the
event type boundaries are solely managed by the service orchestration, this is the
default behavior. As described for the Task Data pattern, if one event type is defined
per enterprise service the Block Data pattern is realized.

• Scope Data “Data elements can be defined which are accessible by a subset of the
tasks in a case” [96, p. 362]. By simply defining less event types than enterprise
services, enterprise services that compute the same event type are able to access the
same data.

• Multiple Instance Data “Tasks which are able to execute multiple times within
a single workflow case can define data elements which are specific to an individual
execution instance” [96, p. 363]. In order to have multiple instances accessing
the same data, an updates-relation (⊢) needs to be defined on the event type that
determines the respective task. Assuming that an event e triggers a relevant type
of task, the relation e ⊢ e needs to be defined in order to realize this pattern.

• Case Data “Data elements are supported which are specific to a process instance
or case of a workflow. They can be accessed by all components of the workflow
during the execution of the case” [96, p. 365]. This visibility pattern can be realized
by defining an event type per business process. As an Event is generated for each
process instance, data that is stored in the data repository by using this event is
visible throughout the respective process.

• Workflow Data “Data elements are supported which are accessible to all com-
ponents in each and every case of the workflow and are within the control of the
workflow system” [96, p. 366]. The definition of having a single event type per pro-
cess is equivalent to the definition for the Case Data pattern. In order to realize the
Workflow Data pattern, an updates-relation (⊢) needs to be defined on this event
type. Assuming that an event e triggers a process E, the relation e ⊢ e needs to be
defined if the Workflow Data pattern should be realized.

• Environment Data “Data elements which exist in the external operating environ-
ment are able to be accessed by components of the workflow during execution” [96, p.
367]. This visibility pattern is not supported by the notion of event types. Data
of external resources (application systems) can only be accessed by the means of
explicit service invocations.

5.3 Heterogeneous Application Systems

The providers of functionality for composite applications are the various application sys-
tems that exist within the landscape of an organization. These application systems could
just be a set of services that run on application servers. In such a scenario an organization
is free to develop services as they are needed. However, this is rare in reality.
More likely application systems are COTS. Over time, organizations usually have bought
and consolidated application systems for various purposes. Most likely these applica-
tion systems are also integrated using Information-Oriented Application Integration. Of
course, these landscapes support the processes of an organization well. They are not flex-
ible, though (cf. the discussion of section 2.2). A BPIOAI approach would be preferable.

Distributed and Mobile Systems Group 78

5 A Reference Architecture for Composite Applications

However, it is simply because of budget that flexibility issues can not be addressed by
reorganizing application systems into service providers.
This is why the application systems need to be “integratable” by exposing their func-
tionality as services — services referred to in this thesis as “application services”. Some
proposals exist that aim to support the definition of application services in a way that
required functionality and possibilities of application systems are considered as a trade-off
(cf. [97], [11]). Despite the argument of budget, the idea of deploying COTS in an envi-
ronment is to use standard software that is supported by the respective vendor. This is
why it is usually not an option to deploy services on application systems at will (e.g., by
the means of wrappers as proposed by [97]).
If service orientation could be applied to a heterogeneous landscape, this is only possible
if application systems remain unchanged (this means not reprogrammed but possibly re-
configured). The heterogeneity needs to be addressed elsewhere.
This is why there are no constraints that can be put onto application systems. Fur-
thermore, a flexible and independent mechanism is required that enables heterogeneous
application systems to participate in a composite application. This mechanism is provided
by the presented reference architecture.
Application systems are also considered as point of human-interactions with composite
applications. This is because it is not feasible to remove all user interactions from appli-
cation systems in order to establish a composite application. However, one advantage of
the service-oriented architectural style is the unification of user-interaction (cf. section
3.2.3). This is why a composite application usually consists of some sort of user portal
(cf. chapter 2). The presented reference architecture does, however, not prescribe the
usage of a portal. The service-oriented architectural style is considered an architectural
style that establishes a central control instance in a heterogeneous application landscape
to thus increase the maintainability of the overall process. Achieving this is also possible
without using a portal. Hence, from a software architecture point of view, portals that
form the presentation logic of a composite application are considered back-end applica-
tion systems. As a consequence, there are no constraints or requirements imposed by this
reference architecture towards portals.
This is a specific approach of this reference architecture. It has two additional advantages:
first, it completely de-couples the control logic from user interactions or “wizards” that
guide a user through a graphical user interface. Second, it allows for the transparent
replacement of user interactions. This way the degree of automation can be increased
without changing the overall process. Also outsourcing of certain tasks becomes easier.

5.4 Connectivity to Application Systems

Purpose and Functionality As a prerequisite, composite applications rely on a com-
mon protocol that is shared by service consumers and providers (cf. [4, p. 218]). The
connectivity layer addresses the integration of application systems that do not provide
functionality by using the common protocol of a specific composite application. It con-
nects application systems and the composite application by homogenizing the protocol
that is used to access functionality. The connectivity is realized by adapters. In general,
an adapter “convert[s] the interface of a class into another interface [...]. An adapter lets
classes work together that couldn’t otherwise because of incompatible interfaces” [37, p.
139]. This description signifies that an adapter basically handles differences between two
components by creating an intermediary abstraction between them. In the context of

Distributed and Mobile Systems Group 79

5 A Reference Architecture for Composite Applications

composite applications the definition of an adapter must be narrowed. Linthicum defines
adapters from an application integration point of view as constructs that “[...] remove
us from the need to deal with the interface details that communicate with a variety of
different source and target systems. What’s more, adapters provide more consistency
from interface to interface because they are, by design, reusable from problem domain
to problem domain. [...] They merely deal with the connectivity to the source or target
systems” [4, pp. 23f.]. Hence, adapters are domain-independent intermediary components
that connect in a system-specific way to application systems and to make the application
systems accessible by composite applications. Adapters represent “[...] layers between the
[composite application] and the source or target application” [4, p. 218].
Adapters address heterogeneous protocols and provide a translation that is specific for
a certain (class) of application system. In addition to heterogeneous protocols, data for-
mats are likely to differ in application systems. According to [95], data representation,
data structures and data types can differ. Heterogeneous data is addressed by the data ex-
change and data transformation (DET) layer’s heterogeneity service (cf. section 5.7.3). In
some scenarios, though, the platform of the DET might rely on a common data represen-
tation. In order to realize such scenarios, the adapters for the single application systems
need to address differences in the data representation and transform the data prior to
forwarding them to the DET. Even if it is conceptually possible, it is unlikely to deploy
adapters and not a DET to connect to application systems. This is because application
systems that do not natively support a service interoperability protocol usually do not
store data using the data structures and data types used by a composite application.

Realization Requirements Adapters need to support any kind of interaction that
is required between a composite application and application systems. Possible ways of
(service-based) interaction are described in [98]. The different ways of interacting can be
realized by using the DET (cf. section 5.7.8). As the DET relies on the functionality of
the connectivity layer, it needs to provide the following functionality:

• Send - Service Interaction Pattern 1 of [98].
Application systems need to be capable of intrinsically sending requests to a com-
posite application. In order to realize this functionality, the connectivity layer needs
to seamlessly adapt to the standard mechanisms of the application system. Usually
this is realized by configuring application systems in a way to use the connectivity
layer as endpoint of their outbound communication. The connectivity layer in turn
transforms the protocol to the common protocol of the composite application. This
way, extrinsic event generation becomes possible. This approach allows for interface
processing-based integration (cf. [4]).
An alternative is to have the connectivity layer monitoring state transitions within
the application systems and sending requests to the composite application based on
such transitions. This approach is a mixture of interface processing-based integra-
tion and data replication-based integration (cf. [4]).
In both cases, the connectivity layer should allow issuing of acknowledgments to the
application system if data was successfully received by the composite application.

• Receive - Service Interaction Pattern 2 of [98].
In order to invoke service operations that are provided by an application system,
the composite application system needs to send requests to the connectivity layer so
that the request can be received by an application system. The connectivity layer

Distributed and Mobile Systems Group 80

5 A Reference Architecture for Composite Applications

must enable application systems to receive such requests. Additionally, it should
issue acknowledgments to the composite application if data was successfully received
by an application system.

• Send/Receive - Receive/Send - Service Interaction Pattern 3 of [98].
The connectivity layer needs to enable the composite application to send requests
to an application system and to receive replies. This interaction needs to be pos-
sible with both, synchronous and asynchronous communication semantics. If asyn-
chronous communication is used, the connectivity layer does not offer functionality
for realizing correlation. This functionality is provided by the DET (cf. section
5.7.1). However, if required, the connectivity layer must provide means for address-
ing dynamic callback-endpoints.
Since a composite must send requests to application systems and receive replies us-
ing the connectivity layer, the connectivity layer also needs to enable application
systems to send and receive requests.

• Transactional Support If atomic transactions are initiated by the service coordi-
nation layer of a composite application (cf. section 5.8), they also usually involve
operations of application systems. In order to allow for distributed transactions,
both, the common protocol of the composite application and the communication
from the coordination layer to the application systems need to support a transac-
tional protocol. Established transactions can possibly be active in both, application
systems and the composite application.
A possible approach to realize this is to register adapters of the connectivity layers
as resources in a distributed transaction initiated by the service coordination layer.
The connectivity layer may act in such scenarios as a transaction manager for the
application-internal transactions and populate the results of these transactions to
the coordination layer.

• Conversion of Data Representation One aspect of heterogeneity of data is the
differences between data representations within application systems and compos-
ite applications. The functionality of data transformation and homogenization is
addressed by the heterogeneity service of the DET (cf. 5.7.3). There might exist,
however, technical constraints on the DET platform and/or the heterogeneity service
that require a transformation of the data representation at the layer of connectivity.

• Dynamic Addressing: Relayed request - Service Interaction Pattern 12
To relay a request means that a receiver of a requests redirects the request to an-
other service provider. In order to support this type of interaction, the connectivity
layer needs to provide an addressing protocol that supports request relaying. This
involves the ability of receiving a pro-active relay-action of an application system,
and transparently redirecting such a request to another application system (or more
general service provider). Important to note is that the protocol of the application
to which the request is relayed might differ from the protocol that is used by the
relaying application. From a composite application point of view such a relay should
be handled transparently.

Distributed and Mobile Systems Group 81

5 A Reference Architecture for Composite Applications

5.5 Eventing System

Purpose and Functionality The eventing system is the entry point that is used to
trigger composite applications. Possible ways of triggering composite applications are
intrinsic and extrinsic generations of events. In case of intrinsic event generation, the
composite application itself starts a business process independent of the connected ap-
plication systems or user interactions. Intrinsic events could, for example, indicate that
a scheduled computation of potentially changed data is needed. Intrinsic generation of
events is similar to well-known batch processing (cf. e.g. [99]). Extrinsic event generation
describes when application systems or users trigger composite applications from the out-
side.
In order to trigger composite applications from outside the application, the eventing sys-
tem is exposed as a service. This service is called EventService. An EventService

creates Event-objects that are used as keys to determine the appropriate service orches-
tration that implements the applicable business process.

According to the two possible scenarios of event generation, there exist two types of event
services. The publicly accessible version is the “push-version”. In this version of an Ex-

trinsicEventService, the event service behaves similar to an Observer in the Observer
Pattern (cf. [37]) and filters out all relevant events. Such an event service puts the filter
logic into the composite application in order to avoid changing a connected application
system. There is no need to customize an application system to use an EventService as
it is described by the reference architecture. As outlined below, application systems can
be connected via the standard means of connectivity while the data exchange and data
transformation layer (that is discussed in section 5.7) transparently handles the commu-
nication with the eventing system.
The intrinsic version of an event service generates events by itself only dependent on time.
Based on its configuration, an eventing system triggers appropriate processes. This is the
highest degree of decoupling that is achievable. This is because there is no application
system involved in the generation of an Event-object at all.

The first (and publicly accessible) part of the eventing system is the generation of Event-
objects by the means of an EventService. The other part is the determination of appro-
priate process orchestrations that handle the actual events. As described in section 5.2,
an event determines the process that computes it. This is why the eventing system needs
to maintain the relation between event types and processes. Technically, the eventing
system needs to maintain a reference between an event type and an endpoint reference of
a process orchestration. This is why the eventing system realizes a service registry.
In order to maintain these relations, an eventing system exposes a management interface
that is used for administering the relations and keeps an internal data structure for the
relations of event types and endpoints. An eventing system additionally ensures proper
configuration by respecting the event rules that were described in section 5.2.

Realization Requirements and Syntactical Definition An eventing system is ex-
posed to external application systems through an EventService. Such a service exposes
an update-operation that can be invoked using an EventType-object as parameter. If
called, an EventService then generates an Event-object that is dispatched to the service
orchestration layer (cf. section 5.9.1). Event-objects contain unique numbers to allow the

Distributed and Mobile Systems Group 82

5 A Reference Architecture for Composite Applications

use of these objects as keys in other parts of a composite application. An implementa-
tion of the eventing system has to ensure the uniqueness of these event identifiers for all
Event-objects it generates.
As soon as an event is computed, the orchestration layer terminates the computation of
an event by invoking the finish-operation of the EventService. Potentially suspended
events are then dispatched by the EventRegistry subsequently. In most real-life applica-
tions of this reference architecture, an application system will very likely not invoke an
event service directly. Furthermore it is likely to populate an arbitrary message or service
call (transparently) via the connectivity layer to the exchange and transformation layer.
The data exchange and data transformation layer transforms such arbitrary messages into
a service call to the EventService’s update-operation that generates the Event.

An eventing system has to allow for various communication semantics and interaction
patterns for invoking the EventService. The following interaction patterns need to be
supported by the actual implementation of the eventing system:

• Receive pattern (cf. [98], pattern 2). By supporting this pattern, the composite
application can be triggered asynchronously (“fire-and-forget”).

• Receive/Send pattern (cf. [98], pattern 3) with synchronous response. An update-
operation must not block until the event is processed further. This way it is trans-
parent to the application system whether an event is processed successfully or not.
This allows another decoupling between the application system and the composite
application.
As the return-value of an update-operation is the Event-object that was created,
an application system can be informed that the triggering of the composite applica-
tion was successful, though. The actual Event might be transformed into another
structure using a heterogeneity service (cf. section 5.7.3) if an application system
can not directly compute Event-objects.
If an application should also be informed about the final success of a process, a
dedicated application service should be designed and then later invoked.

• Receive/Send pattern (cf. [98], pattern 3) with asynchronous response. This type of
interaction needs to be supported by the implementation of the exchange and trans-
formation layer in order to allow asynchronous acknowledgments of the initiation of
composite applications. Besides different communication semantics, this scenario is
the same as Receive/Send with synchronous response.

For the first interaction scenario, events have to be communicated reliably to the event
service since acknowledgments are not possible. For all three scenarios – as the update-
operation is non-blocking – the composite application needs to ensure that the event is
processed further. This is why a communication bus is required that supports Messaging
(cf. [95, p. 53]) together with Guaranteed Delivery (cf. [95, p. 122]).
Other communication patterns do not need to be supported by the eventing system. More
complex interactions are realized using the exchange and transformation layer that encap-
sulates the event service.

The interface the EventService exposes to the application systems and the data exchange
and data transformation layer is shown in figure 7.

Distributed and Mobile Systems Group 83

5 A Reference Architecture for Composite Applications

Figure 7: Public Interface of the EventService

The implementation of the eventing system consists of two additional components: an
EventIdGenerator as well as an EventRegistry. The interfaces of these two components
are depicted in figure 8.

Figure 8: Interfaces of the EventRegistry and EventIdGenerator Components

The collaboration of the single components of the eventing system is described in the
sequence diagram shown in figure 9.

Figure 9: Overview of the Event Creation and Process Initiation

An arbitrary initiator (this could be an application system, the data exchange and data
transformation layer or an intrinsic TimerEventService), calls the update-operation of
the EventService by passing it an EventType-object (1). In turn, the EventService calls
the EventIdGenerator (1.1) to get an Event-object that corresponds with the EventType
(1.2). Next, the EventService invokes the checkForData-operation of the DataReposi-

tory (1.4). This operation is described in detail in section 5.6. Basically, it checks whether
the data that is required for the execution of a process is registered in the data repository.
A call-back is initiated to the notifyaboutData-operation of the EventService as soon

Distributed and Mobile Systems Group 84

5 A Reference Architecture for Composite Applications

as the required data is registered. As an alternative, synchronous calls can be used that
block until the data is registered.
As soon as the DataRepository confirms that the required data is registered (1.5), the
EventService calls the EventRegistry (1.6) that looks up the appropriate process end-
point and invokes the process using the Event as an argument (1.6.1).

The interface that can be used to configure the eventing system is depicted in figure 10.
It exposes 10 operations. The operation setProcessEndpoint defines at which endpoint
an appropriate service orchestration for an event type can be started.
The four scheduleEvent operations are used for configuring intrinsic event generation.
All operations are similar in that they all register an EventType. The difference between
the operations is when exactly the EventService should be called in order to generate an
appropriate Event. Using the first method, a single event generation can be scheduled to
be generated during a duration of time that begins with the call of the operation. The
second method will be useful if the event should be raised after a certain time has expired.

Figure 10: Public Interface of the EventingAdministration Service

The latter two schedule-operations schedule the event generation just like the first two
operations but are different in that the events are generated repetitively with a time in-

tervalDuration of milliseconds between the generations.
The stopScheduler-operation can be invoked at any time in order to stop further raising
on an EventType.
The last four operations are used to set the relations between event types as they were
defined in chapter 5.2.

A platform that is used to realize an eventing system needs to support the following
functionality:

• Message Filter (cf. [95, pp. 237ff.]) If triggered from the outside, an eventing
system must be capable of filtering out events.

• Receive pattern (cf. [98], pattern 2) that allows to have the event service invoked.

• Receive/Send pattern (cf. [98], pattern 3) with synchronous response. The support
of this pattern is required in order to invoke the event service synchronously.

• Receive/Send pattern (cf. [98], pattern 3) with asynchronous response. The sup-
port of this pattern is required in order to invoke the event service asynchronously.

Distributed and Mobile Systems Group 85

5 A Reference Architecture for Composite Applications

• Guaranteed Delivery is required in order to allow for failure tolerant dispatching
of Event-objects.

• Timer Intrinsic generation of Events is required for some use cases. In order to
realize this functionality, the platform has to offer some sort of a timer mechanism
that initiates the event generation.

• Persistent Storage The configuration of the eventing system must be kept in a
persistent storage.

5.6 Data Repository

Purpose and Functionality In order to realize composite applications that utilize
heterogeneous application systems, several aspects must be incorporated. This reference
architecture introduces several layers that address these aspects. Consequently, if these lay-
ers span multiple platforms, a process executed by a composite application is distributed
over all these platforms.
As the design methodology that will be proposed in chapter 6 should be applicable to
any actual target platform, this reference architecture, needs to be realizable with any
arbitrary environment that follows the IT-strategy of the respective organization.
Multiple platforms are potentially required for realizing composite applications. Such
platforms include application servers, integration servers and service orchestration tools.
In order to apply the reference architecture to arbitrary combinations of such platforms,
it needs to be ensured that all required platforms are able to collaboratively support busi-
ness processes. As most of the architecture’s elements operate on the processes’ data, it
is necessary that all elements have access to that data while ensuring acceptable perfor-
mance and data consistency (cf. [6, pp. 185f.]).
In order to allow this, the reference architecture introduces a global process context that
is called the data repository. The data repository is the non-persistent27 memory of com-
posite applications. It keeps data referenced by events and makes it accessible to arbitrary
components of a composite. This follows the idea of Kossmann that proposes to establish
“a globally interconnected set of objects known as the ObjectUniverse, positioned in a
huge address space referred to as the ObjectCosmos” [100, p. 1] in order to allow interop-
erability in a distributed system. In the context of the different workflows used to realize
a composite application, the data repository can be seen as a blackboard (cf. [101]) that is
used in a workflow system (cf. [102]). It partially replaces the messaging paradigm with
a spaces approach (cf. [94]).

The structure of the data stored in the data repository of a composite application is called
canonical data model (CDM) (cf. [95, pp. 355-360]). A CDM provides an additional level
of indirection between the single heterogeneous applications’ individual data formats. If
a new application is connected to a composite application, only transformations between
CDM and the application’s data format have to be realized, regardless of the number of
applications that already participate (cf. [95, p. 356]). The CDM is a composite’s own
data format. If required, the transformation between the application’s data formats and
the CDM is realized by the data exchange and data transformation layer (cf. section 5.7).
It is reasonable to use an already modeled and established data schema as the CDM. A

27In order to address failure tolerance, the memory is persistent. However, the data store that is used
is different from the owning application system that is used for storing the data

Distributed and Mobile Systems Group 86

5 A Reference Architecture for Composite Applications

good candidate for a CDM is the data model that is used in the organisation’s main Enter-
prise Resource Planning (ERP) system. Alternatively, global standards like UN/CEFACT
(cf. [103]) could be applied. A CDM is the data model for one composite application that
usually supports one business process. Hence, if required, realizing multiple CDMs is pos-
sible. The usage of a CDM in a composite application does not introduce a company-wide
data model.

The data repository acts similar to a tuple space (cf. [104]). Elements of the composite
application get/read and store data to and from the data repository. These operations
need to potentially be protected with transactions. Additionally, the data repository uses
events to allow for smooth long-running transactions by already blocking requests that
could interfere with already running processes.
It was introduced in section 5.2 that events determine both, the appropriate processes
to trigger and the set of data that is possibly affected by a certain event. Based on this
idea relations between event types were introduced. These relations are used to describe
consistency models for the data repository.

Four relations between event types were defined: concurrent (‖), blocks (⊥), updates (⊢)
and follows (⊲). The follows relation can not be used to describe consistency because it
provides no information about affected data.
For the concurrent relation, data is not considered to be shared between the affected
processes at all. Strict consistency is achieved for the data that is kept for two concurrent
events in the data repository (cf. [71, p. 298]).
The blocks relation implies that two process instances possibly share all their data. There-
fore, it is considered that their execution needs to be serialized. This achieves also strict
consistency (and needs to be realized by the eventing system).
The updates relation can be used to share data among different process instances.
The relation a ⊢ b28 is used to describe that an instance of a composite application (a

process instance) ~B has to load the according data object from the data repository of

a process instance ~A if ~a is being computed at the time of the access through ~B. If no
data can be found at the data repository instance of ~A, ~B will create an instance of the
required data. If at a later time ~A would be active, the data from ~B’s data repository
would be queried.
Whenever process instances need to mutually update their instances of their data repos-
itories ((a ⊢ b) ∧ (b ⊢ a)), concurrent data access is possible. Here write accesses of one
process update the data of the other process, too. Strict consistency is not achievable in
such cases as the initiation of the data changes might be triggered by distributed services.
As this prohibits the identification of “most recent”operations, only sequential consistency
is achieved (cf. [71, pp. 30ff.]).

To ensure that the relations are appropriately defined in terms of data consistency, some
of the rules defined in table 15 in section 5.2 are helpful. These are Serialization and
Replication ((a ⊥ c) ⇔ (c ⊥ a) and (a ⊢ c) ⇔ (c ⊢ a)).
They describe that blocking and updating can only be defined symmetrically. By prescrib-
ing that two event types that indicate processes, which usually change the memory of
each other, need to be serialized if the relation was identified for one direction. Serializing
the execution leads to strict consistency and is preferable. As a drawback, the reactivity

28Note that this would also be applicable if a = b was true.

Distributed and Mobile Systems Group 87

5 A Reference Architecture for Composite Applications

of a composite application is lowered.
If, however, events are identified for several steps within a process, processing these events
is quicker as if one event type per process was identified. Hence, blocking an event’s com-
putation for the duration of another event is not very critical in terms of loosing system
reactivity.
Replication indicates that two processes A and B for event types a and b can also be set in
relation ((a ⊢ b) ∧ (b ⊢ a)). This guarantees that both instances of the implied processes
access the same set of data. In this case, writes would still have to be serialized between
those instances to guarantee a strictly consistent data set. Due to the lack of a notion of
absolute time, sequential consistency is achieved, though.
The rule Unambiguity (((a ⊢ c)∧(x ⊢ c)) ⇒ ((a ⊢ x) ∧ (x ⊢ a))) assures an unambiguous
replication between data objects of different processes’ data repository instances. As a
consequence, the data repository instances of the concerned processes act as if they were
one. Without this rule it would not be possible to properly share data between more than
two process instances.

Realization Requirements and Syntactical Definition When creating a data repos-
itory, it is important to consider that the purpose of composite applications is to integrate
various heterogeneous application systems. As a prerequisite, the architecture of a com-
posite application can rely on common protocols and a common data format. These
elements are ensured by the connectivity layer as well as by the data exchange and data
transformation layer. However, whenever services that fit in terms of data and protocol as
well as in terms of appropriate service design, a composite should be able to utilize them
directly. It is not an option to introduce protocol requirements in terms of including the
data repository into the reference architecture. This would finally forbid the seamless use
of any external service.

Figure 11: Smart Proxy Concept for Data Repository Integration

This is why the reference architecture introduces the notion of “smart proxies”. On any
target platform that is used to implement a composite application, external (back-end)
services are likely to be used by the means of proxies that locally represent the remote
service (cf. [37]). The reference architecture solely specifies the interface of such proxies

Distributed and Mobile Systems Group 88

5 A Reference Architecture for Composite Applications

with the data repository in order to allow a transparent use of both, the remote services
as well as of the data repository.
The concept of a smart proxy is illustrated in figure 11.

A smart proxy is the interface between an arbitrary service proxy for external services and
a data repository. An external service can be both, a service consumer and service provider.
Whenever a composite application exposes itself as a service consumer to back-end systems,
smart proxies can be used for storing the data of the request into the data repository.
To keep track of data changes and ensure data consistency, an Event-object must be
used. As agnostic external services are unlikely to accept and produce Event objects,
consuming such services is only possible if the data exchange and data transformation
layer aggregates the creation of an event and storing of the corresponding request data to
the data repository. The smart proxy interface can be applied both, for service consumers
and service providers. Its interface is specified in figure 12.

Figure 12: Public Interface of the SmartProxy

The smart proxy interface is defined in order to allow the basic operations of a tuple space.
It is inspired by the JavaSpace interface of [105].
The read-operation reads data that is associated with the passed Event from the data
repository. The data repository returns the data only if no changes are currently being
performed on the data. If the read-only access is not permitted, the operation signals an
exception (in a platform dependent way). The take-operation reads data from the data
repository and locks them for modification if no event is active that might require reading
the data. Also this operation signals an exception in case of a locking issue. The write-
operation writes data to the data repository. A prerequisite is that the concerned data is
either locked for the passed Event or is not yet existent in the data repository. The same
is true for new events. If non-locked data is written for the first time and is associated
with a new Event, this Event is registered with the data repository. These operations
signal exceptions concerning locked data. The data is passed between the actual proxy or
stub and the data repository by the means of serialized data.
These operations are also offered with a Transaction-object as a parameter. This can
be used if the respective service consumer and/or provider are capable of handling trans-
actions and transaction management is not performed by the platform. If the notion of
transactions is used, the existence of the data objects in the data repository, respectively
their locking for taken objects, is bound to the state of the actual transaction that is rep-
resented by the Transaction-object. By the additional notions of transactions, a more
fine-granular (short-running) locking mechanism is realized on top of the event-based lock-
ing for long-running transactions.
Either way, the implementation of a data repository needs to support persisting the con-

Distributed and Mobile Systems Group 89

5 A Reference Architecture for Composite Applications

text data. This is necessary for re-establishing the process context after a system failure
and to increase a composite’s reliability.

An actual SmartProxy may not directly implement the described interface. This is because
the operations expect serialized data. By serializing the data, the data repository may
potentially loose information about dependencies between different data objects. If a
fine-granular locking mechanism is required, an EventType for each data object would
be required. Other reasons for not implementing the data might be platforms that do
not allow for the serialization of data or persisting serialized data. This is why the
actual implementation of the smart proxy and the data repository might not be agnostic
towards the managed data. It is proposed that a data repository implements read, take
and write operations for any object that is potentially stored in a data repository. An
actual example for a non-generic smart proxy is included in the implementation of the
reference architecture that is described in section 7.2.2.

Various approaches exist to realize smart proxies. They might be explicitly included in
the code of actual service proxies. Alternatively, they could be realized using method-call
interception (cf. [106]). Smart proxies might be realized as part of the runtime environment
of the service coordination layer (cf. section 5.8). Alternatively, they could be realized as
stand-alone service providers that are referenced by application systems and composite
applications. In such cases, attention has to be drawn to the fact that a transaction
monitor might be needed in order to use transactions with the data repository.

A data repository also exposes a management service. This service is accessible via the
eventing system. It provides functionality that might be used by application systems if
special data consistency is required. Generally, it is used at design-time in order to con-
figure the data repository.
The checkForData-operation of the DataService is used by the eventing system in order
to check whether a service orchestration can be triggered. Normally, no data should be
required before a process starts. This is because a process should retrieve the actual data
by itself. However, some processes might be initiated (implicitly) by application systems
in order to compute a certain data object. In such cases, the object has to be registered
with the data repository before the actual process orchestration can be started. This is
done using the normal write-operation of a data repository.
The checkForData-operation either blocks until the required data is registered or the
indicated timeout is reached. The operation returns true if the required data is regis-
tered and otherwise returns false. If no timeout is indicated, asynchronous replies are
used. In such a case, a data repository invokes the notifyAboutData-operation of the
EventService as soon as the necessary data is registered.
The setRequiredData-operation is used to configure a data repository. It sets a depen-
dency between an object type and the data it is checked for when the checkForData-
operation is invoked. The actual notion of describing data types is dependent upon the
actual platform with which the data repository is realized.
The setConcernedData-operation is also used to configure the data repository at design
time. It is used to describe which data is possibly concerned by the execution of a certain
type of event. “Concerned” data is important if events of types that are set into an update
relation occur simultaneously. If data objects are marked as “concerned”, it is possible
that events of different types mutually access each other’s data.
All related event type information in the data repository can be reset using the reset-

DataConfig-operation.

Distributed and Mobile Systems Group 90

5 A Reference Architecture for Composite Applications

An actual platform for the realization of a data repository could potentially also not sup-
port the generic interface as it is described here. In such cases, the implementation of
the data repository must ensure that the identified relation between event types and data
object types is respected.
The setUpdates-operation, analogous to the operation of the EventingAdministration

service, informs a data repository that data of processes belonging to the indicated event
types should be shared.
The invalidate-operation can be used by application systems in order to inform a com-
posite application that all data that concerns a certain event type has become invalid. Of
course, this should be avoided. But whenever both composite applications and especially
(back-end) application systems operate on data and that data is changed in the back-end
system, the data that is possibly cached in the process context of the composite appli-
cation can be marked invalid. In such cases, the data repository has to abort all active
transactions that operate on the concerned data. If a read, take or write operation is
executed, the respective operation has to inform the caller that the data has been invali-
dated. Usually, the caller of the smart proxy then has to rollback the respective operations
of the long-running transaction.29.
The eventIsFinished-operation is finally required to clean up a data repository. As
soon as the eventing system is notified about the end of an event’s computation, the
data repository also needs to be notified. By invoking this operation, all cached data for
the respective event is deleted. The operation throws an exception if, at the moment of
the invocation, data is still checked out using this event. In such cases manual support
procedures will usually apply. The interface of the data repository is shown in figure 13.

Figure 13: Public Interface of the DatRepositoryAdministration Service

The following platform requirements apply for the realization of a data repository:

• Transaction Management If transactional security should be established for com-
plex operations on the data repository (multiple take/write operations), both, the
data repository’s platform as well as the platform the smart proxy is deployed on
needs to support a (multi-resource) transactional protocol (e.g., two-phase commit,
cf. [72]). As a smart proxy does not necessarily need to be realized using the common
protocol of the composite application, the applicability of transactional concepts can
be augmented to platforms that do not support transactional security of service in-
teractions (e.g., “vanilla” web services).

29Note that the invalidation of data has to be a separate type of event and might be populated through
the integration layer to a data repository.

Distributed and Mobile Systems Group 91

5 A Reference Architecture for Composite Applications

• Messaging with Guaranteed Delivery In order to allow for reliable registration
and de-registration, messaging with guaranteed delivery is required if the eventing
system and the data repository are not deployed to the same platform. In the latter
case, the event registration can be protected by using local transactions.

• Persistent Storage The state of a data repository must be persistent in order to
allow for a failure tolerant behavior of a composite application.

5.7 Data Exchange and Data Transformation Layer

One objective of this reference architecture is to standardize the way composite applica-
tions are built in such a way that both, the implementation of composite applications is
eased and the conventional application integration is facilitated. This is achieved by the
concept of integration flows. These integration flows describe a behavioral element on top
of data-centric integration concepts and facilitate the realization of composite applications
in the context of heterogeneous application landscapes.

This second layer of the reference architecture is an optional layer that must be used when-
ever application systems do not stick to a globally defined data model, the appropriate
data semantics or the required communication semantics. It unifies the data format of the
connected application systems to a canonical data format (cf. [95, pp. 355-360] or [107]).
It provides additional functionality for validity checking of data in terms of syntax and
semantics as well as error handling procedures that need to be invoked whenever errors
occur on this layer.30 This way, integration aspects and business logic can be separated.

The data exchange and data transformation layer (DET) provides the functionality of an
enterprise service (ESB) bus to a composite application. It mediates the business logic
and the back-end application systems that are used to realize the business logic (cf. [41, p.
68]).
In [95], several so-called integration patterns are described and set into a relation. This
relation is a basic pipe-and-filter architecture that describes a sequence of single patterns.
According to [89], basic services can be orchestrated by so-called micro-workflows in or-
der to be orchestrated themselves by macro-workflows. This idea is combined with the
integration patterns for the definition of the DET. In order to facilitate cross-system
process orchestration, the DET describes a sub-set of the integration patterns that are
orchestrated to so-called integration services. These services are, in turn, orchestrated by
so-called integration flows.

In order to standardize and simplify the DET, all its functionality is encapsulated in
so-called integration services (IS). These services are orchestrated by two different integra-
tion processes. One provides data to the upper layers of a composite — the integration
in-flow (IIF). The other one publishes data from upper layers to the connected legacy
systems. This process is called integration out-flow (IOF). Both, the IIF and the IOF, act
as service providers: they expose the functionality of application systems to upper layers
of the composite application as services.
As mentioned, the integration flows are a replacement of the pipe-and-filter architecture

30The error handling at this layer basically covers support procedures that need to be initiated whenever
errors occur (human errors are mostly the cause of these errors).

Distributed and Mobile Systems Group 92

5 A Reference Architecture for Composite Applications

that is used by [95] to categorize integration patterns for message based application in-
tegration. Additionally, they limit the applicable set of patterns to an extent that is
required to realize composite applications in a heterogeneous application landscape. This
way, business processes can be used to centralize the control of the integration of appli-
cation systems into composite application and prohibit the use of business logic inside
the integration layer. The integration flows only handle the details of distributed and
heterogeneous interactions.

This chapter introduces the single integration services as well as the requirements for
realizing them. Subsequently, the integration flows are described. In section 5.7.8, how
the integration flows can be combined in order to support higher-level interaction protocols
is described. This discussion also demonstrates how the design of the service coordination
layer supports the design decisions that have to be taken for the design of the DET layer.

5.7.1 Data Service

Figure 14: Micro-Flow of the Data Service

Purpose and Functionality The integration service that is most crucial for the DET
is the Data Service. Its task is to load data from back-end systems and to store data
to back-end systems. A Data Service can be used both as part of the IIF and in the
IOF. For the sake of connectivity it might use adaptors that establish a connection to the

Distributed and Mobile Systems Group 93

5 A Reference Architecture for Composite Applications

back-end systems.
A Data Service is described as a micro-flow. The micro-flow that describes the orches-
tration of the building blocks of a Data Service is depicted in figure 14.

The depicted activity diagram describes a superset of possible designs for a Data Ser-

vice. The design decisions that are necessary are marked as red decisions with Arabic
figures within the activity diagram. If not implemented at design time but realized using
configurations, they correspond with the workflow pattern 16 Deferred Choice of [108].
The first design decision is whether a Data Service should map authentication data for
the actual application system. Alternatively, the mapping could also simply propagate
principal information of a composite application to a back-end system.
Then it either fetches data from a back-end system (indicted by No at the second design
decision) or uses the data that was passed to the Data Service as parameters of the
request.
The fetching of data can be described as a sub-process of the Data Service. This process
is depicted in figure 15.

Figure 15: Micro-Flow of the Fetch Data Activity

Fetching data might require transforming the data that is passed to a Data Service

in order to perform a lookup based on this data. If this is required, a Heterogeneity

Service (cf. section 5.7.3) might be used for transforming the data of the request in
a way that the Retrieve Data activity can lookup data from a back-end system. The
translation should only be used to translate data into a format that is specific to the
actual technical connectivity. An example would be to transform a message containing
business data into a Structured Query Language statement (cf. [109]).
Fetching data might involve the notion of an atomic transaction that is realized via a
2-phase commit protocol (cf. [72]). A Data Service might have access to a transaction
context that is then further propagated to the back-end applications.
The actual realization of the Retrieve Data activity is the second design decision that
has to be made for the Fetch Data flow. The decision is determined by the design choices
of the request/response interaction pattern of [98]. These choices are

• “The outgoing and incoming messages must be correlated. In other words, there is
a common item of information in the request and the response that allows these two

Distributed and Mobile Systems Group 94

5 A Reference Architecture for Composite Applications

messages to be unequivocally related to one another.

• The sender may block a thread of execution to wait for the response or fault, or
it may provide a single continuation for both, the response and the fault or two
separate continuations.” [98, p. 309]

These two design decisions indicate different approaches to a realization. They allow for
both, synchronous and asynchronous interaction with the back-end system.
Realizing a Retrieve Data activity always requires information for performing a lookup.
This includes information about the actual payload as well as meta-data about the prin-
cipal under whose identity the lookup has to be performed. This information might be
included in the data passed to this activity or contained in its configuration. Whenever
no request to the back-end system is required, the Data Service is called directly and
the use of the Fetch Data flow is not required.
The interaction mode with the application system has to be indicated for each Retrieve

Data activity (design decision 1 in figure 16). Possible options are synchronous and asyn-
chronous communication, while asynchronous communication might be realized using cor-
relation or call-back endpoints. In all options, a transactional context might be passed
to the application system. In case of asynchronous communication, a timeout can be
specified in order to avoid indefinite waiting periods of the Data Service. For situations
in which a timeout occurs, an appropriate behavior needs to be defined (design decision
1a).

Figure 16: Micro-Flow of the Retrieve Data Activity

Returning to the description of the overall Data Service, the next design decision is re-
garding the treatment of the received data. Four mutually exclusive options are available:

• MessageSplitter. Whenever the data that is retrieved from a back-end system
or directly received contains information about multiple data objects that need to
be computed separately, the data needs to be split into several messages. This
functionality is equivalent to the description of the enterprise integration pattern
in [95, p. 259].

Distributed and Mobile Systems Group 95

5 A Reference Architecture for Composite Applications

• Resequencer According to [95, pp. 283ff.], applying the Resequencer pattern is
appropriate if multiple messages require in-sequence processing (e.g., if referential
integrity needs to be maintained in subsequent processing steps). If an IIF or a com-
posite application in general require a certain sequence of messages that is neither
created by the Retrieve Data activity nor received by an IIF, this pattern might
be applied as a part of the Data Service.

• Aggregator In contrast, if data needs to be processed as a whole, the aggregator
pattern is required (cf. [95, pp. 268ff.]). Here, several messages are combined into
one single message in order to have all contained data computed at once.
The aggregator can either be implemented as a loop that retrieves all required data
(the Loop-branch of design decision 3a in figure 14) or as an asynchronous collection
of required data via a correlation. In the latter case, the aggregator appends the
actual data to a list and suspends the execution of the Data Service. A Data

Service is suspended in order to allow subsequent requests to be correlated with
previous ones. This way, the aggregator enables a Data Service to collect related
data and transfer them as a whole to a composite application.
An aggregator may also wait for incoming messages for a certain time, until a certain
message is received or until a certain amount of messages was received. Whenever
a certain message is received or a timeout is reached, the aggregator can either be
successfully finished or terminate with an error (decision I). If designed accordingly,
an error procedure might be triggered (design decision 3b).

• Whenever the incoming or fetched data is appropriate, no additional action is re-
quired at this point.

Despite the design decision described above, one or several messages can be processed by
a Data Service. If multiple messages are existent, each of it is processed by a dedicated
instance of the surrounding IIF. Hence, if multiple messages exist, subsequent activities are
executed in different, unsynchronized control flows as described by the workflow pattern
12 Multiple Instances Without Synchronization of [108].31

If a Data Service is designed accordingly, data can be transmitted to the respective
application(s) by using a StoreData activity that uses (possibly mapped) meta-data in
order to authenticate against the back-end system. A transactional context might also
here be propagated to the back-end system.

Design Decisions and Realization Requirements The following list provides an
operational overview of the design decisions that have to be taken if a Data Service is
designed and upon which factors these decisions depend.

• What is the actual data format? Since the realization of many integration services
depends on the actual format of the data that is sent and/or received by the Data

Service, the format needs to be described.

• Is Principal Propagation Required? Whenever application systems require authenti-
cation it is necessary to provide a Data Service with principal information. This

31If the IIF is used in the context of an IOF, the IIF must not open multiple control flows (cf. section
5.7.7).

Distributed and Mobile Systems Group 96

5 A Reference Architecture for Composite Applications

information can either be derived by mapping the credentials that were used to
initiate a Data Service or by using a fixed configuration.

• Fetch data from back-end or data in request to data service? Depending on the actual
connected back-end system, a Data Service either receives data from a back-end
system or polls, based on what it has received, for additional data. Fetching data is
required only if an actual Data Service is solely used for retrieving data and not
for writing data. If fetching data is required, the following design decisions have to
be made.

– Does data need to be transformed in order to perform the data retrieval? De-
pending on the application system, a Data Service receives data but needs to
transform the data in order to poll for data out of the application system.

– Communication semantics of the retrieval activity. Depending on the actual
application system, data retrieval might be synchronous or asynchronous. In
both cases, a transactional context might be propagated to an application
system. If asynchronous communication is chosen, the following design decision
has to be made.

∗ Correlation or fixed call-back endpoint? Depending on the application
system, the connected application might be able to respond to an endpoint
that identifies the actual instance of the retrieval activity. Whenever the
application is not capable of using different endpoints, the platform of the
DET has to correlate the incoming data with the request to the application
system. This correlation is dependent on the actual data format of the
request and the response. This influences the design of the Retrieve Data

activity. Additionally, a timeout needs to be specified for the receive-steps
that realize the asynchronous communication.
Usually, these options are only used whenever a Data Service is used by
an IIF.

• Treatment of received/retrieved data? Depending on the received data, the data
must either be split into several messages, put into a certain sequence of messages,
aggregated into one message or not treated at all. The splitter, resequencer and ag-
gregator need to be configured according to the actual data format. If an aggregator
is used, additional design decisions have to be made. Those are:

– Loop or Correlate? Depending on the application system, the aggregation can
either be asynchronous or synchronous. In an asynchronous case the aggregator
ends the computation of a Data Service and relies on the platform to correlate
subsequent requests to the suspended instance. In a synchronous scenario, a
Data Service loops over the retrieval step in order to fetch all data that need
to be aggregated.

– Completeness Condition? Depending on the scenario (expressed by the seman-
tics of the computed data), the condition for the aggregation to be complete
must be defined. This is usually a configuration option.

– What if the Completeness Condition Failed? Depending on the scenario (ex-
pressed by the semantics of the computed data), the failure of the condition
(e.g., a timeout) might trigger an error handling procedure that needs to be
described.

Distributed and Mobile Systems Group 97

5 A Reference Architecture for Composite Applications

• Store Data? Depending on the use of a Data Service the transmitted data might
need to be stored into an application system. The actual connectivity is dependent
on the application system and realized using adapters. The stored data format is
also application-specific. A Data Service relies on a Heterogeneity Service to
transform the data into the application-specific format. If data has to be stored, the
credentials that should be used for storing the data are also required.

As outlined above, the implementation of a Data Service is dependent on the connected
application system and on the actual data format. Thanks to the more fine granular design
using idioms, not every component of a Data Service is dependent on both factors.
A Data Service might be used as a service within the IIF and the IOF of the DET. In
order to realize a Data Service, this platform needs to support the following patterns:

• Request/Response Service Interaction Pattern 3 of [98]

• Aggregator Integration Pattern 268 of [95]

• Resequencer Integration Pattern 283 of [95]

• Message Splitter Integration Pattern 259 of [95]

• Workflow Pattern 12 – Multiple Instances Without Synchronization of
[108]

• Workflow Pattern 16 – Deferred Choice of [108]

• Principal Propagation. In order to authenticate against a back-end system using
the credentials of an actual user of a composite, the DET needs to support principal
propagation.

• Correlation or Call-Back. The platform needs to either support correlation or
a referencing mechanism that allows both, asynchronous interaction with back-end
systems and message aggregation.

• Routing Meta-Data The platform needs to offer an interface to provide meta-
data about an ongoing request. This meta-data has to include information about
the determined receiver(s) of a payload. The determination is performed by the
Routing Service

• Additionally, the platform needs to support Exactly-Once in Order Messaging
in order to allow for re-sequencing messages so that subsequent tasks receive the
message in a defined order.

5.7.2 Validity Service

Purpose and Functionality A Data Service can be used by integration flows for
interacting with application systems. These application systems might be internal appli-
cations or applications that are operated by organization-external partners. Especially in
the latter case, data submitted by these applications might be erroneous or even malicious.
In order to avoid such data going through a DET and reaching a composite application,

Distributed and Mobile Systems Group 98

5 A Reference Architecture for Composite Applications

the data needs to be filtered. This is why a Validity Service is introduced. It acts as
a Message Filter that filters out erroneous or malicious messages (cf. [95, 237]).
The detection of such messages is dependent on two factors: the data format and the
actual scenario. Based on these factors it needs to be defined what “valid” means. This
will be, on one hand, the well-formedness of the overall structure and validity in terms of
the actual data format. Additionally, it might be necessary to add additional constraints
such as partner-specific value ranges, etc. A Validity Service performs these checks
by applying the defined rules to the received message and by providing the validity as a
return value. Based on this value the orchestrating integration flow can react on valid or
invalid messages.32 A Validity Service might also filter out messages with inappropri-
ate user credentials.
A Validity Service is usually designed specifically for one data format. However, a
generic Validity Service might be realized that uses configuration information. In such
cases, the orchestrating integration flow has to provide the information that is required
for looking up the actual configuration for a certain message type.

Design Decisions and Realization Requirements The design decisions for the Va-

lidity Service concern the data format of the respective application system. Based on
this format as well as on the actual requirements, the constraints for well-formedness and
validity need to be defined.
The following list provides an operational overview of the design decisions that have to
be taken if a Validity Service is designed and upon which factors they depend.

• How is ‘valid’ and ‘well-formed’ defined for the actual data format? Depending on
the connected back-end system, a Validity Service might be needed in order to
perform several levels of validity checks. Possible levels include the data representa-
tion (“well-formedness”) and the actual values of data entities. The latter is usually
specified by a data format definition.

• What are the possible return values? In order to allow the integration flow to react
on valid and invalid data, the possible return values for a given data format need to
be defined for a Validity Service.

There are no special realization requirements for a Validity Service.

5.7.3 Heterogeneity Service

Purpose and Functionality Different application systems expose different operations
that can provide functionality to a composite application. Because of heterogeneity, a
Data Service needs to be implemented specifically for both, the targeted application
system and its data format(s). In order to realize composite applications without depen-
dencies on the various application systems, it utilizes a Canonical Data Format (cf. [95, pp.
355-360]) or Canonical Data Model (CDM).
A Heterogeneity Service is the integration service that handles data translations from

32This is in contrast to the Message Filter pattern since the Validity Service does not filter the
message directly. It solely provides the information based on which an integration flow can filter out
messages.

Distributed and Mobile Systems Group 99

5 A Reference Architecture for Composite Applications

application-specific data formats to the canonical data format used internally by the re-
spective composite application. It also realizes the Message Translator pattern of [95]. It
involves several levels of transformation. According to [95], these are data representation,
data structure and data type (cf. [95, p. 87]). The data representation also needs to be
homogeneous within a composite application. Whenever the connectivity layer can not
address heterogeneous data representations, a Heterogeneity Service is also required
to unify the data representation. Required transformations might be chained by defining a
sequence of different Heterogeneity Services. Also several Heterogeneity Services

that address the same level of transformation could be chained to allow for better reusable
translators.
A Heterogeneity Service might also use a Data Service to lookup data for data en-
richment during transformations. This is especially important whenever the content of a
message needs to be replaced.

Design Decisions and Realization Requirements The design decisions of a Het-

erogeneity Service are dependent on the data format of the respective application
system(s) and the canonical data format of the composite. Additionally, it should be
determined whether lookups to external systems are required.
The following list provides an operational overview of the design decisions that have to
be taken if a Heterogeneity Service is designed and upon which factors they depend.

• Required Levels of Transformation? Depending on the actual connected back-end
system, a Heterogeneity Service might be needed in order to realize several levels
of transformation. Possible levels are data structures and data types. Also the level
of data representation might be addressed by a Heterogeneity Service.

• Required Steps of Transformation? Depending on the actual data format, an actual
message translation has to be defined for every level of transformation. By defining
a translation, the translation can be split into multiple steps in order to ease the
reuse of these steps.

• Is a Lookup Required? Depending on the data format and the data management of
the connected application systems, a lookup of data using a Data Service might
be required. If so, the necessary authentication information must be propagated to
the Data Service.

A Heterogeneity Service might be used as a service within the IIF and the IOF of the
DET. In order to realize a Heterogeneity Service, the platform for the DET needs to
support the following patterns:

• Message Translator Integration Pattern 78 of [95] including chaining transfor-
mations.

• Request/Response Service Interaction Pattern 3 of [98] in order to utilize a
Data Service for lookups.

Distributed and Mobile Systems Group 100

5 A Reference Architecture for Composite Applications

5.7.4 Trigger Service

Purpose and Functionality A Trigger Service can be used by an IIF as a trans-
lator between the integration-focused DET and a composite application. It transforms
arbitrary incoming data that is either received or fetched from an application system,
based on the respective sending application, into an EventType and triggers the com-
posite application using an Event-object. The micro-flow of the Trigger Service that
describes its interactions with the eventing system and the data repository is depicted in
figure 17.

Figure 17: Micro-Flow of the Trigger Service

A Trigger Service first filters incoming messages based on its content and on routing
information that is provided by the platform of the DET. As the integration pattern
Message Filter (cf. [95, 237]) describes, the filter activity either allows continuation of
processing the actual data or terminates its computation. The actual filter logic is depen-
dent on the scenario as well as the data.

Distributed and Mobile Systems Group 101

5 A Reference Architecture for Composite Applications

Based on the routing information and potentially on the actual data format, a Hetero-

geneity Service might be defined that creates an EventType-object by transforming
the data from the application system.33 Such an EventType-object is transmitted to the
eventing system by invoking the update-operation of the according Event Service. This
way, a composite application is started.
If the actual type of event can only be computed whenever certain data is available to the
composite application, a Trigger Service stores the received data in the data repository
by using the write-operation of the smart proxy and the Event-object that was returned
by the Event Service. Potentially, the data that is to be stored needs to be transformed
prior to its transmission.

Whenever an IIF that a Trigger Service is part of is used in a send/receive interaction
(cf. section 5.7.8), the branch that writes data to the data repository is not used.

Design Decisions and Realization Requirements The design decisions for the
Trigger Service are influenced by the canonical data format, the connected applica-
tion systems and the business logic of the anticipated supported business process.
The following list describes the design decisions that are necessary in order to realize a
Trigger Service.

• What Data can be Processed? This decision determines how a Trigger Service

should filter-out incoming messages. The way of filtering depends on the actual
business logic of the business process and on the connected application system(s).
Also technical reasons might exist for application systems to propagate more events
than required for the anticipated business logic of a composite application. In such
cases, the filter has to be designed accordingly.
A filter might be required to be stateful to implement all scenarios.

• What Type of Event is Appropriate? Based on the payload of the received message
and based on routing information, the translator activity needs to be parameterized
in a way that an accurate EventType-object can be created. The information this
decision is based on can be derived from the business process model.

• What is the Mandatory Data for the Determined Type of Event? If the type of event
that was determined by the transformation step requires some data in order to be
computable, that data needs to be transmitted to the data repository. In such cases,
a Trigger Service should be designed in a way that it stores this data in the data
repository. This design decision depends on the actual business logic.

– Does the Received Data need to be Transformed Prior to its Transmission to the
Data Repository? If a data prerequisite exists, an additional transformation
step might be required prior to transmitting the payload data to the data
repository. This might include structural conversion as well as filtering certain
data items out of a more broad data set.

A Trigger Service might be used as a service within an IIF of the DET. In order to
realize a Trigger Service, the platform for the DET needs to support the following
patterns and functionalities:

33In such cases, a Heterogeneity Service must not use lookups as no principal information is avail-
able.

Distributed and Mobile Systems Group 102

5 A Reference Architecture for Composite Applications

• Message Filter Integration Pattern 237 of [95] including stateful filters.

• Routing Meta-Data The platform needs to offer an interface to provide meta-
data about an ongoing request. This meta-data has to include information about
the actual sender of a certain payload.

5.7.5 Routing Service

Purpose and Functionality The actual service endpoints that indicate the agent that
hosts a service provider is maintained within a service registry. Such a registry is described
in section 5.10. Whenever application systems are not directly acting as service providers
and are therefore not registered with a service registry, an IOF is used to connect to such
a system. In order to determine the physical location of an application system, a Routing

Service can be used as part of the IOF.
A Routing Service can be realized using different routing patterns. The micro-flow of
the Routing Service is depicted in figure 18.

Figure 18: Micro-Flow of the Routing Service

A Routing Service can use three types of routers. The first option is that a Content-
Based Router (cf. [95, 230]) is used. In such a case, the Routing Service determines the
recipient of payload based on the content of the payload.
If a Recipient List (cf. [95, 249]) is used, there will be multiple recipients based on the pay-
load. It is an extension of the Content-Based Router (cf. [95, p. 249]). If multiple receivers
are determined, the meta-data containing the routing information consists of multiple en-
tries. For each entry a new control flow of an IOF is created. Hence, subsequent activities
are executed in different control flows. Usually, they do not need to be synchronized as
described by the workflow pattern 12 Multiple Instances Without Synchronization of [108].
However, sometimes the final acknowledgment must involve all instances. In such cases,
support for the workflow pattern 14 Multiple Instances With a Priori Runtime Knowledge
of [108] is required.

Distributed and Mobile Systems Group 103

5 A Reference Architecture for Composite Applications

The third option is to have a fixed receiver for a certain payload. The configuration is ei-
ther static for a specific IOF or can use a service registry for looking up a service reference.
Such a lookup is then based on the static, structural interface of the required service.

Design Decisions and Realization Requirements The design decisions of a Rout-

ing Service depend on the actual business process logic (the resource perspective of the
process) and might be dependent on the canonical data format.
The following list provides an operational overview of the design decisions that have to
be taken if a Routing Service is designed and upon which factors they depend.

• Is the Receiver to be Determined by the Payload? Depending on the business process
and its data (described in the canonical data format), the actual receiver(s) might
depend on the payload that is processed by an IOF. If so, the rule for the receiver
determination need to be defined and the Receiver Service needs to be realized
and/or configured accordingly.

• Can Multiple Receivers Exist? Depending on the information contained in the re-
source view of a business process, it can be determined whether possible multiple
receivers need to be connected to a composite application using one single IOF. This
is the case when multiple application systems expose the same functionality and the
data needs to be replicated to several (or all) of these systems. This design decision
has to be made while considering the possibility of using several services as part
of a service coordination (cf. section 5.8). Whenever this option is used, the corre-
sponding IOF acts as a service aggregator. This way, the Aggregator to Aggregator
Re-Use (AAR) value (cf. section 3.2.1) is increased. Hence, the maintainability of
the composite application might be decreased.
If multiple receivers exist, each delivery is executed in a different, unsynchronized
control flow as described by the workflow pattern 12 Multiple Instances Without
Synchronization of [108].

• Are Lookups Required? Whenever the integration flow should be further decoupled
from an application landscape, a Routing Service can make use of a service registry
for looking up appropriate endpoints of a service provider. If this is necessary, both,
the lookup information and the service registry need to be described.

A Routing Service might be used as a service within an IOF of the DET. In order to
realize a Routing Service, the platform for the DET needs to support the following
patterns:

• Content-Based Router Integration Pattern 230 of [95]

• Recipient List Integration Pattern 249 of [95]

• Workflow Pattern 12 – Multiple Instances Without Synchronization of
[108]

• Workflow Pattern 14 – Multiple Instances With a Priori Runtime Knowl-
edge of [108]

• Dynamic Lookups from a Service Registry

Distributed and Mobile Systems Group 104

5 A Reference Architecture for Composite Applications

5.7.6 Integration In-Flow

Purpose and Functionality The integration services (IS) are used in two integration
processes that orchestrate the single IS: one for reading data from and one for storing data
to connected application systems. Both integration flows are generic references that allow
the realization of the required functionality for an actual connection to (an) application
system(s). They describe how interactions with application systems are possible while
using various communication semantics. These are synchronous, asynchronous and asyn-
chronous communication with acknowledgments. Both integration flows are described as
a reference that indicate design decisions (red entities in the diagrams) that have to be
taken in order to realize an actual interaction with an application system.
The reader process that describes how data can be transmitted from application systems
to a composite application is called Integration In-Flow (IIF). The steps of an IIF are
described in the activity diagram of figure 19 and in the following paragraph.

An IIF is either invoked by external application systems or is triggered by the composite
application in order to fetch data from an application system. The first design decision is
whether a Data Service is required in order to interact with an application system (de-
sign decision 1). Possible scenarios for the use of the Data Service at this place are the
retrieval of data and/or to split or aggregate the data that was received to messages that
are necessary as the DET relies on messaging (cf. section 5.7.1). Depending on the design,
errors during the data retrieval (decision I) can be handled or ignored (design decision 1a).
If the respective IIF is invoked within a transactional context, the reject activity can
abort the current transaction. Next, the validity of the actual message34 can be checked.
If a message is not valid (decision II), an IIF can react accordingly (design decision 2a).
By including such a validity check, the application systems and the composite application
are decoupled (cf. [6, p. 192]).
If a message was received and (potentially) verified, an IIF can inform the calling party
about the success if there is no transactional context present. In these cases, a synchronous
call might be closed or an asynchronous acknowledgment might be sent back to the initia-
tor (design decision 3).
Depending on initial design decisions, the incoming message might need to be transformed
into the canonical data format of a composite application. Whenever the application sys-
tem uses the canonical data format as its own data format this step is not required (design
decision 4).
The next step is usually to trigger a composite application by using the Trigger Ser-

vice (design decision 5). This step is optional, as an IIF can also be used in a request
from the composite to back-end applications (cf. section 5.7.8). Depending on the actual
requirements (design decision 6), an IIF can close the synchronous request, terminate and
also acknowledge an asynchronous request. If a transactional context is present, these ac-
tivities can issue a pre-commit for the current transaction. If the IIF is called by an IOF
in a scenario that requires a coordination service to request an external service, the asyn-
chronous acknowledgment needs to either include the correlation identifier (cf. [95, 163])
or to address the appropriate call-back endpoint (cf. section 5.8).

Design Decisions and Realization Requirements The design decisions for an IIF,
apart from the decisions required for the single IS, are driven by the interaction require-

34If multiple messages are processed, multiple instances of the IIF exist.

Distributed and Mobile Systems Group 105

5 A Reference Architecture for Composite Applications

Figure 19: Activity Diagram of the Integration In-Flow

ments of a composite application. The interaction of a composite with heterogeneous
application systems is realized using both, an IIF and an IOF. Hence, a part of the inter-
action is realized by an IIF.
The following list provides an operational overview of the design decisions that have to

Distributed and Mobile Systems Group 106

5 A Reference Architecture for Composite Applications

be taken if an IIF is designed and upon which factors these decisions depend on.

• For which Communication Semantics is the IIF Used? An IIF can be used in
synchronous and asynchronous scenarios. Both acknowledgments as well as a two-
phase commit protocol (2PC) within a distributed, atomic transaction can be used
to inform the respective party about the success of a communication. Knowing the
manner of communication is important as it influences other design decisions.
If a 2PC is used, the transactional context is established by the calling party (which
is usually the composite application’s service coordination layer). In such cases,
first the participating application systems and then the communication protocol for
the composite application and the protocol used to communicate with application
systems need to support 2PC. The use of 2PC has only some minor implications for
the design of an IIF as it basically relies on the communication protocol and just
forwards the transactional context to the applicable parties.

• Is Data Contained in the Request? If it is required to load data within an IIF (rather
than having it passed to it), a Data Service is required and needs to be designed
accordingly. This design decision is indicated as design decision 1 in figure 19. This
decision depends on the interaction an IIF is used in. The actual way of interacting
can depend on technical constraints exposed by an application system (cf. section
5.7.8). If it was decided for a Data Service, the following design decision has to be
taken as well:

– How Should Communication Errors be Handled? If the communication with
an application system is erroneous, an IIF can handle this situation by either
rejecting the initial call (both for synchronous and asynchronous scenarios with
and without a 2PC) or by triggering an error procedure. The handling of this
error procedure is, however, out of scope of the IIF and should be defined
independently.

• Does Incoming Data Need to be Validated? The data that was either fetched or
received could be validated. Whenever the overall scenario implies that erroneous
data could be present (e.g., during communication with external parties) or if the
validity of a request depends on actual user credentials, a Validity Service might
be used in order to filter out invalid messages. Using a Validity Service implies
another design decision:

– How to Handle Invalid Data? If the validity of a message is checked by a
Validity Service, it has to be decided at design-time how the IIF should
react to invalid messages. An IIF can handle invalid data either by rejecting
the initial call (both for synchronous and asynchronous scenarios with and
without a 2PC) or by triggering an error procedure. The handling of this error
procedure is, however, out of scope of the IIF.

• Does an Incoming Request Need to be Closed or Acknowledged if Data is Received
(and Potentially Valid)? Based on the actual communication semantics in which
an IIF is used, it may be required to inform the calling party about the success of
processing the message. Depending on the scenario, the earliest possible point for
closing the request is after the data was received and (potentially) validated.

Distributed and Mobile Systems Group 107

5 A Reference Architecture for Composite Applications

• Does Incoming Data Need to be Transformed into the Canonical Data Format?
Whenever an application system that is connected via an IIF does not support the
canonical data format of the composite application, an Heterogeneity Service is
required as part of an IIF in order to transform the data (cf. section 5.7.3).

• Does the IIF Need to Trigger the Composite Application? If an IIF is not used
for receiving a response that was made using an IOF (cf. section 5.7.8), a Trigger

Service might be required in order to trigger the computation within the composite
application.

– Does the IIF need to Store Data into the Data Repository? If a Trigger

Service is used, it might also be required to store the received or fetched data
in the data repository (cf. section 5.7.4).

• Should the Communication be Closed After the Data Was Successfully Received?
Based on the actual communication semantics in which the IIF is used, it might be
necessary to inform the calling party about the success of processing the message.
Depending on the scenario, the latest possible point for closing the request is after
the composite application was triggered.
Depending on the realization of the service coordination, the extraction (out of the
request’s context) and propagation of a correlation identifier might also be required.

In order to realize an IIF, the platform for the DET needs – in addition to the requirements
for the used IS – to support the following functionalities:

• Queueing With exactly-once and exactly-once-in order semantics

• Reliable Messaging

• Synchronous Messaging

• Asynchronous Messaging

• Distributed Transaction with the Two-Phase Commit Protocol

• Service Orchestration Basic workflow support for orchestrating the integration
services is required

• Workflow Pattern 1 – Sequence of [108]

• Workflow Pattern 4 – Exclusive Choice of [108]

• Workflow Pattern 5 – Simple Merge of [108]

5.7.7 Integration Out-Flow

Purpose and Functionality Integration out-flows (IOF) are used by composite ap-
plications for the sake of communicating with back-end application systems and with
external partners. As for the IIF, an IOF is an orchestration of integration services. Sev-
eral design choices have to be taken in order to realize an actual IOF.

Distributed and Mobile Systems Group 108

5 A Reference Architecture for Composite Applications

An IOF is called using the service protocol that is used throughout the composite appli-
cation. Hence, a message in the canonical data model can be expected to be received.
As the first step in the process, a pre-conversion can be performed by an Heterogeneity

Service. This IS could transform the data independently of the actual receiver (design
decision 1). An example of such a pre-conversion is to remove confidential data that must
not be sent to external parties.
An IOF can be designed in a way to terminate an incoming call (closed for synchronous
calls or a rejection reply to an asynchronous message) and/or to trigger an error compen-
sation procedure if a transformation is not successful (design decision 1a).
If no pre-transformation was performed or if it was successful, a Routing Service is
needed to determine the final receiver(s) of a message. Depending on the way the ac-
tual Routing Service is designed, multiple IOF instances might be spawned off by the
Routing Service in order to individually handle the communication with each single
application system that was identified as a communication partner (see section 5.7.5).
With the routing information available, the message can be transformed so it is receivable
by the identified application system (design decision 2). As for the first transformation,
conversion errors can be handled (design decision 2a).
Depending on the interaction mode in which the IOF is used, there are two options that
can be used to communicate with an application system (design decision 3):
Whenever there is no response expected, an IOF will directly use a Data Service that
posts the message to the application system. For the Data Service there is the con-
sequence that it must not use the Fetch Data flow but the Store Data flow (design
decisions 2 and 4 in figure 14). If there is an error during the communication, an IOF can
terminate an incoming call (closed for synchronous calls or a rejection reply to an asyn-
chronous message) and/or trigger an error compensation procedure (design decision 3b).
In case of success, an IOF can also close or acknowledge the communication. However, no
data from the application system can be transmitted back to the initial sender in such a
scenario.
If an IOF is used in a request/response scenario, the IOF will trigger an IIF that handles
the response-part of the communication. First, an IIF is determined and then executed
in the context of the respective IOF. The used IIF will then use a Fetch Data activity
of the initial Data Service but not the Store Data activity (design decisions 2 and 4 in
figure 14). This way an IIF can synchronously or asynchronously communicate with the
respective application system. The IIF also needs to be designed to transmit the reply
to the initial requester. Additionally, the IIF will close (if required) the initial call to the
IOF. This is possible if the IIF is executed in the context of the IOF as a sub-flow. The
acknowledgment/closing of the request implies that the IOF passes either the correlation
identifier or the endpoint reference to the IIF (cf. section 5.8).
The generic superset of IOFs with all necessary design decisions is described in the activity
diagram of figure 20.

Design Decisions and Realization Requirements The design decisions that have
to be considered prior to implementing an IOF, apart from the decisions for the single IS,
are driven by the interaction requirements of the composite application. The interaction
of a composite with heterogeneous application systems is realized using both, the IIF and
the IOF. Hence, a part of the interaction is realized by an IOF.
The following list provides an operational overview of the design decisions that have to
be taken for the IOF and upon which factors what they depend.

Distributed and Mobile Systems Group 109

5 A Reference Architecture for Composite Applications

Figure 20: Activity Diagram of an Integration Out-Flow

• Is a Data Transformation Required that is Independent of the Receiver? Depending
on the business data and the business process, a Heterogeneity Service might be
used to transform an actual message independent of any application systems. This
might be useful if common pre-conversions increase the re-usability of the single
Heterogeneity Services and decrease the complexity of the receiver-dependent
Heterogeneity Services.
This option is indicated as design decision 1 in figure 20.

– How Should Transformation Errors be Handled? If a message is transformed,
it has to be decided at design-time how the IOF should react to erroneous
message translations. An IOF can handle such errors either by rejecting the
initial call (both for synchronous and asynchronous scenarios with and without
a 2PC) and/or by triggering an error procedure. The handling of this error
procedure is, however, out of scope of the IOF.
This option is indicated as design option 1a in figure 20.

• Who Should Receive the Message? It is necessary that a Routing Service is de-

Distributed and Mobile Systems Group 110

5 A Reference Architecture for Composite Applications

signed in a way that supports the actual interaction requirement of an IOF.

• Is a Receiver-Dependent Data Transformation Required? Depending on the business
data and the actual application system, a Heterogeneity Service might be used
to transform the actual message so that it can be received by the application system
that was determined as the receiver.
This option is indicated as design option 2 in figure 20.

– How Should Transformation Errors be Handled? Also for this transformation
step it has to be decided how possible transformation errors should be handled.
An IOF can handle such errors either by rejecting the initial call (both, for
synchronous and asynchronous scenarios with and without a 2PC) and/or by
triggering an error procedure. The handling of this error procedure is, however,
out of scope of the IOF.
This option is indicated as design option 2a.

• Which way of Updating Application Systems is Required? Depending on the required
interaction, the IOF might directly use a Data Service or invoke an IIF. The first
alternative is chosen if no response from the application system to the composite
application is required. The second option allows the sending of application data as
a reply back to the composite application. This option is indicated as design option
3. According to the decision that is taken, a Data Service or an IIF needs to be
designed respectively.

– What IIF Should be Used? If the previous decision implies the application of
an IIF, it must be determined which IIF should be used and the IOF needs to
be configured/realized accordingly.
The execution of the chosen IIF takes place in the thread of control of the
calling IOF. The IIF is considered an ordinary service provider. If an IOF calls
an IIF, the Message Splitter of the IIF’s Data Service must not be used
in order to avoid synchronization issues. Therefore, the call of the IIF can not
create additional threads of control.
If an IOF is called in the context of a distributed transaction, the IOF might
pass this context to the IIF. Also user credentials might be propagated.

– What Communication Semantic is Required? An IOF can support synchronous
communication, asynchronous communication and asynchronous communica-
tion with acknowledgment. Depending on the required interaction, one option
has to be chosen per IOF if a Data Service rather than an IIF is used for
updating an application system. For both options that interact with a sender
(asynchronous with acknowledgment and synchronous communication) no busi-
ness data can be transmitted. Only a technical acknowledgment is possible.
Supplying business data is only possible by using an additional IIF.
This option is indicated as design option 3a in figure 20.

If the Data Service of an IOF is directly used, it must be decided how successful
and unsuccessful interactions with the application system should be treated (cf.
section 5.7.1).

– How Should Successful Communication be Treated? If a Data Service is used,
an IOF possibly needs to close the request made by its requester (usually the
composite application) or send an acknowledgment to the requester. The actual

Distributed and Mobile Systems Group 111

5 A Reference Architecture for Composite Applications

way is use case dependent. This option is indicated as design decision 3a in
figure 20.

– How Should Unsuccessful Communication be Treated? An IOF also needs to
deal with errors that occur during the execution of the Data Service. Options
are to reject the initial (synchronous or asynchronous) call and/or to trigger
an error handling procedure. This option is indicated as design decision 3b.

In order to realize an IOF, the platform for the DET platform needs to support the
following functionality (in addition to the requirements of the single integration services):

• Queueing With exactly-once and exactly-once-in order semantics

• Reliable Messaging

• Synchronous Messaging

• Asynchronous Messaging

• Distributed Transaction with the Two-Phase Commit Protocol

• Service Orchestration Basic workflow support for orchestrating the integration
services is required

• Workflow Pattern 1 – Sequence of [108]

• Workflow Pattern 4 – Exclusive Choice of [108]

• Workflow Pattern 5 – Simple Merge of [108]

• Workflow Pattern 14 – Multiple Instances With a Priori Runtime Knowl-
edge of [108] Additionally, the DET platform needs to support services to spawn
off new threads in a way that creates multiple instances of subsequent activities.

Distributed and Mobile Systems Group 112

5 A Reference Architecture for Composite Applications

5.7.8 Realizing Service Interactions with Heterogeneous Applications Using
Integration Flows

The DET exposes its functionality using two integration flows that can be combined in
order to realize more complex interaction scenarios. The DET exposes its functionality
to the composite application (normally to the coordination layer) and addresses the con-
cern of heterogeneity. The coordination layer addresses issues of service granularity and
coordinates the interaction of the composite application with application systems. These
interactions are usually routed through the integration flows that need to support the
different models of service interaction.
This section outlines which forms of service interaction can be supported by a DET. Addi-
tionally, descriptions about how certain interaction models influence the design decisions
for the DET layer are included. As a consequence, the design of the DET can be facilitated
if the interaction models (that might arise out of business logic-imposed requirements or
application-specific constraints) are defined for the level of service coordination.
The interactions that are analyzed are the service interaction patterns described in [98]. By
using a DET, the interaction schemes are not only possible between services, they are also
possible between the service consumers of the composite application and heterogeneous
application systems that are not natively acting as service providers. Supporting these
patterns leverages the realization of composite applications in heterogeneous application
landscapes very efficiently.

As a first indicator of how the interaction patterns can be supported with a DET, tables 17
and 18 give an overview of applicable service interaction patterns and the decisions they
impact on the DET. The different interaction patterns might require the deployment of
an IIF and/or an IOF. Additionally, they influence which integration services are required
and how they should be configured. The implications from interaction patterns to an IIF
are shown in table 17.

The integration patterns and their related design choices are indicated vertically in the
first column. The headline lists the design options for the DET ordered by the integration
service for which they have to be taken.
Crosses indicate that a certain interaction pattern must be realized by using a certain
integration flow, integration service and potentially one of its design options. Swung
dashes indicate that the actual pair of patterns can not be found together. The use of
the respective integration pattern can not be realized using the indicated DET artifact.
If two fields in one row are marked with an o, one of the marked options has to be used.
All un-marked pairings are optional.
Similar to table 17, table 18 describes the relations between interaction patterns and the
artifacts of the IOF.

Distributed and Mobile Systems Group 113

5 A Reference Architecture for Composite Applications

T
ab

le
17

:
H

ow
S
er

v
ic

e
In

te
ra

ct
io

n
R

eq
u
ir
em

en
ts

aff
ec

t
an

II
F

Distributed and Mobile Systems Group 114

5 A Reference Architecture for Composite Applications

T
ab

le
18

:
H

ow
S
er

v
ic

e
In

te
ra

ct
io

n
R

eq
u
ir
em

en
ts

aff
ec

t
an

IO
F

Distributed and Mobile Systems Group 115

5 A Reference Architecture for Composite Applications

In order to facilitate the understanding of these tables an example is provided:

Use Case:
On the coordination layer of a composite application, there might be a coordination
according to the RosettaNet PIP 3A3 [110] – Request Price and Availability. This PIP
is – according to [98] – captured by the means of the service interaction pattern 7 One-
to-Many Send/Receive. The first design choice for this pattern is whether the parties
that receive the messages are known or unknown. The second decision is whether reliable
delivery is required. Let’s assume that the list of recipients is known and that reliable
delivery is required.
Configuration: first, it can be identified that the realization of the interaction pattern
7 always requires the IIF as well as the IOF. Concerning the IOF that leverages the One-
to-Many Send -Part of the pattern, the functionality of a Routing Service is required.
As the recipients are known, the RecipientList pattern is also identified. In order
to support reliable delivery, the Acknowledge if Success and the Refuse on Failure

parts of the IIF (that realizes the actual communication with the back-end system) need
to be activated in order to give a feedback to the composite for each message. This
is necessary for each message that was triggered by the RecipientList of the Routing

Service.

The tables 17 and 18 support the design of the DET by providing an overview of the
possible ways to realize the single service interaction patterns using integration flows and
services. The following list provides a more detailed description of design implications
and how the design of the DET can be facilitated. For all forms of service interaction
it is assumed that the service consumer is the composite application while the service
providers are the back-end application systems.

• Send - Service Interaction Pattern 1 of [98]

The send pattern describes that “a party sends a message to another party” [98, p.
306]. Whenever the receiving party does not use the canonical data format nor does
not provision services as the composite application requires them, an IOF is required.
As there is no response foreseen in this pattern, design decision 3 of the IOF (cf.
figure 20) has to be decided in a way that the Data Service is used for updating
an application system and not the IIF and its Data Service. Depending on the
design decisions that are taken for the interaction pattern, different implications on
the IOF exist. These implications are:

– Blocked Sender for Reliable Messaging Reliable messaging is a requirement for
the platform of the DET and does not need to be realized by an IOF. If the
service consumer, however, blocks, it needs to be notified by the IOF. This
might be realized by using an acknowledgment for the asynchronous message
or by terminating a synchronous call.

– Non-Blocked Ssender for Reliable or Ordinary Messaging If a reply to a message
is required, design decision 3a has to be taken in a way that the IOF terminates
after an application system is updated.

– A Priori Known Receiver If the (final) receiver of a message is a priori known,
the Routing Service of the respective IOF has to be designed in a way that
the endpoint of that receiver is available (design decision 1 in figure 18).

Distributed and Mobile Systems Group 116

5 A Reference Architecture for Composite Applications

– A Priori Unknown Receiver If the (final) receiver of a message is a priori not
known, the final receiver can only be determined by applying a Content-Based

Router as routing mechanism for the Routing Service or by looking up a
registry entry.

• Receive - Service Interaction Pattern 2 of [98]

The receive pattern describes that “a party receives a message from another party”
[98, p. 307]. Whenever the party that sends a message either does not potentially use
the canonical data format, does not consume services as the composite application
provisions them or (and this is a very probable scenario) does not stick to the event-
driven approach to trigger a composite application, an IIF is required.
If an IIF is used to support the Receive pattern, the Trigger Service is required.
Storing data, however, is optional since the message that is to be received might
not contain a payload. Depending on the design decisions that are taken for the
interaction pattern, different implications exist for the IIF. These implications are:

– Acknowledgement for Sender If the sender of the respective message requires an
acknowledgment, the IIF has to close a successful request by sending a signal.
This might be realized either by closing a synchronous request or by sending an
acknowledgment for an asynchronous message. Both options can not contain
any payload.
If the Validity Service is used to check whether the message that has to be
received is valid, and the message is not valid, the message has to be rejected
by the IIF.

– Receiver not ready This option does not require any design choice at the IIF
level. It is assumed that the DET platform uses queuing and buffers messages
if a recipient is not ready.

• Send/Receive - Service Interaction Pattern 3 of [98]

The send/receive pattern describes that “a party X [(the composite application)] en-
gages in two causally related interactions: in the first interaction X sends a message
to another party Y (the request), while in the second one X receives a message from
Y (the response)” [98, p. 308]. This service interaction pattern involves both, an IIF
and an IOF. The part of this pattern that describes the sending is realized using
an IOF. The IOF is designed as described for the Send pattern except that a Data

Service does not update the application system but rather an IIF is triggered which
must first call a Data Service. In this Data Service, the Fetch Data micro-flow
uses the incoming message (that was sent by the composite application) in order to
retrieve the response. The Retrieve Data step of the Fetch Data micro-flow needs
to be configured according to the request/response scenario the integration flows are
used in. The single implications of the design choices of this interaction pattern are:

– Unknown Counter-Party According to the Send pattern, an IOF can be con-
figured to use a Content-Based Router or to lookup a service registry within
its Routing Service. However, this only determines the respective IIF that
has to be used. As the IIF has no routing option included, the IOF has to
trigger an appropriate IIF that is configured for sending to the appropriate
application system. This mechanism implies the constraint that the possible
receivers need to be known in advance. The decision of the actual receiver can
be made during run-time.

Distributed and Mobile Systems Group 117

5 A Reference Architecture for Composite Applications

– Correlation of Outgoing and Incoming Message Even if [98] relates this as
a design choice with the send/receive interaction pattern, the correlation is
only required if asynchronous messaging is used. If this is the case, the Data

Service of the IIF needs to be configured as described in the design decision
“correlation or fixed call-back endpoint?” that influences the Retrieve Data

activity.

– Fault of Either of the Messages Communication errors might occur during the
execution of the Data Service of the IIF. The IIF needs to be designed in a
way to handle errors (design decision 2a of figure 19) if so required.

– Blocking Sender Whenever the sender is blocked, the IIF needs to close the
communication that was opened by calling the IOF (This is indicated by the
design decisions 3 and 6 of figure 19).

• Racing Incoming Messages - Service Interaction Pattern 4 of [98]

The racing incoming messages pattern describes that“a party expects to receive one
among a set of messages. These messages may be structurally different (i.e. different
types) and may come from different categories of partners. The way a message is
processed depends on its type and/or the category of partner from which it comes”
[98, p. 309]. This pattern is realized by using an IIF. The basic functionality is
realized using a Trigger Service. It maps incoming requests into the according
event types. This mapping is determined by the business logic. According to the
chosen type of event, the processing of the single message can vary. The data that
is transmitted in the incoming messages is stored by a Trigger Service into the
data repository.
The single implications of the design choices of this interaction pattern are:

– Incoming Messages of Different Types If the incoming messages are not of the
canonical data format, the Heterogeneity Service is required.

– Incoming Messages Require Different Processing Through the basic usage of
events, this is supported by defining different event types for messages that
need different processing.

– After One Message Was Processed, Following Messages Need to be Discarded
By using a Message Filter of a Trigger Service, messages can easily be
discarded. The Message Filter has – in such cases – to be stateful.

– Simultaneously Available Messages This behavior can be prohibited by using
queueing (with exactly-once-in order semantics) as the transport mechanism
of the DET. A filter of a Trigger Service might also be used.

• One-to-Many Send - Service Interaction Pattern 5 of [98]

The one-to-many send pattern describes that “a party sends messages to several
parties. The messages all have the same type (although their contents may be
different)” [98, p. 310]. This pattern can be realized by using an IOF. It requires
the use of a Data Service (instead of a send via the IIF) and the use of a Routing

Service. The Routing Service has either to be used with a Recipient List or
a Content-Based Router. If required (even if not included in the pattern) the
message could be transformed specifically for each determined receiver. The single
implications of the design choices of this interaction pattern are:

Distributed and Mobile Systems Group 118

5 A Reference Architecture for Composite Applications

– Unknown Number of Parties A Content-Based Router is the only mechanism
to dynamically define multiple recipients of a message. Whenever the receivers
are not determined by actual message payload, the scenario can not be sup-
ported by the IOF.

– Notification of Delivery The composite application can be notified of successful
deliveries of all messages if the DET supports the synchronization of control
flows that are opened for the single receivers as described by the workflow
pattern 14, Multiple Instances With a Priori Runtime Knowledge, of [108]. In
all cases, for each failed message, an error procedure can be triggered (design
decision 3b in figure 20).

• One-from-Many Receive - Service Interaction Pattern 6 of [98]

The one-from-many receive pattern states that “a party [(the composite)] receives a
number of logically related messages that arise from autonomous events occurring
at different parties. The arrival of messages needs to be timely so that they can be
correlated as a single logical request. The interaction may complete successfully or
not depending on the set of messages gathered” [98, p. 312]. As described by [98],
the One-from-many receive pattern can be realized by the use of aggregation with
correlation. Thus, the aggregator of an IIF is required and its Data Service needs
to be designed in a way to support correlation (design decision 3a of figure 14). A
timeout or another stop-condition of the aggregator needs to be set accordingly. In
case of unsuccessful aggregation, an error handling procedure might be triggered
(design decision 3b of figure 14). In order to trigger the composite application with
the received message, a Trigger Service is required.

• One-to-Many Send/Receive - Service Interaction Pattern 7 of [98]

The one-to-many send/receive pattern describes that “a party sends a request to
several other parties, which may all be identical or logically related. Responses are
expected within a given time frame. However, some responses may not arrive within
the time frame and some parties may not even respond at all. The interaction may
be completed successfully or not depending on the set of responses gathered” [98, p.
311]. Realizing this pattern requires both, an IOF that is used to address messages
to multiple parties and an IIF that is used to gather the responses. Hence, the
IOF needs to be configured to not use a Data Service by itself but to use an IIF
and its Data Service. This Data Service can synchronously fetch responses from
the application system or communicate in an asynchronous way using correlation or
call-back endpoints.
The single implications of the design choices of this interaction pattern are:

– Unknown Number of Parties A Content-Based Router is the only mechanism
to dynamically identify multiple recipients of a message. Whenever the re-
ceivers are not determined by the actual message payload, the scenario can
not be supported by an IOF. The Routing Service of the IOF is required to
determine the IIF for each application system. If multiple application systems
are identified, multiple IIFs are initiated.

– Correlation of Responses The Retrieve Data activity of the Data Service

of the IIF that connects to the actual application system is required to use
correlation in order to support this scenario (design decision 1 of figure 16)

Distributed and Mobile Systems Group 119

5 A Reference Architecture for Composite Applications

– Avoid Indefinite Waiting Period A timeout can be used in the Retrieve Data

part of the Data Service in order to avoid the IIF waiting for an indefinite
period for answers from the application systems. Accordingly, an error behavior
needs to be specified for the timeouts (design decision 1a of figure 16).

– Reliable Delivery Despite the reliable communication that is supported by the
platform of the DET (queueing with exactly-once (in-order) delivery capabili-
ties), it might be required to inform the composite application about the success
or error of an interaction.
The composite application can be notified about the successful delivery of all
messages if the DET supports the synchronization of control flows that are
opened for the single receivers as described by the workflow pattern 14, multi-
ple instances with a priori runtime knowledge, of [108]. In all cases, for each
failed message, an error procedure can be triggered (design decision 3b in figure
20). Single notifications for single application systems are not supported.

• Multi-Responses - Service Interaction Pattern 8 of [98]

The multi-responses pattern describes that “a party X [(the composite)] sends a
request to another party Y. Subsequently, X receives any number of responses from
Y until no further responses are required. The trigger of no further responses can
arise from a temporal condition or message content, and can arise from either X or
Y’s side. Responses are no longer expected from Y after one or a combination of the
following events: (i) X sends a notification to stop; (ii) a relative or absolute deadline
indicated by X; (iii) an interval of inactivity during which X does not receive any
response from Y; (iv) a message from Y indicating to X that no further responses
will follow. From this point on, no further messages from Y will be accepted by
X” [98, p. 312f.]. This interaction pattern is supported by using both types of
integration flows. As described by the racing incoming messages pattern and its
solutions, different incoming messages are forwarded to the application system by
the notion of an IIF and its Trigger Service. A filter can be used to discard
unnecessary incoming messages.
Outgoing messages are initially distributed using an IOF. Such an IOF does not
directly use a Data Service. Furthermore it uses an IIF for receiving the messages.
Only asynchronous communication is possible if the DET is used to support this
pattern. This way both, the determination of the appropriate request to close and
the restriction to only receive one response are avoided.
The single implications of the design choices of this interaction pattern are:

– Reception of Multiple Messages from One Party This design option can only
be supported by aggregating the responses from one application system by the
notion of an Aggregator that is used as part of the IIF’s Data Service.

– Incoming Messages of Different Types If the incoming messages are not in the
canonical data format, a Heterogeneity Service is required.

– Notify Application System if no More Messages Are Accepted If no more mes-
sages are accepted, the Retrieve Data activity of the IIF’s Data Service

must be configured to reject incoming messages. This is only possible by us-
ing a timeout (design decision 1a in figure 16). If the composite application
needs to actively notify the application systems before an error can occur, a
one-to-many send scenario needs to be realized separately as an error handling
procedure.

Distributed and Mobile Systems Group 120

5 A Reference Architecture for Composite Applications

• Contingent Requests - Service Interaction Pattern 9 of [98]

The contingent requests pattern describes that “a party X makes a request to an-
other party Y. If X does not receive a response within a certain time frame, X
alternatively sends a request to another party Z, and so on” [98, p. 314]. This
pattern is not directly supported by the DET. Whenever this is required, multiple
request/response scenarios with different receivers should be realized. The actual
logic that initiates a new request has to reside at the level that controls the DET –
the service coordination layer.

• Atomic Multicast Notification - Service Interaction Pattern 10 of [98]

The atomic multicast notification pattern describes that “a party sends notifications
to several parties such that a certain number of parties are required to accept the
notification within a certain time frame. For example, all parties or just one party
are required to accept the notification. In general, the constraint for successful notifi-
cation applies over a range between a minimum and maximum number” [98, p. 315].
This interaction pattern is supported in an all-or-nothing fashion by an IOF and
its Data Service by including a transactional context in the request. The actual
transaction handling (commit/abort) needs to be realized by the actual platform.
The IOF simply starts the transaction by including the transactional context in the
calls to the application systems. Hence, the actual support of the atomicity lies in
the platform and not within the flow logic of the IOF. The single implications of the
design choices of this interaction pattern are:

– Unknown Number of Parties A Content-Based Router is the only mechanism
to dynamically identify multiple recipients of the multicast message. Whenever
the receivers are not determined by actual message payload, the scenario can
not be supported by an IOF.
The Routing Service of an IOF is required to provide required routing in-
formation to the Data Service. If multiple application systems are identified,
multiple Data Services are started. The transactional context needs to be
transmitted to every application system.

• Request with Referral - Service Interaction Pattern 11 of [98]

The request with referral pattern states that “party A sends a request to party B
indicating that any follow-up response should be sent to a number of other parties
(P1, P2, ..., Pn) depending on the evaluation of certain conditions. While faults are
sent by default to these parties, they could alternatively be sent to another nomi-
nated party (which may be party A)” [98, p. 316]. As the DET solely describes the
integration of application systems under the central control of a composite applica-
tion, there is no need for the composite application to refer the control to another
party. This pattern is not supported by the DET.

• Relayed Request - Service Interaction Pattern 12 of [98]

The relayed request pattern states that “party A makes a request to party B which
delegates the request to other parties (P1, ..., Pn). Parties P1, ..., Pn then continue
interactions with party A while party B observes a ’view’ of the interactions including
faults. The interacting parties are aware of this ’view’ (as part of the condition to
interact)” [98, p. 317]. In asynchronous send/receive scenarios with correlation, the
application system(s) can defer the communication with the composite application

Distributed and Mobile Systems Group 121

5 A Reference Architecture for Composite Applications

to other application systems. In order to create a “view” of the communication, the
communication protocol used between the DET and the application systems has
to be the same. The application systems as well as the respective adapters of the
connectivity layer need to support “Cc-ing” other communication parties (cf. [98, p.
318]).

• Dynamic Routing - Service Interaction Pattern 13 of [98]

The dynamic routing pattern states that“a request is required to be routed to several
parties based on a routing condition. The routing order is flexible and more than
one party can be activated to receive a request. When the parties that were issued
the request are finished, the next set of parties are passed the request. Routing can
be subject to dynamic conditions based on data contained in the original request
or obtained in one of the ‘intermediate steps’” [98, p. 317f.]. The basic notion of
this interaction pattern can be realized by using an IOF with a Content-Based

Router. Whenever a feedback from the application systems is required to send
the message(s) to more application systems, the DET can not handle this logic
alone. The coordination layer needs to support this behavior. Hence, an IOF
might use an IIF according to the one-to-many send with an unknown number
of parties and reliable delivery. If the service coordination layer is informed about
the delivery, it might interact with more application systems using another IOF.
Optionally, atomicity can be realized using distributed transactions.

5.8 Service Coordination Layer

Purpose and Functionality From a top-down perspective the integration flows pro-
vide, in addition to the connectivity layer, a standardized mechanism for interacting with
application systems. This is irrespective of communication or computational semantics
and provides homogeneous data access as well.
As technical heterogeneity is addressed by the presented mechanisms, the services that
are exposed by the integration flows can easily be orchestrated by using an orchestration
engine. Without further concepts, however, the functionality that is provided by these ser-
vices would be determined by the functionality offered by the application systems. Such
services are aligned with neither the business requirements nor the business tasks of a
company. Hence, the business processes of an organization could either not be used to
generate service orchestrations or the business processes would be restricted by the actual
application systems. In order to apply the paradigm of service orientation and compose
new business-centric functionality out of existent application functionality or to enrich
functions within a specific context, it might be appropriate to combine the application
specific functionality with new functionality. Expressed differently, application services
might be needed to be aggregated to more problem-oriented services (enterprise services).
The service coordination layer addresses this issue also referred to as service mediation
(cf. [111]). It can be used in order to invoke 2 to n basic services using the integration
flows in order to form the enterprise services that are then orchestrated. This is similar to
the description of business-driven service pattern in [81] where services are orchestrated
in so-called micro-flows in order to correspond with the services that are orchestrated by
a macro-flow. This composition of low-level services to business-driven services is consid-
ered rather static (cf. [81, pp. 44f.]).
[112] describes patterns that demonstrate how the gap between application services and a

Distributed and Mobile Systems Group 122

5 A Reference Architecture for Composite Applications

business process-centric orchestration can be dealt with using a so-called process support
layer as a mediator. In particular, granularity problems and interdependency problems
that prohibit the direct use of application systems from orchestrations are addressed.
The Composition, Decomposition and Bulk Service patterns describe how differing gran-
ularity can be dealt with. The patterns Sequentializing and Reordering describe how
interdependency problems can be addressed. Realizing such patterns is the purpose of
the coordination layer.

In contrast to the business-driven service pattern of [81] and the process support layer
of [112], the coordination layer is recursive. This means that an aggregated service that is
composed at this layer might be aggregated again with services from this or lower layers
to expose other high-level services. The benefit of this approach is that the aggregations
themselves can remain flexible and their re-usability is increased.
A service coordination layer might aggregate both, company internal and external services
to services that are in turn usable both company internally and externally. This also intro-
duces the need to support business protocols. These business protocols are sets of actions
that have to be performed by multiple parties in order to allow successful execution of
certain business functionality (cf. e.g. [110]). They can be realized at the layer of service
coordination.

An aggregation of services at the service coordination layer might also be required due
to technical reasons. The service coordination layer exposes services to the service or-
chestration layer of a composite application (cf. section 5.9.1). Such orchestrations are
designed in alignment with business processes and not with “technical” constraints in
mind. Whenever a multi-resource interaction is required that ensures consistent state
transitions, this might be an indicator for the need of a technically motivated service
aggregation. Consistent state transitions can be ensured by two means of transaction
handling. Rather short-term transactions fulfilling the ACID properties by locking and
rollback mechanisms or more long-term transactions without locking and with compensa-
tion actions (cf. section 3.2.2). Of course, the orchestrated functionality is offered by the
application systems and the consistent state transition is also assured by these systems.
Orchestrating the services of these systems does, however, raise the need for a cross-
service transactional coordination. Even if the application systems have to support the
transactional coordination by appropriate compensation operations and/or by supporting
transactional protocols, the coordination itself has to be controlled at this layer of the
composite application. The service coordination layer controls distributed transactions
by initiating them and passing the transactional context to application systems (possibly
via the DET) as well as to the data repository.
According to [73], transactional coordination can consist of two layers. One layer for
so-called local transactions with ACID properties and one for global transactions with
relaxed transactional properties. The latter one uses ACID transactions as black-boxed
functionality to form long-term global transactions. By distinguishing these two layers of
transaction handling, the idea of separating concerns of different transactional properties
is incorporated.
Composite applications that are implemented using the presented reference architecture
realize local transactions at the service coordination layer as it acts as the controlling
instance for ACID transactions .
Meeting the long-term characteristics of global transactions, the isolation and atomicity
properties can be relaxed and so-called safepoints can be used (cf. [73]). Relaxing the iso-

Distributed and Mobile Systems Group 123

5 A Reference Architecture for Composite Applications

lation property is realized by publishing intermediated results to the global context (for
the presented architecture this is the data repository). Atomicity is relaxed by introducing
compensating transactions that “undo” other transactions. Both, context publication and
compensation transactions are local transactions.

Safepoints are local transactions that are marked by this special property of being a
safepoint. Thus, the fundamental support for global transactions is formed by local trans-
actions. This point of view is in line with the concept of a recursive service coordination
layer.
[73] also proposes a way to specify transactional properties (such as the safe point proper-
ties for local transactions) and an execution model that supports global transactions based
on these specifications. This execution model dynamically calculates workflow paths for
partial or complete compensation of global transactions, if required. At the given point
this is, however, not seen as a mandatory feature for a composite application. This is why
only the notion of short-term and long-term transactions and the notion of compensating
transactions are considered a necessity for composite applications.
Another necessity for deploying a service coordination layer is to realize complex inter-
action patterns. As described in section 5.7.8, a DET offers means for supporting most
of the known service interaction patterns. However, the contingent request can not be
implemented by solely using the DET. The service coordination layer is required here as
well.

From a design point of view, the service coordination layer introduces a layer of aggrega-
tors. On one hand, this increases modifiability as it decouples application systems from
the business process logic of the service orchestration layer. An indicator of this positive
mechanism of aggregators is the System’s Service Coupling (SSC) metric (cf. section
3.2.1) that indicates less complex systems in terms of coupling if aggregators are deployed
in a system.
On the other hand an, additional layer of aggregation besides the centralized control of
the process orchestration decreases the ability to deal with a system’s complexity . This is
because modifications have to not just be performed at one single component of a compos-
ite application. The decreased control centralization that occurs if a service coordination
layer is introduced, is indicated by a decreased SCZ-value. The System’s CentraliZation
(SCZ) metric is sensitive in terms of deploying aggregates exhaustively (cf. section 3.2.1).
There is a trade-off between the SSC and SCZ (that is captured by the Aggregator Cen-
traliZation metric ACZ). The service coordination layer is introduced since the increased
modifiability of the service orchestration layer and the decreased overall coupling is ad-
vantageous over a fully centralized control. The level of modifiability is, however, not
optimal. The only solution would be to directly orchestrate application services. If these
application services are designed accordingly, both modifiability and complete control cen-
tralization become possible.
As the latter scenario will hardly be realizable today in a real-life context, the “amount”
of control logic that resists outside the central orchestration layer should be minimized.
The consequence for the layer of service coordination is that the contained control logic
needs to be kept as simple as possible. An indicator that addresses this idea from a
service-external viewpoint is the ACZ metric. This metric underlies the idea that service
mediation should not blur a centralized control model.

Distributed and Mobile Systems Group 124

5 A Reference Architecture for Composite Applications

Design Decisions and Realization Requirements The layer of service coordination
performs service aggregation of application services that are (possibly) mediated by the
integration flows of the DET. [81] proposes the notion of a Microflow Engine. Such an
engine basically performs service invocations in a defined sequence (as described by the
workflow patterns 1 Sequence, 4 Exclusive Choice and 5 Merge [108]). Additionally, it
manages the state of the flow. However, since this reference includes a central context
repository for a composite application (cf. section 5.6), the platform for the service coor-
dination layer does (and must not) not keep a context.
The patterns for granularity and interdependency of [112] also require just a sequence of
service invocations with state management and basic branching facilities. This eases the
realization of this layer. Hence, from this point of view service coordination should be
nothing more than a sequence of service invocations with some basic branching facilities.
However, the service coordination layer is the central control instance for distributed
transactions. “Safepoints” for long-running transactions are simply exposed as services,
too. ACID transactions, however, need to be supported by the service coordination layer’s
platform. Distributed ACID transactions are initiated at this layer and passed to the data
repository as well as to the DET. This means that the service coordination platform has
to support transactional protocols both for communicating with the data repository as
well as with the application systems and the DET. If these protocols are different (e.g.,
due to performance aspects), this also needs to be considered.
The service coordination layer needs to access the data repository and to expose the ag-
gregated services (the so-called enterprise services) to the service orchestration layer. To
accomplish this, the service coordination layer “speaks” to the service orchestration as
well as to the DET using the common protocol of the composite application. Usually, the
platform of the service coordination layer will use a notion of client proxies for interacting
with the DET and the application systems. In order to integrate the state management
that is offered by the data repository, the service coordination platform needs to provide
a means to integrate access to the data repository’s smart proxies, as well. As the data
repository is proprietary to the presented reference architecture, it is (most likely) not
possible to use standard service aggregator platforms. Also, exchanging interactions with
services is very likely to require additional overhead. This is because not only service
connections need to be established but also the smart proxies to be included. Changes to
this layer are likely to not be very frequent, though.
As the service coordination layer interacts with external application systems as well as
with the DET, it needs to deal with the actual endpoints of these service providers, too.
As a consequence, the platform of the service coordination layer needs to offer the possi-
bility of managing the actual endpoints of the services.
In contrast to a Routing Service, no routing logic is required. However, it needs to
be decided whether the service coordination layer should use static service endpoints or
dynamic lookups of the defined services (using a service registry – cf. section 5.10).

In order to realize the contingent request service interaction pattern the service coordina-
tion layer needs to register timeouts. Hence, the actual platform needs to either provide
means to perform service calls with timeouts or to provide some sort of a timer mechanism
that can interrupt service calls (or wait for replies).

From a communication semantics point of view, the DET exposes all necessary means to
homogenize the applied communication semantics at the service coordination layer. This
means that a service coordination could rely completely on synchronous communication
while the interaction with the back-end systems is asynchronous. There are some de-

Distributed and Mobile Systems Group 125

5 A Reference Architecture for Composite Applications

sign considerations, however. Some necessary service interactions (e.g., the one-to-many
send/receive with dynamic routing) might require the receipt of more replies than requests
that were made (while the actual number of replies is determined within the DET). Addi-
tionally, synchronous communication might be inappropriate since replies might be only
expected “late” and will require active “waiting” for the response and thus, might require
runtime resources. Also synchronous communication couples service consumers (the co-
ordination layer) and service providers (the application system) in terms of availability.
This is because short service interruptions of a service provider can be potentially masked
by using asynchronous communication.
This is why a service coordination layer needs to support asynchronous messaging. In turn,
a call-back mechanism needs to also be included. Additionally the notion of call-back in-
terfaces either requires means for correlating messages or exposing call-back endpoints.
As a request and a response are not necessarily related, the platform of the coordination
layer either needs to add correlation fields into request messages or provide a mechanism
for (stateful) call-back endpoints. Both solutions also imply the need for the DET to sup-
port the chosen approach. This might be realized either by keeping correlation identifiers
or by using an addressing protocol that supports multiple endpoints.
A good candidate for a correlation identifier (cf. [95, 163]) is the actual Event that is
being computed.

The service coordination layer and the DET usually communicate by using “complete”
service interfaces that describe the complete structure of transmitted data. This means
that the mediation of service providers by a DET is transparent to the service coordina-
tion. In order to “enrich” the composite-internal, event-based communication, a smart
proxy is required. This way, the spaces-based communication can be connected with the
messaging-based external world.
By using a smart proxy, necessary data is loaded from the data repository and passed to
the DET. If there is a reply involved, there are two different design options. The first one
is to pass data from the DET back to the service coordination and the service coordination
storing the data (back) into the data repository. This is the recommended method. As
a DET can also utilize a Trigger Service, that can interact with the data repository
directly, multiple replies can be put into the data repository while only one call is closed.
By choosing the second approach, interactions that involve multi responses can be real-
ized while the coordination layer stays agnostic of the actual number of communication
partners. In order to realize such an approach, Events need to be used as correlation
identifiers (as they are required by the data repository) and the platform of both, the
DET and the service coordination layer needs to be able to pass the transactional context
from the coordination layer to the DET. This might be required if the coordination layer
opens a transaction that needs to be closed by the IIF of the DET.

To summarize, the platform that is used to realize a service coordination needs to support
the following functionality:

• Asynchronous messaging Correlation and or callback endpoints

• Endpoint Management

• Integration of proprietary Smart Proxies

• Coordination capabilities for distributed transactions

Distributed and Mobile Systems Group 126

5 A Reference Architecture for Composite Applications

• Workflow pattern 1 – Sequence of [108]

• Workflow pattern 4 – Exclusive Choice of [108]

• Workflow pattern 5 – Simple Merge of [108]

• Timeouts in requests

The following list provides an operational overview of the design decisions that have to
be taken for the service coordination layer and upon which factors they depend.

• Communication semantics with external service providers Both, asynchronous
and synchronous communication is technically feasible. However, asynchronous com-
munication should be the default. Therefore synchronous communication should
only be used when needed. This decision might be based on quality-of-service re-
quirements.

• Way of realizing asynchronous interactions Different ways of asynchronous
communication are possible but are more dependent on the actual platform than
on the actual use case. Nevertheless, use case-specific requirements might deter-
mine the way asynchronous communication is realized. The possible approaches to
asynchronous communication are:

– Correlation identifier Asynchronous communication via a callback-identifier
(cf. [95, 163]) imposes less constraints to a platform than call-back endpoints do.
This is because correlation does not rely on addressing protocols but on identi-
fiers within the communication. If, however, common identifiers within request
and response messages do not exist, call-back endpoints might be necessary.

– Call-back endpoints Call-back endpoints rely on an addressing protocol that
realizes stateful communication among certain instances of service agents. If no
correlation identifier is applicable, this might be the only solution for realizing
asynchronous communication.

• Dynamic or static endpoints The service coordination layer might communicate
both, with the DET and application systems. The endpoint references to the respec-
tive service providers might either be fixed during design-time or looked-up during
run-time using a registry. Usually, there are no reasons for dynamically looking up
integration flows of the DET. However if no integration flow is used for communicat-
ing with a certain (class of) application system(s), dynamic lookups of the actual
endpoint might be required. If so, this has an impact on the service registry that
needs then to collaborate with the service coordination layer.

• Classical request/response or reply via data repository As described above,
there is the possibility of using a Trigger Service for realizing multi-response
patterns. If the exact number of responses is not known during design-time or if the
service coordination layer should be kept agnostic to the actual realization of the
interaction, this design decision should be made accordingly. The decision influences
the design of the DET.

Distributed and Mobile Systems Group 127

5 A Reference Architecture for Composite Applications

5.9 Business Process Orchestration Layer

The BPIOAI approach of [4] describes that the control flow that executes distributed
functionality should be designed with reference to a business process. Since one major
benefit of the service-oriented architectural style is the centralization of the control over
distributed functionality, the aim of this reference architecture is to allow for a control
flow that is described by the means of business processes. This way control is not only
centralized but also aligned with business requirements. Only small technical constraints
should prohibit the direct deployment of business process descriptions. The place within
the reference architecture to deploy these processes is the Business Process Orchestration
Layer.
Business processes can be described by workflows in an imperative way using a workflow
description language. Workflows have several aspects or perspectives that together form
the description of a workflow. These perspectives are the control flow, data, resource and
operational perspective (cf. [108]). The control flow “describes activities and their execu-
tion ordering through different constructors, which permit flow of execution control, e.g.
sequence, choice, parallelism and join synchronization” [108, p. 2]. The data perspective
describes business and processing data of the workflow as well as pre- and post-conditions
for the tasks of the workflow. The resources and the operational perspective describe
how workflows are executed in terms of their organizational support and of supporting
application systems.
The Business Process Orchestration Layer of a composite application should consist of
two elements. First, a workflow engine that executes the control flow by orchestrating
application services and service coordinations is required. There a business process is
deployed as the central control flow in a composite application.
Second, decisions within the control flow should be controlled by a dedicated Decision

Service that operates on the data of such a workflow. It is necessary to define a ded-
icated service as the process context is kept outside the actual workflow engine. These
two elements of the process orchestration layer are described in the following sections.

5.9.1 Workflow System for Service Orchestration

Purpose and Functionality The workflow system for service orchestration is the part
of the Business Process Orchestration Layer that provides a runtime-environment to ex-
ecute workflows that coordinate services following the control flow of an actual business
process. The orchestration needs to be described in a workflow description language that
is deployed to the workflow system. However, the actual design and validity of such pro-
cesses must be checked during design-time.
The services being executed are provided by application systems that are possibly me-
diated by integration flows of the DET and the service coordination layer. The (data)
context of the process is kept in the data repository (cf. section 5.6). This is because of
architectural considerations that involve consistency and simplification but also the simple
necessity to expand a process’ context throughout a composite application. The workflow
system that is used for service orchestration does therefore solely invoke external service
providers. The context handling is performed by Smart Proxies and the data reposi-
tory. These proxies might be incorporated into the workflow engine, though. In order
to realize conditional expressions, the workflow engine utilizes Decision Services that
are connected with the data repository. Such services are used to decide on conditional

Distributed and Mobile Systems Group 128

5 A Reference Architecture for Composite Applications

expressions in a given context.
Business processes do not only involve application systems, though. Human interaction
is often also part of such processes. From a software architecture point of view, human
interactions are realized as the interaction with back-end systems (cf. section 5.3). Hence,
humans are considered service providers that use a user-interface to receive input and pro-
vide output of a certain functionality. As a consequence, there are no constraints imposed
to the layer of process orchestration.

Design Decisions and Realization Requirements The Business Process Orchestra-
tion Layer is realized as a workflow engine that uses both, resources that are exposed
as services and data that is kept in a data repository that is also accessible via services.
Hence, the functional requirements that are imposed by this layer include the need to
allow for communication with the other elements and the need to be capable of execut-
ing workflows that are described in a workflow description language. In order to execute
workflows, the platform and the workflow description language should provide means for
realizing the basic control flow patterns, advanced branching and synchronization patterns
as well as structural workflow patterns that are described in [108].

The actual design of the business process determines several design decisions of a compos-
ite application. The decisions that are needed for the design of the actual business process
are not, however, part of a composite application’s design. They are prerequisite. The
actual design of a composite application using a business process is described in chapter
6.
The actual decisions that must be made for a composite application regarding the service
orchestration are independent of the actual business process that has to be realized. They
concern the interaction of the process orchestration layer and the other components of a
composite application. Hence, they are necessary for incorporating platform constraints
into an actual virtual machine (in MDA terms. see [91]) rather than designing an actual
composite application.
Again, the communication semantics must be decided upon. Asynchronous communica-
tion is preferable. As business processes are long-running transactions without atomicity
requirements, synchronous communication is likely not required. Whenever the orches-
tration layer can interact directly with application systems while these systems require
synchronous interaction, the DET should be used as a mediator. However, whether corre-
lation or end-points are used for the realization of the asynchronous communication needs
to be decided. In any case, the communication between the services must be reliable.
Thus, the platform for the workflow engine needs to support the Guaranteed Delivery
pattern (cf. [95, pp. 122ff]).
The next decision concerns the lookup of service endpoints. As discussed for the service
coordination layer in section 5.8, static references or dynamic lookups are possible. Usu-
ally, static endpoints are preferable. The actual determination of appropriate services
should be part of the control flow. The actual management of endpoints should be possi-
ble during design-time without changing the workflow description, though.
As the process context is kept in the data repository, the process orchestration does not
manage hardly any data. As a consequence, the service orchestration can be used to
simply dispatch Event objects to the appropriate endpoints. If this mechanism is applied,
the respective endpoint needs to apply Smart Proxies in order to interact with the data
repository. Alternatively, Smart Proxies can also be included in the workflow execution
platform.

Distributed and Mobile Systems Group 129

5 A Reference Architecture for Composite Applications

In sum, the platform used to realize a service coordination needs to support the following
functionality:

• Execution of Process Orchestrations

• Asynchronous Messaging Correlation and/or callback endpoints

• Endpoint Management Facilities

• Guaranteed Delivery (cf. [95, pp. 122ff])

• Workflow Pattern 1 – Sequence of [108]

• Workflow Pattern 2 – Parallel Split of [108]

• Workflow Pattern 3 – Synchronization of [108]

• Workflow Pattern 4 – Exclusive Choice of [108]

• Workflow Pattern 5 – Simple Merge of [108]

• Workflow Pattern 6 – Multi-Choice of [108]

• Workflow Pattern 7 – Synchronizing Merge of [108]

• Workflow Pattern 8 – Multi-Merge of [108]

• Workflow Pattern 9 – Discriminator of [108]

• Workflow Pattern 10 – Arbitrary Cycles of [108]

• Workflow Pattern 11 – Implicit Termination of [108]

The following list is a summary of the decisions that are necessary in order to incorporate
platform-specific constraints into an actual virtual machine.

• How is the inter-layer interaction realized? The workflow engine of the ser-
vice orchestration layer controls the invocation of external services at any layer of a
composite application. The communication semantics that is used by these interac-
tions should be simple yet reliable. If asynchronous messaging is used, it needs to
be decided whether correlation-identifiers or call-back interfaces should be used.

• Dynamic or static endpoints? The services that are invoked by the service
orchestration are deployed to distributed agents. Looking up endpoint information
of these agents is possible at design-time or during runtime. Design-time lookup
with caching is the preferable approach (cf. section 5.10).

• Integration of Smart Proxies into the workflow platform? In order to con-
nect the workflow engine with the data repository, Smart Proxies are required.
They could be either part of the platform of the workflow engine or used at the side
of the service provider that are invoked by the service orchestration. In the latter
case, it is sufficient to pass Event-objects between the service orchestration and the
(proprietary) service providers.

Distributed and Mobile Systems Group 130

5 A Reference Architecture for Composite Applications

• How should Decision Services be integrated? As a Decision Service re-
quires access to the context of a process, a connection between the service and the
data repository of a composite application needs to be established. A Decision

Service might either be deployed as part of the workflow platform and integrated
via special annotations within a (standard) workflow description language or de-
ployed as an external service that is invoked using the standard service invocation
mechanisms.

5.9.2 Decision Service

Purpose and Functionality The layer of process orchestration forms the central com-
ponent that controls the overall execution of a composite application. The actual decisions
within the control flow (exclusive choice, multi-choice) and structural workflow patterns
that require such decisions (e.g., exit conditions in loops) are often based on the context
of a certain process instance.
Workflow descriptions that are used in such service orchestrations are monolithic blocks
that usually involve several business rules. A business rule “is a statement that defines or
constrains some aspect of the business. It is intended to assert business structure or to
control the behavior of the business” [113, p. 30].
Managing or changing the single rules that are embedded in such blocks is difficult and
time-consuming (cf. [114]). In order to increase the maintainability of composite applica-
tions that apply the presented architecture beyond the possibilities of the service-oriented
architectural style, business rules are managed by Decision Services. They are used to
determine the actual control flow of a service orchestration. According to the classification
of [114], a Decision Service decides on reaction rules for a business process. It uses the
data repository to check whether certain conditions apply. Based on the output of the
Decision Service, the service orchestration may invoke different services.
By using a Decision Service, the business logic that underlies such decisions can be de-
scribed independently from the used business process description language in a separate
service. This way, the decision logic becomes reusable.
In order to reduce complexity, handle transactions and allow for a multi-layered architec-
ture, a generic data description kept inside the process environments by the means of the
Data Repository is part of this reference architecture (cf. section 5.6). Since the con-
structs proposed are quite complex and independent from a certain process orchestration
language, it could occur that an actual language is not capable of using the generic busi-
ness data. A Decision Service also provides an interface from the service orchestration
layer to the Data Repository to increase the possible platforms with which the reference
architecture could be realized.

According to [115], a business rules engine consists of a rule base, a working memory, a
pattern matcher and an inference engine. “The working memory holds the data on which
the rule engine operates” [115, p. 36]. In the reference architecture, this data is kept in
the data repository. The rule base, the pattern matcher and the inference engine internal
components and their specification is out of the scope of the reference architecture for
composite applications.
From an architecture point of view, a Decision Service needs to be able to decide
reaction rules. The actual reaction to such a rule is, however, performed by the workflow

Distributed and Mobile Systems Group 131

5 A Reference Architecture for Composite Applications

engine as the central control instance of a composite application.35

Figure 21: Public Interface of the DecisionService

Design Decisions, Realization Requirements and Syntactical Definition A De-

cision Service needs to provide a sub-set of the functionality that is usually provided
by business rules engines. It simply needs to evaluate a certain rule in a given context and
return the required information to the workflow engine. This way, a Decision Service

is interoperable with arbitrary workflow engines and the integration efforts are limited. A
Decision Service needs to implement the interface that is shown in figure 21.

The interface prescribes that a Decision Service can be called as part of an orchestration
by using a rule’s ID and the actual Event. Based on this information, an Action-object is
returned. Such an Action is an identifier that is used by the orchestration’s control flow
to branch accordingly. The actual workflow is dependent on the Decision Services it
uses. This is because the rule IDs and the actions need to be aligned. The interaction
between a Decision Service and a workflow engine is exemplified in figure 22.

Figure 22: Collaboration between a Workflow Engine and a Decision Service

The actual rules are administered using the administration interface of an Decision Ser-

vice that is shown in figure 23.

35If the rules engine is integrated with the workflow engine as it is described by [114], this distinction
is blurred.

Distributed and Mobile Systems Group 132

5 A Reference Architecture for Composite Applications

A rule that is added to a Decision Service is associated with an ID. The rule might
be expressed using an arbitrary rule description language (e.g., such as RuleML [116]).
Important to note is that variables that are used in a predicate correspond with the acces-
sible data elements that are stored in the data repository for a given Event or with the
Event itself.
In order to retrieve data from the data repository, a Decision Service is required to
use Smart Proxies. This way, the evaluation of rules is included in the consistent state
management that is offered by the data repository. The actual description of rules, rule
description language and the specification of the other parts of a rule engine that might
be required to realize a Decision Service are not within the scope of the reference
architecture.

Figure 23: Public Interface of the RulesAdministration Service

The following lists considerations that have to be made in order to integrate Decision

Services into an actual platform.

• How should Decision Services be integrated? As described in section 5.9.1,
a necessary design consideration is whether Decision Services are directly embed-
ded into the workflow engine and annotated in the workflow description language
or whether they should be treated as external services (as in the example of figure
22). The latter is the simplest approach and requires no integration efforts with the
workflow engine. However, in order to realize more complex business rule scenarios,
an interceptor-based approach could be realized as it is described in [114].

• How flexible should the rule engine be realized? If necessary, an interpreter
for rule descriptions should be created. As described above, usable variables within
such descriptions need to be the data elements stored in the data repository for a
given Event. However, if relatively simple decisions need to be realized (e.g., lookup
of boolean attributes) the overhead could be reduced by hard-coding such rules in
special types of Decision Services.

5.10 Service Registry

Purpose and Functionality Services are described by their interface and deployed to
an agent (cf. section 2.3). In order to allow a service consumer to invoke a service provider,
the physical location of the required service provider’s agent is required. This location
is referred to as an endpoint. Service-oriented landscapes sooner or later consist of many
different service providers and agents. Each service provider could also be deployed to
several agents. In order to keep such landscapes maintainable, it is necessary to keep
track of all available service providers and the agents to which they are deployed. This

Distributed and Mobile Systems Group 133

5 A Reference Architecture for Composite Applications

is usually achieved by establishing central repositories. Such repositories are also called
service registries (cf. [95, pp. 138f.]). “These repositories allow humans (and even service
requestors [(consumers)]) to:

• locate the latest versions of known service descriptions

• discover new [...] services that meet certain criteria” [95, p. 138].

This definition describes two possible scenarios in which registries can be used. As de-
scribed in section 2.3, service registries can be used at runtime to identify an agent for a
given service provider by using lookup operations. Additionally, service registries can be
used at design time by “humans” in order to retrieve the latest version of a service’s defi-
nition. This feature is especially important if new services are designed. This is because
the service designer can use existent services to decide whether the existent service is ap-
plicable for an actual problem or whether an existent service could be redesigned in order
to meet the old and new criteria. The design methodology that is presented in section 6
includes an approach to design services with the support of a registry at design-time.
At runtime, the endpoint information of all required service providers needs to be available
to all service consumers. As the presented reference architecture consists of several layers,
several instances maintain information about their respective service providers. This dis-
tributed knowledge decreases the maintainability of the overall composite application. In
order to address this issue, the endpoint information for all service providers needs to be
centralized (at least) for a composite application.
Dynamic lookups of endpoint information are, however, an additional overhead at runtime.
As the service-oriented architectural style centralizes the control of an organization’s appli-
cation systems, the endpoints are considered to be stable and known at design time. This
is why the single components of the reference architecture should cache the references and
solely offer an interface for managing the endpoint information. This way the endpoint
information can be updated based on a registry at design-time, if necessary. In turn, it is
not necessary for a service registry that is used as part of a composite application to offer
dynamic lookup capabilities. If dynamic lookups are necessary, the Routing Service (cf.
section 5.7.5) should be used together with integration flows as the connection point to a
service registry. This way, not only service providers exposed using the common protocol
of a composite application can be dynamically looked up, but so can arbitrary application
systems that expose their functionality in any way. Of course, at this point, if a Routing

Service requires dynamic lookups it makes sense to make use of the lookup-operations
of a service registry.

The definition of a registry in [95] includes the notion that services that meet certain crite-
ria can be discovered (cf. [95, p. 138]). Such criteria are usually the syntactical definitions
of the required service providers. Quality-of-service as well as semantical information also
might be useful for identifying services (“rich specifications”, cf. [14]). Application systems
are considered to operate on static platforms. The experience during the case study that
is presented in chapter 8 demonstrates that semantic descriptions of services are hard
to obtain by members of large organizations. In order to allow the building of compos-
ite applications in arbitrary environments, the presented reference architecture neither
requires a registry to be capable of attributing service with quality-of-service attributes
nor includes (structured) semantic information. Leveraging these advanced concepts of
service orientation is considered a task after this architectural style has been applied more
often and has become natural part of organizations’ application landscapes.

Distributed and Mobile Systems Group 134

5 A Reference Architecture for Composite Applications

Design Decisions and Realization Requirements A service registry required for
composite applications that follow the presented reference architecture is a simple cat-
alogue of structural service interfaces and their respective endpoint information. As a
matter of course, the information needs to be managed and queried at the design-time of
a composite application. Additionally, the following decisions should be made:

• Are dynamic lookups required? When creating or choosing a service registry
to use within a composite application, it must be decided whether dynamic lookups
are required (by the Routing Service or by the service coordination layer). If so,
the registry needs to be realized/chosen accordingly. If not, the requirements are
minimal. A design-time registry could even be realized using a central document.
Solely updating endpoint information at the different components of the composite
applications should be automated.

• How should endpoint information be updated? The single components of
a composite application maintain endpoint information. If such information is
changed in the service registry, the single components need to be updated. Whether
this is done manually or is automated needs to be decided. As the management
interfaces of the single components (especially of the Eventing System) are likely
to be proprietary, updating endpoint information might prohibit the out-of-the box
usage of a standard service registry product.

5.11 Summary

In this chapter a reference architecture was proposed that supports the creation of com-
posite applications. The reference architecture is independent from any platforms and is
described as a set of requirements for any actual platform. Additionally, core elements
are described syntactically and functional specifications are provided.
As a whole, the reference architecture allows for the application of service-oriented princi-
ples like control centralization, service aggregation, abstraction and loose coupling while
considering trade-offs between optimal design and applicability. Special attention is paid
to the necessary means for interacting with heterogeneous application systems. In order
to realize a composite application, a design methodology should be applied that uses the
reference architecture to design a composite application in a platform-independent man-
ner while incorporating constraints of an application landscape into the design.
By mapping the reference architecture to an actual platform, composite applications can
be realized on arbitrary platforms that support the requirements of the reference architec-
ture in a standardized way.

Distributed and Mobile Systems Group 135

6 Designing Composite Applications

6 Designing Composite Applications

The reference architecture described in chapter 5 standardizes the structure of composite
applications so that service-oriented principles can be realized more easily. In order to
design a composite application for a given use case, a methodology is required that uses
the requirements as its input and derives a suitable design based on this input. An
objective of such a methodology is to support the designer(s) of a system to align the
actual design with soft service-oriented design principles. Those are autonomy, reusability,
loose coupling and abstraction (cf. chapter 2).

When defining a design methodology that facilitates the application of the service-oriented
architectural style in the context of application integration in large organizations, it is
important to restrict the demands towards the requirements engineering. Of course, mod-
eling functional requirements is a must. Actual projects suffer anyway often due to poor
requirement engineering. This frequently impacts the go-live of applications that are built.
This is because such applications often do not meet the expectations the ordering party
had in mind during the requirements engineering phase. And if that is the case, the or-
dering party often simply refuses to pay for the development of an application.
This, of course, is not a new finding. For this reason, several approaches were defined that
aim at holistic requirements engineering. Notable examples are the “Architecture of Inte-
grated Information Systems” (ARIS) from [117] or the “Semantic Object Model” (SOM)
from [93]. Both approaches aim at describing a system using different views of a business
process (including data, organizations and an organization’s resources) and subsequently
drilling down on this description.
In practice, it can be observed that these approaches are applied but not exercised com-
pletely. This often means that business processes that are derived by such approaches are
seen as basis for discussions and are not further drilled-down. Because of this, it seems
that process-driven design becomes less important.

The design methodology that is presented in this chapter aims at leveraging the idea of
business process-driven integration within the domain of service-oriented architectures.
In doing so it incorporates the “wish list” towards a methodology for service construction
that was recently developed in [15]. It relies, in terms of ARIS, on the deliverables of
a “functional specification” (“Fachkonzept”) (cf. [117]) that basically consists of a process
model. It uses the description as its input in order to design composite applications. This
way, it incorporates the directives of “process dominance”, “process scope” and “interface
reference” as they are demanded for a design methodology by [15].
Based on the design that is derived from the requirements and a platform-specific mapping
of the reference architecture (cf. chapter 7), the realization of the described requirements
can be performed.
The point of view towards process modeling and requirements engineering of this approach
is rather naive. Neither an actual modeling approach is described or prescribed nor is
a specific modeling meta-model required. Discussions about this topic are considered
beyond the scope of this thesis. This is because the design methodology aims to apply
service-oriented principles rather than describing yet another modeling approach.
Using “Unified Modeling Language” (UML) (cf. [39]) models for the description of the
design and the data perspective of the requirements, as well as “Event-Driven Process
Chains,” (EPC) (cf. [117]) should be considered one example of languages that can be
used. These languages were chosen because they were most relevant in the context the

Distributed and Mobile Systems Group 136

6 Designing Composite Applications

described concepts were developed in. It simply appeared not possible to have domain
experts expressing their requirements using different meta-models or developers utilizing
different kinds of models. As no automated transformations of models is used, issues
with the formal semantics of the process description language EPC (cf. [118]) were not
considered as an obstacle.

Based on the above described requirements, a step-by-step approach is defined by the
methodology. In these steps, the deliverables of earlier steps are used as input in order
to derive new deliverables. The set of all deliverables constitutes the actual design of the
composite application.
The design methodology involves the creation of services and their respective aggregators
in addition to items for addressing the heterogeneity of application landscapes. This is
why a service-meta model is required. After the introduction of this meta-model, the
design methodology is discussed.

6.1 A Meta-Model for Services

The design-time reference architecture for composite applications that is described in
chapter 5 describes three levels of abstraction. The most abstract description is the
business process-based orchestration of services. The less abstract descriptions are the
services that are exposed by application systems (in a mediated or un-mediated way).
In order to allow for business process-based service orchestration (“process dominance”
and “process scope” from [15]), a middle layer is introduced by the notion of the service
coordination layer. At this layer so-called coordination services are aggregated to so-called
service coordinations.
According to these layers, a meta-model for services is introduced (cf. figure 24).

Figure 24: Service Meta-Model

The meta-model describes that a service orchestration is composed of enterprise services.
Enterprise services are realized as service coordinations or as application services.
A service coordination is composed of coordination services. Two types of coordination

Distributed and Mobile Systems Group 137

6 Designing Composite Applications

services exist. Entity services and task services. This categorization stems from the idea
of separating services by the type of operation they perform (cf. [11, pp. 390-394] or [90]).
Services that deal with the management of business entities are “entity-specific” services
whereas services that are designed for the realization of a cross-entity task are considered
as “task-centric”. A formal categorization of these two types of coordination services is
discussed as part of the service design algorithm in section 6.2.4.
Coordination services are abstractions of functionality that are exposed by application
systems through application services. If no application service exists that matches an
enterprise service, a coordination service can be realized by multiple application services.
The standard is that a coordination service is mapped on a one-to-one basis to an applica-
tion system and that these services are composed by service coordinations. This mapping
from coordination services to actual, constrained application systems marks the shift from
a top-down to a bottom-up approach of the design methodology that is subsequently de-
scribed.

6.2 Composite Application Design – A Step-by-Step Process

Figure 25: Steps of the Design Methodology

The design approach that is presented in this section comprises 16 steps. If performed
correctly, these steps describe how the system design for an actual use case can be derived.
The methodology combines a top-down approach with a bottom-up approach. The top-
down approach takes the requirement descriptions as its input. Emphasis is placed on
deriving services. A service-design approach is included that incorporates the findings
of chapter 4 and the service-meta model. Using minimal requirements, the included al-
gorithms can be used to split business process functions into more fine-granular services
(principle of “intersection points” from [15]).

Distributed and Mobile Systems Group 138

6 Designing Composite Applications

After refining the derived service candidates, the link between the design and the ac-
tual constraints of an application landscape is performed. From this point forward, a
bottom-up approach incorporates the identified constraints into the design of the single
components of the reference architecture for composite applications. By doing so, the
initial description of the business process is changed in a way that it can be used as the
central service orchestration.
The single steps are described as a sequence. However, iterations of certain steps or the
reworking of complete branches is possible.

After the introduction of a short example that accompanies the description of the method-
ology, the actual steps are described in the subsequent sections.

6.2.1 An Example Scenario

In order to illustrate the methodology, a small example case is used. The example ac-
companies the description of the methodology and demonstrates how the process can be
decomposed into several types of services.
Figure 26 shows the model of a short example process. It describes that a purchase order
is created and a shipment is scheduled. The processing of the order additionally produces
a trade credit insurance. In the example it is assumed that, by default, every order, as
soon as it is scheduled to be shipped, also needs to be insured against the buyer failing to
pay the invoice.36

Figure 26: Control-Flow and Data-Flow of the Example Process

The data view of the process is depicted in figure 27. The key attributes of the single en-
tities are marked using the stereotype key. The data model references the process model
as it describes the dependencies among the single business objects more in-depth.

36This should not be confused with an insurance that covers good damages that occur during the
shipment.

Distributed and Mobile Systems Group 139

6 Designing Composite Applications

The data model is designed for the sake of eased understanding. It is not meant to reflect
real-life business data. It demonstrates that one customer can have multiple orders for
an arbitrary number of goods with the example company (an order could also be about
services). Shipment of an order can be scheduled by creating a shipment order with a car-
rier of choice. Additionally, an order can be insured against a possible failure of payment.
Such insurance is represented as a link between an Order and a TradeCreditInsurance.

Figure 27: Data Model of the Example Process

6.2.2 Step 1: List all Business Process Activities

The input of the methodology is a complete description of the business process that needs
to be realized using a composite application. Based on the described process, the single
services that are required by the reference architecture can be derived. This procedure
of deriving the services is based on the understanding of a business process as a possible
service orchestration and the business tasks as orchestrated services.
Thanks to the reference architecture in chapter 5, the enterprise services can be considered
providers of the functionality required by business tasks. The single business tasks are
described in the business process description. In contrast to Erl’s methodology that
begins by refining the actual business process (cf. [11, pp. 397-430]), this approach takes
the activities of a business process as an input for later phases. Each function of a business
process’ control flow is considered to be supported by an enterprise service. This is why
it is necessary to extract the description of the respective process’ functions to identify
these enterprise services.

The functions of a process must not be ambiguous if such a mapping is to be performed.
Several approaches exist that support mapping from processes to services that fit into the
process. Bentallah et al., for instance, describe in [119] an approach that matches services
based on a semantic description. It utilizes a descriptive logic in order to reason about a
request for a service lookup. The results of this reasoning are referred to as best covers.
Best covers are services whose description contain as much information about the request
as possible.
A similar approach is presented by Paolucci et al. in [120]. Their approach matches suf-
ficiently similar services for a given requirement. “The degree of match is determined by
the minimal distance between concepts in the taxonomy tree” [120, p. 91]. The compared
concepts are derived from the input and output of methods as well as from preconditions
and effects.

Distributed and Mobile Systems Group 140

6 Designing Composite Applications

While conducting the case study that is described in chapter 8, it turned out that a
semantic approach that relies on formal descriptions in a formal logic or even using an
ontology is today not suitable in the environment of an industrial enterprise. This is be-
cause process experts that must identify the functions of a business process lack both, the
know-how and the time/motivation to create such descriptions. Having descriptions at all
is everything but self-evident. Due to this considerable constraint, the presented approach
must solely rely on a unique naming for process functions and data. Functions that have
the same name, are considered to be semantically equivalent. Thus, the semantics of the
respective functions must also be described in an informal way.

The output of this step of the methodology is a list of business functions that includes the
name of the function, the input and output data of the function and a rough, informal
description of the task. If applicable, the back-end application system that is currently
used for such tasks (e.g., order processing) can also be indicated.

For the small example process, this list would look similar to the following list.

• Accept Order Input: the Goods that are demanded by a customer. The Customer

that is demanding the goods.
Output: the Order that is created by the supplier.
Functional Description A customer issues a demand for several goods electron-
ically. In order to process the demand, an appropriate Order object has to be
created.

• Schedule Manufacturing. Input: the Order that should be manufactured.
Output: none
Functional Description A customer’s order has to be manufactured prior to ship-
ping it. The manufacturing process has to be scheduled.

• Order Shipment. Input: the Order for that a shipment should be scheduled and
that needs to be insured.
Output: the Shipment that represents the scheduled shipment as well as a Trade-

CreditInsurance that represents the contracted insurance for the respective order.
Functional Description Based on an Order the shipment of the respective order
has to be arranged. In order to reduce risks, the order has to be insured with trade
credit insurance.

Deliverables Process functions; data flow for each function; informal description of each
identified function.

6.2.3 Step 2: Create Enterprise Service Candidates

In this second step, the list of business functions is used to describe enterprise service
candidates. If a process was not designed using existent enterprise services and if no
services that fit a process description can be found within the actual service registry (i.e.,
no “perfect matches”), they need to be created.
Usually new enterprise services are built out of existing functionality as well as out of new
service methods that are designed using the following steps (especially step three). The
composition that realizes an enterprise service by using new and existent (coordination)

Distributed and Mobile Systems Group 141

6 Designing Composite Applications

services is called service coordination. The coordination services it consists of can only
be composed in a way that supports the enterprise services while not being enterprise
services themselves. The actual design of the enterprise services is therefore a prerequisite
for the design of coordination service methods and the respective service coordination.
A business process can be seen as an event-driven computation of data (cf. [92]). The
events do not only determine the task that should follow an event, but also the data that
is transmitted during this event. This data is both context data of the process as well as
output from preceding enterprise services. Both the events and the data are described in
the model of the business process. The data is described in greater detail in the according
data perspective of a business process.
As the reference architecture and this methodology were created to directly allow the use
of business processes as service orchestration, the single tasks of the business process are
considered to be enterprise services. Deriving these enterprise services is simple. Each
business function identified in step 1 is considered an enterprise service. The input for
this method is the data that is consumed by the business task. The result of a business
task is the output of the enterprise service method.37

In this methodology, a service method is described as a tuple of data. This is according
to Eshuis et al.: “for each service s, input(s) denotes its input message and output(s)
its output message. One of these messages is required, otherwise the service does not
need to be composed with the other services” [121, p. 102]. Implicitly contained in this
description from [121] is an understanding of the methods of the actual service. For the
sake of simplification, it is assumed that a service as it is defined by [121] consists of
exactly one method. Hence, the enterprise service candidates can easily be derived by
considering the list of business tasks that were created in step 1.
The next action is to query a (design-time) service registry with all existent services of
an enterprise and analyze whether it contains any suitable services. Lacking a semantic
approach, this is performed by considering the name of the process task and the input
and output parameters.

In the shipment example, the enterprise service candidates that can be identified are listed
below.

• es1 = ({Customer, Good[]}), {Order} (Accept Order)

• es2 = ({Order}, ∅) (Schedule Manufacturing)

• es3 = ({Order}, {Shipment, TradeCreditInsurance}) (Order Shipment)

It is assumed that all but the service ({Order}, {Shipment, TradeCreditInsurance})

(Order Shipment) are registered with the service registry. This is why (especially for the
sake of simplicity), only this enterprise service is used in the following for the illustration
of the presented principles.

Deliverables Enterprise service method candidates.

37As methods are considered to be ordered sets, a method can have multiple return parameters. How
this is actually realized is not the concern at this point.

Distributed and Mobile Systems Group 142

6 Designing Composite Applications

6.2.4 Step 3: Match Suitable Service Methods and Derive Missing Service
Method Candidates

The service design methodology from [11] asserts that services which are used in a process
orchestration should fit into the orchestration. In the given context, “fitting” refers to the
fact that the service computes a set of input parameters and then provides the described
functionality and the required output parameters (cf. [11, pp. 205ff.]). Services that fit
into an orchestration can be identified by using the deliverables of step 1 and 2 (process
functions; data flow for each function; informal description of each identified function).
If, however, no matching services can be identified, it is an informal task to derive the
missing services for the identified process functions (cf. [11]). However, this is a complex
task. This is largely because a hierarchy of types of services must also be considered. In
order to better support deriving missing services, this third step of the methodology is
elaborated more in detail.
An approach to the design of services is presented that incorporates the findings that
are described in chapter 4. It aims to match existent service methods with an actual
business process and to define new candidate methods that might be used to close the
gap between an actual process and existing services while being reusable. In this sense, it
realizes a Scatter operator for an interface adoption as it produces multiple steps (service
invocations) that are necessary for realizing a single enterprise service operation in a given
landscape (cf. [122, p. 72]). Additionally, the step might conclude that the redesign of
existing service methods might be appropriate.

According to [121], there exists a dependency E between two services s and ś with s ∈ Ω.Ψ
and ś ∈ Ω.Ψ that describes that a service consumer and a service provider exchange
common data elements.38 Applied to service methods, E can be defined in the following
way:

E = {(s, ś) ∈ Ω.Ψ × Ω.Ψ | soutput ∩ śinput 6= ∅} (39)

This definition implies that the design of services that are consumed by and provided to a
service orchestration is the procedure of describing services providers in a way that there
exists a suiting service method for every call of an orchestration. A service orchestration
is both a service consumer and a service provider – a service aggregator (the set of service
consumers is denoted as Ω.C ⊆ Ω.Ψ and the set of service providers as Ω.P ⊆ Ω.Ψ).
Applying this understanding, service design for service orchestrations is an activity that
creates, for a given set of service consumers, a set of service providers (and the correspond-
ing methods of the service) in a way that the two dependencies Ē and Ẽ can be fulfilled.

Ē = {(oc, p) ∈ Ω.C × Ω.P | coutput \ pinput = ∅} (40)

Ẽ = {(op, c) ∈ Ω.P × Ω.C | poutput \ cinput = ∅} (41)

These two dependencies could be used as a rule to derive the service method interfaces that
fit into a given orchestration. If only these constraints were used, the granularity of single
service providers’ methods would be solely dependent on the actual service orchestration.
As transformed business processes should be used as service orchestration, the services’
granularity would be implied by the process design. However, it was identified that a
certain level of granularity leverages reuse, though (cf. chapter 4). Additionally, services
should be“offered at different levels with different granularity. High-level business process
functionality is externalized as coarse-grained services [...]” [79, p. 156] that aggregate

38Ω.Ψ is the set of all services for a given system (cf. section 3.2.1).

Distributed and Mobile Systems Group 143

6 Designing Composite Applications

more fine-granular services. This is why only satisfying Ē and Ẽ is not sufficient to
design appropriate services.

According to Reijers, the set of processed information D and the set of operations (meth-
ods) processing the information O can be split into more fine granular entities (cf. [86]).
He proposes a heuristic of decomposing O into a set of tasks t;T ∈ Π(O) in a way that
∀o ∈ O : (∃t ∈ T : o ∈ t) (cf. [86, p. 118]). This heuristic uses a definition of cohesion
to determine if a given splitting of an operation into two tasks is preferable or not. The
criterion for that decision is whether the two new tasks are more cohesive than the initial
method.
The approach that is presented here builds upon this idea of decomposing activities into
more fine granular tasks by splitting a method by the information it processes. How-
ever, the indicator for determining whether a split is preferable is the only indicator that
proofed to be significant for service re-use – service granularity (cf. chapter 4). The ap-
propriate level of granularity should be met at the level of coordination service methods.
The identified coordination service method candidates should have a similar granularity
of a certain level. Lacking other thresholds, the threshold of a SSM -value close to 13
(that was identified in section 4.4) should be used and refined during subsequent projects.
An appropriate level of granularity will be achieved by decomposing service methods and
aggregating them afterwards if applicable. In order to check whether joining disjoint
methods is applicable, the idea of service categories is incorporated.
As previously stated, according to Erl, services can be categorized in task services and
entity services (cf. [11, pp. 390-394]). In the presented methodology this classification is
applied to the coordination services (and their method(s)). They are classified into data-
centric methods (for entity services) and task-centric methods (for task services). This
classification is a simple mechanism to first design the methods (as task-focused or entity-
focused) and secondly aggregate these methods to multi-method services, if required. This
approach is a simple yet valuable approach because it is easy to understand and can be
easily performed – also without tool support.

While entity-specific services have a higher potential for reuse39 and are supposed to in-
crease modifiability (cf. [11, p. 393]), task-specific services handle process-specific tasks
and are explicitly designed for a given process. An example of task services are services
that check the validity of entities (cf. [11, p. 392]).
In order to apply this concept to the given design methodology, a formal yet simple cate-
gorization of service methods by their respective parameters is proposed. This is required
in order to support a service designer and free the design from unnecessary subjective
decisions. Additionally, the benefit of such a categorization lies in eased understanding
and governance of the resulting services.
In order to categorize service methods, the computed data needs to be categorized first.
The set of data that is being computed by a system’s services Ω, Ω.D consists of two
subsets. Context data (Γ) and business data (B). So that Ω.D = Γ∪B. Context data is
considered to be supplementary data of a process (e.g., validities, keys, counts etc.) while
business data contains objects that represent business entities (both master data as well
as transactional data).
Whenever a service method accepts business data as its input and produces either context
data (that does not reference the business data) or a subset of its input, the method is

39Due to the ambiguous definition of the case study’s services, the examination in chapter 6 did not
include an assessment of a potential significance of service categories on reuse.

Distributed and Mobile Systems Group 144

6 Designing Composite Applications

considered to be task-specific. The equations (42) and (43) describe the constraint for
task-specific service methods.

ts1 = {(ie, oe) ∈ B ⊕ Γ| ∀o ∈ ie : keyo /∈ oe ∧ (ie 6= ∅ ∧ oe 6= ∅)} (42)

ts2 = {(ie, oe) ∈ (B ⊕ Γ) × (B ⊕ Γ) | (oe ⊆ ie ∨ ie ⊆ oe) ∧ (ie 6= ∅ ∧ oe 6= ∅)} (43)

Consequently, all service methods that do not satisfy these constraints are considered to
be entity-specific. These constraints are described by the equations (44) – (46)

ǫ1 = {(ie, oe) ∈ (B⊕Γ)× (B⊕Γ) | oe * ie∧ ie * oe∧ ie * Reqoe ∧ ∄o ∈ ie : keyo /∈ oe} (44)

ǫ2 = {(ie, oe) ∈ (B⊕Γ)×(B⊕Γ) | (∀o ∈ ie : keyo ∈ oe ∨ ie ⊆ Reqoe)∧(oe * ie∧ ie * oe)} (45)

ǫ3 = {(ie, oe) ∈ (B ⊕ Γ) × (B ⊕ Γ) | ie = ∅ ∨ oe = ∅} (46)

The approach taken here is similar to the semantic service matching approach by Paolucci
et al. in [120]. However, due to the reasons outlined in the introduction of this chapter,
relying on an ontology is not applicable today. This is why, for the sake of designing service
methods, the only suitable information for service matchmaking are the parameters of the
methods as well as information about dependencies of the computed data elements.
The data elements of service methods are described as business objects and context data
(“interface reference” from [15]). Business objects are sets of attributes and the grouping
of attributes to objects (o = {a1, a2, ...}) is subject to the modeling of a business process’
data perspective. A subset of the object that determines all other attributes is called key
k ⊆ o. Hence, there exists a functional dependency k → o. The key-attribute of an object
o it is referred to as keyo. Additionally, keys might be used not as part of an object. This
is the case whenever keys are stored as context data.
Keys might also transitively indicate a dependency to associated objects. Thus, despite
(non-derived) key values, other objects might be required for the creation of an object o.
These objects form the set of “required” objects: {o1, o2, ...} → o. The set {o1, o2, ...} is
referred to as Reqo.

Assuming that an enterprise service E ∈ Ω.Ψ computes some input data (Einput ⊆ Ω.D) in
order to provide some output (Eoutput ⊆ Ω.D), the set M (with M = Eoutput \ Einput; M ⊆
Ω.D) needs to be provided by additional services that are part of the enterprise service’s
service coordination. Assuming that there exists a set of service methods that provide the
information Ψexist ⊆ Ω.D, the coordination service methods that need to be designed are
required to provide the output Coutput (with {Ψexist ∪ Coutput} \ M = ∅ and Coutput ⊆ Ω.D).
This is why the output of an enterprise service can consist of its input, the output of
existing service methods and the output of newly designed coordination service methods:

Eoutput ⊆ Einput ∪ Ψexist ∪ Coutput

Using the categorization of service methods as well as the process-specific dependencies
among the data entities and the existent service methods, the candidates for new coordi-
nation service methods can be derived using a simple algorithm. These service method
candidates can be later used to design services that bridge the gap between existent ser-
vice methods and enterprise services. Such a candidate method (m) is designed to support
creating an actual enterprise service’s output. It needs to satisfy (47).

m = {(i, o) | i ∈ Eoutput \ o; o ∈ Coutput} (47)

Based on the given definitions, the algorithm that is described (for the sake of eased un-
derstanding using multiple listings) using the algorithms 1 – 5, can be used to derive can-
didates for missing coordination service methods. As soon as the algorithm is completed,

Distributed and Mobile Systems Group 145

6 Designing Composite Applications

the dependencies Ẽ and Ē that are implied by the business process are fulfilled using
an aggregation of both the newly designed service methods as well as existent methods
that are identified in a service registry. Additionally, candidate methods that are cate-
gorized into task-specific and entity-specific methods most likely possess the right level
of granularity and satisfy the constraint (47). The algorithm describes a semi-automated
procedure that requires user decisions.

For the example of the shipment process, the functional dependencies need to be de-
rived from the data model first: the key attribute of a customer is its id: keyCustomer =
{customerID}. It does not require any other objects: ReqCustomer = ∅. An Order

is determined by its respective identifier: keyOrder = {orderID}. However, an Order

requires a Customer-object, too. Therefore, the set of required objects is not empty:
ReqOrder = {Customer}. A Shipment is unique in the context of its respective Order and
the Carrier that is scheduled for executing the shipment. This is why Shipment requires
both, an Order and a Carrier: ReqShipment = {Order, Carrier}. These objects also form
the key of Shipment-objects, keyOrder = {Carrier.carrierID, Order.orderID}. A Car-

rier is identified by its identifier (keyCarrier = {carrierID}) and is independent of the
existence of other objects: ReqCarrier = ∅. The two sets for Good are keyGood = {goodID}
and ReqGood = ∅. A TradeCreditInsurance is dependent from an Order. Hence
keyTradeCreditInsurance = {insuranceID} and ReqTradeCreditInsurance = {Order}. These
keys and sets of required objects can simply (and possible automated) be deducted from
a given data model.
The example that demonstrates the application of the algorithm consists in deriving co-
ordination service candidates for the Order Shipment enterprise service (es3 = ({Or-

der}, {Shipment, TradeCreditInsurance})). The according enterprise service signa-
ture is the starting point for the algorithm: ({Shipment}, {Order, TradeCreditIn-

surance}).

The determination of candidate methods initially depends on the actual enterprise service.
When describing the steps of algorithm 1, the variable E initially has the value ({Order},
{Shipment, TradeCreditInsurance}). After the initialization of the set Coordination
that is used to store all service methods that are required to realize the given enterprise
service, the required entity-specific (candidate) methods are derived. The algorithm for
this (recursive) functionality is described in algorithm 2.
Algorithm 2 is invoked with the input data of the enterprise service candidate method as
available data and the output of this method candidate as required data. In the goods
shipping example, the set Available would include {Order} and the set Required would
contain {Shipment, TradeCreditInsurance}. Within the loop that computes every sin-
gle required object (type), it is first checked, whether the keys of the actual object is
included in the context data. If an object would be directly available, no need for an
entity-specific service method would exist. If the key would be accessible, an entity-
specific method that loads/creates an object by its key would be required.
If the respective required object (type) is available, it will be used. If there is no di-
rectly accessible object, the available context data is checked to see whether it contains
a required key (either as an input of the enterprise service or as an output of another
coordination service).
Whenever such a key is accessible, an according entity-specific candidate method is added.
If such a required object is neither included in the set of available objects nor accessible
via its key, it needs to be retrieved or created. In order to determine the required method
candidate(s), the algorithm is recursively invoked in order to derive the candidate meth-

Distributed and Mobile Systems Group 146

6 Designing Composite Applications

Algorithm 1 Derive new Coordination Service Method Candidates for Enterprise Service

E = (Einput, Eoutput) {E is the actual (single method) enterprise service}
Coordination = ∅ {All method candidates for the respective service coordination}
EntityCandidates = getEntityCandidates(Einput, Eoutput)
TaskCandidates = getTaskCandidates(Einput, Eoutput, EntityCandidates)
UnusedInput = Einput \ EntityCandidatesinput \ TaskCandidatesinput \ Eoutput

EntityCandidates = EntityCandidates∪ getStoreCandidates(UnusedInput)
UnprovidedInput = EntityCandidatesinput ∪ TaskCandidatesinput \ Einput \
(EntityCandidatesoutput ∪ TaskCandidatesoutput)
EntityCandidates = EntityCandidates ∪ getEntityCandidates(Einput ∪
EntityCandidatesoutput, UnprovidedInput)
RequiredMethods = EntityCandidates ∪ TaskCandidates
for all m ∈ RequiredMethods do

PossibleReuse = ∅
for all r ∈ Repository do

if rinput ⊆ minput AND routput ⊆ moutput then
PossibleReuse = PossibleReuse ∪ r {This might include perfect matches}

end if
end for
for all p ∈ possibleReuse do

suitable = ask(is p suitable for m)
if suitable then

Coordination = Coordination ∪ p
RequiredMethods = RequiredMethods \ m
RequiredMethods = RequiredMethods ∪ {(minput \ pinput, moutput \ poutput)}
{A method (∅, ∅) is considered to not exist}

end if
end for

end for
for all m ∈ RequiredMethods do

AllOrdersOfMethods = P(Repository ∪ RequiredMethods)
for all Order ∈ AllOrdersOfMethods do

enlargementPossibility = ensureGranularity(m, ∅, Order)
if User agrees on enlargementPossibility then

newM = m
for all enlarge ∈ enlargementPossibility do

newM = (newMinput ∪ enlargeinput, newMoutput ∪ enlargeoutput)
end for
While ensuring: Include possible combinations only once
methodCandidates = methodCandidates ∪ {newM}
RequiredMethods = RequiredMethods \ m
BREAK

end if
end for
methodCandidates = methodCandidates ∪ RequiredMethods
Coordination = Coordination ∪ methodCandidates

end for
RETURN methodCandidates, Coordination
{All candidate methods and the set of all methods that could form the service coordi-
nation are derived}

Distributed and Mobile Systems Group 147

6 Designing Composite Applications

ods that retrieve/create the required object. The recursion either stops as soon as the
required objects are available or an object (type) does not require any other objects40.
As soon as either the independent objects can be made available or there are no indepen-
dent objects left for an iteration, entity-specific method candidates are created. Those
methods could be without any input parameters (for the creation of new objects). Alter-
natively, methods that accept all required objects as input data and create/retrieve the
actual dependent object are created. The realization of both methods is, of course, not
included. The algorithm solely determines the methods’ interfaces.

Algorithm 2 getEntityCandidates(α, β) – Determine service methods that are required
to produce objects in β

Available ⇐ α {Parameter 1, set of available objects and keys}
Required ⇐ β {Parameter 2, set of required objects}
candidates = ∅
for all o ∈ Required do

if NOT o ∈ Available.B then
if keyo ∈ Available.Γ then

candidates = candidates ∪ m(keyo, o)
{Method needed that loads object by its key. ǫ1-method for entity service}

else
RE = Reqo {RE contains all object types that determine o}
for all k ∈ RE do

if NOT k ∈ Available.B ∪ candidatesoutput.B then
if keyk ∈ Available.Γ ∪ candidatesoutput.Γ then

candidates = candidates ∪ m(keyk, k)
{Method needed that loads required object by its key. ǫ1-method for
entity service}

else
candidates = candidates ∪ getEntityCandidates(Available, {k})
{Derive all service candidates that are required for determining k}

end if
Available = Available ∪ {k}

end if
end for
if RE = ∅ then

candidates = candidates ∪ m(∅, k)
{The object k has no required predecessors. It needs to be created.}
{This might require human-interaction.}

else
{At this point, all objects that are required for o can be retrieved}
candidates = candidates ∪ m(RE, o) {Based on the available objects, o can
be retrieved/created, too}

end if
end if

end if
end for
RETURN candidates

40Note that an empty set RE leads to the omission of the inner for all-loop.

Distributed and Mobile Systems Group 148

6 Designing Composite Applications

In the shipment example, algorithm 2 would check whether a Shipment object or its keys
are available. As neither is available, the algorithm checks all required objects. Hence,
the algorithm is recursively invoked for RE = {Order, Carrier}. As an Order-object is
passed to the enterprise service, this recursion terminates without any change to the set
of candidate methods.

The recursion for the Carrier augments the set of candidate methods with the new
method m1(∅, {Carrier}). Notably, this creation/retrieval method does not include
any key information. The creation/determination of the appropriate key is subject to the
implementation of the method. m1 is an entity-specific candidate method and satisfies ǫ3.
After the termination of this recursion, another candidate method for the creation of the
Shipment is added: m2({Order, Carrier},{Shipment}). As m2 satisfies ǫ2, it is also an
entity-specific method. In the second iteration, the algorithm identifies the entity-specific
method m3({Order}, {TradeCreditInsurance}) that satisfies ǫ2. As algorithm 2 termi-
nates, it returns Candidates = {(∅, {Carrier}), ({Order, Carrier}, {Shipment}),

({Order}, {TradeCreditInsurance})}.

Algorithm 1 continues with a value for EntityCandidates of {(∅, {Carrier}), ({Or-

der, Carrier}, {Shipment}), ({Order}, {TradeCreditInsurance})}. Next, poten-
tial task-specific candidate methods are created. This process is described in algorithm
3. It is invoked with three sets of input data: the available objects from the input of the
enterprise service, the respective required output of the enterprise service and the already
identified entity-specific candidate methods.

Algorithm 3 getTaskCandidates(α, β, γ) – Determine service methods that are required
to compute the enterprise service’s data

Available ⇐ α {Parameter 1, set of available objects and keys}
Required ⇐ β {Parameter 2, set of required objects and keys}
entityCands ⇐ γ {Parameter 3, set of candidate methods}
for all a ∈ Available ∪ entityCandsoutput do

for all r ∈ Required ∪ entityCandsinput do
if a = r then

m = (a, r)
ask {user involvement}
if m is OK then

candidates = candidates ∪ m
end if

end if
end for

end for
RETURN candidates

Algorithm 3 uses the notion of the dependency Ē (40) that describes that the output of a
service consumer must fit with the methods of the respective service provider. Using this
dependency, it iterates over all possible output parameters (of a service consumer) and
matches them with all offered input parameters of service consumers. Whenever there is
a match, the user is asked whether the respective transmission of entities needs to involve
a modification of the transmitted data. The manual involvement could either be realized
using a user dialogue or by analyzing a model of the service orchestration that is created
using the identified entity-specific candidate methods. Whenever the service designer de-

Distributed and Mobile Systems Group 149

6 Designing Composite Applications

cides to add a task-specific service, an according method is added to the list of candidate
methods. Usually, the constraint ts2 is satisfied.
In the shipment example, algorithm 3 would be started with the following values: Avail-
able = {Order}, Required = {Shipment, TradeCreditInsurance} and EntityCands =
{(∅, {Carrier}), ({Order, Carrier}, {Shipment}), ({Order}, {TradeCreditIn-

surance})}. In the example it is assumed that the Shipment needs to be approved. Hence,
a task-specific candidate method m4({Shipment},{Shipment}) (that satisfies ts2) is cre-
ated.

Back in the main algorithm, the set of candidate methods in the example case is now {(∅,
{Carrier}), ({Order, Carrier}, {Shipment}), ({Order}, {TradeCreditInsurance})

, ({Shipment},{Shipment})}.
Based on the identified candidate methods, the set of unused data can be derived (al-
gorithm 4). This data is the input data of the actual enterprise service that is neither
computed by task-specific or entity-specific methods nor included in the output of the
enterprise service. For each of the objects of the unused data, the user is questioned
about creating entity-specific methods that either store the respective data or treat them
otherwise without producing any output data (e.g., sending them to an external partner).
As all data objects of the example are used, this step does not produce any additional
candidate methods.

Algorithm 4 getStoreCandidates(α) – Determine service methods that handle un-
handled input

Unhandled ⇐ α {Parameter 1, set of available objects and keys that are not handled}
for all a ∈ Unhandled do

m = (a, ∅) {New entity method candidate for storing object a, satisfies ǫ3}
ask user if m is ok
if m is OK then

candidates = candidates ∪ m
end if

end for
RETURN candidates

Notably, additional functionality might be used to realize the given enterprise service.
Especially (entity-specific) methods that store computed data, while the data elements
are part of other service methods, into back-end systems are not included in the service
coordination. This is for simplification reasons and aims to keep the service coordination
simple. As coordination services are realized using (1..n) application services, suitable
application services might be used within the coordination services’ logic.

In order to accommodate the fact that the input to the algorithm that is taken from the
requirements engineering, might be incomplete, the next step of algorithm 1 is to check
for data that is required but not provided. To accomplish this, the set UnprovidedInput
is filled and the getEntityCandidates method is invoked. As a result, the necessary
steps for deriving the missing data are described by the notion of required entity-specific
methods. These methods are added to the set of required methods.

After the set of required (candidate) methods is determined, algorithm 1 continues by
matching the required set of methods with the methods that are already available. Such
methods are part of services that were created in earlier projects or are shipped by soft-

Distributed and Mobile Systems Group 150

6 Designing Composite Applications

ware vendors. Such a registry is represented in the algorithm by the set Repository that
contains all methods.
The used matching algorithm is similar to the one presented by Schaffner et al. in [123].
First, it matches methods that have the same signature. Of course, this matching requires
global data types or ontology-based mappings (cf. [124]). If a matching method is iden-
tified, the user is (later) asked whether the identified service method fits with the actual
requirements. If the user agrees, the candidate method is removed from the set and the
set of to-be coordinated service methods is enlarged by the identified method.
If no matching method can be identified, the algorithm checks whether methods exist that
are sub-sets of the actual candidate method. All possible methods are kept in a list and
the user is consulted which method is best suitable. According to [123], this list might be
sorted according to the “match distance”. This measure basically describes the missing
parameters between a service consumer and a service provider.

Algorithm 5 ensureGranularity(α, β, γ) — Ensure Method α’s Granularity

m ⇐ α {m is the method the granularity should be optimized for}
SSMthreshold ⇐ 13 {The minimum granularity of any method}
PossibleCombination ⇐ β {The set of methods m could be combined with}
AvailableMethods ⇐ γ
if SSM(m) < SSMthreshold then

for all n ∈ AvailableMethods \ {m} do
if SSM(n) < SSMthreshold then

if (((m satisfies ts1 OR m satisfies ts2) AND (n satisfies ts1 OR n satisfies
ts2)) OR ((m satisfies ǫ1 OR m satisfies ǫ2 OR m satisfies ǫ3) AND (n satisfies
ǫ1 OR n satisfies ǫ2 OR n satisfies ǫ3))) then

if (minput ⊆ ninput OR ninput ⊆ minput) OR (moutput ⊆ noutput OR noutput ⊆
moutput) then

if ∀i ∈ ninput.∄o ∈ moutput : o ∈ Reqi ∨ i = o ∧ NOT (n satisfies ts2 ∧ m
satisfies ts2) then

f = (minput ∪ ninput, moutput ∪ noutput)
if SSM(f) ≥ SSMthreshold then

PossibleCombination = PossibleCombination ∪ {n}
RETURN PossibleCombination

else
PossibleCombinationf =
ensureGranularity(f , PossibleCombination∪ {n}, AvailableMethods\
{m} \ {n})
RETURN PossibleCombination

end if
end if

end if
end if

end if
end for

end if
RETURN PossibleCombination

After the completion of the loop for all identified candidate methods and for each possible
combination of candidate methods and existing methods, algorithm 5 is invoked in order

Distributed and Mobile Systems Group 151

6 Designing Composite Applications

to optimize the methods’ granularity.
Algorithm 5 is a recursive function that determines for a given method, based on available
methods, a set of methods the given method can be combined with. A combination of
two methods is possible, iff:

• either the input or the output of two methods are related; and

• both methods are either task-specific or entity-specific; and

• there are no (direct or indirect) dependencies between the methods.

Whenever a method’s granularity (measured by its SSM -value) is smaller than a given
threshold, the input parameters as well as the output parameters are joined.41 The algo-
rithm uses the result of the analysis of chapter 4 as its threshold (13).
Whenever the direct combination of two methods does not increase the overall SSM -value
sufficiently, the algorithm is invoked recursively until either no more suitable methods are
available or the granularity threshold is reached.
Another possibility to manually increase the size of the signature of methods is to include
predecessor objects (of the objects that are already part of a method’s input set) into
the signature of a method. The service design algorithm checks for the existence of the
required objects within a coordination service. This is why augmenting the interfaces
by predecessor objects is not performed automatically. Especially in message oriented
systems, augmenting interfaces in this way might increase the reusability of the services
as this would lead to a (partial) transfer of the objects that are necessary for object
navigations.

Returning to the shipment example, it is postulated that there are no existent service
methods available. Hence, the algorithm directly continues optimizing the single method’s
granularity. Assume that first the granularity of the method m1 = {(∅, {Carrier}) is
optimized by using the available methods {(∅, {Carrier}), {({Order}, {TradeCred-

itInsurance}), ({Order, Carrier}, {Shipment}), ({Shipment}, {Shipment})}.
Initially, SSM(m1) = 1. Hence, suitable combinations are searched. As the only possible
combination of joining m1 with ({Order, Carrier}, {Shipment}) is forbidden, because
the methods are directly dependent (the Carrier that is the result of m1 is required by
m2), m1 cannot be combined with any of the available methods.
The only possible combination of methods is to merge ({Order}, {TradeCreditIn-

surance}) with ({Order, Carrier}, {Shipment}). This is because both methods are
entity-specific and {Order} is a subset of {Order, Carrier}. The SSM -value of the re-
sulting candidate method ({Order, Carrier}, {Shipment, TradeCreditInsurance})

is 10.42 As there are no more suitable methods, the algorithm terminates. So the set
possibleCombinations consists for the iteration of m2 of the entry ({Order, Carrier},

{Shipment}).

After the derivation of possible combinations of methods, the user needs to agree on
the possible method combinations. As soon as a valid combination was identified, the

41Note that in contrast to the satisfaction of Size.III, the newly created method’s SSM -value is not
the sum of the single methods’ respective SSM -values. This is because, in contrast to the definition of
the property Size.III, both methods are not disjoint.

42Applying the same position in the MV(m1)-space as it was done in the use case for which 13 was
identified to be a suitable SSM -threshold.

Distributed and Mobile Systems Group 152

6 Designing Composite Applications

algorithm terminates. The result is a set of candidate methods as well as the set of
all coordination service methods that are required in order to realize a given enterprise
service.
Based on the interfaces, it is a manual task to describe the functional requirements for
the identified candidate methods.

For the example, it is assumed that the user agrees to use the proposed combination of
methods. So the results of the algorithm are the following three candidate methods:

• m1 = (∅, {Carrier}). Functional requirements: m1 shall fetch a Carrier-object
that will represent the company that will be asked to ship the goods of a given order.

• m2 = ({Order, Carrier}, {Shipment, TradeCreditInsurance}). Functional
requirements: m2 shall perform the ordering of a shipment for a given Order with a
given Carrier. Additionally, the order needs to be insured by TradeCreditInsur-

ance.

• m3 = ({Shipment},{Shipment}). Functional requirements: m3 shall check the
validity of a newly created Shipment. If a Shipment is valid, the approved-attribute
shall be set to true. Otherwise approved shall be set to false.

Deliverables List of coordination service candidate methods; list of coordination service
methods that need to be composed; functional requirements for all service candidates.

6.2.5 Step 4: Describe Service Orchestration

As service orientation is a paradigm for control centralization over distributed functionality,
the control flow logic needs to be described. According to [11], potential types of logic
that need to be considered are:

• “business rules

• conditional logic

• exception logic

• sequence logic” [11, p. 403]

Part of this service orchestration logic is typically included in the initial business process
model. This is especially true for the sequence and conditional logic. These parts describe
how the preconditions of service invocations can be met, how data is exchanged between
services and how post-conditions of services should be computed.
“Business rules are statements about how business is conducted, i.e. the guidelines and
restrictions with respect to business processes in an enterprise” [125, p. 9]. Exception
logic finally describes how a process should react on exceptional states. Exception logic is
normally both, part of a business process and part of a more general exception handling
procedure. A process description will usually contain a procedure that will be used to
react to business exceptions that are closely related to the process. However, the general
part of exception rules describes how exceptions, that are not handled directly by the

Distributed and Mobile Systems Group 153

6 Designing Composite Applications

process, should be treated. Reasons for not including such rules into processes are that
they were not foreseen in the description (e.g., technical routing errors while calling a
service).

In the example shipment process, the business rules are included in the realization of the
service method m3 = ({Shipment},{Shipment}). This service only marks a Shipment as
valid whenever it complies with company rules. An example would be that the shipment
has to be executed within 3 days after creation.
Conditional logic in the example is the check whether a valid Shipment exists. If the
Shipment was marked as not valid, the process continues differently then it would for a
valid Shipment.
For simplification reasons, the example process does not include business exception logic.
An example for general exception logic would be that in the case of the creation of the
Shipment a communication error (on the service invocation part) would occur. As a
company rule, such errors need to be reported to the central middleware help desk.
The sequence logic finally is described by the control flow of the business process. In
the example, goods need to be scheduled for manufacturing before their shipment can be
initiated.

Despite the description of the logic, the actual process model needs to be translated into
a formally correct and possibly executable service orchestration description. In order to
achieve this prior to a translation of the actual model, the correctness of the process model
needs to be checked (cf. [126]). The actual checking is considered beyond the scope of the
presented methodology. Complementary work such as [127] that checks for soundness of
a process orchestration should be considered, too. For the combination of event-driven
process chains (cf. [117]) and WS-BPEL (cf. [128]), [126] proposes an approach that uses
EPC-based process description to derive sound orchestrations.

Due to the simplicity of the example, the soundness of the process is not checked in greater
detail.

Deliverables Sound description of the process orchestration; conditional, exception logic
and sequence logic; business rules

6.2.6 Step 5: Create Service Coordination Description

From the initial requirements, a service orchestration (with associated rules) as well as
method candidates that act as the single service providers for the process orchestration
were derived in the previous step. In order to further drill-down the abstraction level and
realize the business process implementation, every single enterprise service needs to be
described in detail.
This description includes the already known interface of the actual enterprise service as
well as the coordination service method candidates that were identified in step 3. In
this step of the methodology, the identified candidate methods are composed in a way
that the composition provides the realization of the respective enterprise service. Usually,
the coordination should be a sequence of all coordination service methods in a way that
required data is produced before it is consumed. However, either due to the modeling
of the initial business process or due to special requirements, the description of a service
coordination might include conditions or parallel tasks, too. This is why the creation of

Distributed and Mobile Systems Group 154

6 Designing Composite Applications

the coordination description is considered to be a manual (yet simple) step. In conjunction
with business process modeling rules, this step could be automated. This might be realized
by a simple, data dependency-based approach (that simply links services in a sequential
way). An alternative would be to apply more sophisticated automated service composition
approaches. [125] is an example for such an automated composition process. More general
information about the requirements for automated service composition is given by Meyer
et al. in [129].

In the shipment example, the description of the service coordination for the {Order},

{Shipment, TradeCreditInsurance} enterprise service, would be a sequential invoca-
tion of the identified candidate methods. The coordination is described in figure 28 using
an UML activity diagram.

Figure 28: Model of the Service Coordination for the Order Shipment Enterprise Service

Deliverables Specification of the service coordination for every enterprise service using
the candidate methods that were identified in step 3.

6.2.7 Step 6: Refine Candidate Methods

Depending on the outcome of the previous steps, the requirement to refine the candidate
methods of step 3 might arise. Basically, this is a step the designer of a composite can
perform in order to manually adjust the shape of the service method candidates.
One possible scenario for the need to adjust the candidate methods is that the assumed
interface does not fit well together with the required service coordination. In particular,
entity-specific creation methods might not be required for creating new entities. Further-
more, these methods could include manual lookups with human interaction. Whenever a
human agent provides a required functionality of a method, context information is needed.

Distributed and Mobile Systems Group 155

6 Designing Composite Applications

Hence, an example for an adjustment in this step is adding context information to entity-
specific candidate methods.
Another possible requirement for the redesign of candidate methods is a too-complex ser-
vice coordination. A measure for the complexity of a the service coordination candidates
can be the System’s Service Coupling (SSC) metric that was defined in chapter 3.2.1. If
this metric is applied to the system as it is defined so far (enterprise services and the
respective coordination services), a first indicator about complexity can be obtained. If a
high complexity is indicated by a high SSC-value and the designer agrees on the complex-
ity, the candidate methods of the coordination services can be refactored in a way that
less complex service coordinations are possible.
A third possible need for a redesign is a poor degree of aggregation through the service
coordinations. The Density of Aggregation (DOA) metric that was defined in section 3.2.1
is a way to analyze this quality aspect of the design.43 Positive DOA-values for a complete
system indicate an efficient complexity handling via aggregators. Since the metric in this
context is applied to an aggregator with one serviceCall -port, the DOA value cannot be
smaller than zero. This is why a threshold for the use in this context should arise out of
experience from different projects. However, DOA for the single services is only a small
indicator here. Additionally, the AD measure of the Aggregator CentraliZation metric
(ACZ) should be identified for each service coordination.
Service coordinations potentially represent a control instance in a composite application.
They add a control flow that is independent from the top-level service orchestration. Such
aggregations might decrease the complexity (as it is measured by the SSC metric). But
there is a trade off between the complexity in terms of coupling and an efficient complex-
ity handling by the means of control centralization. In order to have a contrast to the
coupling metrics, the Aggregator CentraliZation (ACZ) should also be measured for the
overall system during this step.
The ACZ metric indicates a loss of control centralization if dense aggregators are part
of a system’s design (cf. section 3.2.1). Hence, the ACZ and the DOA metrics are in
mutual contrast. As a rule of thumb, a DOA value of ≥ 0 and a relatively high ACZ
value should not lead to a re-design. Again, the judgment of an experienced architect is
only supported by these measures.
Finally, the centralization in terms of the SCZ value should be considered as well. To-
gether with the ACZ value it indicates how the control flow is centralized in the system.
By considering differences between the ACZ and the SCZ values, a hint about the cen-
tralization by the means of service aggregators is provided (cf. section 3.2.1).

The possibility or the need to reuse certain services that do not match the identified can-
didate methods is another possible requirement for a redesign of the candidate methods
and their service coordination. Even if these methods were not identified by the algorithm
in step 3, certain circumstances (from modeling mistakes over budget restrictions to polit-
ical circumstances of the actual project) might require to definitely reuse certain service
(methods). Whenever this is the case, the set of candidate methods needs to be changed
accordingly and the affected service coordination needs to be redesigned.
In addition to the given reasons, step 6 is also the step where candidate methods are
checked in terms of their degree of incorporating service-oriented principles. Especially
the design of stateless services is a service-oriented design principle. Hence, in this step

43As the application services for each coordination services are not yet known, it should be assumed that
each coordination service aggregates one application service. This way, the most defensive assumption is
made.

Distributed and Mobile Systems Group 156

6 Designing Composite Applications

the single candidate methods are checked whether they allow for a stateless realization.
Finally, all candidate methods that will be used in later steps should be given names.

If the designer decides to refactor a candidate method for any reason, steps four and five
of this methodology will need to be executed again. In particular, the service coordination
will likely require a change.

In the small shipment example the following observation can be made: the DOA-value
of the Order Shipment enterprise service is 0.61. The enterprise service is aggregated
using three coordination services. This is why the density of aggregation is both good
and sufficient and does by itself not imply a re-design.
The SSC-value for the overall system as it has been so far is 0.43.44 Lacking an objective
threshold, it can be assumed that an SSC-value of 0.43 does not indicate a high level of
complexity. However, this is a subjective judgment of the given example.
The centralization metric ACZ has a value of 0 for the current design (with a central
service orchestration and one service coordination. This means that at this point in
time the control is not centralized at all. It is equally distributed between the service
orchestration and one service coordination. This indicates a low level of modifiability.
However, the complexity that is supposed to be handled by control centralization, is not
very high in the given example.
In contrast, the centralization in terms of the SCZ metric (cf. section 3.2.1), indicates
a relatively high centralization of 0.86. By interpreting the difference between the two
centralization metrics ACZ and SCZ, it can be postulated that the control is obviously
centralized in few aggregators that are not solely mediating the service providers. It could
therefore be analyzed whether the service coordination might be too complex in contrast
to the relatively simple service orchestration. However, when sticking to the business
process-centric service orchestration, the only choice for a re-design with regards to control
centralization would be to define an application service that matches the enterprise service
Order Shipment. This should be kept in mind for the design of the application services
in step 8.

The description of the m1 method might reveal that the respective Carrier should not
be created but furthermore retrieved form a list of possible carriers. In order to support
this (possibly manual) step, the actual order for which a carrier is searched is required by
the method. This is why the signature of m1 is changed to: ({Order}, {Carrier}). m1

remains an entity-specific candidate method.
As the candidate methods were changed, in the example, steps 4 and 5 need to be executed
again. While no changes of the service orchestration are required, the service coordination
needs to be changed according to the new methods. A revised service coordination with
the new getCarrier coordination service method is depicted in figure 29. The values of
the design metrics for the system are not altered by this change.
Finally, the methods are named. m1 is called getCarrier, m2 is called createShipment

and m3 is called validateShipment.

Deliverables A list of stateless, named and probably revised coordination service method

44Assuming one central service orchestration that aggregates three service providers. One of these
service providers is the Order Shipment service coordination that aggregates three service providers
itself. At this time the (necessary) consumer of the top-level orchestration is not yet identified, but the
orchestration considered an aggregator.

Distributed and Mobile Systems Group 157

6 Designing Composite Applications

Figure 29: Revised Model of the Service Coordination for the Order Shipment Enterprise
Service

candidates.

6.2.8 Step 7: Analyze QoS Requirements of Service Coordinations

The previous steps of this methodology produced a service orchestration that orchestrates
enterprise service (candidates). Additionally, so-called service coordinations, that describe
how coordination services can be used to realize the single enterprise services, were ini-
tially defined. In this step of the methodology the quality-of-service (QoS) requirements
of the single service coordinations are analyzed.
Two elements are included in this assessment. The first is the availability of the respective
enterprise service. Based on the required overall availability of an enterprise service, the
required availability of the composed coordination services can later be derived. Enter-
prise services are service aggregators that, in fact, use service aggregators (coordination
services) themselves. The availability of such service aggregators can be calculated using
the Avl metric that is described in (13) in chapter 3.2.2 (page 44). As a part of step 7,
the to-be value of Avl is defined for each enterprise service.

The second element that must be considered is the manner in which each service coor-
dination for the single enterprise services deals with the unavailability of the composed
services. Basically, this involves the notion of distributed ACID transactions (cf. section
3.2.2) as well as the definition of transactions with relaxed ACID properties.
ACID transactions are defined as a set of service methods of a service coordination that
need to be executed together or not at all.
Transactions can also be relaxed in terms of their atomicity and isolation properties (cf.

Distributed and Mobile Systems Group 158

6 Designing Composite Applications

section 5.8). In order to utilize relaxed, global transactions, (sets of) method calls can
be marked as being safepoints. The return values of such method calls must be persisted
in the data repository before subsequent services are called. In case of exceptions during
subsequent steps, these steps need to be compensated. Processing is then restarted after
the most recent safepoint with the data that was previously committed by that safepoint
method to the data repository.
If safepoints are identified, compensating actions for a set of methods also need to be
defined. In order to define such actions, a group of services and different exceptions, that
trigger them, are defined. Possible types of exceptions include work item failures, deadline
expirations and resource unavailabilities (cf. [130]). In order to realize a compensating
activity, a corresponding service method has to be identified for each defined exception.
Compensating operations that work on the data repository should be realized as services
at the service coordination layer. Additional functionality that might be required needs
to be realized as ordinary application services that are part of such an aggregation.
Service coordinations as a whole are always considered safepoints. Hence, they also have
to commit their result to the global data repository. The compensating activities for the
enterprise services should be defined as part of the business process model.

Using the service coordination that was described in the previous step of the example, the
getCarrierForOrder method might be marked as being a safepoint. In case of failures,
a carrier that has been identified for an order could be kept in order to avoid additional
lookups for carriers after a failure. A compensating action for the set {createShipment,
validateShipment} could be deleteShipment. An exception that triggers this compen-
sating action could be a timeout of the validateShipment method. Consequently, the
service coordination will need to be refined accordingly. The result of this is shown in
figure 30.

Figure 30: Model of the Service Coordination for the Order Shipment Enterprise Service
with Transactional Properties

Assuming a required overall availability of this service coordination of Avl = 99%,
the three basic services need to have an θs-value (failure rate) of 0.3% if the service
coordination platform has a θ-value of 0.1%.

Distributed and Mobile Systems Group 159

6 Designing Composite Applications

Deliverables Sets of coordination service methods for distributed transactions; sets of
methods that are marked as safepoints; sets of methods that are to be compensated;
method descriptions for realizing compensations; required maximal failure rates for the
coordination services for all enterprise services.

6.2.9 Step 8: Design of Application Services

The functionality of the coordination services often already exists within an application
system. If so, four options for utilizing them in a composite application exist.

1. Direct (Re-)use If an application system exposes the required functionality as a
service provider, a composite can directly use it. This is true for both, complete
enterprise services and coordination services. In order to find appropriate services,
a service registry should be used.
If required functionality is not realized at all in a landscape, new services have to
be created. These services need to implement the signature that was identified in
step 3 and potentially revised in step 6.
If human interaction is required as part of an application service that is to be cre-
ated, the actual design of the user experience needs to be performed based on the
deliverables of this step. However, the actual design approach for user interactions is
not within the scope of this methodology. It solely delivers functional requirements
to this design in terms of the interface of the service and the resource and organiza-
tion view of the underlying business process. This is necessary because these views
define the actual resource that should interact with an application service.

2. Mediated Reuse The required functionality might be implemented by an appli-
cation system in a remotely accessible way but may not be exposed appropriately.
This might be the case if the exposed functionality does not support the service
protocol and/or the required service interaction mode of a service coordination flow.
There might also be heterogeneity in terms of data structures between the designed
coordination service and the remotely accessible application system.
All these cases require the use of integration flows and the connectivity layer. The
actual design of it is performed in the next step. This step’s deliverable is the identi-
fication of a suitable piece of an application system’s functionality that is remotely
accessible. If a service cannot be realized only by the identified module, additional
modules should be created.
In established application landscapes this is the most probable scenario of reuse.
The identification of suitable function modules of the application systems is likely
to require extensive knowledge of the respective application system.

3. Direct Use of Wrappers If functionality is existent but not exposed, a wrapper
could be created within the respective application system (cf. step 5 from [97]). Such
wrappers need to be designed specifically for each application system and implement
the interface of the service as it was designed. This approach, however, is based on
the assumption that a wrapper can be deployed on an application system. If a
governance rule prohibits changing COTS, integration flows are required.
If there is no problem with implementing a wrapper within an application system,
the deliverable of this step is the specification of an appropriate wrapper.

Distributed and Mobile Systems Group 160

6 Designing Composite Applications

4. Mediated Access If the implementation of wrappers is prohibited, the respective
application system can be integrated by using connectivity means and integration
flows as part of a data integration approach (cf. section 2.1). In such a scenario, a
Data Service as well as a Heterogeneity Service might need to be part of an
integration flow.
This approach is especially suitable for entity-specific methods that store, retrieve
or modify entities. Task-specific methods could also be realized. However, the
suitability depends on the actual application system.
If mediated access to an application system must be realized, the data schema
that should be accessed is the deliverable of this step. Additionally, the available
connectivity options need to be described.

An indicator for the appropriate way of accessing application services can be the values of
the re-use metrics Re-Use Ratio (RUR) and Mediated Re-Use Ratio (MRR) (cf. section
3.2.1). These two metrics indicate to which extent an implementation of a business process
is coupled with another composite application. It is a task for a system’s designer to
choose the appropriate way of using services based on the actual requirements, technical
constraints and modifiability issues as they are objectified by these metrics.

If only part of the required functionality can be identified in application systems, addi-
tional services will be required. These additional services are added to the list of required
coordination services together with coordination services for the functionality that was
identified.
According to the identified functionality, previously designed coordination services might
be changed or adjusted, too. The quality-of-service requirements should also be identified
for the revised service methods.

In the shipment example it is assumed that the required functionality is already im-
plemented in two application systems. The getCarrierForOrder method is part of a
supply-chain management system that is based on SAP R/3. A remote function call
(RFC) Carrier[] getAllCarriers(salesOrg, qualityReq) might exist. This RFC re-
quires an organizational code for a sales organization as well as the quality requirements
for the actual shipment. Hence, mediated reuse is required.
The RFC does not necessarily pick one suitable carrier for a shipment. This is why the
service coordination needs to be extended. A branch is required that, if multiple carri-
ers are suitable, invokes a task-specific service method that involves a user interaction
and determines the actual shipment. The service method shall be defined as Carrier

chooseCarrier(Carrier[]). Using this not yet created service means a direct use of a
service provider.
Concerning the createShipment method it is assumed that an Intermediate Document
(IDOC) exists that is provided by the sales and distribution (SD) module of another SAP
R/3 system. As IDOCs are transmitted using a different protocol and use different data
formats, an IOF is required. The usage of such an IDOC represents mediated reuse.
The validateShipment is assumed to be supported by an RFC Shipment validate-

Shipment(Shipment). Also here, mediated reuse – via a combination of an IOF and IIF
– is required.

Deliverables For direct reuse, the respective service methods need to be determined. For
the direct use of services, the not yet created application services must be described.

Distributed and Mobile Systems Group 161

6 Designing Composite Applications

For mediated reuse, suitable functional modules need to be identified. Their use must
also be described. Further, suitable connectivity options are required and potential new
services must be described as services for direct use.
If direct use of wrappers is applicable, the wrappers need to be specified. If application sys-
tems can only be used via mediated access, the data scheme that should be accessed needs
to be described. Additionally, the available connectivity options need to be determined.

6.2.10 Step 9: Exchange and Transformation Design

Integration flows are required for any method of an application system that needs to be
mediated. As the realization of the actual application services and their combination with
the data exchange and data transformation layer (DET) are usually heavily constrained by
technical circumstances, steps 9 and onward need to be performed while taking the actual
target platform and application systems into consideration. This is how the platform-
independent design that is created in the first steps is aligned to an actual platform.
In order to design the necessary integration flows, the required interactions with the
service providers first need to be identified. This is achieved by specifying the appropriate
service interaction pattern (cf. [98]) and its respective design decisions. Based on the
identified pattern, the required integration flows, as well as some integration services, can
be identified. The mapping from interaction patterns to integration flows is described in
section 5.7.8. The identified mapping indicates the required integration services, as well
as several design decisions for each integration service.
Based on the identified integration services, the design needs to be completed for each
service. For the single integration services this includes:

• Heterogeneity Service If heterogeneous data structures or formats are identified,
this service must be part of the respective integration flow(s). According to sec-
tion 5.7.3, it needs to be decided on which levels transformations are required. If
existing Heterogeneity Services can be reused, a multi-step transformation can
be designed. For every level of transformation, the actual transformation needs to
be specified completely. This also involves determining whether data lookups for
enrichment are required.

• Data Service The necessity for a Data Service is determined by the respective
interaction pattern. The data format of the connected application system is a de-
liverable of the previous step of the methodology, just like the connectivity options
of the application system. Using this input, the connectivity layer of the composite
application needs also to be specified.
In complex interaction scenarios, additional design decisions are determined by the
identified interaction pattern (cf. section 5.7.8).

• Validity Service If the chosen service provider or a type of realization indicates
a high failure rate in terms of data validity, a Validity Service is then required.
Typical scenarios that require the inclusion of a Validity Service are communi-
cations with external partners (“business-to-business”) or services that involve user-
interaction.
According to section 5.7.2, the design of a Validity Service involves the definition
of the data representation as well as the data format. Additionally, possible return

Distributed and Mobile Systems Group 162

6 Designing Composite Applications

values need to be specified. They also need to be incorporated into the decision
logic of the respective integration flow.

• Routing Service As described in section 5.7.5, a Routing Service is required
in order to determine the counter-party(ies) of an interaction. For more complex
routing instructions, whether receivers are determined by the actual content of the
interaction, whether dynamic endpoint lookups are required and the amount of
receivers that are involved in an interaction must be described.

If the design of the integration flow(s) and the respective integration services reveal that
the mapping from application services to coordination services cannot be accomplished
with integration flows, the application service design needs to be revised. The identified
constraint is then required in order to design the application service(s) differently.

This step of the methodology is exemplified by the getAllCarriers RFC. Its inclusion in
the composite application needs to be mediated by integration flows. The suitable inter-
action pattern for the communication with the RFC is a Send/Receive interaction with
a single, known counter-party. As the RFC only supports synchronous communication,
no correlation or blocking of the sender is required. In case of communication errors, a
manual error handling procedure should be initiated.
According to the description of section 5.7.8, this implies the need for both an IOF and an
IIF. The IIF requires a Data Service while the IOF does not use such a service. Instead,
the IIF is triggered by the IOF.
In order to complete the design of the interaction with the RFC, the single integration
services need to be analyzed. Concerning a Heterogeneity Service, it was identified
that the data types as well as the data structure is not the same inside the composite
application and the SAP R/3 system. Additionally, a lookup is required. This is because
the RFC requires the indication of an associated sales organization. By using the Order

object that is passed to the IOF, a value-mapping can be used as part of the Hetero-

geneity Service for retrieving the respective organization for a customer of an order.
Additionally, an order needs to be transformed into a qualityRequirement object. In
the example it is determined that a quality requirement is an integer that indicates the
value of an order as a class of order. The respective Heterogeneity Service needs to
implement this transformation logic.
According to the mapping of the interaction scenario, a Data Service with a Fetch Data

activity is required as part of the IIF for the inclusion of the RFC into the composite appli-
cation. The necessary Fetch Data activity synchronously invokes the RFC and receives
a reply. Such a reply is, in turn, transmitted to the requesting coordination service con-
sumer.
The mandatory Routing Service is a simple one item list of receivers that points to the
identified R/3 system’s message server that hosts the RFC.
A Validity Service is not required.

Deliverables Complete specification of the integration flows for every mediated service
interaction. The description needs to include the specifications for the necessary Hetero-

geneity Services, Data Service, Validity Services and Routing Services.

Distributed and Mobile Systems Group 163

6 Designing Composite Applications

6.2.11 Step 10: Revise Service Coordination Description

The design of the actual application systems as well as the design of the mediating inte-
gration flows reveals the applicability of the top-down design for the coordination services.
Based on the deliverable of the two previous steps, the coordination descriptions might be
changed. If changes occur, the quality-of-service requirements need also to be analyzed
for the new coordination.

The example could largely be realized by mediating existent functionality of application
systems. Steps 8 and 9 identified what functionality can be reused and what additional
service providers need to be created. The final service coordination for the example case,
that includes all the necessary steps, is described in figure 31. It also includes the revised
quality-of-service requirements.

Figure 31: Model of the Revised Service Coordination for the Order Shipment Enterprise
Service

Deliverables Final description of the single coordination services as well as the service
coordination that aggregates the coordination services to enterprise services.

Distributed and Mobile Systems Group 164

6 Designing Composite Applications

6.2.12 Step 11: Revise Enterprise Service Candidates

During the step of redesigning service coordinations, technical or organizational con-
straints that prohibit the realization of enterprise services that are aligned with the actual
business process might be identified. If this is the case, two possibilities for proceeding
exist.
First, the whole process can be started from the beginning. This is a preferable option
if the modeled business process does not fit into the landscape of an organization. The
identified constraints should then be used in order to define a business scenario that is in
alignment with these constraints.
The second option is to revise the actual design of enterprise services in a way that the
defined service coordinations can be realized. This will usually involve defining additional
input and/or output parameters for the single enterprise services.
If the enterprise services are changed this is likely to also impact the process orchestration.
If the enterprise services are changed, the service orchestration will need to be adjusted
in a later step (step 14). It must be noted that changing a process orchestration is a
violation of the objective of aligning application development with business needs.

In the example there was no indication that the enterprise services needed to be changed.
This is because changes to the service coordinations were internal changes that did not
affect the interface of the enterprise service.

Deliverables Decision about whether to continue the design or to start over. If the
design is continued, the revised enterprise services must be defined. If the decision is to
start again, the constraints that led to this decision are required deliverables.

6.2.13 Step 12: Define Events

At this phase of the design, the enterprise services are defined. In addition, how these
services can be realized and what transactional requirements exist is described.

The use of many components of the reference architecture relies on the notion of events.
They are used as identifiers for data in many steps. In particular, the data repository
component relies on events. Event Types are used in order to define a consistency model
for the data and define the visibility of data (cf. section 5.2.2).
The definition of Event Types and relations between them also determine how data visi-
bility can be realized by the notion of workflow data patterns (cf. section 5.2.2). In this
12th step of the methodology, the required data visibility patterns need to be identified
and event types and relations need to be defined in accordance with the discussion in
section 5.2.

If a workflow requires a more strict definition of visibility boundaries than described by
the Case Data pattern (cf. [96, pp. 365f.]), several Event Types must be defined for
one process (type). Additionally, data needs to be passed between the different scopes.
In contrast to data visibility patterns, the different modes of data passing, as described
by WFData, are not immediately supported. Special coordination services need to be
included to support, for instance, the Task to Task workflow data pattern that describes
“the ability to communicate data elements between one task instance and another within
the same case” [96, p. 364]. By defining overlapping event type boundaries and allocating

Distributed and Mobile Systems Group 165

6 Designing Composite Applications

coordination services for the passing of the data, transferring the necessary data from one
scope to another can be realized. Alternatively, data can be stored in the application
systems and read back by appropriate services (cf. the Task to Environment - Push-
Oriented and the Environment to Task - Pull-Oriented workflow data patterns (cf. [96])).

The definition of the event types needs to comply with the design rules that are described
in section 5.2.1. In order to finalize these descriptions, the relations between the identified
Event Types also need to be described. They are required in order to define the parameter
values for the eventing system.

The boundaries of the defined event types as well as the data passing requirements are
input to step 14 of this methodology. This is because the respective events must be
generated by including interactions with the eventing system into the service orchestration.
Further, the invocation of a service coordination that passes data from task to task must
be integrated into the process orchestration.

In the example process, there is no need to concurrently compute an Order from multiple
process instances. There is also no data passing between the single process functions.
This is why the data visibility pattern Case Data is suitable (cf. [96, p. 365]). According
to the discussion in section 5.2.2, this results in one event type for the complete process
being defined. In the example the event type orderProcessing is identified.

Deliverables Event Types and their respective boundaries; relations between Event

Types; and optionally, the definition of coordination services that pass data between
different scopes.

6.2.14 Step 13: Data Repository Design

Based on the Event Types that were identified in the previous step, the preconditions
for every event type can be defined. Such preconditions might exist in terms of data
existence. They describe that an event of a certain type can only be computed if certain
data is stored in the data repository of a process. Such preconditions need to be identified
in order to appropriately configure a data repository.
On top of data prerequisites, data types from the data perspective need to be incorporated
into the design of the data repository (that addresses the principle of “interface reference”
from [15]). This is achieved by defining the smart proxy for the given process as well as the
transfer objects that are used to access the smart proxy. This information can be found
by analyzing the data model of the business process. The business rules that are identified
in step 4 should also be analyzed as the data by which they are defined is required to be
kept in a data repository. Another input to the definition of smart proxies and transfer
objects are the interfaces of the coordination services. The data that is required by those
services also needs to be integrated into the data repository and made accessible by the
smart proxies.
Based on the identified data and the respective transfer objects, the data objects can then
be grouped by the event types that concern them. Together with the event type relations
from the previous step, the data repository configuration can thus be completed.

With the artifacts produced so far, it is possible to determine which data in the data
repository has to be accessed when and by which component. Additionally, it is deter-
mined how these accesses must be protected in terms of transactional properties. As a

Distributed and Mobile Systems Group 166

6 Designing Composite Applications

result, in this phase it is possible to describe the interaction with the data repository that
establishes the context for the composite applications.

The shipment example relies on the single event type orderProcessing. As described by
the process, this event type can only be computed when a Customer object and a set of
Good objects is accessible.
The data transfer objects that must be defined are Customer, Order, Good, TradeCred-
itInsurance, Shipment and Carrier. The data repository for the example process must
be capable of managing these objects, as they are all concerned by orderProcessing events.

Deliverables Design of smart proxies and data transfer objects; configuration instruc-
tions for the data repository.

6.2.15 Step 14: Finalize Service Orchestration

The deliverables of the previous steps describe all the facets of a composite application.
This description is aligned with the description of the business process. However, several
constraints could require changing the service orchestration.
If a service coordination cannot be realized as required, this also impacts the service or-
chestration. Such changes need to be performed during this step. As such requirements for
changing the orchestration are usually imposed by application system-specific constraints,
the adjustment of the orchestration is not structured further.

A mandatory activity of this step is the design of the necessary Decision Services.
Based on the business rules that were identified in step 4 and the available data that is
represented by the design of the data repository, the rules need to be described and stored
into a Decision Service. This might either be performed by using a RulesAdministra-

tion service (cf. section 5.9.2) or by hard-coding the respective rules under consideration
of the data repository.
The actual way of integrating the Decision Service(s) must also be decided upon. This
is dependent upon the actual platform the composite should be realized. Based on the in-
tegration mechanism, the orchestration might need to be adjusted (e.g., by implementing
a service interaction with a DecisionService prior to a switch command).

In order to realize the identified types of events with their respective boundaries, the ser-
vice orchestration needs to be extended with such interactions. This is achieved by adding
calls to the Event Service. The operations update and finish need to be invoked at the
respective boundaries of event types. If data needs to be passed over such boundaries, the
service orchestration needs to be extended with the invocation of the service coordinations
that were described in step 12 for this purpose.

The service orchestration naturally includes the invocation of the appropriate services.
This involves service coordinations as well as application services of the back-end systems
that match with an enterprise service. The invocation of those services needs to be
accompanied by a respective callback method.

The example process can be realized as an orchestration of two application services and
the service coordination that was defined during the previous steps. A diagram of the
final service orchestration, representing the central control instance of the composite ap-
plication, is depicted in figure 32. Additionally, other associated components are added

Distributed and Mobile Systems Group 167

6 Designing Composite Applications

to provide an example of the single components’ interactions (described more in depth in
chapter 5).

Figure 32: Final Orchestration for the Example Process

Deliverables Business rules that are formulated such that they can be interpreted by
the actual Decision Service(s); decision regarding the method of integrating Decision

Service(s) in a platform-specific way; revised service orchestration that incorporates
communication with the Decision Service(s), Event Service and service coordina-
tions for data passing; all necessary changes to the orchestration that are necessary due
to informal constraints also need to be reflected.

6.2.16 Step 15: Finalize Exchange and Transformation Design

This step of the procedure is required in order to describe the Trigger Services that
are needed to mediate service interactions.
Based on the event types and the data repository design, the data that is required as
a prerequisite for a process is known. By analyzing the actual interaction, the source
of this data can also be identified. If the source of such data is an agnostic application
system, a Trigger Service needs to be integrated. By adapting to the interface of the
service consumer (the application system), the interface of the respective Trigger Ser-

vice is determined. Based on the identified event type, the Heterogeneity Service of
the respective Trigger Service can also be designed. Additionally, filter logic needs to

Distributed and Mobile Systems Group 168

6 Designing Composite Applications

be described. This logic is determined by the scenario as well as by technical constraints
of the service consumer invoking a Trigger Service. Finally, based on the data reposi-
tory design, the write activity of a Trigger Service that stores the data into the data
repository can be defined.
The initial design of the data exchange and data transformation performed in step 9 in-
volves the analysis of service interaction patterns as described in section 5.7.8. If the need
for a Trigger Service was identified, it needs to be designed at this step.
In order to prepare the upcoming implementation it needs to be verified whether the
target platform supports all necessary interaction patterns. This is because some inter-
actions that are not natively supported can be realized by adding Trigger Services to
the model of the data exchange and data transformation layer.

The single event type of the example process requires a Customer object and a set of
Good objects in order to be executed. As a deliverable of step 1 it was described that an
order is submitted electronically. The order and customer data are transmitted to the
supplier using the interface of the acceptOrder method. A TriggerService is required
that implements this interface, triggers the eventing system to produce an Event of the
orderProcessing type and transmits the data into the data repository of the composite
application. No filter logic is required. The Trigger Service for the shipment process
is depicted in figure 33.

Figure 33: Trigger Service for the Example Process

Deliverables Finalized description of the integration flows including the design of all
necessary Trigger Services.

Distributed and Mobile Systems Group 169

6 Designing Composite Applications

6.2.17 Step 16: Pass over to Implementation

After step 15, the design of the composite applications and the services they consist of is
finished. The design is described in a platform independent manner. Additionally, some
constraints of the target platform are also incorporated. In particular, this involves the
possibilities of interacting with application systems, a description of the service orchestra-
tion and the integration of Decision Services.

Based on this design, a composite application can subsequently be implemented. It is not
recommended to add additional design artifacts for this phase. In contrast to the idea
of a Model Driven Architecture (cf. [131]), this methodology does not aim to transform
a platform independent design into an executable, platform-specific application. Expe-
rience shows that a design typically does not encompass all issues that occur during an
implementation phase. If that were possible, design models that covered all aspects would
be as complex as a final implementation. Because of this, the implementation phase of a
composite application should be oriented towards the design performed by this method-
ology. However, the personal expertise and experience of the single developer should also
be leveraged.

6.3 Summary

The design methodology discussed in this chapter describes how a business process can
be used as input for the design of a composite application that supports the respective
process.
The methodology focuses on a business process as the description of the service orchestra-
tion that centralizes the control within a composite application. Emphasis is placed on
deriving the design of the orchestrated services. In order to allow for business-aligned or-
chestrations, a service meta-model is applied as part of the methodology. The meta-model
reflects a separation of concerns that is achieved by the platform independent reference ar-
chitecture. According to this meta-model, business functions are considered as enterprise
services. These services are realized as aggregations of more basic services (referred to
as coordination services). While the enterprise services are specific to a business process,
the coordination services are designed in order to allow for their reuse. This is why the
overall design methodology includes a detailed approach to the design of these services.
The way services are derived and designed is inspired by several pre-existing service de-
sign approaches (cf. [11], [120] and [121]). The approach presented here focuses on two
additional objectives: minimizing requirements in terms of input to the methodology and
maximizing reasonable reuse while avoiding “over engineering” service design principles.
In order to minimize the input requirements, the design approach focuses on functional
dependencies and avoids the notion of formal semantics. In order to maximize reuse while
keeping the approach applicable, it incorporates the findings of the analysis that was made
on service design principles (in chapter 6). The service methods that are the outcome of
this service design approach are again aligned with the reference architecture.

The overall design methodology uses the identified service method candidates in order to
derive the complete design of a composite application. For this sake, all components of the
reference architecture are designed in alignment with those candidates, service-oriented
principles and interaction and consistency requirements. Service-oriented principles were

Distributed and Mobile Systems Group 170

6 Designing Composite Applications

included by using the reference architecture and design metrics for the assessment of inter-
mediate design artifacts. Also, constraints that were imposed by an existent application
landscape were considered and incorporated into the design. This is why a large part
of the methodology is concerned with the adjustment of the design artifacts that were
initially derived top-down. The deliverable of the overall methodology provides the input
for the actual development of a composite application.

Distributed and Mobile Systems Group 171

7 Platform-Specific Reference Architecture

7 Platform-Specific Reference Architecture: Apply-

ing the Concepts to the SOA Platform of BASF IT

Services

The reference architecture proposed in chapter 5 describes, in a platform-independent
way, how the realization of composite applications can be standardized while service-
oriented principles are incorporated. In terms of the Model Driven Architecture (MDA)
classification, it represents both, a meta-structure for the design of composite applications
as well as a virtual machine (cf. [91, pp. 2-6]). The description includes both a design-time
aspect of composite applications and a run-time aspect that defines requirements for an
execution environment. The design methodology that is presented in chapter 6 describes
how an actual business process can be used in order to design a composite application that
is based on this architecture. In order to realize a composite application it is necessary
to describe how such a design can be realized on an actual platform. In MDA terms, a
platform model for the Platform Specific Model (PSM) is required. Such a mapping from
the platform-independent reference architecture to a platform-specific architecture is a
scenario-independent, generic description of a runtime execution environment that can be
used to implement scenario-specific composite applications.

The reference architecture and the development methodology were developed in order to
support a project that was conducted by BASF IT Services. This project’s aim was to
identify how application development could be improved by the service-oriented architec-
tural style and how composite applications could be realized.
BASF IT Services is an IT service provider of industry companies that (among others)
focus on chemical products. As the majority of the business activities of BASF IT Ser-
vices are related with such companies, BASF IT Services incorporates the IT strategy of
its main customers into its portfolio.
Without going into specifics, it is obvious that the key differentiator of industry companies
is not its application landscape in the first place. This is why such companies follow a
vendor-centric IT strategy. Through this strategy it is understood that a vendor is chosen
as a preferred supplier for a certain domain. For any new software that is required, it is
then usually determined whether the respective product of the chosen vendor fulfills the
actual requirements of the company. If so, the product is chosen. If not, other strategies
are applied.
This strategy is an alternative to a best-of-breed strategy that aims to choose for each
aspect the optimal software on the market. By choosing this strategy, the overall total
cost of ownership for the respective application domain should be reduced.

This strategic decision also influences the analysis of the service-oriented architectural
style. This is because, as an external supplier, BASF IT Services has to anticipate that
main customers are likely to choose a certain supplier for building composite applications.
This software vendor is SAP (cf. [132]).
When the project was initiated in 2005, SAP had launched a technology platform called
SAP NetWeaver (cf. [133]). This is why an objective of the project that investigated the
suitability of the service-oriented architectural style project was to evaluate whether SAP
NetWeaver would be suitable to realize composite applications. For this sake, a case study
was planned.
In order to use the opportunity of this case study for validating the concepts of this thesis,

Distributed and Mobile Systems Group 172

7 Platform-Specific Reference Architecture

SAP NetWeaver was also chosen as the target platform for the runtime framework of the
platform-specific reference architecture.

To evaluate the suitability of NetWeaver as a platform for composite applications, two
tasks are required. First, the evaluation comprises the general description of a platform-
specific reference architecture that implements all elements of the platform-independent
reference architecture that was described in chapter 5. Second, the evaluation includes a
case study. The aim of such a case study is to informally evaluate “hands-on” experiences
with the given platform. The case study that was conducted is described in chapter 8.
The description of this platform, its general suitability and the platform-specific reference
architecture are described below.

7.1 Elements of the SAP NetWeaver Platform

In contrast to the enterprise resource planning (ERP) products of SAP (e.g., R/3), SAP
NetWeaver is a technology platform that is provided in order to enable customers to use
open technologies when addressing their business needs (cf. [134]). These open technolo-
gies are web services [36] including the Web Service Description Language WSDL [135]
that is used to describe services, SOAP [27] and the Hypertext Transfer Protocol HTTP
[136] as the common transport protocol as well as the Web Services Business Process Ex-
ecution Language WS-BPEL [128]. Additionally, SAP included a Java stack that allows
for programming applications and services in Java [137].

On top of these open technologies (and some proprietary SAP technology), the SAP
NetWeaver suite contains a set of products that can (mostly) be used independently from
each other. SAP NetWeaver is not one single tool or product. It is a suite of tools that
have a common technology platform from SAP. Additionally, they are all based on the
SAP Web Application Server (WAS). At the point when the platform-specific architecture
was defined, there were no common components that would transform SAP NetWeaver
into a holistic platform.
The single components that are positioned to be potential platforms for composite appli-
cations are roughly outlined in the following sections. The described versions are part of
the SAP NetWeaver 2004s stack.

7.1.1 SAP Web Application Server

The product Web Application Server (WAS) actually consists of two independent tech-
nology stacks. One is the so-called WAS ABAP and the other is called WAS Java. The
ABAP stack is an evolution of the SAP R/3 application system that was simplified by
removing all ERP components. Hence, the WAS ABAP can be used to program and
execute programs that are realized in ABAP language [138]. Besides the various ERP
modules of SAP, the WAS ABAP provides a platform for other higher-level technology
platforms. One example is the SAP Business Workflow [139] that can be deployed on this
application server. Communication is enabled by the Internet Communication Manager
(ICM) that is used for handling HTTP requests for both stacks of the application server.
The so-called Java-Stack of the WAS is a Java J2EE 1.3-compliant [140] application server.
According to the specification it allows for the execution of Java-based implementations

Distributed and Mobile Systems Group 173

7 Platform-Specific Reference Architecture

and provides means for realizing transactional security, naming, reliable messaging and
persistent data management. Additionally, the WAS provides a Software Deployment
Manager (SDM) that is used at design-time for the deployment of applications.
The single components of the SAP WAS are shown in figure 34.

Figure 34: Components of the SAP Web Application Server [141]

Both application servers can be used as service agents. Service consumers as well as service
providers can be deployed. The protocol that is used between services is HTTP-based
SOAP.
All other components of SAP NetWeaver are based on at least one of the two types of
WAS. An installation of a single stack of the WAS is possible.

7.1.2 SAP Exchange Infrastructure

The SAP Exchange Infrastructure (XI) is the enterprise service bus solution of SAP XI
and includes a runtime as well as a design-time environment that can be used for reliable
communication with arbitrary back-end systems. It is a dual-stack solution as it requires
both the WAS ABAP as well as the WAS Java stack and is completely based on XML [142],
SOAP and HTTP as communication protocol.
The single components of XI are shown in figure 35.

The Integration Builder forms the proprietary design-time environment. It is used for
designing and configuring integration relations among various systems. Designing such
relations includes the description of interfaces, structural mappings and so-called business
processes. Interfaces are described using XML standards like XML Schema (XSD) [144] or
WSDL [135]. Mappings are SAP-proprietary components that transform messages from
one format into another. The so-called business processes are WS-BPEL-based descrip-
tions of service orchestrations.
Configuring relations includes the notion of endpoint referencing, routing and the appli-
cation of various adapters.

Distributed and Mobile Systems Group 174

7 Platform-Specific Reference Architecture

Figure 35: Functional Components of the SAP XI [143]

During run-time, the Integration Server (IS) acts as the ESB. It executes the artifacts
that were specified during design-time. The single components of the IS are shown in
figure 36.

Figure 36: Components of the SAP XI Integration Server [143]

The IS consists of three parts: the JCA [145] compliant adapter engine (AE), the business
process engine (BPE) and the integration engine (IE).
The AE allows for the deployment of arbitrary adapters. Such adapters establish the con-
nectivity to back-end systems. Additionally, the AE transforms all data that is forwarded
to the IE into an XML-based data format. This is required as XI internally relies on
XML-based messages.
The IE establishes a pipe-and-filter architecture. The pipe follows a fixed pattern: in-
coming messages are routed, transformed (mapped) and forwarded to the actual receiver.
Possible receivers are application systems that are connected via adapters or processes
that are executed in the BPE.
The BPE is a SAP Business Workflow-based runtime engine for processes that are de-
scribed using WS-BPEL. It includes a correlation handler that allows for dispatching

Distributed and Mobile Systems Group 175

7 Platform-Specific Reference Architecture

incoming messages to the appropriate process instance. All service calls that are per-
formed by a WS-BPEL-based service orchestration are forwarded to the IE that treats
those messages. Messages are stored and forwarded using internal queues of the IS that
can be prioritized.
XI allows for synchronous messaging, asynchronous messaging and asynchronous messag-
ing with acknowledgments. For both types of asynchronous messaging both exactly-once
and exactly-once-in-order semantics are possible. Hence, SAP XI can provide guaranteed
delivery and queuing functionality. Version 3.0 does not provide support for distributed
atomic transactions.

7.1.3 SAP Composite Application Framework

The SAP Composite Application Framework (CAF) provides a programming model that
was introduced by SAP to facilitate the programming of composite applications. It in-
cludes a Java-based runtime environment as well as a development environment. It is
based on the SAP WAS Java stack.
The CAF provides an architecture that can be used to realize user interfaces or services
and provides a persistence framework. All components of the CAF architecture are de-
picted in figure 37.

Figure 37: Components of the SAP Composite Application Framework [146]

The single components are structured as layers: the basic providers of persistence and
functionality are application systems and (external and internal) databases. Access to
this functionality is either possible by exposing the user-interface of application systems
directly via a web-based interface or by generating so-called Entity Services. Technically,
Entity Services are realized as J2EE stateless Session Beans that use generated Entity
Beans (for database connectivity), web service client proxies or JCO-based45 RFC client

45JCO stands for “Java Connector” and is a proprietary Java-based technology that is used in SAP
environments for communicating with ABAP-based, proprietary SAP remote function calls (RFC).

Distributed and Mobile Systems Group 176

7 Platform-Specific Reference Architecture

proxies. Entity Services form the data model of CAF-based applications.
Application logic is realized in CAF-based applications by so-called Application Services
that operate on Entity Services. Application Services are also realized as stateless J2EE
Session Beans. Application Services can be exposed as web services or as so-called local
references if the respective service consumer is deployed on the same WAS. This part of
the CAF is also referred to as “CAF Core”.
The user interface framework that is used by the CAF is SAP WebDynpro for Java
framework (JWD). JWD is a proprietary SAP framework that implements the model-view
controller pattern (cf. [37]). Models of the JWD are either local references to Application
Services or external web services. JWD is a complex framework that can be used to
implement complete applications independently of the CAF or the SAP Enterprise Portal.

In the context of the CAF, so-called Guided Procedures (GP) can be used to realize
structured user interactions. SAP GP is a proprietary framework for realizing user-centric
workflows. Work items are assigned to users by the notion of the Universal Worklist
(UWL). The execution of the respective work items is realized as a workflow that defines
a control-flow on-top of so-called actions. Actions are wrappers for so-called callable
objects (CO) and are assigned to roles that can be used to identify users. One action can
contain up-to two COs. Different types of COs exist. All different types of COs can be
distinguished into two classes: COs with and COs without user interaction. One example
of COs with user interaction are JWD COs that allow the use of WebDynpro applications
as steps of a GP. Another user-centric type of CO is the so-called“URI-COs”that allow the
inclusion of external applications that are accessible via HTTP, identified by a Uniform
Resource Identifier (cf. [147]) and expose their user interface using the Hypertext Markup
Language (cf. [148]).
Examples of the class of COs that lack user interaction are the “Web Service CO” that
can be used to invoke external web services that are described using WSDL or the “CAF
CO” that can be used to invoke Application Services.
GPs maintain a process context that is passed from one action to another. The workflow
description language that is used by the GP execution engine is undocumented.

7.1.4 SAP Enterprise Portal

The SAP Enterprise Portal (EP) is the portal solution of SAP that aims to unify the
interaction of users and application systems. This addresses both, organization-internal
users as well as external users. The components of the SAP EP are depicted in figure 38.

Roughly described, the EP offers the functionality to cluster users by assigning roles
to users. Each role in-turn describes a set of pages that form the user-interface that
is exposed to the users that are assigned to the according roles. Pages cluster groups
of so-called iViews that are organized using a defined layout on a page. iViews are
similar to Java Portlets (cf. [150]) but do not implement the specification of JSR 168.
iViews standardize the access from an EP to external content providers. Various types
of iViews exist. Examples are iViews that can be used for accessing GPs or iViews that
encapsulate JWD applications. By using GPs or JWD applications in the context of EP,
user-management capabilities (among others) are added to these components.

The SAP EP consists of many more components, such as facilities for real-time collabo-
ration, content management, access to back-end systems or single-sign-on facilities. As

Distributed and Mobile Systems Group 177

7 Platform-Specific Reference Architecture

Figure 38: Components of the SAP Enterprise Portal [149]

these components are not in the primary focus of composite applications, their description
is omitted.

7.2 Platform-Specific Reference Architecture for SAP NetWeaver

The reference architecture for composite applications described in chapter 5 standardizes
composite applications in a way that benefits of the service-oriented architectural style
can be utilized with greater ease.
The design methodology that was described in chapter 6 can be used to describe composite
applications based on the platform-independent reference architecture. In order to realize
and operate a composite application, a platform-specific reference architecture is required.
A generic description of such a platform-specific reference architecture facilitates the map-
ping of platform-independent design artifacts to actual composite applications. In the
terms of the Model Driven Architecture, it represents a virtual machine that underlies
the platform-specific model (cf. [91, p. 2-6]).

As outlined in the introduction of this chapter, SAP NetWeaver was the platform of choice
for BASF IT Services in this project and needed to be analyzed regarding the feasibility
of realizing composite applications. The subsequent sections describe how all elements
of the reference architecture can be realized by using the above-described components of
SAP NetWeaver. In doing this analysis, the suitability of SAP NetWeaver will also be
analyzed.

Distributed and Mobile Systems Group 178

7 Platform-Specific Reference Architecture

7.2.1 Eventing System

The components of an eventing system are described in section 5.5. Basically, an eventing
system offers publicly accessible services, maintains a set of persistent data, implements
logic for maintaining relations among events and acts as a service consumer when initiating
process orchestrations. An eventing system does not necessarily require a user interface.
By using the CAF, this broad set of functionality can be realized with NetWeaver.

An EventService can be realized as an Application Service that is exposed as a web ser-
vice. It operates memory-internal (using local references) on other Application Services
that realize the EventRegistry and the EventIdGenerator. These two services in turn
operate on Entity Services with local persistence in order to keep track of active events
within (all) the composite application(s) and comply with the defined rules between types
of events.
The service consumer that triggers service orchestrations can be realized by using an En-
tity Service that is generated based on the WSDL description of the orchestration layer
(cf. section 7.2.6). The endpoint that is referenced by this web service proxy can be static.
This is because the process orchestration’s interface is static and routing can be based on
the type of the transmitted event inside the orchestration layer. This way, the drawback
of CAF Entity Services only having fixed endpoints can be addressed.
By overloading the setProcessEndpoint-operation in a way that it accepts names in-
stead of endpoint references, the name of the respective Entity Service that should be
used for the connection can be provided. This way, a certain flexibility in the reference
to the orchestration layer can be included. However, this relies on the deployment of new
services which can not be done during configuration time. For this reason, having the
routing mechanism inside the orchestration layer is preferable.

How the eventing system can be realized by using CAF services is depicted in the diagram
of figure 39.

In the release of the CAF that was available to the project (NW 2004s, SP 8), there
was no out-of-the box solution for realizing intrinsic event generation. This is because no
timer-mechanism was available. This is why this mechanism has to be implemented differ-
ently. In order to activate events that are blocked by other active events, the ActiveEvent
service is checked from within the unregister-operation of the CAFEventRegistry. As
this operation is invoked whenever an event is being de-registered, other events can be
activated based on this invocation rather than periodically checking for available events.
The actual dispatching that takes place by invoking the dispatch-operation of the Even-

tRegistry is initiated by the notifyaboutData-call-back operation of the CAFEventSer-
vice. The dispatch-operation also manages to comply with the event rules that are
stored into the EventRelation Entity Service by using the locally persisted ActiveEvent

Entity Service.
Administration can take place by using the remote accessible CAFEventingAdministra-

tion Application Service. As no timer mechanism is available, the operations for adminis-
tering intrinsic event generation are not supported. The relations between event types are
stored by the CAFEventingAdministration Application Service using the EventRelation
Entity Service.

Although exposed as web services, the operations of the CAFEventService are mediated

Distributed and Mobile Systems Group 179

7 Platform-Specific Reference Architecture

Figure 39: Structure of the Eventing System within the CAF

by SAP XI in order to allow for reliable messaging. As the service orchestration’s workflow
engine is also realized using SAP XI (cf. section 7.2.6), the dispatching of events is also
realized using guaranteed delivery.
As the CAF does not support dynamic call-back references for asynchronous communica-
tion, the integration flows (that are also realized using SAP XI – cf. 7.2.4) have to be
used if this service interaction pattern is required.

7.2.2 Data Repository

When realizing the data repository by using the CAF in a SAP-centric environment, two
major constraints apply. First, for governance reasons there is no possibility to deploy
third-party software on the platform. As a consequence, the data repository can not be
realized using the JavaSpaces [105] framework that realizes a tuple space for Java. The
second constraint is that the CAF only supports transactions within a WAS. Only Applica-
tion Services and Entity Services with local persistence profit from the transaction model
that is established in the J2EE container. When using Entity Services, only container-
managed transactions can be used.
Due to some known deficiencies of the CAF persistence layer (that primarily concern per-

Distributed and Mobile Systems Group 180

7 Platform-Specific Reference Architecture

sisting complex objects), it is preferable to not implement a generic smart proxy as it is
described in section 5.6. Fully typed access should be realized instead. This is why it is
not possible to provide a generic implementation for the data repository. However, the
basic concepts can be described.
Basically it is required to create Entity Services for every data item that is part of the
CDM. These Entity Services will have two additional attributes: a surrogate key and an
event. This event indicates the “owner” of the respective data. The event and the primary
key of the CDM element form a secondary key for the Entity Services. An additional
Entity Service is required in order to implement the tuple-space semantics. The Tak-

enElement Entity Service contains two attributes (that also form the key): an event ID
and a foreign key reference to a Entity Service that forms a business object. This Entity
Services is used for tracking the events that are checked-out. If data is written using the
event that was used to take the data, the respective instance of the TakenElement service
is deleted. If another event is used for writing taken data, an exception is raised.
Figure 40 exemplifies a data repository with two data objects (Customer and Order) and
an existential dependency between these objects. This examples aims to demonstrate how
more complex queries to the data repository can be realized.

Figure 40: Structure of the Data Repository within the CAF

These data objects are realized using Entity Services. The dependent object (the Order)
exposes a finder-operation.

Distributed and Mobile Systems Group 181

7 Platform-Specific Reference Architecture

These Entity Services are wrapped by an Application Service. The CAFDataReposito-

ryCustomerOrder service is exposed both as an internal reference as well as web service46

and represents a smart proxy. It offers the required get, read and write operations. As the
WAS manages transactions, the respective operations that require Transaction objects
as parameters are not included.
The necessity of realizing a dedicated smart proxy for each scenario arises because of
software logistic issues that prohibit augmenting one single Application Service. The
underlying Entity Services must, however, be shared among all smart proxies and data
repositories.

In order to use the CAFDataRepositoryCustomerOrder with internal references, data
transfer objects (cf. [151, p. 401]) are necessary. In the example, these transfer objects
are realized with the classes CustomerTO and OrderTO. The actual business attributes are
omitted in order to simplify the diagram.

Because a data repository can only be implemented specifically for certain data types,
the administration of the data repository can neither be implemented completely. The
checkForData-operation is required, though. As the dependencies are static, the CAF-

DataRepositoryAdministration directly looks-up a Customer Entity Service. If such
an entity exists, the callback to the notifyaboutData-operation of the CAFEventService
is invoked. If no entity can be found, an OpenNotification is created. This Entity
Service is checked during every invocation of the CAFDataRepositoryCustomerOrder’s
writeCustomer-operation. If an order is stored for an event the eventing system was
not notified, the notifyaboutData-operation of the CAFEventService is invoked and the
respective OpenNotification entity is removed.
The invalidate-operation of the DataRepositoryAdministration can not be imple-
mented using the CAF. This is because invalidating data would require the rollback of
all ongoing transactions for a given type of event. If a user-managed transaction could
be used, the CAFDataRepositoryCustomerOrder (and all other data repositories) could
maintain a relationship among events and transactions. As the container-managed trans-
actional model that is used by the CAF prohibits access to the actual Transaction object,
there is no way of managing concurrent transactions and rolling them back in case of in-
validated data. This has the consequence that the updates relation can not be realized
using the CAF. This is why the EventRelation Entity Service solely indicates how event
relations could be managed in a data repository. Since the CAFDataRepositoryAdminis-

tration Application Service does not implement the setUpdates-operation, this entity
is not required.

When an event is computed, the eventing system is informed. In turn, the eventIs-

Finished-operation of the CAFDataRepositoryAdministration Application Service is
invoked. This operation checks for taken elements first. If a data object is registered to
be taken for an object, an Exception is raised. If no data is checked out, the data objects
that are registered for a given object are deleted. Additionally, it is determined whether
OpenNotifications exist in the database. If there are any and they are outdated (days
is the appropriate unit to measure outdated events), the respective entries are removed
in order to keep the database clean. If required, special error handling procedures can be
realized for outdated events that were never computed.

46Due to CAF-restrictions, there is no possibility of including CAF web services into managed transac-
tions.

Distributed and Mobile Systems Group 182

7 Platform-Specific Reference Architecture

As the data repository and the eventing system can both be realized using the CAF, the
reliable registration and de-registration of events can be assured by using the built-in
transaction management of the WAS. No other component of the NetWeaver stack is
required.

7.2.3 Connectivity to Application Systems

The common protocol of a composite application realized using SAP NetWeaver is “web
service”. More precisely, in the context of NetWeaver this means SOAP over HTTP as
communication protocol and XML as data representation. This is the common denom-
inator all platforms of the NetWeaver stack are capable of. Whenever an application
system offers functionality that allows it to interact using these standards, no additional
components are required in terms of connectivity. If application systems do not support
this common way of interaction, several components exist in several products of the stack
that can be used to address this issue. The EP, CAF and XI provide means for con-
necting external application systems. The flexibility of the offered mechanisms vary. For
instance, the CAF offers mechanisms to connect to relational databases or to invoke SAP
Remote Function Calls (RFC). However, there is neither a flexible mechanism to integrate
arbitrary application systems nor does the connectivity mechanism of the CAF offer func-
tionality that would allow application systems to trigger a composite application using an
arbitrary protocol.
The EP offers a JCA-compliant adapter framework. However, the flexibility that is offered
by portal-based adapters is only accessible by user-centric portal interactions. There is
also no way for application systems to trigger composite applications as the version of the
JCA framework that is used (JCA version 1.1) does not offer a channel from an applica-
tion to the adapter.
The adapter framework of the XI is the only suitable component that can be used for
realizing the connectivity layer of a composite application. In its core, it offers a JCA 1.1
compliant adapter framework in addition to adding proprietary functionality that enables
application systems to pro-actively communicate with the adapters. The adapter frame-
work (AF) of the XI can only be used as part of the XI platform. Consequently, the ESB
functionality of XI must also be used if deploying the AF.

The AF offers a pluggable architecture that allows for realizing custom adapters. As part
of the XI platform, adapters for the following connectivity options are provided: SOAP
over HTTP(S) (which is also realized using an adapter), simple mail transfer protocol [152]
(SMTP); access to arbitrary relational database management systems, access to flat-files;
file transfer via the file-transfer protocol [153] (FTP); arbitrary payload over HTTP(S)
(“plain HTTP adapter”); SAP RFCs and SAP Intermediate DoCuments (IDOC). Inter-
nally, the XI also relies on SOAP over HTTP. As such, all components of XI require the
transmitted payload to be represented in well-formed XML. Hence, the XI adapters need
to provide functionality for addressing heterogeneity of the data representation.
As arbitrary adapters might be required for an actual scenario, it is not possible to assess
the suitability of the adapters independently of this scenario.
The following list describes, on an adapter-independent level, how the functionality, that
the connectivity layer of a composite application has to provide, can be realized with the
XI in general and how the natively included adapters address the issues.

Distributed and Mobile Systems Group 183

7 Platform-Specific Reference Architecture

• Sending from Application System to Composite Applications - Service
Interaction Pattern 1 of [98].
The XI AF provides a proprietary framework around the standards-based JCA 1.1
adapter framework that can be used in order to realize inbound communication
from application systems into the connectivity layer of a composite application. Ad-
ditionally, the WAS the XI instance is deployed on offers functionality that allows
external application systems to send requests.
However, there is no generic straightforward solution to inbound communication
with XI. If the respective protocol is not supported by the WAS, the only solution
is to establish a gateway (cf. [95, pp. 468ff.]) outside the AF. In such a scenario
the AF actively connects to the gateway. Also the application systems that will
be connected need to be configured to connect to this gateway. Transitively, a con-
nection from the application system to the adapter framework is established. If a
application system subsequently sends request to the gateway, the gateway forwards
the requests to the AF. This way, the send pattern can be realized in a generic way.
The RFC adapter that is shipped with XI uses this paradigm. This method can also
be adapted for arbitrary application systems and protocols.
A simpler but less generic approach is to use the agents that are deployed on the two
stacks of the WAS that is used by XI. Such agents open listener-ports for certain pro-
tocols and can forward requests to the AF. This approach is limited to HTTP and
tRFC-based IDOC communication, though. The SOAP over HTTP, plain HTTP
and IDOC adapter that are shipped with XI utilize this approach.
If application systems are required to be monitored for state transitions, XI adapters
can also poll the application systems. The event generation mechanism is not docu-
mented and therefore not applicable for arbitrary adapters. The database adapter,
which is shipped with XI, uses this mechanism. It polls relational databases and
extracts tables as XML messages. The detection of state transitions is application
specific and needs to be realized according to the actual requirements.
Also the plain-file, FTP and SMTP adapters use a polling mechanism in order to
receive data from application systems.

• Send/Receive - Receive/Send - Service Interaction Pattern 3 of [98].
The XI AF is capable of both synchronous and asynchronous communication. These
communication semantics are realized by combining the mechanism for sending and
receiving (described above) as required. Synchronous requests (from both an ap-
plication system and from a composite application) can include calls to the DET
if it is realized by the XI. In these scenarios, the DET can also handle correlation-
identifiers.
The AF of XI supports neither dynamic endpoints nor addressing. Consequently, it
is not possible to relay requests.

• Transactional Support XI and its AF neither internally nor externally support
distributed transactions. ACID transactions are supported by the RFC adapter that
can invoke transactional RFCs (tRFC) and the database for relational databases
that can group both a read and a write command into one ACID transaction.
These transactions can not, however, be spanned over multiple resources or requests.
These types of transactions are also only local transactions as they can only satisfy
the ACID properties within a single adapter (that exclusively connects to one back-
end system).

Distributed and Mobile Systems Group 184

7 Platform-Specific Reference Architecture

• Conversion of Data Representation XI adapters can only be used if the data
is also routed through XI. The pipe of the IS of XI can only compute data that is
represented in XML.47 This is why XI relies on adapters that forward XML messages
to the IS.
The actual conversion of the data representation is handled by adapter modules
that are realized as stateless session beans that are deployed on the Java-stack of
the WAS of XI. They are generic and can be reused for any Java-based adapter.
They usually require scenario-specific configuration, though.

• Dynamic Addressing The AF of XI does not support addressing. Only fixed
endpoints can be configured at design time. Using special attributes that are propri-
etary for each adapter, the outbound communication towards application systems
can be realized in a dynamic way. This approach does not allow for relayed requests,
though.

7.2.4 Data Exchange and Data Transformation Layer

The DET provides ESB functionality to a composite application. The ESB solution of
NetWeaver is the XI. Additionally, the adapters of the XI AF require the use of the XI
as integration solution. This is why the DET can not be realized without using the XI if
NetWeaver is the actual target platform.
The XI provides the functionality of a reliable messaging system in addition to its AF.
The flow through the messaging system is described as a pipe-and-filter architecture. The
flow, that is outlined in section 7.1.2, puts basic integration functionality in a fixed and
not configurable sequence. In order to realize the more flexible integration flows of the
reference architecture for composite applications, it is required to analyze the filters, the
flow and the extension possibilities that are provided by the XI. As an objective, only
standard configuration means of the XI should be used. This is because modifications of
the actual platform are likely to be discarded by a governance organization that manages
the operations of a platform such as the XI.

Integration Services The basic functionality of the DET is exposed by the single
integration services. Hence, if the integration flows must be described, an approach for
realizing the integration services is a prerequisite.
The pipe of the XI includes filters for Routing and Mapping (cf. section 7.1.2). A pipe
is invoked by an external application or by an XI business process and sends data to an
external application or a business process. A business process is a service orchestration
that is described in WS-BPEL. In addition, XI Mappings can be explicitly included as
a step of a business process. Such mapping steps are realized as an extension to the
standard WS-BPEL language and are independent of the computation within an XI pipe.
Also Routing can be included as a step into a business process. Receivers are then treated
as values of container elements of the respective process instance.
Both, the Routing and Mapping can be used as integration services by the notion of the
reference architecture:

47There are some optimization parameters that allow IDOCs to be tunneled in a binary format. Tun-
neled IDOCs can neither be transformed nor dynamically routed.

Distributed and Mobile Systems Group 185

7 Platform-Specific Reference Architecture

• Routing Service A Routing Service is the equivalent to the routing mechanism
of the XI. XI supports routing by introducing two components: the receiver determi-
nation and the interface determination. A receiver determination routes a message
of the XI pipe to an arbitrary amount of receivers. A receiver by the notion of the
XI is a logical system. A logical system is the XI representation of an agent. Based
on the payload of the actual message, a set of such receivers can be dynamically
determined. However, querying a service registry at runtime for looking up service
endpoints is not supported.
If multiple receivers are determined (by a static rule or dynamically), the respective
message is duplicated for each receiver. Based on the actual service consumer (de-
scribed by its agent and the requesting service interface) and the determined agent
of the service provider, the actual service interface of the service provider is deter-
mined by an interface determination. Both mechanisms together describe a Routing

Service that is capable of implementing the Recipient List pattern (cf. [95, 249])
and the Content-Based Routing pattern (cf. [95, 230]). Due to the multiplication of
messages based on the amount of receivers, the workflow pattern Multiple Instances
Without Synchronization can also be realized.
The XI also supports acknowledgments. Acknowledgments are realized as indepen-
dent messages that are transparently generated by an adapter. However, acknowl-
edgments are not routed as independent messages. Based on the trace list of the
initial message, they are routed back to the initial requester. No mechanism exists
to aggregate acknowledgments to overall acknowledgments for all receivers. As a
consequence, a Routing Service that supports the workflow pattern Multiple In-
stances With a Priori Runtime Knowledge can not be realized with the XI.
When used within a business process, the receiver and interface determinations do
solely return a list of receivers. If an invoke-activity of a business process is used
together with a receiver determination from within the process, a message is created
and sent to the actual receiver. If multiple receivers are determined, a block -activity
is required to surround the invoke-activity in order to instantiate multiple messages.

• Heterogeneity Service A Heterogeneity Service is the integration service that
handles the data translation from the application-specific data format to the canoni-
cal data format that is used internally by the respective composite application. The
XI comprises two components that realize a Heterogeneity Service: a so-called
message mapping and an interface mapping.
A message mapping is a program that transforms at least one XML message to
at least one XML message. It is possible to use several target messages that are
represented in several data formats as the source for a message mapping. Also, the
target messages can have different formats. Several technologies exist for realizing
message mappings. The standard approach is a proprietary mapping environment
that executes message mappings designed using the XI message mapping editor. Al-
ternatively, XSL Transformation (XSLT) (cf. [154]) style sheets, ABAP programs or
Java programs can be used. Message mappings that are realized in ABAP or Java
have to be programmed against a proprietary application programming interface
(API).
This API does not only describe the interface for an actual mapping. Additionally, a
set of classes is provided. These classes can be used from within a message mapping
in order to access routing information or to query external data providers. Querying
external data providers allows for lookups that can be used for enriching message
mappings with payload that is dynamically determined either by the actual message

Distributed and Mobile Systems Group 186

7 Platform-Specific Reference Architecture

or the context it is used in. Queries are treated as ordinary messages that are routed
through the IS of the XI.
Interface mappings group several message mappings. Only a sequential ordering of
message mappings can be realized. Interface mappings are assigned at runtime to
a certain relation and are executed as a step in the pipe of the XI IE. Alternatively,
interface mappings can be used as steps within a business process. In such a sce-
nario, input as well as output messages are container elements of the actual business
process.
The concepts of message mappings and interface mappings allow for the realization
of a Heterogeneity Service with the XI. The only constraint of the XI mapping
environment is that it relies on XML messages. As a result, if XI is used as DET
platform, the transformation of the data representation has to be handled by the
connectivity layer of the respective composite application.

These two integration services can be directly realized by the built-in functionality of
the XI. The remaining integration services that are required by the integration flows
can also be realized. However, they are only partially supported natively by the XI. By
combining several native components, it is possible to realize them without modifying the
XI platform.

• Data Service Realizing a Data Service with the XI of NetWeaver is possible by
combining the functionality of the AF, the IE and the business process engine. By
doing so, the line between the connectivity layer and the DET is blurred. As the
AF can not be deployed independently of the IE, this is not considered a drawback
of the solution.
Messages that are computed by the IE must have been computed by an adapter be-
forehand. The AF handles both, the reception of calls as well as polling for changes
in back-end systems.48 This is why the Fetch Data as well as the Retrieve Data

activities are realized by configuring adapters appropriately.
If the actual adapter supports it, principal propagation of the requester can be used
in order to authenticate against an application system. Alternatively, fixed princi-
pals can be configured for a certain channel49.
The AF can also handle different communication semantics independently from the
IE by configuring an actual channel. Thus, synchronous as well as asynchronous
communication is possible. If required, an exactly-once in order semantics of asyn-
chronous calls can also be configured. The configuration applies both, for the AF
as well as for further computation within the IE. The only functionality in terms
of communication semantics that can not be realized by the AF is asynchronous
communication with correlation. If correlation for fetching data is a must, a WS-
BPEL process must be used as an aggregator in order to combine the request and
the response.
Such a process is required either way if a Data Service must be actively called
in order to perform a lookup. Such a scenario requires to use the complete IS for
establishing an integration relation with the system the lookup should be performed
against. This relation must contain an interface mapping that transforms the re-
quest into an appropriate lookup. An exemplification of how a Fetch Data activity

48Both options are not available for all types of adapters.
49An XI channel is an adapter that is configured for the interaction with an application system. It can

be considered to be an instance of an adapter.

Distributed and Mobile Systems Group 187

7 Platform-Specific Reference Architecture

that receives a message asynchronously, uses an interface mapping for the genera-
tion of a lookup and sends the correlated response to (a possible different) service
is depicted in figure 41.
The response for the lookup is to be considered as the result of the FetchData activ-
ity that is forwarded (as messages that were produced by the AF independently) to
the IE. When asynchronous lookups are used, the reply can be deferred to another
service consumer rather than the initial requester.

Figure 41: Example of a Fetch Data Activity with Correlation and Lookup in XI

Depending on the actual requirements, data that was received or fetched from an
application system might require further manipulation prior to forwarding it to an
integration flow.
If a message needs to be spilt into several messages (as described by the message
splitter integration pattern of [95]), a “multi-mapping” can be used within an inter-
face mapping. A multi-mapping can create several target messages based on one
source message. Each of the created messages is processed independently by the IE.
If a multi-mapping is used as a step of a business process, a WS-BPEL loop-activity
is required in order to compute all messages that are produced by the mapping.
If a set of (logical) messages is aggregated into one (envelope) message, a simple
mapping can realize a resequencer. This might be possible if the position of a logi-
cal message within an envelope message can be changed.
If single messages need to be re-sequenced, the mechanism for realizing this function-
ality is similar to the mechanism that is used for realizing aggregators (see below).

Distributed and Mobile Systems Group 188

7 Platform-Specific Reference Architecture

For both scenarios a WS-BPEL process is required. Additionally, a resequencer
requires a correlation identifier in order to assign related messages to the same in-
stance of the business process. Beside the correlation that is encapsulated either by
a loop or a time-out block, a mapping and a loop with an enclosed invoke-activity
is required. The multi-mapping is required for re-ordering the set of correlated mes-
sages into a multi-line container of the process. The final block is required as a loop
for (sequentially) sending the single messages.
How a resequencer can be realized by using the XI BPE is depicted in figure 42.

Figure 42: Example of a Resequencer Activity with Correlation in XI

A WS-BPEL-based process with multi-line containers is also required if an aggre-
gator (as described by the message aggregator integration pattern of [95]) should
be realized with the XI. The asynchronous variation of an aggregator additionally
requires a correlation-identifier, too. The only difference with the resequencer which
is described above, is the actual realization of the multi-mapping. In contrast to
the mapping that is used as part of the resequencer process, the mapping for the
aggregator produces one single message that is in-turn sent.
As an alternative, a message aggregator can also actively poll for messages that it
aggregates. This polling can both be realized synchronously and asynchronously.
In order to realize a synchronous polling, one invoke-activity and no correlation-
identifier is required as part of the first loop. An asynchronous aggregator that
actively polls for messages and correlates the replies is depicted in figure 43.

Triggering an error handling procedure can essentially be realized through two mech-
anisms of the XI. The first mechanism is to realize such a procedure as a service

Distributed and Mobile Systems Group 189

7 Platform-Specific Reference Architecture

Figure 43: An Active Aggregator with Correlation Realized as a Process for the XI

provider and trigger it by using an invoke-activity from within the WS-BPEL com-
pensation handler. Such an error handling procedure can involve automated and
manual tasks.
A proprietary solution is to trigger a so-called alert. Alerts are notifications that
are assigned to human administrators of an XI platform in order to allow a manual
intervention.

If a Data Service is realized by a business process, a Store Data activity is simple
realized as an invoke-activity of the respective process. A channel to the actual
application system has to be configured accordingly. If no process is necessary, a
Store Data activity is simply realized by configuring a channel with its appropriate
receiver determination and interface determination.

• Trigger Service The Trigger Service can be realized by combining the pipe of
the IE with the process engine of the XI.
The initial filter activity of the Trigger Service (cf. section 5.7.4) is realized on
the XI platform as a routing step of the IE pipe. The same mechanism as for the

Distributed and Mobile Systems Group 190

7 Platform-Specific Reference Architecture

realization of the Heterogeneity Service apply. In order to discard messages, the
content-based router has to return an empty set of receivers. The appropriate XI
receiver determination needs to be configured in a way to stop the computation of
messages without a receiver.
By using the lookup API of message mappings, stateful filters might be realized, too.
In this case, a mapping is used as router. By returning routing information that is
represented in a special format, realizing stateful routing becomes possible.
In the case of a message not being required to be filtered out, the receiver determina-
tion needs to determine a business process that provides the additional functionality
of a Trigger Service. This WS-BPEL-based business process uses a message map-
ping in order to generate a message that contains the required EventType. This
transformation can be dependent on the sending system and interface as well as on
the payload that was received as routing meta-data is accessible via the mapping
API of the XI.
Depending on the actual scenario, a WS-BPEL process that is used as part of a
Trigger Service must contain between two and four containers: one for the mes-
sage that is received and one for the EventType-message that is generated by the
first message mapping. The business process has as a mandatory next step a invoke-
activity that sends the message that contains an EventType to the eventing system.
Usually, this will be realized by a synchronous service invocation. The XI has to be
configured in a way that the sent message is routed through the IE to the Event

Service.
According to the actual requirements the WS-BPEL process might contain two ad-
ditional steps and two additional containers. The first possible step is a message
mapping that transforms the received data into a format that can be used by the
data repository. The last possible step is an invoke-activity that transmits the pay-
load and the Event from the eventing system to the data repository.
In contrast to the generic description in section 5.7.4, it is necessary to always use
the transformation and send activities when conducting this integration service with
XI. This is because XI can only treat whole messages that contain all parameters of
a request. Hence, the second message mapping has to merge the payload that was
received by an application system and the Event from the Event Service to one
message that is sent in-turn to the data repository.

• Validity Service At runtime, message mappings might fail if a source message
does not comply with a defined data structure. This mechanism is neither applica-
ble at any point of the pipe nor is it possible to verify messages without executing
a mapping. No dedicated mechanism for verifying messages is foreseen.
One approach to realize a Validity Service with NetWeaver is to realize an ex-
ternal service provider with the CAF that is deployed on a WAS. Such a service
provider will be invoked by an invoke-activity of an XI business process as a reg-
ular application system. The interface of such a Validity Service is simple. It
contains one validate operation that receives a message and a schema name. The
CAFValidityChecker needs a reference to a local entity service for looking up a
schema by its unique name. By using an XML parser (e.g., the built-in of the
WAS Java-stack), the message can be validated. For a valid message the validate

operation returns true.

In order to use such a CAFValidityService, a XI business process is required. First,
the actual message needs to be transformed into a call to the validate operation

Distributed and Mobile Systems Group 191

7 Platform-Specific Reference Architecture

Figure 44: Structure of a Validity Service that is Realized Using the CAF

using a message mapping. The subsequent step of the business process is a syn-
chronous invoke-activity. The third step is a branch that is based on the return
value and triggers further computation accordingly. These steps are realized as part
of the surrounding IIF that is realized using a WS-BPEL business process.

Integration Flows The Routing Service and Heterogeneity Service can be real-
ized by standard elements of the XI IE. Realizing a Data Service might require a realiza-
tion with the XI BPE. If realized by a WS-BPEL process, a Data Service can be called
like any arbitrary service provider. The Trigger Service and the Validity Service

are always exposed as services.
This impacts the integration flows, such that they need to be (partially) realized as WS-
BPEL processes if an integration service that is exposed as a service is required. If all
required integration services can be realized with pre-defined parts of the IE, the IE pipe
could be used as integration flow. Using the pipe would have positive impact on perfor-
mance of the integration flows. A drawback of this approach would be that the maintain-
ability decreases as the implementation of the integration flows would not be standardized.
Hence, the explicit formulation of integration flows as WS-BPEL process is preferable over
the implicit solution by using the IE pipe. If special performance requirements need to
be realized, a “pipe-only” solution should be considered, though.

According to [155], WS-BPEL can be used to describe the workflow patterns Sequence,
Exclusive Choice, Simple Merge and Multiple Instances Without Synchronization. This
is why XI and its BPE are suitable for realizing the basic workflow functionality for the
integration flows (cf. sections 5.7.6 and 5.7.7) .
Due to the importance of adapters for the XI platform and their necessity for realizing
Data Services, integration in flows should always be realized on the XI as WS-BPEL
processes that are called by a Data Service. In contrast to the orchestration that is
described in section 5.7.6 as part of the generic reference architecture, an XI-based IIF

Distributed and Mobile Systems Group 192

7 Platform-Specific Reference Architecture

should not invoke a Data Service but be invoked by one. An advantage of this ap-
proach is that this way the Multiple Instances Without Synchronization workflow pattern
(cf. [108]) can be seamlessly realized.
All integration services are then part of the business process. They are either called by
an invoke activity or included by proprietary means. The latter concept is required for
interface mappings that realize Heterogeneity Services.
An important aspect of the integration flows are the different possibilities to close and
acknowledge requests. Acknowledging requests is possible in an XI-based WS-BPEL pro-
cesses in two ways: first, an invoke activity can be used to send a message to a service
consumer in order to notify it about the reception of data. Additionally, the XI includes
an internal acknowledgment mechanism that can also be triggered like a reply activity.
Closing synchronous requests can be realized in an XI process by the notion of reply activ-
ities. Such replies refer to receive activities. The process platform of XI uses the notion of
these activities for closing synchronous calls. When placed accordingly, these mechanisms
can be used to realize arbitrary boundaries for service calls.
Compensation blocks of the WS-BPEL process can be used to handle arbitrary errors.
Both raising alerts and invoking arbitrary service providers is possible.
With the difference of the initiator of a Data Service an IIF can be realized with the
XI as demanded by the reference architecture by simply creating a WS-BPEL process as
described in section 5.7.6.

Realizing an IOF as a WS-BPEL process is also possible. As an IOF is always called by a
composite application and the actual request contains the payload that needs to be trans-
formed, the notion of a (SOAP) adapter calling an IOF process fulfills the requirements
for realizing an IOF.
A Routing Service and a determine IIF activity might be required for realizing an IOF.
Both can be realized as receiver determinations that are included as steps of the business
process. All other steps of the IOF can be realized as described in the discussion about
IIFs.

As the XI platform supports reliable messaging with exactly-once in order semantics, re-
liable integration flows can be used to connect composite applications with application
systems. As the XI does not allow for distributed ACID transactions, especially no dis-
tributed transactions that use a two-phase commit protocol, no transactional security can
be established in NetWeaver-based composite applications. This is a major deficit of the
platform.
The workflow pattern Multiple Instances With a Priori Runtime Knowledge, that is re-
quired for aggregating acknowledgments of messages that are multiplied by a message
splitter, is not supported natively by the WS-BPEL-based process engine of XI (cf. [155]).
Hence, the service interaction pattern one-to-many send (cf. [96]) that includes a noti-
fication of delivery needs a message aggregator as part of an IIF that collects acknowl-
edgments. In contrast with a platform that natively supports this interaction mode, on
the XI platform an IIF is required to overcome the deficit of not supporting aggregated
acknowledgments. The IIF, that is required on-top of the Data Service of the IOF, ag-
gregates acknowledgments and forwards a positive or a negative acknowledgment to the
composite application. As a consequence, proprietary (implicit) XI acknowledgments can
not be used in such an interaction scenario.

Distributed and Mobile Systems Group 193

7 Platform-Specific Reference Architecture

7.2.5 Service Coordination Layer

In order to integrate transactional handling as well as eased and high-performance inte-
gration of the data repository, the service coordination layer should be realized with the
CAF.
Realizing the service coordination layer with the XI is also an option. As the XI version
that was available to the project does not support transactions, it was decided to realize
coordination services programmatically as CAF services.

The Java language of the CAF can be used to realize sequential processes with choices
and merges. Additionally, the CAF supports distributed transactions via a J2EE transac-
tion manager. Asynchronous messaging via correlation can be programatically supported.
However, the CAF is intended to be used in synchronous scenarios. External web services
can be included by the notion of Entity Services that represent proxies. The endpoints
for the generated proxies can not be dynamically looked up. However, those endpoints
can be administered via the WAS on which they are deployed at configuration time.
As the data repository is also realized as CAF services, local references can be used in
order to access the data repository in a high-performance and transactional way.

Figure 45: Structure of a Coordination Service within the CAF

The service coordination layer sits in between the service orchestration layer and the
DET. When realizing composite applications with the CAF, the interface of a coordina-
tion service contains only an Event. Identified by its endpoint, a coordination service
does not require additional data from an orchestration layer other than the event of its
invocation. This way, coordination services and particularly service orchestrations can
be implemented in a very simple way. Additionally, the amount of transmitted data is
reduced. As a consequence, the messaging approach between the layers is replaced by a
spaces approach (cf. [94]).
The process-operation of a coordination service is invoked by a service orchestration.
Coordination services in-turn operate on application services. If asynchronous communi-
cation is required, application services (mediated or not) perform callbacks on the re-

turnToProcess-operation of a coordination service. All coordination services in the CAF
realize the Coordination Service interface.
Asynchronous callbacks are realized with a fixed endpoint to the respective service coor-
dination and with a correlation identifier. This identifier is realized by the actual Event.

Distributed and Mobile Systems Group 194

7 Platform-Specific Reference Architecture

In order to allow for error recovery, a coordination services stores “open” correlations into
an entity service called CurrentStep. An entity of that type is a persistent key/value-
pair and stores an identifier of the step a coordination service needs to perform when
its returnToProcess-operation is invoked. The actual identifier is specific to the coor-
dination service that uses it. The returnToProcess operation also requires the notion
of an Event. As a consequence, a service that performs the callback can not be agnos-
tic to the use of Events. Additionally, the CAF neither allows for stateful services nor
for dynamic callback-endpoints. This is why asynchronous communication with arbitrary
service providers always requires integration flows that use a Heterogeneity Service to
remove and add the actual Event from the communication. This increases the complexity
of asynchronous applications. Additionally, a Trigger Service is required, that stores
the returned data into the data repository, prior to returning to the coordination service
(exemplified as step 1.1.2.2.2.5.4 in figure 49). Due to that lack of functionality in the
CAF, when using the CAF, synchronous interaction with application systems should be
considered seriously.
Also specific to the actual use case is the set of external service providers a coordination
service aggregates. In the example of figure 45 the example from section 7.2.2 involves
orders and customers. In the example, the business process requires the creation of an
order for a customer. Not expressed by the business process is that the validity of a
customer needs to be checked50 before an order is created. Checking a customer’s validity
and creating an order is functionality that is offered by two different service providers
that each expose one operation. The remote services are made accessible to the CAF by
creating two Entity Services – CreateOrderProxy and CheckCustomerProxy – that are
used by two Application Services for the sake of including the application services (as
exposed by application systems) into the coordination service. These Application Ser-

vices combine the data repository’s smart proxy for the scenario as well as the generated
service proxies. As a coordination service is always being called from a service orches-
tration, these CAF Application Services (that represent the application services as
defined by the reference architecture) always have access to the actual Event and can
therefore access the data repository to retrieve and store data. Thanks to the Trigger

Service, necessary data can be stored into the data repository before a coordination ser-
vice is invoked.
The actual communication with the application systems is realized by the Application

Services that retrieve the necessary data from the data repository and invoke the respec-
tive proxy. A sequence diagram that describes the initial computation of an event by all
layers of a composite application is described in figure 49 in the next section.
In contrast to the platform-independent reference architecture, the service coordination
layer is not optional for composite applications that are realized with NetWeaver. This is
because the integration of the data repository can be achieved in the most facile way by
using the data repository from a CAF Application Service. In order to keep the control-
flow description of the service orchestration simple, the orchestration merely dispatches
Events.

7.2.6 Business Process Orchestration Layer

NetWeaver offers three process engines that can be used to orchestrate services. The first
two are user-centric process builders. These are the guided procedures of the portal and

50The actual logic that makes up a valid customer is not important at this point.

Distributed and Mobile Systems Group 195

7 Platform-Specific Reference Architecture

the so-called visual composer that can generate (besides others) WebDynpro applications.
Both engines require user interaction. This is because service providers are exposed to a
user that provides input parameters and checks return values from services. This is why
the third option – the WS-BPEL engine of the XI – is the only process engine that can
be considered a central control instance of a composite application.

Business processes can be transformed into workflow specifications (cf. [126]). In order to
execute a workflow specification on the XI, this workflow specification (more precisely, the
control flow) has to be expressed in WS-BPEL. A WS-BPEL process is triggered by an
EventRegistry of the eventing system. This component invokes the startProcess(Event)-
operation of the process. In the XI this is realized by creating a receive activity that
references the startProcess activity. The receive activity additionally needs to have the
attribute createInstance set to “yes”.
Functions (in EPCs) or transitions (in Petri nets) are considered as a pair of invoke and
receive activities of WS-BPEL. An invoke activity always invokes a process-operation of
a coordination service. The routing from the process engine to the appropriate service
coordination is based on the type of business process and on the Event that is transmitted.
Specifically for the XI, an Event requires an attribute that indicates the actual step of
the computation in a process-specific way. In order to modify an Event so that it can be
used to identify a service coordination, an interface mapping is embedded in between an
invoke and a receive activity. One possibility is to increase a numeric step identifier. This
way the same mapping can be used for every step. Of course, branches also need to be
handled. An example of an Event and the respective EventType that can be used in the
NetWeaver platform is shown in figure 46.

Figure 46: Event and EventType for NetWeaver

The data and resource view of a process description are used to realize these components.
Once a coordination service has been computed, it calls the XI workflow engine by passing
an Event that is used as a correlation identifier. The operation of the business process
that is invoked is the returnToProcess operation.

In order to realize an exclusive choice and a multi-choice, a (synchronous) invoke operation
is required as part of the business process. Through this activity, the decide operation
of a Decision Service is invoked. The return-value is assigned to a container of the
WS-BPEL process. Subsequently, a switch activity can be used to branch according to
the value of this container to realize an exclusive choice. In order to realize a multi-choice,
the container that contains the return value must be evaluated as a transitionCondition
of a link of the respective flow construct (cf. [155]).
A Decision Service is realized as an Application Service that implements the actual
decision logic.51 The CAFDecisionService uses the passed Event for querying the data
repository according to the passed identifier of the required rule. The Action that is

51So far, how to implement a business rule engine with CAF has not been investigated. This is because,
for the investigated use cases, plain implementations of the decision logic were sufficient. Additionally,

Distributed and Mobile Systems Group 196

7 Platform-Specific Reference Architecture

returned, is realized as simple String. Once returned to the process, it is evaluated by a
WS-BPEL switch activity as the subsequent activity of the invoke activity. The structure
of the (simple) CAFDecisionService is described by the class diagram of figure 47.

Figure 47: Structure of a Decision Service for the CAF

7.2.7 Service Registry

The NetWeaver stack neither supports dynamic lookup of service endpoints at design-time
nor does it (in the version described here) include a central service registry. For every
product of the stack, the endpoints of the actual services can be specified at design-time.
The CAF and the EP additionally allow for (manual) reconfiguration of endpoints after
the deployment of the service consumers.
XI keeps a design-time repository that contains all syntactic service descriptions as well
as endpoint configurations. Hence, if the service providers that are not mediated by XI
are also kept in this repository, XI can be considered as a design-time catalogue of all
available service providers.
Future versions of XI (that will be called SAP Process Integration (PI)) are likely to
extend the existent functionalities towards a run-time service registry.

7.2.8 Centralizing the User Interface

The reference architecture for composite applications relies on application systems that
expose the functionality that is integrated by a composite application. This functionality
might or might not involve users. If a composite application must be accessible through
a central user interface, the user interface should be realized as service provider.

When using NetWeaver, there is a possibility to optimize the creation of a central user
interface. Additionally, there are some deficiencies that create the need for a dedicated
mechanism for including a user interface.
The technology for creating (web-based) user interfaces with NetWeaver is WebDynpro.
Both ABAP and Java can be used as programming languages. Java is the language of
choice for creating user interfaces for composites. This is because it is possible to access
CAF Application Service natively by using a local protocol of the WAS. This has the
advantage of reducing communication and increasing the performance of the composite
application.
However, WebDynpro applications can not be exposed as services. There is no mechanism

SAP has announced plans to release a business rules framework that could later be integrated into the
platform specific reference architecture for NetWeaver (cf. [156]).

Distributed and Mobile Systems Group 197

7 Platform-Specific Reference Architecture

in WebDynpro that allows for creating a service provider in WebDynpro. This is why the
SAP EP is required. More specific, the guided procedures from the CAF are required to
be deployed on an EP.
WebDynpro applications can be used as callable objects within guided procedures. This is
possible if the respective WebDynpro component implements the interface com.sap.caf.eu.
gp.co.webdynpro.IGPWebDynproCO (cf. [157]). This interface is part of the standard CAF
API. It includes two operations: getDescription and execute. The first operation is
used during the design and deployment phase to retrieve meta-data about an application.
An application is started by invoking the execute operation. Parameters are passed as
part of the context that is described by the class IGPExecutionContext.
By creating a guided procedure with one action that references the respective (WebDyn-
pro) callable object, WebDynpro applications can be exposed as service providers. This
is because the GP API provides a web service called GPProcessDiscovery that allows
starting guided procedures via a web service interface (cf. [158]).
Using this mechanism, guided procedures (and therefore the WebDynpro applications)
are started by invoking the startProcess operation. Among others, payload data can be
passed as parameters to the WebDynpro in a custom structure (which is autonomously
generated based on the meta-data that is accessible via the getDescription operation
of a callable object/guided procedure). Even if the service interface can not be designed
independently, proprietary data can be passed to such a service. As the internal structure
of the guided procedure runtime is not documented, the class diagram of figure 48 solely
shows the components that are open for implementation. The (complex) structure of the
runtime environment is represented by the class GPRuntime.

Figure 48: Structure of a WebDynpro Component that can be Invoked Using Web Services

However, in order to accelerate both the development as well as the runtime performance,
it is not recommended to pass parameters. WebDynpro applications implement the model-
view controller pattern. Models can either be realized as CAF Application Services or as

Distributed and Mobile Systems Group 198

7 Platform-Specific Reference Architecture

external web services. By using the data repository locally as CAF services, access to
the data is accelerated. Additionally, the transaction management for the data repository
can be extended to the WebDynpro application. A third advantage is that data that is
changed by a WebDynpro application does not need to be checked out during the complete
user interaction. A WebDynpro application can take data as required.
In order to allow access to the data repository, an according Event must be passed to the
startProcess operation of the GPProcessDiscovery service. The Event that is passed
as part of the context to the WebDynpro’s execute operation at runtime must be used.

7.3 Summary

The sequence diagram in figure 49 exemplifies the interaction of the CAF components.
While the internal communication within the eventing system and the data repository
are omitted for simplification reasons, the diagram shows how an agnostic application
system (application system 1) uses an XI-based TriggerService to trigger a composite
application (steps 1.1 to 1.1.1.2).
The process orchestration is started by the invocation of the process operation. In-
turn, the process orchestration asynchronously invokes the respective coordination service
(CreateOrderCoordination).

The shown example includes one coordination service that uses one application service
(CheckCustomer) with one operation checkCustomer. In order to invoke the application
system, the CreateOrderCoordination first persists its conversational state. This state
indicates that it has been invoked and is now at step one (transition 1.1.2.2.1). Subse-
quently the coordination service invokes the CAF Application Service that encapsulates
the actual proxy (transition 1.1.2.2.2.1). In turn, data is fetched from the data repository.
As the validity attribute of the customer object is to be modified, the data is taken and
not read from the data repository.

After the data has been taken, the actual proxy is instantiated and invoked (1.1.2.2.2.4 and
1.1.2.2.2.5). By using an IOF that is configured as the actual endpoint for the proxy, an
IIF is called. Its Data Service finally invokes the application system (1.1.2.2.2.5.3.1.1).
In order to exemplify asynchronous communication in CAF, the application system asyn-
chronously returns the validity of the passed customer to the IIF. The IIF uses a Trigger

Service without event generation to modify the customer according to the return value
(by using a Heterogeneity Service) and writes the customer object back to the data
repository. As the Event is passed to the IIF by the IOF, the data can be written back
for the data repository and made accessible by the composite application. Subsequently,
the IIF has to return the control to the actual coordination service. This is realized by
invoking the fixed callback operation returnToProcess of the coordination service (tran-
sition 1.1.2.2.2.5.4).
In the simplified example the coordination service looks up the current state for the re-
ceived Event and decides to return the control to the service orchestration (1.1.2.2.2.7).

Distributed and Mobile Systems Group 199

7 Platform-Specific Reference Architecture

F
ig

u
re

49
:

E
x
am

p
le

of
th

e
In

te
ra

ct
io

n
of

al
l
C

A
F

C
om

p
on

en
ts

Distributed and Mobile Systems Group 200

7 Platform-Specific Reference Architecture

7.4 Conclusion

SAP NetWeaver is a platform that can be used to implement composite applications.
By mapping the reference architecture for composite applications to this platform, the
efficient development of composite application seems possible. However, this mapping is
not complete. Some features that are demanded by the reference architecture can not
be realized with this platform. This is especially the case for distributed transactions
that are only supported locally within the CAF. Also asynchronous messaging is only
supported in some modules. In order to realize asynchronous communication throughout
composite applications, several mechanisms have to be used that increase the complexity
of the solution.

Applying the platform classification of section 2.4, the presented reference architecture for
SAP NetWeaver allows for dynamic changes of the structure of composite applications.
This is thanks to the centralized control that is expressed as a process orchestration. Even
if not supported by a service registry, dynamic replacement of services can be realized
if the integration flows in XI are configured accordingly. Additionally, the integration
flows within the XI realize a failure tolerant communication backbone. Following the
classification of [40], the presented architecture would be classified as (D, R, FB, XX). In
contrast to the plain usage of the application server that is classified as (D, N, FN, SN)52

(cf. [40]), the presented architecture utilizes the whole NetWeaver stack in order to realize
a platform that is suitable for realizing composite applications.

The fact that asynchronous communication is not natively supported in all components
of NetWeaver decreases the modifiability of a composite application. As increasing modi-
fiability is a major objective of the service-oriented architectural style, the SAP platform
prohibits the complete leveraging of service-oriented principles.
To fully exploit the modifiability advantages of the service-oriented architectural style, syn-
chronous application can be used more frequently. However, this decreases the reliability
of the overall system. In conjunction with the lack of distributed ACID transactions, SAP
NetWeaver does not seem to be capable of supporting industry-proof composite applica-
tions. However, building smaller applications with minor requirements for reliability and
availability is possible. Thanks to the high degree of integration (especially in the CAF
and the WebDynpro frameworks), fast implementation and good runtime performance
can be expected when building composite applications on NetWeaver. Based on this dis-
cussion, SAP NetWeaver is a good platform for quickly implementing small applications
that are likely to change often and do not require a high degree of reliability.

52Development environments were not investigated. Since there is no integrated development environ-
ment, [40] evaluates NetWeaver to SN. Due to the non-integrated development environment, we do not
evaluate this criterion (“XX ”).

Distributed and Mobile Systems Group 201

8 A Case Study

8 A Case Study

The case study that is presented in this chapter demonstrates the applicability of the
concepts of the reference architecture as well as the design methodology for composite
applications (cf. chapter 5 and chapter 6). A solution description as well as a description of
the “look and feel” of the composite application that was based on the design demonstrate
the applicability of the platform-specific architecture for SAP NetWeaver (cf. chapter 7).
This further shows that the concepts of this thesis can be used to realize solutions for
real-life problems.
The observations made during the project are described before the chapter is concluded.

8.1 The Business Case

Figure 50: Functional Sketch of the FuL Creation Process

The use case of the case study was chosen by a dedicated working group within the project
of BASF IT Services. Lacking a structured methodology, the group analyzed, on a busi-
ness expert level, several business processes and how steps included in these processes
might be used in other processes as well. The advantage of service-oriented architectures
that was best understood by the business analysts was reusability across system boarders.
The business process ultimately chosen was the so-called “agreement management” busi-
ness process. This decision was based on the business requirements and the real-life
setting.
This process describes the procedure of how the company reacts to customer demands by
estimating the efforts the realization of a request might cause and then providing an offer
to the customer. In the overall process there is an extract that is concerned with creating
an offer for a given demand. The so-called “Funktions-und-Leistungsbeschreibung” (FuL),
which can be loosely translated as “service description”, is a document that is used to

Distributed and Mobile Systems Group 202

8 A Case Study

describe a solution offered in response to a demand. An FuL accompanies an offer and
delineates the offered services, contains (among others) a functional description of the
solution, and indicates the service-level of the offered services. This description must be
aligned with the service portfolio the company offers. Namely, only services that are offi-
cially included in the company’s portfolio can be proposed. An FuL is the basis for a cost
calculation for the proposed solution. Based on this estimated cost, prices are established
and an offer, that includes an FuL as well as the calculated prices, is sent to the customer.
FuLs are created by different organizational entities of the company. While the need for
the creation of an FuL is indicated by the account management for a certain customer, the
creation of the FuL is a task that is performed by delivery units or so-called client-service
managers (CSM). The functional description of the FuL creation process is outlined in
figure 50.

8.1.1 Requirements

The use case was chosen by a working group of process experts. This same working
group defined the functional requirements for an FuL creation prototype. The deliverables
handed over to the working group concerned with the design and implementation of the
composite application were: a process model represented as an EPC and a UML class
diagram that describes the data-perspective of the process.

The business process used as a functional requirements specification for the composite
application includes the control and data flow, as well as the organizational/system per-
spective of the process. The process describes a collaborative sequence where different
experts from single delivery units work out the single sections of the FuL in addition to
cost estimations.
The actual structure of an FuL is dependent on the “FuL template”. An FuL template
specifies, besides the language of the document, the necessary sections that determine the
contract details. Examples of such sections include the service delineation, service-level
agreements and so forth. Based on the template that was chosen by the initiator of the
FuL creation process, the FuL is written. This complex step is represented in the process
model as a single function (Describe Service). After the actual FuL is created, it needs to
be approved. Based on the decision, it needs either to be reworked or the cost calculation
needs to be initiated based on the information contained in an FuL.

In the subsequent phase, account management (AM) uses this information to generate
an offer that might lead to a contract with the customer. The extract of the agreement
management process that underlies the case study is shown in figure 51. The complete
process model can be found in figure 74 of appendix C.

The data perspective was described as a separate UML class diagram. It describes all
entities that are concerned by the agreement management process. For the FuL creation
process, especially important are the entities Service Description, FuL and Calcula-

tion.
The data model that was created by the process expert working group is depicted in fig-
ure 52. The single entities of the data model are described more in detail, providing a
description of the respective steps of the design that require information about data.

The aim of the case study is to automate this process using the existing system landscape

Distributed and Mobile Systems Group 203

8 A Case Study

Figure 51: EPC Process Diagram as Part of the Functional Requirements

by building a composite application. In doing so, the FuL creation should be structured
into a process and aligned with the company’s service portfolio. The composite application
should also unify the user access to the systems. There were no additional requirements
provided.

8.1.2 On the Suitability of SOA for the Use Case

The use case for the case study was chosen independently of technical considerations.
The process experts understood the service-oriented architectural style as a paradigm for
remote computing with a web frontend. Reusability was considered to be the benefit
compared with other remote-computing paradigms. This group concluded that the FuL
creation process is the most suitable of all processes that require a re-engineering of its
supporting application(s) at the time of the decision. Unfortunately, alternative use cases

Distributed and Mobile Systems Group 204

8 A Case Study

Figure 52: Data Model of the Case Study

were neither documented nor communicated.

In order to verify the appraisal of the process expert community, it was necessary to
roughly document the suitability of the service-oriented architectural style for realizing
an automation support for the FuL creation process. This verification was constrained by
the available budget as well as by the need to use it as a communication means to achieve
an agreement for a project budget. This is why the assessment had to be kept simple.
The evaluation criteria, that are discussed in section 3.3, were used for the verification
and were demonstrated to be suitable for the given objective.
The evaluation of the single suitability criteria are summarized by the following list.

• Frequent Changes in Processes The FuL Process itself can be considered quite
stable. This, however, is only true for the control flow of the process. Data, as well as
the resources that are used for the execution of the process, are changed on occasion.

Distributed and Mobile Systems Group 205

8 A Case Study

Figure 53: Initial Assessment of the Suitability of SO for the Use Case

Data structures are subject to change especially since the FuL template is reworked
from time to time. Resources could be changed as the application landscape might
be renewed.

• Frequent Changes of Process Tasks The actual way a service is described is
expected to be subject to frequent changes in future. This is because the task was
performed manually at the time of the project definition. Changing a task from a
manual task to a structured, semi-automated task is considered likely to happen.
This is expected due to anticipated improvement suggestions from key users.

• Outsourcing of Process Tasks All tasks of the FuL creation process are conducted
in-house. Also no outsourcing was planned.

• Different Client Applications No need was identified to allow for multiple client
applications that utilize the FuL creation process. No need was identified for sup-
porting mobile applications.

• Use of a Shared Service Center The creation of the FuL is de-centrally organized
within the organization. The single delivery units are responsible for the creation of
FuLs that concern their business. If multiple delivery units are concerned, an FuL
is created collectively. This is why it was considered beneficial to establish a central
application the de-central units could use.

• Production Control The creation of the FuL does not control the production of
the services. It is solely used during an early phase of the selling process. This
is why short periods of unavailability are not likely to cause serious harm. Also,
data inconsistencies would only cause additional effort. A general unavailability
during a long period would, however, seriously harm future business initiatives of
the company.

• Process Requires Human Interaction in Multiple Back-end Applications
Before the project, creating FuLs was realized as a manual process that was sup-
ported not only by word processor applications but also by application systems. Sev-
eral application systems store data that is relevant to the creation of FuLs. They

Distributed and Mobile Systems Group 206

8 A Case Study

must be accessed by FuL creators frequently. Hiding the actual complexity of the
landscape was considered a major benefit of the composite application. Earlier pro-
posals for automating the FuL were discarded because the integration of the single
application systems appeared to be too complex.

Even if the use case assessment showed mediocre suitability results, there were no obstacles
for applying the service-oriented style. As the use case was a real-life issue that could
not be previously solved by traditional means with a reasonable budget53, it was decided
that an attempt should be made to realize a composite application that supports the FuL
creation process. The key argument was to unify the user interface while reusing the
functionality of the back-end systems. A constraint for the project was to not re-realize
functionality that was already existent.
Further, the way of assessing suitability proved to be beneficial. It provided a quick
estimation that was suitable for communicating the objectives of the service-oriented
style. The summary of the discussion that was used for the communication is depicted in
figure 53.

8.1.3 Application Landscape and Constraints

Before the case study was conducted, the actual FuL creation was a manual task that was
mainly based on telephone, word processors and email. The process experts that defined
the business process also determined what application systems would be used to manage
the creation of FuLs.
So-called “sales objectives” were managed in a CRM application called “SAMS”. The
management of such sales objectives involved keeping an inventory of requests that were
made by customers. Cost calculations, offers and contracts were managed in sales and
distribution (SD) as well as project management (PM) modules of an SAP R/3 system
called “BOSS”.
Additionally, there was a change-management database (CMDB) that was used in the com-
pany’s different ITIL (“Information Technology Infrastructure Library”) [159] processes.
This database stored service-level agreements, service descriptions and assets that are
required for delivering the services. The process experts roughly estimated that this ap-
plication could be used to retrieve lists of services the company offers.
The application landscape additionally contained an SAP Exchange Infrastructure and an
SAP Enterprise Portal installation on separate hardware. As discussed in chapter 7, the
objective was to assess the suitability of the SAP NetWeaver platform rather than choos-
ing a best-of-breed platform. This is why these systems were chosen to be the platform
for the composite application that was to be created.

The CRM application was realized as a set of IBM Lotus Domino version 6 (cf. [160])
databases and applications. Domino applications, such as the CRM system, provide user
access through so-called views that are created for the single databases. Views can be
accessed in various ways. As a company policy, views are only accessible via the Lotus
Notes client.
The CRM system was initially purchased as COTS. Due to several requirements, it was
modified heavily. These modifications represented a major investment that was to be

53An alternative that was discussed before was to integrate the process into the SD module of the ERP
system by custom development.

Distributed and Mobile Systems Group 207

8 A Case Study

protected. This is why the CRM application should not be replaced by the composite
application.

The ERP system was an SAP R/3 4.6c. Among others, the SD, MM and PM modules
were installed on the application server. As the central ERP system of the company,
the R/3 system was a COTS that was not allowed to be modified. Due to the complex
processes in the ERP system it was also an objective to keep the ERP system integrated
into the FuL creation process.

The CMDB was also initially purchased as COTS and modified over time due to business
requirements. It is a C++ (cf. [161]) client/server application with fat clients. The
logic is mainly realized within the relational database. The data schemes grew complex
over time and support the requirements of various use cases. The main purpose of the
CMDB is the IT asset management. This means that all IT assets of all customers of the
company are stored in the database. Additionally, for every asset a corresponding service-
level agreement is stored into the database. Various monitoring applications access the
database. A service-level agreement is represented in the CMDB data scheme as a set of
multiple so-called key performance indicators (KPI). The monitoring applications access
the threshold values of the respective KPIs in order to create statistics that are in-turn
used for billing purposes.
An objective of the case study was to utilize the implicit notion of service-level agreements
by KPIs in order to use the CMDB as a service catalogue. As it turned out during the
design of the composite application, the data quality was not sufficiently high. This is
why there was no possibility of using the CMDB as a service catalogue.

8.2 Design of the Composite Application

The business process (and the data model) was used as the input for the design method-
ology for composite applications that is described in chapter 6. The deliverable of this
phase was the platform-independent design that is aligned with the reference architecture
of chapter 5.

8.2.1 Step 1: List all Business Process Activities

There are four process activities that make up the core of an FuL creation. They can be
easily derived from the process model. These are:

• Define Appropriate FuL Template

Input : information about the customer request an FuL should be created for.
Output : the appropriate FuL Template that can be used to answer to a customer’s
request.
Functional Description Based on a given request, a user should define the lan-
guage of the FuL that should be created. If new FuL templates exist, the user should
be able to choose among the available templates.

• Describe Service

Input : information about the customer request an FuL should be created for, the

Distributed and Mobile Systems Group 208

8 A Case Study

FuL template that was chosen for that specific request and a list of services the
company offers as part of its service catalogue.
Output : an FuL that provides an answer to a customer’s request.
Functional Description Based on a given request and a template, a user should
be identified that creates an FuL for the given request. The description of the single
elements of an FuL should be structured and not leave a freedom to the creator to
introduce terms and conditions or services that are not offered by the company.

• Approve Service Description

Input : the FuL that was created.
Output : an FuL that indicates its validity.
Functional Description Only based on an FuL, an identified user decides whether
an FuL is compliant with company rules and political circumstances. It is not
checked in this step, whether an FuL meets a specific demand.

• Perform Cost Calculation

Input : an approved FuL.
Output : the estimated cost for the realization of the solution as it was described
by an FuL.
Functional Description The costs for the realization of the solution, as it was
described by an FuL, are estimated in this step. The actual estimation is a subjective
task. Its result needs to be stored into an application system.
This functionality can already be supported by the ERP system of the company.
This functionality should be used as part of the solution.

8.2.2 Step 2: Create Enterprise Service Candidates

As the case study was the first service-oriented project under the control of the company
there was neither a service registry available nor existent services accessible. This is why
four new enterprise service candidates were necessary:

• es1 = ({Request}, {FuLTemplate})

• es2 = ({Request, FuLTemplate, ServiceCatalogue}, {FuL})

• es3 = ({FuL}, {FuL})

• es4 = ({FuL}, {CostCalculation})

8.2.3 Step 3: Match Suitable Service Methods and Derive Missing Service
Method Candidates

Due to the lack of existent services, the algorithm that is used during this step could not
possibly match any services.
The single steps of the algorithm are described in the following:

1. Define Entity Service Candidates The entity candidates that could be identified
were (according to the classification in section 6.2.4):

Distributed and Mobile Systems Group 209

8 A Case Study

• svc1 = (∅, {FuLTemplate}) (result for es1; satisfies ǫ3 (cf. (46) on page
145)

• svc2 = ({ServiceCatalogue}, {Service}) (result for es2; satisfies ǫ2 (cf.
(45))

• svc3 = ({Request, FuLTemplate, Service}, {FuL}) (result for es2; sat-
isfies ǫ1 (cf. (44))

• svc4 = ({FuL}, {Offer}) (result for es4; satisfies ǫ2 (cf. (45))

• svc5 = ({Offer}, {CostCalculation}) (result for es4; satisfies ǫ2 (cf. (45))

2. Define Task Service Candidates The task candidates that were identified were:

• svc6 = ({FuL}, {FuL})) (result for es3; satisfies ts2 (cf. (43))

3. Define Services for Unused Input After the determination of entity services and
task services, the Request object was not used for the enterprise service es1. As a
result, a store candidate method was identified.

• svc7 = ({Request}, ∅)) (result for es1; satisfies ǫ3 (cf. (46))

4. Define Services for Unprovided but Required Input After the determination
of entity services and task services, no unprovided elements were available.

5. Ensure Granularity As there were no services in registries available, the next
step was to ensure the granularity for the services svc1 - svc7. The only possible
combination was to combine svc3 and svc7. However, as such a combination neither
increases the SSM value of the resulting service, nor was there a functional argument
for such a combination, no method candidates were merged.

As a result of this step, the coordination service candidate methods svc1 - svc7 were
identified. Additionally, the requirement for the service coordinations {svc2, svc3} (es2),
{svc4, svc5} (es4) and {svc1, svc7} (es1) could be identified.

8.2.4 Step 4: Describe Service Orchestration

By using the enterprise service candidates from step 2, an orchestration candidate was
described. The decision logic of the exclusive-choice branch accesses the FuL attribute
released and checks whether the boolean value equals true.
The deliverable that was described during this step is described in figure 54.

Distributed and Mobile Systems Group 210

8 A Case Study

Figure 54: Initial Orchestration Candidate for FuL Creation

8.2.5 Step 5: Create Service Coordination Description

Three enterprise services were identified in step 3 to require a service coordination. The
control and data flow of these coordinations was defined in this fourth step. The resulting
service coordination candidates for the enterprise services es1, es2 and es4 are shown in
figure 55.

8.2.6 Step 6: Refine Candidate Methods

In order to objectively decide on a redesign of candidate methods, the values for the
DOA, SSC, ACZ and SCZ metrics (cf. section 3.2.1) were calculated for the single
service coordinations and for the overall system as far as it was designed at that stage.
The results are shown in the tables 19 and 20.54

Service Coordination DOA AD

es1 +0.29 0
es2 +0.29 0
es4 +0.29 0
es1 & es2 combined +0.47 1

Table 19: Metrics for Assessing Coordination Design

54The metrics are calculated according to the procedure described in section 6.2.7.
The structure of the intermediate system that is analyzed as well as basic size metrics can be found in
appendix D.

Distributed and Mobile Systems Group 211

8 A Case Study

Figure 55: Service Coordination Candidates of the Case Study

The DOA values and the AD values for the single services indicate that the aggregators
are sufficiently dense. Hence, no re-design is indicated by these metrics here.

Also the DOA value for the overall system is sufficient (bigger than zero). The SSC
values indicate also a relatively low complexity.
The ACZ and SCZ metrics did not motivate a re-design either. The degree of centraliza-
tion of the system at this stage seemed sufficiently high.
It would have been an option to merge es1 and es2 into one service. From a metric point of
view, this would have slightly increased the complexity and distributed the centralization
in a few non-mediating aggregators. Overall, no necessity for a redesign was indicated by
the design metrics.

Overall System (Ω) DOA SSC ACZ SCZ

{es1, es2, es4} +1.33 0.23 0.75 0.53
{{es1 ∪ es2}, es4} +1.16 0.3 0.3 0.69

Table 20: Metrics for the Overall System Sketches

As the definition of an appropriate FuL template is based on the request of a customer
as well as on other circumstances, it was decided to combine svc1 and svc7 to one single
coordination service that corresponds with the enterprise service es1. The resulting co-
ordination service svc8 was defined as follows: svc8 = ({Request}, {FuLTemplate}).
In exchange, the service candidates svc1 and svc7 were discarded. The other service
coordinations were not changed.

Distributed and Mobile Systems Group 212

8 A Case Study

Finally, the remaining coordination services were named. The following items represent a
list of the revised coordination services:

• Service[] getServiceList(ServiceCatalogue) (svc2)

• FuL createFuL(Request, FuLTemplate, Service) (svc3)

• Offer createOffer(FuL) (svc4)

• CostCalculation createCostCalculationForOffer(Offer) (svc5)

• FuL approveFuL(FuL) (svc6)

• FuLTemplate defineTemplateForRequest(Request) (svc8)

All these services do not rely on an internal state. Each service has input values that are
used in order to compute a result. Thus, all six candidate services were considered to be
stateless.

8.2.7 Step 7: Analyze QoS Requirements of the Service Coordinations

The required availability for the enterprise services was defined with 99% each. Using the
Avl metric (cf. section 3.2.2), the tolerated failure rate for the single coordination services
(θsvc) was deducted. The results are shown in table 21.

Coordination Service θsvc

Coordination Platform < 0.10%
getServiceList < 0.46%
createFuL < 0.46%
createOffer < 0.46%
createCostCalculationForOffer < 0.46%
approveFuL < 1.00%
defineTemplateForRequest < 1.00%

Table 21: Tolerated Failure Rates of the Coordination Services

Due to the long-running nature of the coordination services, no need for ACID transactions
was identified.
As the service catalogue might be subject to frequent changes, the intermediary result of
the queries to it were neither considered as being a safepoint.
The only safepoint that was identified was the method Offer createOffer(FuL) for es4.
The created offer should be kept also in case of a failure during the creation of the cost
calculation.

8.2.8 Step 8: Design Application Services

Identifying appropriate application services was, by far, the most labor intensive part of
the case study. Political discussions about the necessity of single application systems were

Distributed and Mobile Systems Group 213

8 A Case Study

as much a part of the discussion as technical discussions were. Identifying appropriate
experts for the single applications was a time-consuming task. Finally, key people for the
CRM, ERP and CMDB applications were identified.

• Accessing the CRM System As the responsibility for the FuL creation pro-
cess belonged to the same organizational area as the CRM system, support was
very good. Experts were identified, necessary changes staffed appropriately and exe-
cuted in a timely manner. Even if the application was not included into the business
process model, discussions revealed that the initial trigger of the composite appli-
cation was best to be performed by the CRM system. According to the identified
process orchestration and the service coordinations, the initial coordination service
method that was invoked is FuLTemplate defineTemplateForRequest(Request).
The parameter of this method had been identified to be the actual Request of the
customer. Hence, the CRM system was identified as a service consumer for this
service provider.
This functionality (of performing a request) was at that time not implemented as
part of the CRM solution. This is why the option of a mediated use was identified.

• Accessing the ERP System As the ERP system was a standard COTS system it
was feasible to identify appropriate functionality for the requirements. According to
the process model, the perform cost calculation activity was (to be) performed by the
ERP system. This meant, the services Offer createOffer(FuL) and CostCalcu-

lation createCostCalculationForOffer(Offer)were candidates for deployment
on the ERP system. An analysis revealed that the functionality for creating an of-
fer was existent and accessible as a remote function call. The identified RFC was
the (previously self-developed) function module Y_ISD_QUOTATION_CREATE. For the
method Offer createOffer(FuL) mediated reuse of the RFC was identified to be
an appropriate realization.
Discussions both with the application experts and the FuL creation process owner
revealed that the selling process was implemented in large portions within the ERP
system. Because of this, it was decided to end the control centralization after the
creation of an appropriate offer. As a consequence, the service method CostCalcu-

lation createCostCalculationForOffer(Offer) was discarded and not realized.

• Access to the Service Catalogue A major objective from a business point of
view for the composite application was to allow for a creation of FuLs that are
based on a standard service catalogue. The CMDB was identified to be the place
that should be used to store available services. The idea was that, thanks to the
huge amount of already sold services, all services of the company would be stored
into that database. This assumption was wrong. Mainly two obstacles hindered the
integration of the CMDB. First, the data model of the formal COTS was modified
in a way that it was impossible to access the data in a structured way. Also the
application itself did not offer remote accessible functionality. Hence, neither me-
diated reuse nor mediated access was possible. Additionally it turned out that the
data quality of the kept data was poor. Each contract that was contained in the
database was created using different descriptions for the same services. Proper key
management was neither implemented. As a consequence, a project was launched
to establish a central service catalogue within the company. For the composite ap-
plication the impact was that no service catalogue was available. It is planned to
integrate the service catalogue into the composite application as soon as it is finished

Distributed and Mobile Systems Group 214

8 A Case Study

(estimated development duration: 15 month).
The discussed issues led to the fact that the Service[] getServiceList (Ser-

viceCatalogue) method could not be realized. The idea of using a service cata-
logue was abandoned. Instead, an FuL was decided to be created still without a list
of services available.

• Actual Creation of the FuL As the actual creation of FuLs was realized us-
ing a word processor before the project was launched, there were no application
systems or functional modules that could have been reused. This is why it was
decided to realize the service methods FuLTemplate defineTemplateForRequest

(Request), FuL createFuL(Request, FuLTemplate) and FuL approveFuL (FuL)

from scratch. As the services were to be created, it was decided to use these services
without a mediator.
The functional requirements for these services were analyzed and formulated in col-
laboration with the process owner. This involved basic screen design and usability
tests.

8.2.9 Step 9: Exchange and Transformation Design

In the 8th step the need for two mediators was identified. The first mediation was required
for the CRM application to consume the defineTemplateForRequest method. The re-
quired interaction pattern from the composite application point of view for this step was
the receive pattern (cf. [98]). No acknowledgment was foreseen. According to the dis-
cussion of section 5.7.8, one IIF was required to realize this pattern. Both a Trigger

Service55 and a Data Service were required to be part of that IIF.
As the budget was limited and there was no functionality implemented for realizing this in-
teraction, the most efficient yet simple solution was chosen: the CRM application triggers
the composite while the composite application retrieves the actual data from the request.
The lookup describes a send/receive pattern (cf. [98]). As a design option of this pattern,
it was determined that the counter party was known and that the call should be realized
in a synchronous way. This was decided because there was no simple way of realizing a
callback from the domino application to the composite application.
The synchronous call was decided to be closed at the earliest possible position in the IIF,
as the CRM application was not capable of computing the result. In case of errors during
the IIF it was decided that manual support procedures would be triggered.

In terms of connectivity, it was determined to realize the initial trigger using an SAP
RFC. As it turned out, this was not feasible.56 Because of this, the following solution
for connectivity was chosen: a menu item was added to the user interface of the CRM.
The activation of this menu item would trigger the generation of a file. In order to avoid
compliance issues, as well as to increase the reactivity of the solution, it was decided to
use a solution called “SemFis” that was based on [162]. This solution provided a means
of connectivity to the CRM application. [162] describes a virtual file system that converts
file-level operations into service calls. By configuring the core of the “SemFis” solution in
a way that invokes the appropriate IIF, certain file operations of the CRM were designed
to be redirected to the DET.

55Note that Trigger Services are not designed in this step but in step 15.
56Due to an incompatibility of the Lotus Domino RFC implementation and the SAP XI RFC imple-

mentation via message gateways.

Distributed and Mobile Systems Group 215

8 A Case Study

Together, the CRM application and the“SemFis” solution, were designed to form a service
consumer. The file format that was decided on was an XML file that solely contained the
key of the actual Request. Based on these circumstances, the integration services were
defined as follows:

• Heterogeneity Service As the file that was identified to be the service request, a
Heterogeneity Service was necessary to translate the key-field of the file into an
empty Request object for the composite application.

• Data Service The “SemFis” solution can be considered to realize the connectivity
part as well as Fetch Data activity of the required Data Service. For the Data

Service of the IIF that had the consequence that the request contained the neces-
sary data. Hence, the Data Service was realized as a simple mechanism to forward
the request to the integration flow.

• Validity Service Due to the simplicity of the file and the absence of special re-
quirements, no need for a Validity Service was identified.

• Routing Service As solely an IIF was required, no Routing Service was neces-
sary.

The IIF candidate after this step for the mediation of the defineTemplateForRequest is
depicted in figure 56.

Figure 56: Candidate IIF for the Mediation of the Method defineTemplateForRequest

As the data of the request was not completely transmitted, the service coordination for
the defineTemplateForRequest enterprise service method was extended by a method
called Request retrieveRequest(Request).

Distributed and Mobile Systems Group 216

8 A Case Study

The definition of this method required an iteration of step 8 in order to describe the
realization of this method. It was decided to realize the functionality by exposing a view
that made all requests of the CRM accessible. By using adapters that access that view, a
synchronous send/receive interaction (cf. [98]) with a known counter-party was foreseen.
According to the discussion of section 5.7.8, both an IOF and an IIF are required to
realize this type of interaction. Additionally it could be determined that the IOF requires
a Routing Service, needs to trigger an IIF and must not use a Data Service by its
own.
The actual access was realized with a 3rd party adapter for the XI (cf. [163]). The necessary
integration services are described below:

• Heterogeneity Service The necessary transformation was – as a lookup was to be
performed – part of the Fetch Data activity of the triggered IIF (cf. section 5.7.8).
This is why there was no Heterogeneity Service defined for the IOF.

• Data Service The use of a Data Service for an IOF of a request/response scenario
is forbidden.

• Validity Service Due to the simplicity of the file and the absence of special re-
quirements, no need for a Validity Service was identified.

• Routing Service The necessary Routing Service was a simple one-item determi-
nation of the CRM application as the final receiver.

An IIF for a request/response interaction must not use a Trigger Service but use a Data

Service that contains a FetchData activity. The integration services that were designed
for the required IIF are:

• Heterogeneity Service In order to transform the Request object that was part of
the service method’s interface into a lookup to the lotus database, a Heterogeneity

Service was designed. The actual transformation of this service uses a pre-defined
query that is used as a template. In the template, the clause is replaced by the
identifier that is extracted out of the Request object. This integration service is
part of the necessary FetchData activity of the Data Service.
In order to transform the result of the query into a Request object that can then
replace the object stub in the service coordination, another Heterogeneity Ser-

vice was designed. This realizes a structural transformation from the database’s
data format into the data format of the composite application.

• Data Service The Data Service for the required IIF uses a FetchData activity in
order to query the database. The FetchData activity was designed to use the above-
described Heterogeneity Service. A synchronous call was foreseen to realize the
functionality for the RetrieveData activity (cf. section 5.7.1).
The Data Service, its FetchData activity and the respective RetrieveData activity
are depicted in figure 57.

• Validity Service Due to the simplicity of the file and the absence of special re-
quirements, no need for a Validity Service was identified.

• Routing Service No Routing Service is necessary for an IIF.

Distributed and Mobile Systems Group 217

8 A Case Study

Figure 57: Data Service for the IIF that mediates the Method retrieveRequest

The IIF and IOF that mediate the retrieveRequest service interaction are finally de-
picted in figure 58.

In order to mediate the usage of the SAP RFC, the DET was also required. The interaction
between the coordination service createOffer and the RFC Y_ISD_QUOTATION_CREATE

was designed to be a synchronous send/receive interaction. The reception of a response
was included in order to allow the composite application to track the changes of the ERP
application system. This way future changes were anticipated.
As the function module that realizes the RFC was not allowed to be modified, synchronous
communication was chosen. This is because there was no standard mechanism of realizing
call-back interaction with RFCs in the SAP R/3 system.

As discussed for the retrieveRequest interaction, both an IOF and an IIF were required.
The integration services for the Y_ISD_QUOTATION_CREATE-IOF were:

• Heterogeneity Service In order to transform the FuL into a message that suits
the RFC, a Heterogeneity Service was designed. This service was able to map

Distributed and Mobile Systems Group 218

8 A Case Study

Figure 58: Candidate Integration Flows for Mediating the Method retrieveRequest

the actual FuL into the parameters of the RFC.

• Data Service The respective integration service of the IIF was used.

• Validity Service Due to the simplicity of the file and the absence of special re-
quirements no need for a Validity Service was identified.

• Routing Service The necessary Routing Service was a simple one-item determi-
nation of the SAP ERP application system.

The IIF for the request/response interaction with the RFC included a Data Service that
contains a FetchData activity. The following integration services were designed:

• Heterogeneity Service In order to transform the result of the RFC call into an
Offer object that indicates that an offer was created in the back-end system, a
Heterogeneity Service was included. This service simply created a stub of an
Offer object that contained the id of the offer in the back-end system.

• Data Service The Data Service for the required IIF uses a FetchData activity
that simply invoked a RetrieveData activity. A synchronous call was needed to
realize the functionality of this activity.

• Validity Service Due to the simplicity of the file and the absence of special re-
quirements no need for a Validity Service was identified.

• Routing Service No Routing Service was necessary for an IIF.

Both candidate integration flows that were designed to mediate the access to the ERP
application are described by the diagrams of figure 59.

Distributed and Mobile Systems Group 219

8 A Case Study

Figure 59: Candidate Integration Flows for the Mediation of the Method createOffer

8.2.10 Step 10: Revise Service Coordination Description

Several requirements to change the service coordinations were identified during the design
of the DET. This was because, due to technical constraints, several coordination services
had to be added.

The method defineTemplateForRequest was defined to be aggregated with another ser-
vice method retrieveRequest in order to complete the object stub that was transmitted
by the CRM application. This is why the coordination service for the enterprise service es1

was modified. The result of that redesign is described in the model of figure 60. The name
of this service coordination was defined as defineAppropriateTemplate_SvcCoord.

Due to the issues with the CMDB system, the creation of an FuL was realized without
a list of available services. This is why the remaining coordination service FuL cre-

ateFuL(Request, FuLTemplate) (formerly svc3) became the single item of the service
coordination for the enterprise service es2 Describe Service.

The service coordination for the enterprise service es4 was simplified as it was decided to
pass the control to the ERP system after creating an offer. This is why the coordination
service Offer createOffer(FuL) (svc5) became the only step of the service coordination.

The final list of five coordination services for the four enterprise services consisted of:

• Request retrieveRequest(Request)

• FuLTemplate defineTemplateForRequest(Request)

• FuL createFuL(Request, FuLTemplate)

• Offer createOffer(FuL)

Distributed and Mobile Systems Group 220

8 A Case Study

• FuL approveFuL(FuL)

The first two services were aggregated to the service coordination
FuLTemplate defineAppropriateTemplate_SvcCoord(FuL).

Figure 60: es1: defineAppropriateTemplate_SvcCoord

8.2.11 Step 11: Revise Enterprise Service Candidates

Two constraints for designing the enterprise services were identified. The first was that
there was no way of supporting a service catalogue with the given application landscape.
The other challenge involved changing the creation of the calculation. As it was decided to
not create a calculation but solely an offer, the respective enterprise service was changed
accordingly. The other two enterprise services remained unchanged. The final list of
enterprise services was:

• es1 = FuLTemplate defineTemplate_ES(Request)

• es2 = FuL describeFuL_ES(Request, FuLTemplate)

• es3 = FuL approveFuL_ES(FuL)

• es4 = Offer createOffer_ES(FuL)

8.2.12 Step 12: Define Events

The data visibility pattern Case Data (cf. [96, pp. 363f.]) is sufficient for the creation of
FuLs. A factor in this decision was the fact that every enterprise service uses the output of
a previous enterprise service. Only one event type was therefore necessary: fulRequired.
The occurrence of this type of event determines the course of the FuL creation process.
As soon as the FuL was passed on to the ERP system (es4), an event of that type was
considered finished.
As there was only one event type, no event relations had to be defined.

Distributed and Mobile Systems Group 221

8 A Case Study

8.2.13 Step 13: Data Repository Design

The necessary data for fulRequired events are determined by the input parameters of
the first enterprise service in the computation. As the analysis of the application systems
determined is the transmission of the complete description of a Request not possible. This
is why a service coordination was defined for es1.
Nevertheless, a (stub) Request object is a prerequisite for the fulRequired event type.

Figure 61: Data Model of the necessary Transfer Objects

By analyzing the single enterprise services and coordination services, the required data
transfer objects were determined. They are described in the diagram of figure 61. The
indicated compositions convey that the actual associated objects need to be transmitted
as a whole.
Since the target platform of SAP NetWeaver was already determined, the platform-specific
design of the data repository was also already defined. In accordance with the restrictions
that are described in section 7.2.2, the final data repository for the FuL creation process
included operations for each accessible data object and entity services for persisting the
data. The structure of the data repository is shown in figure 62. For simplification reasons,
not all 36 data repository operations are included in the diagram.

Distributed and Mobile Systems Group 222

8 A Case Study

Figure 62: Data Repository for the FuL Creation Process

8.2.14 Step 14: Finalize Service Orchestration

Figure 63: Decision Service for the FuL Creation Process

The intent of the first part of the finalization of service orchestration was to define an
appropriate Decision Service for the FuL creation process. As the decision logic was
simple, it was decided to not use a rule engine and to not formulate the decision logic in
a business rules engine. The structure of the FuLValidityDecisionService is shown in
figure 63.

Distributed and Mobile Systems Group 223

8 A Case Study

Figure 64: Final Service Orchestration

Distributed and Mobile Systems Group 224

8 A Case Study

According to the modified enterprise services, the event type, and the FuLValidityDe-

cisionService, the final service orchestration was defined. As it was known that the
orchestration will be deployed on the SAP XI, XI interface mappings were included in
the orchestration. Additionally, a count was added to the actual Event message that was
passed back and forth within the process. This was necessary in order to allow the XI
integration server to dispatch the events accordingly (cf. section 7.2.6).
The service orchestration, that was used to create the WS-BPEL process for the XI, is
depicted in figure 64.

The analysis of the interactions within the FuL creation process did not reveal the need
for any Trigger Services. Since the process can not start its computation without a
Request object, the Trigger Service that also interacts with the eventing system needs
to store the according data into the data repository. The FuLTrigger Service that was
designed for the composite application is depicted in figure 65.

Figure 65: Trigger Service for the FuL Creation Process

8.2.15 Step 15: Finalize Exchange and Transformation Design

After the FuLTrigger Service was defined, the IIF for the initial call was finished. The
other integration flows, that were already defined, were not changed. To conclude the
description of the composite application’s design, the finalized IIF is depicted in figure 66.

8.2.16 Step 16: Pass over to Implementation

Based on the artifacts that were identified during the steps of the design methodology,
the implementation was started. Due to a lack of tool support, all design artifacts were
manually translated into code and XI descriptions.

Distributed and Mobile Systems Group 225

8 A Case Study

As it turned out, the description of the design was valuable for the implementation. The
developers concerned with the realization were able to use them in conjunction with the
platform specific model (cf. chapter 7) for the realization of the composite application.

Figure 66: Candidate IIF for the Mediation of the Method defineTemplateForRequest

Distributed and Mobile Systems Group 226

8 A Case Study

8.3 Analysis of the Design

The reference architecture provides a structure for implementing composite applications.
In combination with the design methodology as well as the platform-specific model, it
supports the application of the service-oriented style within the context of an IT supplier
(and, of course, potentially in other contexts).
The architecture describes the re-use of existent functionality by two main mechanisms:
1) accessing potentially any target application that offers appropriate functionality via
flexible integration flows; and 2) centralizing the control over these application systems
into one service orchestration. In order to use business processes as a blueprint for these
service orchestrations, it is necessary to include service coordinations to aggregate appli-
cation functionality in a way that a business process is supported.

To approach the quantification of a composite’s compliance with service-oriented princi-
ples, the design of the FuL creation composite application is analyzed in the following
by using the metrics that are defined in chapter 3. This analysis should also provide
an estimation for the significance of the metrics. As there is no overall evaluation, this
only indicates the single quality aspects of a composite application but does not allow
for determining valuable thresholds for the metrics. This is why the following evaluations
are considered a first description of the single metrics’ “behavior” in the real world. An
approach to the interpretation of the single values is also made. However, it is impor-
tant to note that the single values can only be reliably interpreted if a certain number of
applications were analyzed so that estimations for reasonable thresholds exist.

The design that is analyzed is described in the previous section. For the sake of eased
understanding, the design is summarized in the component diagram in figure 67. In this
diagram, services are modeled as components. Service consumers have required interfaces
while service providers offer provided interfaces. Service aggregators have both types of
interfaces. In the given design, the integration flows do not aggregate any services. They
are simple service-enabling application systems. This is why they are only indicated as
circles and not as components and not included in the analysis of the design.

In order to describe the complexity of the composite application for the FuL creation
process, the complexity metrics that are discussed in section 3.2.1, are applied to the
composite application.

The following analysis will be performed for two cases: 1) considering the data repository
as a service and 2) not considering it as a service. The second case is included since,
depending on the platform, the data repository is not necessarily realized as a service
provider (eg. when using SAP NetWeaver — cf. section 7.2.2). Of course, the data
repository adds a certain amount of complexity. However, it does not, e.g. include a
portion of a system’s control model. This is why it is valuable to measure a system while
excluding the data repository. However, its complexity has to be taken into account.
First, the different coupling metrics are identified for every service. The result is shown
in table 22.

Based on the metrics of the individual services, the complexity of the overall system is
then analyzed. The results of this analysis are shown in table 23.

This analysis shows that the complexity metrics SSC and SCF indicate low values for
both cases. This means that the overall complexity (through the notion of coupling) of the

Distributed and Mobile Systems Group 227

8 A Case Study

F
ig

u
re

67
:

C
om

p
on

en
ts

an
d

L
in

k
s

of
th

e
F
u
L

A
p
p
li
ca

ti
on

Distributed and Mobile Systems Group 228

8 A Case Study

composite application can be assumed to be relatively low. These values solely indicate the
coupling of the services. To get another picture of the composite’s complexity, the count
of the single services should be considered, too. Those values (11 and 12 respectively) are
also an indicator of a relatively low complexity.

In order to provide an overview of the behavior of the complexity handling metrics, they
are also described for the FuL creation composite. As the composite application was the
first one in the application landscape, the modifiability metrics of chapter 3.2.1 that de-
scribe reuse could not be applied.
Interesting to note is that the extent of aggregation is zero in both cases. This is because
no pure service consumers are part of the system. This is also why the system’s central-
ization, as far as the SCZ is concerned, is relatively low.
Another reason for a relatively low centralization value is that the application services
are mediated by service coordinations with a low density. As the service coordinations do
not provide any control logic, the SCZ, that is only based on the notion of aggregators,
indicates a distributed control. As discussed in section 3.2.1, the SCZ value should be
considered together with the SSC, SCF and ACZ values. As these values indicate a low
complexity, the little centralization in terms of the SCZ metric is acceptable.
The control centralization that is indicated by the ACZ slightly varies between the two
scenarios. In the scenario without the data repository, ACZ indicates a relatively high
degree of centralization. This is because most of the aggregators are used as mediators.
As these mediators also interact with the data repository, the ACZ for the other scenario
is a little lower. The difference between the values of the metrics that indicate the central-
ization indicates that the centralization might be sufficient if the aggregators are designed
accordingly.

Service s of Ω cos(s) cts(s) γ(s) π(s) AD(Ω, s)

Define Template (es1) 3 1 3 1 1
Define Template (es1) w/o DR 2 1 2 1 0
Create FuL (es2) 2 1 2 1 0
Create FuL (es2) w/o DR 1 1 1 1 0
Approve FuL (es3) 2 1 2 1 0
Approve FuL (es3) w/o DR 1 1 1 1 0
Create Offer (es4) 2 1 2 1 0
Create Offer (es4) w/o DR 1 1 1 1 0
Central Orchestration 6 2 6 2 1
Central Orchestration w/o DR 6 1 6 1 1
Eventing System 2 2 2 2 0
Eventing System w/o DR 1 2 1 2 1
Trigger Service 2 1 2 1 0
Trigger Service w/o DR 1 1 1 1 0
Decision Service 1 1 1 1 0
Decision Service w/o DR 0 1 0 1 n.a.
SAMS CRM 1 1 1 1 0
Portal 0 1 0 1 n.a.
ERP 0 1 0 1 n.a.
Data Repository 1 7 1 7 1

Table 22: Size Metrics for the Overall Composite Application

Distributed and Mobile Systems Group 229

8 A Case Study

The density of aggregation (DOA) is in both cases positive. This means that the aggre-
gators access more service methods than they provide.
The data repository is an example of an aggregator that provides more methods than it
consumes. Interesting to note is that, due to the amount of aggregators, this does not
heavily influence the overall DOA value of the system.
The values of the complexity handling metrics are shown in table 24.

Application (Ω) NS SC SP SA SSC SCF

FuL Creation 12 10 12 10 0.183 0.167
FuL Creation w/o data repository 11 8 11 8 0.156 0.109

Table 23: Complexity Metrics for the Overall Composite Application

With regards to the metrics that describe the modifiability of a system it can be summa-
rized, that the overall picture for the FuL creation composite indicates a relatively low
complexity of the application that extensively uses (appropriate) aggregators. On one
hand, the use of aggregators is a sign of incorporating service-oriented principles. On
the other hand, the extensive use of aggregators does endanger the principle of control
centralization.
The reason for the extensive use of aggregators is the adaptation of heterogeneous appli-
cations to fit into a business process. The fact that aggregators are used as mediators is
indicated by the relatively high ACZ value. This value indicates high control centraliza-
tion within some aggregators. Expressed differently, in the scenario that excludes the data
repository, 75% of the aggregators is used as mediators while the control is centralized in
25% of the composite application’s aggregators. Seen from this point of view, the FuL
creation composite centralizes control on top of a heterogeneous landscape. It can be
finally stated that the metrics do not motivate a re-design of the composite application.

Application (Ω) SCZ EOA DOA ACZ

FuL Creation 0.21 0 +0.58 0.7
FuL Creation w/o data repository 0.22 0 +0.4 0.75

Table 24: Complexity Handling Metrics for the Overall Composite Application

8.4 The Composite Application

This section describes the executable example of the design. After a description of the
development phase and the observations that were made during the development, the
composite application, and its look and feel are described.

8.4.1 Observations from the Development Phase

The composite application was realized using SAP NetWeaver as the platform for the
composite application itself. The application landscape that was analyzed was also used
to realize the required back-end functionality.
The development was organized into several groups that used the design to communicate.
Each of these groups was dedicated to a special area of technology. As a consequence,

Distributed and Mobile Systems Group 230

8 A Case Study

the service coordination layer, the data repository, the eventing system, and parts of the
orchestration layer were realized by a unit that is specialized in Java and portal devel-
opments. Yet another group addressed the integration flows and the actual connectivity.
This group was staffed with members of another organizational unit that focuses on en-
terprise application integration.
Each application system was again managed by different organizational units. Through-
out the course of this, it became obvious that expert support of the respective application
system is crucial.
Due to the simplicity of the transformation, the actual business process was implemented
by the same architecture team that also supervised the collaboration of the single groups.

The intense collaborative nature of the development phase required to have a simple and
precise design for the communication between the groups. Since every group was working
on a specific platform with specific development tools, communicating diagrams became a
major task of the project lead. Here it was helpful that, having a platform-specific model
in mind, the platform-independent descriptions were always describing one artifact at a
time.

One major issue of the implementation phase was the extreme immaturity of the devel-
opment environment for the CAF. While the runtime platform proved to be stable, the
bug-intense development environment actually consumed a major portion of the project’s
budget. This “devil in the details” issue made frequent re-installations of the developer
workplaces necessary. The deployment of components that were not correctly updated by
the development environment also rendered several runtime platforms useless.
The other components and the application systems could be programmed efficiently.

Another observation is that the requirements in terms of know-how the development of
a composite application brings with it is extreme. The technology and the variety of
products is too complex for single developers. The gap between the technologies is often
so big, that the communication between the developers has to be moderated.
Because of this, the standardization of composite applications by the means of a reference
architecture is considered to be a major answer to this issue. By restricting the possible
solutions, a common base of knowledge among different specialists seems achievable.

8.4.2 Look and Feel

Concerning the result of the implementation, the process owner of the FuL creation process
approved the composite application. It was agreed that it satisfies the initial business
requirements.
The most apparent gap, both in the design as well as in the implementation, is the
generation of an FuL as a document, though. It was agreed that the creation of an FuL in
a structured way proves the suitability of the application. The labor-intense, yet unrelated
to service orientation, process of creating documents was postponed until the composite
would be changed in terms of connecting to a service catalogue.

The process starts in the Lotus Notes application SAMS by creating a Request. First, a
so-called Sales Objective is created (figure 68).

Subsequently, the sales objective is exported to the file system. As the file system is real-
ized as a virtual file system that adheres to the description of [162], the file is immediately

Distributed and Mobile Systems Group 231

8 A Case Study

Figure 68: Step 1: Creating a Sales Objective in the Lotus Notes Client

transmitted to the composite application via XI, the data repository and the eventing
system (figure 69).

Figure 69: Step 2: Export the Sales Objective to the Composite Application

After the XI integration flows have transmitted the information to the composite applica-
tion, the process orchestration triggers the first coordination service that, in turn, read the
complete information out of the Lotus Notes database. After the information is loaded,
the defineTemplateForRequest application service method is invoked. Such calls that
require human interactions are realized as entries in the universal worklist of the respective
clerk (figure 70).

Distributed and Mobile Systems Group 232

8 A Case Study

Figure 70: Step 3: User Interaction via Universal Worklist

After the appropriate language (that represents the template) was chosen, the orchestra-
tion calls the next service coordination that again invokes the portal. After selecting the
entry from the universal worklist, the actual FuL can be described (figure 71).

When the creation is finished, the actual data is used to create an offer by the means of
a Quotation in the ERP back-end system.
After the Quotation is created in the back-end system, the composite application stops.
The next step of creating a calculation is performed outside the control of the composite
application (figure 72).

Figure 71: Step 4: Actual Writing of the necessary FuL Description

8.5 Summary and Conclusion

The composite application whose design was described and analyzed in this chapter rep-
resents the application of the service-oriented style in a real-life setting. Beginning with a
business case that was mostly defined in terms of business needs, it was first necessary to
identify the suitability of a composite application for realizing the FuL creation process.
By using a simple yet applicable mechanism, this task was performed and the suitability
of service orientation was identified.

Distributed and Mobile Systems Group 233

8 A Case Study

Figure 72: Step 5: Created Quotation in the SAP ERP System

Based on the requirements, the development methodology for composite applications was
exercised. Taking the previously described top-down approach, the business process was
analyzed and suitable services were designed. The business process was also used to de-
rive a service orchestration that defined a control over the designed services. By aligning
the top-down design with the actual constraints of the application systems, the design
of the services and their compositions had to be adjusted. In the bottom-up phase of
the methodology, several components had to be adjusted in order to allow for a compos-
ite application that fits into an organization’s application landscape and complies with
governance rules.

The final top-level service orchestration was slightly different from the initial business
process. This was due to the constraints imposed by the application systems. The analysis
of the design, which was conducted by calculating and interpreting several key metrics,
showed that the structure of the composite determined by the reference architecture was
not very complex while incorporating service-oriented principles for complexity reduction
and adaptation to the heterogeneous application landscape.

The subsequent implementation of the composite application was influenced by technical
platform-related issues. Besides problems with the technology, the design proved to be
achievable. As such, the results finally met the expectations of key stakeholders.

The utilized development methodology was designed to minimize the descriptions a re-
quirement engineering has to produce. By using a fully specified process model that
included a complete description of the data perspective, a composite application was
built.
However, the case study showed that this is still an ambitious demand. The degree of
formalization and structure as it is demanded by the concepts could not have been higher.
An interesting observation is that the focus on a business process and the actual use of
the process as an artifact that is later implemented as specified (if possible), shifts the
attention of both requestors and the people realizing a project towards a common under-
standing. This is why focusing on business processes is considered an advantage in and
of itself.

Distributed and Mobile Systems Group 234

8 A Case Study

The use of the reference architecture demonstrated that the structure it provides makes
service-oriented projects possible. Without the common, limited understanding of service-
oriented applications it would have been impossible to realize a composite application
that incorporates service-oriented principles that go beyond component orientation. The
platform-specific model for NetWeaver proved both applicable as well as supportive in
actual development questions.

To conclude, the framework that was presented in this thesis made the application of the
service-oriented style possible. In order to increase its value, an integrated tool support
that involves both, development tools as well as a library of runtime components would
be beneficial. As an IT supplier, BASF IT Services does not consider itself a tool vendor.
However, if the status of all components of the preferred target platform matures, the
development of such tools is potentially achievable.

Distributed and Mobile Systems Group 235

9 Related Work

9 Related Work

This chapter discusses the contributions of this thesis in comparison to related work.

9.1 Incorporated Work

This thesis is built on a variety of fundamental concepts. These concepts vary from
essentials of distributed computing (such as the consistency model of [75] or the spaces
approach of [104]) to more recent approaches that describe specific integration concepts or
approach a holistic description of a service-oriented architecture (such as e.g. [4] and [11]).
All concepts that form the basis of this work are referenced and discussed in the respective
passages of this thesis.
In order to give an overview of the incorporated ideas, important concepts are briefly
discussed in this section.

9.1.1 Reference Architectures

The discussion in chapters 2 and 5 show that a structure – in addition to the style defi-
nition of service orientation – is required to properly apply this architectural style. This
can be achieved by creating reference architectures that describe the building blocks that
need to be designed for a certain use case. Such a reference architecture can be referred
to as a design-time architecture.
Regarding design-time reference architectures, related work is available. The Business
Process Integration Oriented Application Integration (BPIOAI) approach introduced by
Linthicum in [4] is one key concept for the findings of this thesis. This is because it de-
scribes how to centralize the coordination in a distributed and service-based application
on top of remote-accessible functionality by using business processes. This provides an
initial approach to structure as it is required in the described context.
Without explicitly referencing the work of Linthicum, Hentrich and Zdun use BPIOAI to
put a service composition layer on top of a service oriented architecture (cf. [81] and [89]).
This service-oriented reference architecture emphasizes the distributed nature of SOA by
incorporating service invocation, adaptation, request handling and communication into
the framework. The service coordination is classified as a macro workflow for business
processes and a micro workflow for so-called“more technical”aspects. This way, a business
process-centric development of composite applications can be achieved. The reference is
built-up as a set of patterns that describe such a layered approach.
Erl has established in [11] a reference architecture that distinguishes a service interface
layer, an orchestration layer, a business service layer and an application service layer. The
service interface layer is put as a mediator in between the business process layer and the
application layer. Emphasis is put on abstraction. Application services describe function-
ality exposed by the application layer while business services represent functionality used
to reach business goals by putting them into a service orchestration that implements a
business process.
The outline that is given by [90] also layers business processes, orchestrated services and
enterprise components on top of an application landscape. While stating that user inter-
faces are out of scope for the discussions around a SOA, the reference architecture of [90]

Distributed and Mobile Systems Group 236

9 Related Work

anticipates that a dedicated user interface layer might be needed in the future. It is stated
that, however, such a layer will be placed on-top of a business process layer and access
services offered by this layer or by the basic service layer.
While agreeing with the fact that the design of user interfaces is not specific to the service-
oriented style, the reference architecture of this thesis explicitly considers user interfaces
as application services that do not differ from other back-end services. The control model
is explicitly defined and user interfaces can, as all other application services, solely con-
sume aggregated functionality as it is exposed by the service business process layer. This
way, the integration into established processes and landscapes is facilitated while the
user interface and a composite application are decoupled. This way, the modifiability of
service-oriented solutions can be increased.

Schelp and Winter state that today’s existent work in this area “does not sufficiently ad-
dress the integration layer and its importance for decoupling business related structures
on the one hand, and IT related structures on the other. This decoupling however is
a necessary precondition for buffering changes and supporting alignment, hence for con-
tributing to agility on a sustainable level” [15, p. 68].
In order to overcome this identified lack, the presented concepts of this work heavily em-
phasis the integration layer. This is achieved by introducing an integration layer that re-
groups and standardizes well known integration patterns as they were described by Hohpe
and Woolf in [95]. The pipe-and-filter architecture that is used in [95] is replaced by a
more flexible process-based approach. Here, the basic integration patterns are grouped
into integration services that are orchestrated to integration flows. This way, the func-
tional requirements as they are described by the means of the patterns are enriched with
a functional specification that includes structural interfaces. Additionally, the integration
processes, services and patterns are described together with necessary design decisions
that facilitate the design of the integration layer for arbitrary interaction requirements.

The reference architectures cited above, however, all share the placement of a business
process-like service orchestration on top of services that are distinguished into business
task-focused services and “technical” services, though. These approaches all structure
composite applications at design time on generic and platform-independent levels as well as
address the idea of control centralization. This way, all approaches follow the requirements
of “process dominance” as it is demanded by [15].
However, all these models lack a more detailed description of the single layers. Layers are
merely described on a verbal basis. For instance, neither interface definitions nor platform
requirements are provided. This is why there is necessarily a gap between the design
based on the actual reference architecture and the execution model. The structure of the
presented concepts addresses this issue by defining platform functionality and runtime
requirements already on a platform-independent level that can be transferred to a run-
time architecture.
In contrast to a design-time reference architecture, a “run-time reference architecture”
can also be referred to as an execution environment. In order to close the gap between
design and execution, the reference architecture of chapter 5 incorporates the platform-
independent specifications of an execution environment.
All necessary components and their interfaces are described. So is the interaction of the
components as well as the platform requirements that need to be satisfied in order to
use a basic platform for realizing composite applications. In addition to other reference
architectures, the description of the presented runtime environment addresses issues of
data and context handling within composite applications.

Distributed and Mobile Systems Group 237

9 Related Work

The described distinction of a platform-independent reference architecture and a platform-
specific execution environment builds upon the idea of the Model Driven Architecture
(MDA) (cf. [131]). “The MDA defines an approach to IT system specification that sepa-
rates the specification of system functionality from the specification of the implementation
of that functionality on a specific technology platform. To this end, the MDA defines an
architecture for models that provides a set of guidelines for structuring specifications ex-
pressed as models” [164, p. 3].
The platform-independent reference architecture defines a meta-composite application.
Based on this structure, a system’s functionality can be described by using the design
methodology of chapter 6 in a platform-independent manner. This addresses the concept
of the MDA separating the description of a systems’ functionality from any technology
platform.
The platform-specific reference architecture represents, in turn, a virtual machine (cf. [91,
p. 2-6]) that underlies the platform-specific model of the MDA approach. The deliverable
of the design methodology in conjunction with this description of a runtime framework
forms a platform-specific model in the sense of the MDA. This way, the MDA idea is
incorporated into the concepts that were presented here.
However, there also is a major difference between MDA and these concepts. While the
MDA aims to automate transformation from a platform-independent model to a platform-
specific model through templates and their transformations, the approach that is presented
in this thesis explicitly requires non-automated steps. This occurs during the specification
of a design. Here, constraints imposed by an application are incorporated into the initial
top-down design. Later, the deliverable of the design methodology presents a blueprint
that can be used by the programmer who implements the code of a composite application.
This approach is considered more applicable in the context of evolving heterogeneous
application landscapes with its different systems, languages and constraints.

9.1.2 Service Design and Design Methodologies

In order to conduct projects within large organizations that are built on a reference
architecture, a design methodology with comprehensive, yet objective, design support
is required. These aspects are not considered holistically by the reference architectures
of [4], [30] and [81] resp. [89] as they do not include a methodology for designing composite
applications or single services. However, a methodology that allows the use of a reference
architecture in a given use case is crucial.

In [15], the general requirements towards a methodology for service construction are mo-
tivated. It is stated that services design should follow a business process design (“process
dominance”), the orchestrated services should cover a business process (“process scope”),
borders within business processes should also determine service boundaries (“intersection
points”) and that service interfaces should be derived from higher level business objects
(“interface reference”) (cf. [15, pp. 68f.]).
The design methodology of [11] incorporates all these principles. In addition, the method-
ology is in concert with the reference architecture described ibidiem. However, the main
aspect is the creation of single services. Other aspects of the design of composite applica-
tions (e.g the design of the integration platform, consistency or interaction requirements,
incorporation of design principles) are hardly addressed.
The approach described in this thesis is inspired by the methodology of [11]. The top-

Distributed and Mobile Systems Group 238

9 Related Work

down phase of the methodology of chapter 6 describes how a business process can be used
as an input for identifying several levels of services. This way, the “reference principles”
of [15, pp. 68f.] are all met. However, the rough description of [11] is extended, refined
and aligned with the artifacts that are required by the meta-structure of the reference
architecture. Design metrics are also incorporated into the methodology. This allows a
designer to refine a design in a way that increases modifiability of the composite applica-
tion by applying service-oriented principles.
The subsequent bottom-up section of the design methodology is defined independent of
the methodology of [11] and aims at incorporating platform restrictions into the design of
a composite application.

A crucial part of the design methodology is the derivation of services for mediating enter-
prise services and application services according to the service meta-model that is derived
from the platform-independent reference architecture.
Research focusing on the actual design of the services within service-oriented environ-
ments concentrates on the intrinsic design of services. The methodologies of Reijers [86]
and Erl [11] describe different aspects of service design. Erl introduces the aspect of busi-
ness process centered design as an enhancement of intrinsic service design. This idea is
connected to the concept of BPIOAI since it incorporates business processes as a substan-
tial part of an SOA. This idea is also reflected by the work of Papazoglou in [165] which
utilizes business processes for designing services. However, the actual design of services is
a subjective and rather unstructured task in all of these approaches.
The approach that is described in [86] proposes the idea of decomposing activities into
more granular tasks by splitting a method by the data it processes. It uses the notion of
cohesion as the indicator of whether a split is appropriate or not. In the approach that is
presented in chapter 6, the described principles of splitting service methods by the data
they process is incorporated. However, cohesion is not the basis for such a decision. In
fact, the only property that proved to be significant for service re-use – service granularity
(cf. chapter 4) – is used.
Based on this idea, an algorithm is defined that structures the task of designing services
to mediate business process requirements and application functionality. This algorithm
describes an approach for “assisted design-time composition” (cf. [14, pp. 95ff.]). Eased
applicability is emphasized in the context of large organizations. This is why the approach
exclusively relies on structural service interfaces and functional dependencies of the data
processed. It does not require additional descriptions other than the artifacts of a business
process model (with all its perspectives). More advanced concepts, such as behavioral in-
terfaces or dynamic and semantic service composition, are therefore complementary to
this approach (see below). However, some ideas that underlie semantic service mediation
approaches are also incorporated into the service design algorithm. Essentially, this is the
idea of service interfaces that “contribute” to a required service mediation (cf. [111])

The distinctive feature of the presented methodology is that it combines a holistic com-
posite application design methodology with objectified principles for the design of single
services while not presenting any great obstacles towards its application. This is partially
possible because of the quantitative analysis of service design principles in chapter 4 which
is the only analysis of that kind known to the author. In this respect, the methodology
does not make use of recent principles such as semantic service consumption and auto-
mated service composition. However, it addresses these topics in a more “traditional”way
in order to pave the way for a later application of more advanced principles in the context
of large organizations.

Distributed and Mobile Systems Group 239

9 Related Work

9.1.3 Design Assessment Metrics

Starting in the mid-seventies and lasting until the mid-nineties, intensive research was
conducted on software quality metrics. In order to increase the quality of the metrics
that were defined, [61], for instance, describes a set of properties that complexity metrics
had to fulfill. However, it is observed that the availability of design assessment metrics
for object-oriented systems (e.g. [60]) was not extended over the “object-oriented decade”
although some of these metrics have been identified to be also applicable in a SOA setting.
An example of the definition and application of specialized metrics in the area of service-
oriented computing can be found in [166]. Types of granularity for single services are
introduced as well as metrics for measuring them. However, these metrics are focused
on the analysis of single services and not complete systems. In contrast, [59] proposes a
system-wide metric. It applies the concept of coupling to complete component-oriented
systems.

While the application of metrics to service-oriented systems is sufficiently motivated (e.g.
by [166] and [167]), the lack of accepted special metrics might be due to both, the little
information provided by their application and the complex way to measure them. In order
to allow organizations to apply a new architectural style, such as the service-oriented style,
an objective measure can support an organization to make its own experiences. This is
why the work presented in chapter 3 builds on the work that was done for object-oriented
systems and applies it to service orientation. This is achieved by considering properties of
services that can be observed without knowing about a service’s source code. A multitude
of related metrics with descriptions of their interpretation is provided to enable a designer
to assess a system from a more objective base. Additionally, a new class of metrics is
proposed that address the control-centralization concept of service orientation. While the
concept has been largely described (e.g. by [3] and [4]), the presented metrics are the first
approach towards an objective description of this principle that is known to the author.
All of the described metrics are complementary to any of the approaches that aim to
calculating business values, such as the return-on-investment, for service-oriented systems
(e.g. [168]).

9.2 Complementary Work

While this thesis was being researched, the service-oriented architectural style was widely
perceived as still being developed for application within large organizations. And at the
time this was written, it is still a work in progress.
This thesis aims to pave the way for this architectural style so that it can eventually be
actualized and applied to structures within large organizations. This is why the focus of
this work has been quite broad. Thus, the delineation of the presented concepts is not an
easy task. However, this section discusses a set of related work that was chosen to situate
the presented concepts in the complex domain of service-oriented computing.

9.2.1 Reference Architectures

The platform-independent reference architecture of chapter 5 and its platform-specific
complement of chapter 7 aim at standardizing how composite applications should be

Distributed and Mobile Systems Group 240

9 Related Work

structured in order to apply all service-oriented principles to an application landscape
that exposes its functionality in a heterogeneous way.
A different objective is the motivation behind reference architectures for semantic service
provisioning. Notable work is the Web Service Execution Environment (WSMX) [169] and
the corresponding Web Service Modeling Ontology (WSMO) [170] as well as the Adaptive
Service Grid (ASG) (cf. e.g. [14]). The WSMO/WSMX approach and the core concepts
of the ASG are overlapping reference architectures that address both design-time as well
as run-time issues (cf. [171, p. 14]). In the following, the ASG will be related to the
reference architecture of chapter 5.

The ASG project aims to increase an organization’s flexibility by defining a platform for
automated service composition and enactment. This objective is addressed by introducing
semantic annotations in addition to the syntactic definition of services.
The general principle of the ASG is that “end-user applications or back-end systems act
as service consumers. They send a semantic service request to the [ASG] platform. This
request is syntactically similar to a semantic service description. However, while the
description gives details about a existing service, a semantic service request specifies a
desired service. The platform tries to find a service or composition of services which are
able to meet a posed request” [14, p. 218]. This objective implies a slightly different
understanding of the service-oriented architectural style. Control centralization by the
means of a business process is not a major design objective. Furthermore, an agile and
flexible collaboration among distributed service providers and service consumers is the
postulated interaction scheme.
Implicit in the described interaction scheme is also a slightly different positioning of (back-
end) application systems. An assumption that is contained in the ASG positioning is that
application systems can be freely used as service consumers that comply with the protocol
of the ASG Facade. However, in large organizations that have a strong IT governance,
the flexible adoption of application systems is typically not allowed.

For the sake of connecting application systems to an ASG platform, part of the ASG
definition are so-called proxies. Proxies that are deployed to the ASG platform and not to
the application systems are introduced to allow for the integration of external (so-called
atomic) service providers. They both handle the mediation of data types and, if necessary,
protocol translation for heterogeneous service agents. Proxies are programmatic, remote
representations of external services and can be parameterized by a so-called mapping doc-
ument. Emphasis is put on data transformation via ontology mappings.
It is assumed that “accessible functionalities provide also an according functional inter-
face description” [14, p. 74]. Such interface descriptions are annotated by non-semantic
descriptions during a service-enabling process and the interface is described in a way that
is suitable for realizing a proxy. Subsequently, a semantic service specification is added
to allow for data transformations. Both descriptions are used as input for implementing
the respective proxy. Besides the realization of data mappings via ontology mapping,
an assumption of this model is that functionality of application systems is evocable by
atomic services using an arbitrary service protocol. At this point it becomes obvious that
the proxy concept and the concept of data exchange and data transformation are comple-
mentary approaches. The ASG proxy concept focuses on semantic description and data
transformation, while the data exchange and data transformation layer aims to connect
arbitrary application systems regardless of how functionality is exposed. The latter puts
emphasis on the standardized and process-based integration of arbitrary application sys-
tems. The ASG prerequisite of application systems to expose their functionalities via a

Distributed and Mobile Systems Group 241

9 Related Work

functional interface becomes obsolete for service-enabling application systems by using the
data exchange and data transformation layer. Additionally, it allows for the realization
of arbitrary interaction requirements.

Aside from the differences that arise from addressing different issues, the two approaches
also overlap. Both approaches acknowledge that a service provider that provides a scenario-
specific service might not be immediately available in a service landscape. This is why a
mechanism for composing application (or atomic) services to more problem-oriented ser-
vices is included in both approaches. However, the difference between these approaches is
that the ASG focuses on automatic service composition while the presented reference ar-
chitecture solely incorporates the concept of service composition (which are called service
coordinations in the approach of this thesis) and includes the specification of a runtime
environment for such compositions.
The service coordinations are not generated ad hoc based on semantic annotations but,
rather, are created during design time using a semi-automated algorithm that solely com-
putes non-semantical data such as syntactic interface descriptions and functional depen-
dencies.
In addition to the derivation of the service aggregation, the understanding of an aggre-
gation’s purpose is slightly different. While the ASG model understands its service com-
positions as processes with long-term characteristics57, the service coordinations of this
thesis are considered as multi-resource coordinations with (potentially) short-term charac-
teristics (e.g., ACID transactions). It can be presumed that the ASG service composition
serves both the purpose of the service coordination in addition to the service orchestration
of the presented approach. As a result, no context handling, as established by the data
repository, is required.
This difference is motivated by the different viewpoints that are taken by both projects.
The work presented here had to consider today’s reality of a large organization. There,
business processes are defined outside the IT organization and application systems are
heterogeneous, scantily described and limited in accessibility. The ASG project, on the
other hand, was free to postulate more optimal circumstances as they should be58. Of
course, automated, failure tolerant and“semantic-aware” service provisioning is preferable
over the semi-automated and restricted service coordination used to address constraints.
This is why both concepts should be considered as a sequential evolution. By enabling
the pervasion of the service-oriented style through the concepts of this thesis, more ad-
vanced principles like semantic service provisioning can subsequently be applied. If the
ASG reference architecture would be extended towards short-running service aggregation
with integrated context handling it could later replace the service coordination layer. By
keeping a central control model through a central service consumer for the ASG platform,
the service orchestration layer could coexist with the process enactment means of the ASG
reference architecture while the data exchange and data transformation layer is used as a
provider for the ASG proxies.

Related to the data exchange and data transformation layer is the specification Java Busi-
ness Integration (JBI) of [173]. JBI standardizes an integration platform that manages
integration problems rather than solving integration problems. This is achieved by the

57This is implied by the fact that the reference implementation is realized with the process description
language WS-BPEL [128].

58However, as a lesson learned the project did also postulate that obtaining a formal and exact specifi-
cation of semantics of services is a “laborious task” [172, p. 17]. This supports our argument in chapter
6 that such descriptions are currently not obtainable within large organizations.

Distributed and Mobile Systems Group 242

9 Related Work

definition of a reference architecture for an enterprise service bus (ESB). The JBI stan-
dard defines a central messaging system called the Normalized Message Router (NMR).
Service consumers post requests to that NMR. In-turn, the NMR routes the requests to
components that are registered at the NMR. Components can either be deployed to the
actual JBI-compliant platform (as so-called Service Engines (SEs)) or external services
can be integrated via so-called Binding Components (BC). The actual functionality and
purpose of integrated components is, however, not specified.
The JBI standard defines an architecture of an integration solution that is complementary
to the platform-independent reference architecture of chapter 5. In particular, the data
exchange and data transformation layer can be realized by using the JBI standard. This
is because single integration services can easily be implemented as SEs.
In such an implementation scenario, the messaging principle of the JBI standard can be
used to deliver messages to the single integration services. The implementation logic of
the single integration services can be realized by using an SE-workflow engine. The in-
tegration flows could be realized by e.g. the use of an JBI BPEL-SE (cf. [173, p. 14]).
The scenario-specific parameterization of the integration flows and services would then be
made accessible to the single SEs through Service Units.

Additionally, SEs can act not just as service providers but also as service consumers. This
is why the other components of the reference architecture can be realized in addition to
JBI. In particular, the service coordination, the service orchestration and the eventing sys-
tem components are candidates for SEs. A complementary standard that can be used for
realizing service coordinations is the Service Component Architecture (SCA) (cf. [174]).
If integrated by using a special SCA SE, service coordinations can be defined in a declar-
ative way and improve the maintainability of a composite application. A data repository
could eventually be realized by realizing a JBI Shared Library.
As the JBI standard also includes distributed transaction management, best effort, at-
least-once and exactly-once in order communication semantics throughout the communi-
cation of all components, the standard seems to support the requirements of the reference
architecture better than the SAP NetWeaver platform (cf. chapter 7). However, a more
detailed analysis of the standard would be required in order to define a platform-specific
reference that is aligned with the reference architecture of chapter 5.

An approach to an execution environment that focuses on transactional aspects and dis-
tinguishes an activity, a coordination and a transaction domain is the standard composite
application framework (WS-CAF) of [30]. Here, transactional security and separation of
long-running and short-running processes are incorporated. This approach is, however,
composed of a set of protocols that a runtime environment might use. It does not pro-
vide a design-time reference architecture for composite applications. Therefore, it might
only be used as part of a specification of a platform model that is based on the platform-
independent reference architecture of chapter 5.

Hardly noticed, interesting work has been done by the “CBDI Forum” [175] in the area
of SOAs. Being a closed forum for organizations to share best practices, the company
behind the CBDI forum has developed “A Meta-Model for SOA” (cf. [176]) that was re-
cently released to the public. The presented meta-model incorporates the idea of “process
dominance” (cf. [15]) and service categorization into a meta-model that is suitable for
building SOA-modeling tools. The holistic model focuses on allowing for the description
of relations between business concepts, technical services and their realization. It does
not define a reference architecture for software systems, though. However, the described

Distributed and Mobile Systems Group 243

9 Related Work

concepts and their relations provide a holistic structure that is complementary to the
concepts described in this thesis.
The service-meta model that underlies the design methodology of chapter 4, for instance,
is compatible with the meta-model of [176]. The model of chapter 4 introduces several
types or levels of (aggregated) services. These levels of services could be expressed by the
concept of CBDI Service Domains. Service domains are part of the Policy Package of the
meta-model and confine architectural layers (cf. [176, p. 15]).
If the concepts and findings that are described throughout this thesis would be used for
developing a holistic design tool for composite applications, the CBDI meta-model could
be used as a mechanism for describing, representing and persisting models.

An enterprise-wide “quality software architecture” is described by the Quasar Enterprise
approach in [6]. It focus on engineering application landscapes, rather than applications
themselves, with a service-oriented approach. It describes a governance approach that
supports the creation of application landscapes and governance structures for specific
business architectures while incorporating service-oriented principles. In this scope, the
approach is complementary to the software architecture and design approach described
in this thesis. The approach presented here aims to facilitate the creation of composite
applications in a given application landscape while the Quasar Enterprise approach aims
to influence the application landscape. In this sense, Quasar Enterprise addresses similar
needs as other enterprise architecture frameworks such as the Zachman Framework of [177],
the Open Group Architectural Framework (TOGAF) of [178] or the Integrated Architecture
Framework (IAF) of Cap Gemini Consulting [179] (cf. [6, pp. 82ff.]) do. In addition, it
incorporates service-oriented principles.

Both the Quasar Enterprise approach and the concepts of this thesis share the emphasis
placed on the significance of service orientation as an integration concept. Both describe
the need for a flexible integration platform as an existential part of any service-oriented
application landscape. However, the scopes of these approaches are different. While the
Quasar Enterprise approach describes the required components of a reference architecture
for an integration platform (cf. [6, pp. 234ff.]), this thesis additionally provides functional
specifications for the required components. Additionally, it incorporates the integration ar-
chitecture into a reference architecture for complete composite applications and describes
an application design methodology.
In this sense, Quasar Enterprise provides a more abstract descriptive framework that re-
sides “on top”of the concepts described here (cf. [6, p. 86]), while the JBI specification for
instance describes a runtime framework “below” this work. If the first composite applica-
tions were built using the concepts described here, an approach like Quasar Enterprise’s
would be used to establish service orientation on an enterprise level. This way, service
orientation would be delivered to enterprises through a bottom-up approach. Examin-
ing the experiences during this project, this seems to be the only viable approach. This
is because organizations with a conservative IT approach will most likely only invest in
a service-oriented enterprise architecture if some successful projects have already been
conducted with the architectural style for software systems.

9.2.2 Service Design and Design Methodologies

The design methodology of chapter 6 is a methodology that supports the design of service-
oriented applications. As outlined in chapter 2, service orientation is considered an ad-

Distributed and Mobile Systems Group 244

9 Related Work

vanced principle for application integration. This is why software engineering methodolo-
gies such as the Rational Unified Process (cf. [180]) or the so-called “V-model” (cf. [181])
are complimentary to this integration-centric design approach. While these latter method-
ologies are meant for steering complex projects for the development of – among others
– application systems, is the design methodology of chapter 6 described for allowing the
reuse of such application systems.

The methodology proposed in this thesis utilizes simple measures and more complex met-
rics at defined steps of the development process in order to assess the design as it was
described up to the respective step. The aim is to improve the overall design in an itera-
tive way by identifying design issues early in the process.
In [182], a complementary approach is proposed. The approach of [182] “is preferably
suitable for measures that are relevant for project controlling. Here often the measures
size, time, effort, defects and productivity are mentioned [...]. For these measures our
approach supports automatic measurement and reuse” [182, p. 235]. Having a different
focus, the design methodology proposed in this thesis does not include a framework for
improved project controlling. However, the size measures described in section 3.2.1 could
be included into the approach of [182] to allow making the progress of designing an actual
composite application more transparent.

The authors of the “OASYS” methodology introduce in [183] an integration methodology
that focuses on business process models as an input for the development of integration
systems. As described in [184] is this methodology superior to other integration method-
ologies (such as e.g. ebXML of [185]) in terms of process-alignment and the development
procedure.
The OASYS methodology is based on an architecture of “integration sub-systems” that
are chosen based on an identified coupling mechanism (cf. [184, pp. 22ff.]). Possible cou-
pling mechanisms include data integration and interface processing (cf. [183, p. 3] and
section 2.1). Also a “function-oriented” integration mechanism can be chosen. While this
latter principle is comparable to service-oriented application integration (cf. section 2.1)
does the methodology not include the design of single services or of a hierarchy of services.
Emphasis is put on the analysis of the business process and the identification of according
integration sub-systems. However, the analysis and design of a centralized control model
is not part of the methodology.
The sub-systems of the OASYS methodology are comparable with the integration services
of the data exchange and data transformation layer of section 5.7. But the methodology
does not include a list of design decisions or platform requirements for realizing an in-
tegration design. This why it can be considered more a methodology for the analysis
of business processes with regards to related application integration needs rather than
an integration methodology that involves the design of components and interfaces of a
composite application.

The methodology of chapter 6 includes a service design algorithm that realizes an“assisted
design-time composition” (cf. [14, pp. 95ff.]). This composition aims to mediate enterprise
services which are part of a business process-based orchestration, and application services,
that expose the functionality of application systems. In this sense the service coordination
layer describes how service interface adoption can be realized.
The approach that is thereby taken is again focused on eased applicability. It requires
human interaction and does not include a formal check of the mediating service aggrega-
tion. This is because no additional requirements in terms of input to the methodology

Distributed and Mobile Systems Group 245

9 Related Work

are defined. As discussed above, the ASG approach is complementary to the work in this
matter.

An approach to service interface adoption is made in [122]. There, an algebra and a visual
notation are introduced. These concepts address the problem of describing how behavioral
interfaces can be linked through algebraic expressions. This scope already asserts that
this approach does not rely on the structural interface definitions that typically are the
only described artifacts. This is why it was considered to be not applicable in this thesis’
context.
However, as soon as such descriptions are available and the work that was initiated by [122]
is finished, a mechanism will be available that allows for the adaptation of several services
in a service landscape with a given business process. In such a setting, business processes
that integrate several application systems would be described by a behavioral interface.
If a new requirement expressed by a business process is implemented, the mapping from
the new process to the established one could be described by these mechanisms. This way
the single-service-focused scattering of interfaces (cf. [122, p. 72]), as described by the
service design algorithm of step 3 of the composite application design methodology, could
be extended to include several enterprise services at once.
Additionally, the described mediation could be validated in terms of completeness in a
semi-automated way. However, this is currently only a future option as this complemen-
tary approach is today still unfinished.

Another very interesting approach to service mediation is semantic service mediation. [111]
describes how a one-to-multiple service matching can be automatically derived that can
be used as a mediation between service consumers and service providers. While this
approach does not rely on a behavioral interface, it derives mediations based on semantic
descriptions of the service interfaces. As described above, semantic descriptions are not
considered to be applicable in a first step. However, the approach of [111] applies the idea
of correlation-based service composition to semantic service mediation. In this approach,
a service is included in a service composition if it provides at least one unique output,
the service request can provide all necessary input to the service and the requests are
correlatable (cf. [111, pp. 493f.]). In this sense, this approach applies similar concepts as
the service design methodology of step 3 of chapter 6. But while this approach is based
solely on structural information and functional dependencies, [111] applies the concept
to semantic descriptions of services. As soon as such descriptions are largely available,
the algorithm of chapter 6 could be extended towards semantic service mediation by
incorporating the findings of [111].

A completely different approach towards“a methodology for service architectures” is taken
by Jones in [186]. It starts at the top of a domain (organizational structure, functions)
in order to identify services. In the notion of Jones, “services have been hijacked by tech-
nology vendors trying to sell integration and development tools, which most normally
focus on ‘Business Process’, ‘Orchestration’ or ‘Web Services’” [186, p. 4]. Consequently,
the understanding of a service is about “what the business does and place a boundary
which all parties, but predominately the business can agree on” [186, p. 4]. In this notion,
the methodology aims at understanding and structuring a company’s business and its
enterprise architecture. An enterprise architecture is, according to [186], able to deliver
the services that have been identified on a business level with the understanding outlined
above.
In this notion, the approach of [186] can be more considered a business modeling ap-

Distributed and Mobile Systems Group 246

9 Related Work

proach rather than a design methodology that can be used to align software design with
the service-oriented architectural style. In this sense, the approach is more a service-
focused complementary to the information system description approaches such as the
“Architecture of Integrated Information Systems” (ARIS) (cf. [117]) or the “Semantic Ob-
ject Model” (SOM) (cf. [93]). In this sense, it might be suitable for delivering the starting
point for the design methodology of chapter 6. By also approaching the business-focused
design with service-oriented principles, a more clear definition of necessary functionality
and processes could be delivered and incorporated into composite applications.

9.3 Summary

This thesis describes the application of service orientation in the context of large corpora-
tions. As such, its objective is to analyze existing work in the domain of service orientation
and to fill the gaps between the current state of research and real-life requirements.
This ‘current state of research’ is described above. This thesis adds to this work a unified
framework that consists of a triple with a platform independent reference architecture, a
design methodology and a platform-specific realization of the reference architecture.

The first element of the framework – the platform independent reference architecture –
advances related work in this area towards an holistic applicability of the concepts. This is
achieved by combining basic concepts, design patterns with putting the focus on business
processes as central control instances. In parallel, the reference architecture puts emphasis
on the integration layer which is often not considered in related work.

The second element of the framework – the design methodology for composite applications
– is supported by a set of measures and metrics that are based on metrics known from
object-orientation. This combination allows for supporting large projects in terms of
incorporating service-oriented principles into the solution of real problems.

The last part of this framework is the application of all concepts that are described in
this thesis to an enterprise-scale software platform. While more specialized research often
focuses on implementing the described findings on basic or ‘best-of-breed’ platforms, this
thesis considered the need of large corporations of using established platforms fitting their
needs in terms of IT governance. Together, all these elements propose a unique way of
easing the application of the service-oriented architectural style for large corporations.

Distributed and Mobile Systems Group 247

10 Conclusion

10 Conclusion

This chapter concludes the thesis by summarizing the results and suggesting directions for
future research. Additionally, the findings and experiences made during the dissertation
and the associated project are described.

10.1 Summary

The discussion of the service-oriented architectural style has demonstrated that service-
oriented principles can only partially be captured by an architectural style. Additionally,
the principles that can be formalized are not different than what other architectural styles
have incorporated. Namely, there is the component-oriented style that also incorporates
the ideas of composability, statelessness, contracts and, partially, discoverability. The dif-
ference of the service-oriented architectural style, compared with component architectures,
is much more based on how the components of an architecture are composed. It was de-
termined that these soft design principles are loose coupling, autonomy, abstraction and
reusability.

In order to analyze how soft design principles can be incorporated in the design of a
system, the potential benefits of the service-oriented style were analyzed. It was thus
determined that modifiability is a key promise of service orientation. In order to discuss
how service orientation can contribute to the modifiability of a system, a set of metrics
was introduced. In addition to the discussion of the single elements of the service-oriented
style, the described metrics can be used to assess the design of service-oriented systems.

One soft aspect of service orientation is the reusability of services. It was demonstrated
that large portions of the discussion regarding SOAs focus on reuse and the design of
reusable services. In order to identify the significance of this concept, a statistical analysis
was performed. This analysis revealed that several mechanisms, which are intended to
improve the reusability of services, do not have any significant influence on reusability. The
only design principle that proved significant in terms of reusability was service granularity.
Based on these findings, recommendations for service-design approaches were formulated.

In order to integrate both the hard and soft principles of service orientation into a com-
posite application, a reference architecture for composite applications was defined. The
presented architecture standardizes the development of service-oriented applications in
order to allow organizations to leverage service-oriented principles in actual projects. It
describes both a meta-structure for the design of composite applications and a platform-
independent specification for a virtual machine a composite application can be deployed
on.
The presented reference architecture is aligned around the notion of abstraction. It puts
a business process at the center and uses loosely coupled and autonomous services to
establish a link between the actual business process and the heterogeneous application
landscape. The link to heterogeneous application systems is facilitated by the means of
a flexible integration layer. By emphasizing the reuse of application functionality, service
orientation is introduced as a beneficiary style for application integration that allows for
realizing adaptive applications in established and stable system landscapes. This way,
the reference architecture becomes more applicable for organizations that aim at using

Distributed and Mobile Systems Group 248

10 Conclusion

standard software.

In order to make the reference architecture applicable in actual projects, a design method-
ology for composite applications was presented. This methodology combines a top-down
and bottom-up approach so as to translate an actual business process into the design of
a composite application that is based on the described reference architecture.
The methodology includes a service design algorithm that focuses on minimal require-
ments in terms of its input while incorporating the findings of the statistical analysis on
reusable service design. The methodology also utilizes several of the identified metrics for
designing single components of the reference architecture in a given context.
By combining a top-down, business-process driven design with a constraints-driven bottom-
up approach that focuses on reusing functionality distributed over heterogeneous applica-
tion systems, building standardized composites becomes applicable for large organizations.

The reference architecture allows for a composite application design that considers an
actual set of application systems while remaining independent from the platform on which
a composite will be realized. In order to describe how to implement a design created using
the described methodology, a platform-specific mapping for the reference architecture was
defined. This mapping targeted SAP NetWeaver as the actual run-time platform. By
describing the realization of the single components of the reference architecture on this
platform, the design of composite applications can be implemented.

A case study was presented in order to demonstrate the applicability of the presented
concepts. Based on a business process that was chosen due to business needs, the study
described the suitability of the service-oriented architectural style for the realization of the
actual requirements. Subsequently, the design methodology was applied to describe the
design of a composite application in the heterogeneous environment in which the business
process was used.
Using the previously identified metrics for service orientation, the design was then assessed.
The actual realization of the design on the target platform SAP NetWeaver was also
described. This demonstrated that the service-oriented architectural style can be applied
in the context of heterogeneous real-world application landscapes.

10.2 Future Work

This thesis analyzed how architectural principles can be applied in the constrained, real
world. It focused on deriving tangible descriptions of benefits that are associated with
the service-oriented architectural style. By defining both a reference architecture and a
methodology, practitioners are able to apply the service-oriented style. By developing
this during a non-research industry project, the presented concepts had to accept certain
pre-conditions and limited possibilities regarding requirement engineering. Notably, there
was a lack of formal methods for process modeling. This opens a path for future work.

This thesis should be understood as “grounding” concepts that are discussed in academia
today. Its aim is to pave the way for the broad application of service orientation. When the
presented concepts have created a certain level of awareness about the concept in addition
to a certain pervasion of the concept, a bottom-up loop should be entered. By entering into
such an iteration, the described principles can be used to develop further concepts that
integrate recent findings in the area of business process management (BPM) and semantic

Distributed and Mobile Systems Group 249

10 Conclusion

service provisioning. If combined with a formal modeling and model-checking approach,
the described concepts might be used to realize a semi-automated development approach.
In particular, the mapping from workflow and interaction patterns to components of the
reference architecture seems promising. Integrated into one tool, this combination might
be beneficial.

In general, tool support is a broad area of work that should be entered on the basis
of this thesis. First, there is the requirement for integrated development environments.
By incorporating the notion of modeling methods, the described design methodology,
especially its service design algorithm, can be supported by tools. This would certainly
ease the application of the service-oriented style even more.

Work that focuses on runtime platforms should also be performed. As described, the
reference architecture can be mapped to any arbitrary platform that supports its func-
tional requirements. Experience, however, teaches that using a fragmented set of tools
and platforms (even if they are marketed by one vendor under one common name) hinders
actual projects. This is not due to conceptual deficits. Few technical issues of a platform
can negatively impact projects very heavily. This is why an integrated platform that is
aligned with the described reference architecture would increase efficiency and help the
service-oriented architectural style to be broadly accepted in the context of industry en-
terprises. A promising candidate for such a realization would be a JBI-based enterprise
service bus.

10.3 Conclusion

Without further structuring, service orientation as a style for software architectures seems
to be hardly applicable. In particular if the expected benefits should be incorporated,
additional guidelines and structure is needed. This is why the presented concepts are
required in the context of big organizations.
It was observed that even small modeling input requirements proved to be a real challenge
for an organization. The level of requirements that is necessary for applying the presented
principles is achievable, though. This is how the application of the presented principles
positively influences projects. If, for instance, the reference architecture should be used,
there is no way to not explicitly describe a business process.
The fact that this description is then even used (in a modified way) during runtime,
greatly influences the value organizations assign to modeling and structured requirements
engineering. For this reason, the application of the service-oriented architectural style
generates advantages that exceed the benefits that can be achieved by the style itself.

Distributed and Mobile Systems Group 250

References

References

[1] B. Zrimsek and D. Prior, “Comparing the TCO of cen-
tralized vs. decentralized ERP,” Gartner, Tech. Rep., Jan-
uary 2003, last accessed: December 10, 2008. [Online]. Avail-
able: http://www.bsg-global.com/assets/autodocs/insight/030124 Comparing%
20the%20TCO%20of%20Centralized%20vs.%20Decentralized%20ERP.pdf

[2] A. Nori and R. Jain, “Composite applications: Process based application develop-
ment.” in TES, ser. Lecture Notes in Computer Science, A. P. Buchmann, F. Casati,
L. Fiege, M. Hsu, and M.-C. Shan, Eds., vol. 2444. Springer, 2002, pp. 48–53.

[3] D. Garlan, R. Allen, and J. Ockerbloom, “Architectural mismatch or why it’s hard
to build systems out of existing parts,” in Proceedings of the 17th International
Conference on Software Engineering (ICSE’1995), Toronto; Canada, 1995, pp. 179–
185.

[4] D. S. Linthicum, Next Generation Application Integration. Boston, MA; USA:
Addison-Wesley, 2004.

[5] M. P. Papazoglou, “Service-oriented computing: Concepts, characteristics and di-
rections.” in Proceedings of the 4th International Conference on Web Information
Systems Engineering (WISE’2003), 10-12 December 2003, Rome; Italy. IEEE
Computer Society, 2003, pp. 3–12.

[6] G. Engels, A. Hess, B. Humm, O. Juwig, M. Lohmann, J.-P. Richter, M. Voß,
and J. Willkomm, Quasar Enterprise - Anwendungslandschaften serviceorientiert
gestalten. dpunkt Verlag, 2008, vol. 1.

[7] SAP, “SAP Enterprise SOA,” Website, 2007, last accessed: December 10, 2008.
[Online]. Available: http://www.sap.com/platform/esoa/index.epx

[8] International Business Machines (IBM), “IBM SOA platform,” Website, 2007,
last accessed: December 10, 2008. [Online]. Available: http://www-306.ibm.com/
software/solutions/soa/

[9] Oracle, “Oracle SOA Platform,” Website, last accessed: December 10,
2008. [Online]. Available: http://www.oracle.com/technologies/soa/index.html?
SC=NA05060039C0.GCM.7001.SOA.soa.br

[10] IONA, “IONA SOA Suite,” Website, 2007, last accessed: December 10, 2008. [On-
line]. Available: http://open.iona.com/?gclid=CNOwhZrpi44CFQ0eEgodmhV7EQ

[11] T. Erl, Servcie-Oriented Architecture, ser. The Prentice Hall service-oriented com-
puting series. Upper Saddle River, NJ; USA: Prentice Hall, Inc., February 2006,
vol. Fourth Printing.

[12] H. Cervantes, L. Imag, and F. Hall, “Technical Concepts of Service Orientation,”
Service-Oriented Software System Engineering: Challenges and Practices. Idea
Group Publishing, vol. 47, 2005.

[13] P. Fremantle, S. Weerawarana, and R. Khalaf,“Enterprise services,”Commun. ACM,
vol. 45, no. 10, pp. 77–82, 2002.

Distributed and Mobile Systems Group 251

http://www.bsg-global.com/assets/autodocs/insight/030124_Comparing%20the%20TCO%20of%20Centralized%20vs.%20Decentralized%20ERP.pdf
http://www.bsg-global.com/assets/autodocs/insight/030124_Comparing%20the%20TCO%20of%20Centralized%20vs.%20Decentralized%20ERP.pdf
http://www.sap.com/platform/esoa/index.epx
http://www-306.ibm.com/software/solutions/soa/
http://www-306.ibm.com/software/solutions/soa/
http://www.oracle.com/technologies/soa/index.html?SC=NA05060039C0.GCM.7001.SOA.soa.br
http://www.oracle.com/technologies/soa/index.html?SC=NA05060039C0.GCM.7001.SOA.soa.br
http://open.iona.com/?gclid=CNOwhZrpi44CFQ0eEgodmhV7EQ

References

[14] D. Kuropka, P. Tröger, S. Staab, and M. Weske, Eds., Semantic Service Provisioning.
Berlin, Germany: Springer, 2008.

[15] J. Schelp and R. Winter, “Towards a methodology for service construction,” in
Proceedings of the 40th Hawaii International International Conference on Systems
Science (HICSS-40 2007), , 3-6 January 2007, Waikoloa, Big Island, HI; USA.
IEEE Computer Society, 2007, pp. 64–70.

[16] H. Hofmeister and G. Wirtz, “A pattern taxonomy for business process integration
oriented application integration,” in Proceedings of the 18th International Confer-
ence on Software Engineering & Knowledge Engineering (SEKE’2006), San Fran-
cisco Bay, CA; USA, K. Zhang, G. Spanoudakis, and G. Visaggio, Eds., July 5-7
2006, pp. 114–119.

[17] ——, “Approaching a methodology for designing composite applications integrat-
ing legacy applications using an architectural framework,” in Proceedings of the
EMISA Conference 2006 – Methoden, Konzepte und Technologien für die Entwick-
lung von dienstbasierten Informationssystemen, Beiträge des Workshops der GI-
Fachgruppe Entwicklungsmethoden für Informationssysteme und deren Anwendung
(EMISA’2006), Hamburg; Germany, ser. LNI, M. Weske and M. Nüttgens, Eds.,
vol. 95. GI, October 2006.

[18] ——, “Using patterns to design composite applications,” in Proceedings of the In-
ternational Conference on Enterprise Information Systems and Web Technologies
(EISWT’2007), Orlando, FL; USA, 2007.

[19] ——, “A multi-layered framework for pattern-aided composite application design,”
in Proceedings of the 11th World Multi-Conference on Systemics, Cybernetics and
Informatics (WMSCI’2007), Orlando, FL; USA, vol. 1, 2007, pp. 54–60.

[20] ——, “Designing a platform-independent use-case for a composite application using
a reference architecture,” in Proceedings of the 19th International Conference on
Software Engineering & Knowledge Engineering (SEKE’2007), Boston, MA; USA,
July 2007.

[21] ——, “Supporting service-oriented design with metrics,” in Proceedings of the
12th International IEEE Enterprise Distributed Object Computing Conference
(EDOC’2008), Munich; Germany. IEEE Computer Society, September 2008, pp.
191–200.

[22] ——, “Applying service-orientation through a reference architecture,” Journal of
Systemics, Cybernetics and Informatics, vol. 6, no. 1, pp. 80 – 90, 2008.

[23] G. D. Abowd, R. Allen, and D. Garlan,“Formalizing style to understand descriptions
of software architecture,”ACM Trans. Softw. Eng. Methodol., vol. 4, no. 4, pp. 319–
364, 1995.

[24] N. Medvidovic and R. N. Taylor, “A classification and comparison framework for
software architecture description languages.” IEEE Trans. Software Eng., vol. 26,
no. 1, pp. 70–93, 2000.

[25] M. Broy, A. Deimel, J. Henn, K. Koskimies, F. Plasil, G. Pomberger, W. Pree,
M. Stal, and C. A. Szyperski, “What characterizes a (software) component?” Soft-
ware - Concepts and Tools, vol. 19, no. 1, pp. 49–56, 1998.

Distributed and Mobile Systems Group 252

References

[26] M. Fowler, “Inversion of Control Containers and the Dependency Injection
pattern,” vol. 23, 2004, last accessed: December 10, 2008. [Online]. Available:
http://www.itu.dk/courses/VOP/E2006/8 injection.pdf

[27] “SOAP version 1.2 part 1: Messaging framework,” W3C, April 2007, last
accessed: December 10, 2008. [Online]. Available: http://www.w3.org/TR/2007/
REC-soap12-part1-20070427/

[28] K. P. Birman, “Like it or not, web services are distributed objects,”Commun. ACM,
vol. 47, no. 12, pp. 60–62, 2004.

[29] W. Vogels, “Web services are not distributed objects,” IEEE Internet Computing,
vol. 7, pp. 59–66, November/December 2003.

[30] D. Bunting, M. Chapman, O. Hurley, M. Little, E. N. J. Mischkinsky, J. Webber, and
K. Swenson, “Web services composite application framework (WS-CAF) ver. 1.0,”
Arjuna Technologies Limited, Fujitsu Software, IONA Technologies PLC, Oracle
Corp and Sun Microsystems, Tech. Rep., 2003.

[31] C. Peltz, “Web services orchestration and choreography.” IEEE Computer, vol. 36,
no. 10, pp. 46–52, 2003.

[32] D. Garlan, R. T. Monroe, and D. Wile, “ACME: an architecture description inter-
change language.” in Proceedings of the 1997 conference of the Centre for Advanced
Studies on Collaborative, J. H. Johnson, Ed. IBM, 1997, p. 7.

[33] J. S. Kim and D. Garlan, “Analyzing architectural styles,” January 2007, submitted
to Elsevier in Jan. 2007; last accessed: December 2008. [Online]. Available:
http://acme.able.cs.cmu.edu/pubs/uploads/pdf/jss2006.pdf

[34] The ACME Project, Carnegie Mellon University’s ABLE Project, 2007, last accessed:
December 10, 2008. [Online]. Available: http://acme.able.cs.cmu.edu/index.html

[35] A. Yanchuk, A. Ivanyukovich, and M. Marchese,“A lightweight formal framework for
service-oriented applications design.” in Proceedings of the 3rd International Confer-
ence on Service-Oriented Computing (ICSOC’2005), Amsterdam; The Netherlands,
ser. Lecture Notes in Computer Science, B. Benatallah, F. Casati, and P. Traverso,
Eds., vol. 3826. Springer, 2005, pp. 545–551.

[36] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, and C. Ferris, “Web
service architecture,” 2004, last accessed: December 10, 2008. [Online]. Available:
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/wsa.pdf

[37] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns. Addison
Wesley, 1996.

[38] D. Garlan, S.-W. Cheng, and A. J. Kompanek, “Reconciling the needs of architec-
tural description with object-modeling notations,” Sci. Comput. Program., vol. 44,
no. 1, pp. 23–49, 2002.

[39] OMG Unified Modelling Langauge Specification, Object Management Group, 2003,
last accessed: December 10, 2008. [Online]. Available: http://www.omg.org/docs/
formal/03-03-01.pdf

Distributed and Mobile Systems Group 253

http://www.itu.dk/courses/VOP/E2006/8_injection.pdf
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://acme.able.cs.cmu.edu/pubs/uploads/pdf/jss2006.pdf
http://acme.able.cs.cmu.edu/index.html
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/wsa.pdf
http://www.omg.org/docs/formal/03-03-01.pdf
http://www.omg.org/docs/formal/03-03-01.pdf

References

[40] W.-T. Tsai, C. Fan, Y. Chen, R. A. Paul, and J.-Y. Chung, “Architecture classi-
fication for SOA-based applications.” in Proceedings of the 9th IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’2006),
April 2006, Gyeongju; Korea. IEEE Computer Society, April 2006, pp. 295–302.

[41] C. Herault, G. Thomas, and P. Lalanda, “Mediation and enterprise service bus: A
position paper,” in Proceedings of the First International Workshop on Mediation
in Semantic Web Service (MEDIATE’2005), Amsterdam; The Netherlands, 2005.

[42] M.-T. Schmidt, B. Hutchison, P. Lambros, and R. Phippen, “The enterprise service
bus: making service-oriented architecture real,” IBM Syst. J., vol. 44, no. 4, pp.
781–797, 2005.

[43] G. Wiederhold, “Mediators in the architecture of future information systems.” IEEE
Computer, vol. 25, no. 3, pp. 38–49, 1992.

[44] M. Dumas, T. Fjellheim, S. Milliner, and J. Vayssière, “Event-based coordination of
process-oriented composite applications.”in Business Process Management, W. M. P.
van der Aalst, B. Benatallah, F. Casati, and F. Curbera, Eds., vol. 3649, 2005, pp.
236–251.

[45] A. Einstein, “Not everything that can be counted counts, and not everything that
counts can be counted.” last accessed: December 10, 2008. [Online]. Available:
http://www.quotationspage.com/quote/26950.html

[46] IEEE Standard 729-1983: IEEE Standard Glossary of Software Engineering Termi-
nology. IEEE Computer Society, 1983.

[47] IEEE Standard Glossary of Software Engineering Terminology/IEEE Std 610.12-
1990. IEEE Computer Society, 1991.

[48] L. Dobrica and E. Niemelä, “A survey on software architecture analysis methods.”
IEEE Trans. Software Eng., vol. 28, no. 7, pp. 638–653, 2002.

[49] ISO/IEC, “Information technology – software product evaluation,” International Or-
ganization of Standardisation and International Electrotechnical Commission, Tech.
Rep., 2004.

[50] K. Lee and S. J. Lee, “A quantitative evaluation model using the ISO/IEC 9126
quality model in the component based development process.” in ICCSA (4), ser.
Lecture Notes in Computer Science, M. L. Gavrilova, O. Gervasi, V. Kumar, C. J. K.
Tan, D. Taniar, A. Laganà, Y. Mun, and H. Choo, Eds., vol. 3983. Springer, 2006,
pp. 917–926.

[51] P. Bengtsson, N. H. Lassing, J. Bosch, and H. van Vliet, “Architecture-level mod-
ifiability analysis (ALMA).” Journal of Systems and Software, vol. 69, no. 1-2, pp.
129–147, 2004.

[52] F. Cristian, “Understanding fault-tolerant distributed systems,” Commun. ACM,
vol. 34, no. 2, pp. 56–78, 1991.

[53] A. Abran, A. Khelifi, W. Suryn, and A. Seffah, “Usability meanings and interpre-
tations in ISO standards,” Software Quality Control, vol. 11, no. 4, pp. 325–338,
2003.

Distributed and Mobile Systems Group 254

http://www.quotationspage.com/quote/26950.html

References

[54] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration,” Open Grid
Service Infrastructure WG, Global Grid Forum, June, vol. 22, p. 2002, 2002.

[55] L. Bratthall and P. Runeson, “A taxonomy of orthogonal properties of software ar-
chitecture,”Proc. 2nd Nordic Software Architecture Workshop. Ronneby, Aug, 1999.

[56] N. F. Schneidewind, “Software metrics model for quality control.” in IEEE MET-
RICS. IEEE Computer Society, 1997, pp. 127–136.

[57] T. J. McCabe, “A complexity measure.” IEEE Trans. Software Eng., vol. 2, no. 4,
pp. 308–320, 1976.

[58] L. C. Briand, S. Morasca, and V. R. Basili, “Property-based software engineering
measurement,” IEEE Trans. Softw. Eng., vol. 22, no. 1, pp. 68–86, 1996.

[59] H. Washizaki, T. Nakagawa, Y. Saito, and Y. Fukazawa, “A coupling-based com-
plexity metric for remote component-based software systems toward maintainability
estimation,” in Proceedings of the 13th Asia Pacific Software Engineering Confer-
ence, Bangalore; India. Washington, DC, USA: IEEE Computer Society, 2006, pp.
79–86.

[60] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design.”
IEEE Trans. Software Eng., vol. 20, no. 6, pp. 476–493, 1994.

[61] E. J. Weyuker,“Evaluating software complexity measures,”IEEE Trans. Softw. Eng.,
vol. 14, no. 9, pp. 1357–1365, 1988.

[62] J. S. Poulin, “The business case for software reuse: Reuse metrics, economic models,
organizational issues, and case studies,” in ICSR, ser. Lecture Notes in Computer
Science, M. Morisio, Ed., vol. 4039. Springer, 2006, p. 439.

[63] S. Karunanithi and J. Bieman, “Candidate reuse metrics for object oriented and
Ada software,” Proceedsings of the 1st International Software Metrics Symposium,
Baltimore, MD; USA, pp. 120–128, May 1993.

[64] N. F. Schneidewind, “Analysis of error processes in computer software,” in Proceed-
ings of the international conference on Reliable software. New York, NY, USA:
ACM Press, 1975, pp. 337–346.

[65] W. T. Tsai, D. Zhang, Y. Chen, H. Huang, R. A. Paul, and N. Liao, “A software
reliability model for web services,” in Proceedings of the 8th IASTED International
Conference on Software Engineering and Applications (IASTED’2004), Cambridge,
MA; USA, M. H. Hamza, Ed. IASTED/ACTA Press, 2004, pp. 144–149.

[66] D. Hamlet, D. Mason, and D. Woit, “Theory of software reliability based on compo-
nents,” in Proceedings of the 23rd International Conference on Software Engineering
(ICSE’2001), Toronto; Canada. Washington, DC, USA: IEEE Computer Society,
2001, pp. 361–370.

[67] H. Singh, V. Cortellessa, B. Cukic, E. Gunel, and V. Bharadwaj, “A bayesian ap-
proach to reliability prediction and assessment of component based systems,” in
Proceedings of the 12th International Symposium on Software Reliability Engineer-
ing (ISSRE’2001), Hong Kong; China. IEEE Computer Society, 2001, pp. 12–21.

Distributed and Mobile Systems Group 255

References

[68] R. Tripathi and R. Mall, “Early stage software reliability and design assess-
ment,” in Proceedings of the 12th Asia Pacific Software Engineering Conference
(APSEC’2005), Taipei; Taiwan. IEEE Computer Society, 2005, pp. 619–628.

[69] A. Dimov and S. Punnekkat, “On the estimation of software reliability of component-
based dependable distributed systems,” in QoSA/SOQUA, ser. Lecture Notes in
Computer Science, R. Reussner, J. Mayer, J. A. Stafford, S. Overhage, S. Becker,
and P. J. Schroeder, Eds., vol. 3712. Springer, 2005, pp. 171–187.

[70] V. Cortellessa, H. Singh, and B. Cukic, “Early reliability assessment of UML based
software models,” in Proceedings of the 3rd international workshop on Software and
performance (WOSP’2002), Rome; Italy, 2002, pp. 302–309.

[71] A. S. Tanenbaum and M. van Steen, Distributed Systems - Principals and Paradigms.
Upper Saddle River, NJ USA: Prentice Hall, Inc., 2001.

[72] J. Gray and A. Reuther, Transaction Processing: Concepts and Techniques. San
Mateo, CA USA: Morgan Kaufmann, 1992.

[73] P. Grefen, J. Vonk, and P. Apers, “Global transaction support for workflow manage-
ment systems: from formal specification to practical implementation,” The VLDB
Journal, vol. 10, no. 4, pp. 316–333, 2001.

[74] K. M. Chandy and L. Lamport, “Distributed snapshots: determining global states
of distributed systems,” ACM Trans. Comput. Syst., vol. 3, no. 1, pp. 63–75, 1985.

[75] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed control,” Commun.
ACM, vol. 17, no. 11, pp. 643–644, 1974.

[76] Y. Liu, I. Gorton, L. Bass, C. Hoang, and S. Abanmi, “MEMS: A method for
evaluating middleware architectures.” in QoSA, ser. Lecture Notes in Computer
Science, C. Hofmeister, I. Crnkovic, and R. Reussner, Eds., vol. 4214. Springer,
2006, pp. 9–26.

[77] R. Kazman, M. H. Klein, M. Barbacci, T. A. Longstaff, H. F. Lipson, and S. J. Car-
rière, “The architecture tradeoff analysis method.” in Proceedings of the 4th Interna-
tional Conference on Engineering of Complex Computer Systems (ICECCS’1998),
Monterey, CA; USA. IEEE Computer Society, 1998, pp. 68–78.

[78] M. Papazoglou and W. Van Den Heuvel, “Service-oriented design and development
methodology,” International Journal of Web Engineering and Technology, vol. 2,
no. 4, pp. 412–442, 2006.

[79] A. Erradi, S. Anand, and N. N. Kulkarni, “SOAF: An architectural framework for
service definition and realization,” in Proceedings of the 2006 IEEE International
Conference on Services Computing (SCC’2006), Chicago, IL; USA, 2006, pp. 151–
158.

[80] L. H. Etzkorn, W. E. Hughes, and C. G. Davis, “Automated reusability quality
analysis of OO legacy software,” Information & Software Technology, vol. 43, no. 5,
pp. 295–308, 2001.

Distributed and Mobile Systems Group 256

References

[81] C. Hentrich and U. Zdun, “Patterns for process-oriented integration in service-
oriented architectures,” in Proceedings of 11th European Conference on Pattern Lan-
guages of Programs (EuroPLoP’2006),Irsee Monastery; Germany, 2006.

[82] S. R. Chidamber and C. F. Kemerer, “Towards a metrics suite for object oriented
design,” in OOPSLA ’91: Conference proceedings on Object-oriented programming
systems, languages, and applications. New York, NY, USA: ACM Press, 1991, pp.
197–211.

[83] L. C. Briand, J. W. Daly, and J. Wüst, “A unified framework for cohesion measure-
ment in object-oriented systems,” Empirical Software Engineering, vol. 3, no. 1, pp.
65–117, 1998.

[84] B. Henderson-Sellers, Object-oriented metrics: measures of complexity. Prentice-
Hall, Inc. Upper Saddle River, NJ, USA, 1995.

[85] L. Walton, “Lack of cohesion in methods,” last accessed: December 10,
2008. [Online]. Available: http://eclipse-metrics.sourceforge.net/descriptions/
LackOfCohesionInMethods.html

[86] H. Reijers, “A cohesion metric for the definition of activities in a workflow process,”
in CaiSE/IFIP8.1 International Workshop on Evaluation of Modeling Methods in
Systems Analysis and Desing (EMMSAD’2003), Velden; Austria., 2003.

[87] C. Legner and T. Vogel, “Design principles for B2B services - an evaluation of two al-
ternative service designs,” in Proceedings of the 2007 IEEE International Conference
on Services Computing (SCC’2007), Salt Lake City, UT; USA. IEEE Computer
Society, 2007, pp. 372–379.

[88] R. Winter and R. Fischer, “Essential layers, artifacts, and dependencies of enterprise
architecture,” in Workshops of the 10th IEEE International Enterprise Distributed
Object Computing Conference (EDOC’2006), Hong Kong; China. IEEE Computer
Society, 2006, p. 30.

[89] U. Zdun, C. Hentrich, and S. Dustdar,“Modeling process-driven and service-oriented
architectures using patterns and pattern primitives,”ACM Trans. Web, vol. 1, no. 3,
p. 14, 2007.

[90] A. Arsanjani and A. Allam, “Service-oriented modeling and architecture for real-
ization of an SOA,” in Proceedings of the 2006 IEEE International Conference on
Services Computing (SCC’2006), Chicago, IL; USA, 2006, p. 521.

[91] J. Miller and J. Mukerji, “OMG, MDA Guide Version 1.0.1,” Whitepaper, 2003,
last accessed: December 10, 2008. [Online]. Available: http://www.omg.org/docs/
omg/03-06-01.pdf,

[92] S. Lippe, U. Greiner, and A. Barros, “A survey on state of the art to facilitate
modelling of cross-organisational business processes,” in Proceedings of the 2nd GI
Workshop XML4BPM, M. Nüttgens and J. Mendling, Eds., March 2005, pp. 7–22.

[93] O. K. Ferstl and E. J. Sinz, Grundlagen der Wirtschaftsinformatik, 4th ed.
München, GER: Oldenburg Verlag, 2001.

Distributed and Mobile Systems Group 257

http://eclipse-metrics.sourceforge.net/descriptions/LackOfCohesionInMethods.html
http://eclipse-metrics.sourceforge.net/descriptions/LackOfCohesionInMethods.html
http://www.omg.org/docs/omg/03-06-01.pdf,
http://www.omg.org/docs/omg/03-06-01.pdf,

References

[94] D. Martin, D. Wutke, T. Scheibler, and F. Leymann, “An EAI pattern-based com-
parison of spaces and messaging,” in Proceedings of the 11th IEEE International En-
terprise Distributed Object Computing Conference (EDOC’2007), Annapolis, MD;
USA. IEEE Computer Society, 2007.

[95] G. Hohpe and B. Woolf, Enterprise Integration Patterns, ser. The Addison Wesley
Signature Series. Pearson Education Inc., 2004.

[96] N. Russell, A. H. M. ter Hofstede, D. Edmond, and W. M. P. van der Aalst, “Work-
flow data patterns: identification, representation and tool support,” in ER, ser.
Lecture Notes in Computer Science, L. M. L. Delcambre, C. Kop, H. C. Mayr,
J. Mylopoulos, and O. Pastor, Eds., vol. 3716. Springer, 2005, pp. 353–368.

[97] W.-J. van den Heuvel, J. van Hillegersberg, and M. P. Papazoglou, “A methodology
to support web-services development using legacy systems,” in Proceedings of the
IFIP TC8 / WG8.1 Working Conference on Engineering Information Systems in
the Internet Context. Deventer, The Netherlands, The Netherlands: Kluwer, B.V.,
2002, pp. 81–103.

[98] A. P. Barros, M. Dumas, and A. H. M. ter Hofstede, “Service interaction patterns,”
in Business Process Management, W. M. P. van der Aalst, B. Benatallah, F. Casati,
and F. Curbera, Eds., vol. 3649, 2005, pp. 302–318.

[99] P. Viĺım, “Batch processing with sequence dependent setup times: new results,”
in Proceedings of the 4th Workshop of Constraint Programming for Decisionand
Control (CPDC’2002), Gliwice; Poland, 2002.

[100] R. Kossmann, “An architectural framework for semantic inter-operability in dis-
tributed object systems,” in Business Object Design and Implementation, J. Suther-
land, D. Patel, C. Casanave, G. Hollowll, and J. Miller, Eds. Springer- Verlag
London, 1995.

[101] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-
oriented software architecture: A system of patterns. John Wiley & Sons, Inc.
New York, NY, USA, 1996.

[102] S. K. Stegemann, B. Funk, and T. Slotos, “A blackboard architecture for workflows,”
in CAiSE Forum, ser. CEUR Workshop Proceedings, J. Eder, S. L. Tomassen, A. L.
Opdahl, and G. Sindre, Eds., vol. 247. CEUR-WS.org, 2007.

[103] B. Hofreiter, C. Huemer, and K.-D. Naujok, “UN/CEFACT’s business
collaboration framework - motivation and basic concepts,” 2004. [Online]. Available:
citeseer.ist.psu.edu/hofreiter04uncefacts.html

[104] N. Carriero and D. Gelernter, “Linda in context,” Commun. ACM, vol. 32, no. 4,
pp. 444–458, 1989.

[105] JS - JavaSpacesTM Service Specification, Sun Microsystems, Inc., 2002, last
accessed: December 10, 2008. [Online]. Available: http://www.cs.princeton.edu/
courses/archive/fall99/cs597b/docs/jxpdoc1 0/specs/js-spec/js.pdf

[106] R. Lämmel, “A semantical approach to method-call interception,” in Proceed-
ings of the 1st International Conference on Aspect-Oriented Software Development
(AOSD’2002), Twente; The Netherlands. ACM Press, Apr. 2002, pp. 41–55.

Distributed and Mobile Systems Group 258

citeseer.ist.psu.edu/hofreiter04uncefacts.html
http://www.cs.princeton.edu/courses/archive/fall99/cs597b/docs/jxpdoc1_0/specs/js-spec/js.pdf
http://www.cs.princeton.edu/courses/archive/fall99/cs597b/docs/jxpdoc1_0/specs/js-spec/js.pdf

References

[107] G. Kaufman, “Pragmatic ECAD data integration,” SIGDA Newsl., vol. 20, no. 1,
pp. 60–81, 1990.

[108] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros,
“Workflow patterns,” Distributed and Parallel Databases, vol. 14, no. 1, pp. 5–51,
2003.

[109] D. D. Chamberlin and R. F. Boyce, “Sequel: A structured english query language,”
in Proceedings of 1974 ACM-SIGMOD Workshop on Data Description, Access and
Control, Ann Arbor, Michigan, May 1-3, 1974, 2 Volumes, R. Rustin, Ed. ACM,
1974, pp. 249–264.

[110] RosettaNet Partner Interface Processes. [Online]. Available: http://www.
rosettanet.org/RosettaNet/Rooms/DisplayPages/LayoutInitial?Container=com.
webridge.entity.Entity[OID[9A6EEA233C5CD411843C00C04F689339]]

[111] L. Zeng, B. Benatallah, G. T. Xie, and H. Lei, “Semantic service mediation,” in
ICSOC, ser. Lecture Notes in Computer Science, A. Dan and W. Lamersdorf, Eds.,
vol. 4294. Springer, 2006, pp. 490–495.

[112] G. Decker, “Bridging the gap between business processes and existing it function-
ality,” in Proceedings of the First International Workshop on Design of Service-
Oriented Applications (WDSOA’2005), 2005.

[113] A. Charfi and M. Mezini, “Hybrid web service composition: business processes
meet business rules,” in Proceedings of the 2nd International Conference on Service-
Oriented Computing (ICSOC’2004),New York, NY; USA, M. Aiello, M. Aoyama,
F. Curbera, and M. P. Papazoglou, Eds. ACM, 2004, pp. 30–38.

[114] F. Rosenberg and S. Dustdar, “Business rules integration in BPEL - a service-
oriented approach,” in CEC. IEEE Computer Society, 2005, pp. 476–479.

[115] C. Nagl, F. Rosenberg, and S. Dustdar, “VIDRE - a distributed service-oriented
business rule engine based on RuleML,” in Proceedings of the 10th IEEE Interna-
tional Enterprise Distributed Object Computing Conference (EDOC’2006), Hong
Kong; China. IEEE Computer Society, 2006, pp. 35–44.

[116] G. Wagner, G. Antoniou, S. Tabet, and H. Boley, “The abstract syntax of RuleML
– towards a general web rule language framework,” in Web Intelligence. IEEE
Computer Society, 2004, pp. 628–631.

[117] A. W. Scheer, ARIS - Vom Geschäftsprozess zum Anwendungssystem, 3rd ed.
Berlin, GER: Springer, 1998.

[118] W. M. P. van der Aalst, J. Desel, and E. Kindler, “On the semantics of EPCs:
A vicious circle,” in EPK, M. Nüttgens and F. J. Rump, Eds. GI-Arbeitskreis
Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessketten, 2002, pp. 71–
79.

[119] B. Benatallah, M.-S. Hacid, A. Léger, C. Rey, and F. Toumani, “On automating
web services discovery,” VLDB J., vol. 14, no. 1, pp. 84–96, 2005.

Distributed and Mobile Systems Group 259

http://www.rosettanet.org/RosettaNet/Rooms/DisplayPages/LayoutInitial?Container=com.webridge.entity.Entity[OID[9A6EEA233C5CD411843C00C04F689339]]
http://www.rosettanet.org/RosettaNet/Rooms/DisplayPages/LayoutInitial?Container=com.webridge.entity.Entity[OID[9A6EEA233C5CD411843C00C04F689339]]
http://www.rosettanet.org/RosettaNet/Rooms/DisplayPages/LayoutInitial?Container=com.webridge.entity.Entity[OID[9A6EEA233C5CD411843C00C04F689339]]

References

[120] M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara, “Semantic matching of
web services capabilities,” in International Semantic Web Conference, ser. Lecture
Notes in Computer Science, I. Horrocks and J. A. Hendler, Eds., vol. 2342. Springer,
2002, pp. 333–347.

[121] R. Eshuis, P. W. P. J. Grefen, and S. Till, “Structured service composition.” in
Business Process Management, ser. Lecture Notes in Computer Science, S. Dustdar,
J. L. Fiadeiro, and A. P. Sheth, Eds., vol. 4102. Springer, 2006, pp. 97–112.

[122] M. Dumas, M. Spork, and K. Wang, “Adapt or perish: algebra and visual notation
for service interface adaptation,” in Business Process Management, ser. Lecture
Notes in Computer Science, S. Dustdar, J. L. Fiadeiro, and A. P. Sheth, Eds., vol.
4102. Springer, 2006, pp. 65–80.

[123] J. Schaffner, H. Meyer, and C. Tosun, “A semi-automated orchestration tool for
service-based business processes,” in ICSOC Workshops, ser. Lecture Notes in Com-
puter Science, A. Dan and W. Lamersdorf, Eds., vol. 4294. Springer, 2006, pp.
50–61.

[124] D. Kuropka and M. Weske,“Towards a service composition and enactment platform,”
International Journal of Business Process Integration and Management, vol. 2, no. 2,
pp. 102 – 108, 2007.

[125] L. Zeng, B. Benatallah, H. Lei, A. H. H. Ngu, D. Flaxer, and H. Chang, “Flexible
composition of enterprise web services,” Electronic Markets, vol. 13, no. 2, 2003.

[126] J. Dehnert and W. M. P. van der Aalst, “Bridging the gap between business models
and workflow specifications.” Int. J. Cooperative Inf. Syst., vol. 13, no. 3, pp. 289–
332, 2004.

[127] F. Puhlmann and M. Weske, “Interaction soundness for service orchestrations,” in
ICSOC, ser. Lecture Notes in Computer Science, A. Dan and W. Lamersdorf, Eds.,
vol. 4294. Springer, 2006, pp. 302–313.

[128] OASIS WSBPEL Technical Committee: Web Services Business Process Execution
Language 2.0, 31.02.2007. [Online]. Available: http://docs.oasis-open.org/wsbpel/
2.0/

[129] H. Meyer and D. Kuropka, “Requirements for automated service composition,” in
Business Process Management Workshops, ser. Lecture Notes in Computer Science,
J. Eder and S. Dustdar, Eds., vol. 4103. Springer, 2006, pp. 447–458.

[130] N. Russell, W. M. P. van der Aalst, and A. H. M. ter Hofstede, “Workflow exception
patterns,” in CAiSE, ser. Lecture Notes in Computer Science, E. Dubois and K. Pohl,
Eds., vol. 4001. Springer, 2006, pp. 288–302.

[131] R. Soley, “Model Driven Architecture,” Whitepaper, November 2005, last accessed:
December 10, 2008. [Online]. Available: ftp://ftp.omg.org/pub/docs/omg/00-11-05.
pdf

[132] “SAP AG,” 2007, last accessed: December 10, 2008. [Online]. Available:
http://www.sap.com

Distributed and Mobile Systems Group 260

http://docs.oasis-open.org/wsbpel/2.0/
http://docs.oasis-open.org/wsbpel/2.0/
ftp://ftp.omg.org/pub/docs/omg/00-11-05.pdf
ftp://ftp.omg.org/pub/docs/omg/00-11-05.pdf
http://www.sap.com

References

[133] “SAP NetWeaver.” [Online]. Available: http://www.sap.com/platform/netweaver/
index.epx

[134] S. Bruckert and D. Grasman, “The benefits of SAP NetWeaver,” April 2003, last
accessed: December 10, 2008. [Online]. Available: http://www.sap.info/resources/
RFILE216463f265dd300c38.pdf

[135] Web Services Description Language (WSDL) 1.1, W3C, March 2001. [Online].
Available: http://www.w3.org/TR/wsdl

[136] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee, “Hypertext transfer protocol – HTTP/1.1,”RFC 2616, June 1999, last accessed:
December 10, 2008. [Online]. Available: http://tools.ietf.org/html/rfc2616

[137] Sun, “The JavaTM language specification,” last accessed: December 10, 2008.
[Online]. Available: http://java.sun.com/docs/books/jls/download/langspec-3.0.
pdf

[138] SAP, “ABAP,” Website, last accessed: December 10, 2008. [Online]. Available:
https://www.sdn.sap.com/irj/sdn/abap

[139] SAP, “SAP Business Workflow,” SAP AG, 1997, last accessed: December 10, 2008.

[140] Sun Microsystems, “Java 2 platform enterprise edition specification, v1. 3.”
Mountain View, CA, 2001, last accessed: December 10, 2008. [Online]. Available:
http://java.sun.com/j2ee/j2ee-1 3-fr-spec.pdf

[141] SAP, “SAP NetWeaver Manual,” Website, 2004, last accessed: December 10, 2008.
[Online]. Available: http://help.sap.com

[142] W3C, “Extensible Markup Language (XML) 1.0 (Fourth Edition),” Specification,
August 2006, last accessed: December 10, 2008. [Online]. Available: http:
//www.w3.org/TR/2006/REC-xml-20060816/

[143] SAP, “SAP Exchange Infrastructure 3.0 – technical infrastructure,” SAP AG,
Tech. Rep., 2004, last accessed: December 10, 2008. [Online]. Available: http:
//help.sap.com/bp bpmv130/Documentation/Planning/TechnicalInfrasture.pdf

[144] W3C, “XML schema part 0: Primer second edition,” Standard, October 2004,
last accessed: December 10, 2008. [Online]. Available: http://www.w3.org/TR/
xmlschema-0/

[145] JSR 112: J2EE Connector Architecture 1.5, Sun Microsystems Inc. [Online].
Available: http://www.jcp.org/en/jsr/detail?id=112

[146] M. Herger, “Composite application framework – building blocks for realizing the
ESA,” in America’s SAP User Group Conference, April 2003.

[147] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform resource identifier (URI):
Generic syntax,” RFC 3986, January 2005, last accessed: December 10, 2008.
[Online]. Available: http://tools.ietf.org/html/rfc3986

[148] T. Berners-Lee and D. Connolly, “Hypertext markup language - 2.0,” RFC
1866, November 1996, last accessed: December 10, 2008. [Online]. Available:
http://tools.ietf.org/html/rfc1866

Distributed and Mobile Systems Group 261

http://www.sap.com/platform/netweaver/index.epx
http://www.sap.com/platform/netweaver/index.epx
http://www.sap.info/resources/RFILE216463f265dd300c38.pdf
http://www.sap.info/resources/RFILE216463f265dd300c38.pdf
http://www.w3.org/TR/wsdl
http://tools.ietf.org/html/rfc2616
http://java.sun.com/docs/books/jls/download/langspec-3.0.pdf
http://java.sun.com/docs/books/jls/download/langspec-3.0.pdf
https://www.sdn.sap.com/irj/sdn/abap
http://java.sun.com/j2ee/j2ee-1_3-fr-spec.pdf
http://help.sap.com
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://help.sap.com/bp_bpmv130/Documentation/Planning/TechnicalInfrasture.pdf
http://help.sap.com/bp_bpmv130/Documentation/Planning/TechnicalInfrasture.pdf
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.jcp.org/en/jsr/detail?id=112
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc1866

References

[149] P. Schler, “SAP enterprise portal architecture and technology,” Documen-
tation, Nov 2002, last accessed: December 10, 2008. [Online]. Avail-
able: https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/
e308bc90-0201-0010-0ba8-b4bd3c9c6f62

[150] A. Abdelnur and S. Hepper, “The Java community process, JSR 168,” 2003, last
accessed: December 10, 2008. [Online]. Available: http://www.swe.uni-linz.ac.at/
teaching/lva/ws04-05/seminar/Java%20Specification%20Request%20168.pdf

[151] M. Fowler, Patterns of Enterprise Application Architecture. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2002.

[152] J. Postel, “Simple mail transfer protocol,” RFC 821, August 1982, last accessed:
December 10, 2008. [Online]. Available: http://tools.ietf.org/html/rfc821

[153] M. Lottor, “Simple file transer protocol,” RFC, September 1983, last accessed:
December 10, 2008. [Online]. Available: http://tools.ietf.org/html/rfc913

[154] J. Clark, “XSL transformations (XSLT),” W3C Recommendation, November 1999,
last accessed: December 10, 2008. [Online]. Available: http://www.w3.org/TR/xslt

[155] P. Wohed, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede, “Analysis
of web services composition languages: the case of BPEL4WS,” in ER, ser. Lecture
Notes in Computer Science, I.-Y. Song, S. W. Liddle, T. W. Ling, and P. Scheuer-
mann, Eds., vol. 2813. Springer, 2003, pp. 200–215.

[156] SAP, “Business Rules Management Roadmap,” in SAP TechEd 2008, 2008, last
accessed: December 10, 2008. [Online]. Available: https://www.sdn.sap.com/irj/
sdn/nw-rules-management

[157] SAP Help, “Implementing web dynpro callable objects,” Manual, 2007, last
accessed: December 10, 2008. [Online]. Available: http://help.sap.com/saphelp
nw70/helpdata/en/43/e085d6421a4d9de10000000a155369/frameset.htm

[158] ——, “Starting a process using web services,” Manual, 2007, last accessed:
December 10, 2008. [Online]. Available: http://help.sap.com/saphelp nw04s/
helpdata/en/fd/afb4429027da11e10000000a155106/frameset.htm

[159] British Government Office of Government Commerce, “ITIL IT-Infrastructure
Library,” last accessed: December 10, 2008. [Online]. Available: http:
//www.itil.co.uk/

[160] International Business Machnines Corporation, “IBM Lotus software,” Website,
December 2007, last accessed: December 10, 2008. [Online]. Available:
http://www-306.ibm.com/software/lotus/

[161] ECMA, “C++/CLI language specification,” Whitepaper, 2005, last accessed:
December 10, 2008. [Online]. Available: http://www.plumhall.com/C++-CLI%
20draft%201.14.pdf

[162] H. Hofmeister, “A server with a core using a virtual file system and a method for
securely redirecting a persistent storage device operation to a middleware infrastruc-
ture,” European Patent Filing; publication number 1988473, 2008, application No.
07009044.4-1225.

Distributed and Mobile Systems Group 262

https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/e308bc90-0201-0010-0ba8-b4bd3c9c6f62
https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/e308bc90-0201-0010-0ba8-b4bd3c9c6f62
http://www.swe.uni-linz.ac.at/teaching/lva/ws04-05/seminar/Java%20Specification%20Request%20168.pdf
http://www.swe.uni-linz.ac.at/teaching/lva/ws04-05/seminar/Java%20Specification%20Request%20168.pdf
http://tools.ietf.org/html/rfc821
http://tools.ietf.org/html/rfc913
http://www.w3.org/TR/xslt
https://www.sdn.sap.com/irj/sdn/nw-rules-management
https://www.sdn.sap.com/irj/sdn/nw-rules-management
http://help.sap.com/saphelp_nw70/helpdata/en/43/e085d6421a4d9de10000000a155369/frameset.htm
http://help.sap.com/saphelp_nw70/helpdata/en/43/e085d6421a4d9de10000000a155369/frameset.htm
http://help.sap.com/saphelp_nw04s/helpdata/en/fd/afb4429027da11e10000000a155106/frameset.htm
http://help.sap.com/saphelp_nw04s/helpdata/en/fd/afb4429027da11e10000000a155106/frameset.htm
http://www.itil.co.uk/
http://www.itil.co.uk/
http://www-306.ibm.com/software/lotus/
http://www.plumhall.com/C++-CLI%20draft%201.14.pdf
http://www.plumhall.com/C++-CLI%20draft%201.14.pdf

References

[163] Konplan GmbH, “XInotes,” Product Description, Feb. 2007, last accessed:
December 10, 2008. [Online]. Available: http://www.konplan.com/public1/
downloads/konplan xinotes en.pdf

[164] Architecture Board ORMSC, “Model Driven Architecture,” Whitepaper, July 2001,
last accessed: December 10, 2008. [Online]. Available: http://www.omg.org/docs/
ormsc/01-07-01.pdf

[165] M. P. Papazoglou and J. Yang, “Design methodology for web services and busi-
ness processes.” in TES, ser. Lecture Notes in Computer Science, A. P. Buchmann,
F. Casati, L. Fiege, M. Hsu, and M.-C. Shan, Eds., vol. 2444. Springer, 2002, pp.
54–64.

[166] D. Rud, S. Mencke, A. Schmietendorf, and R. Dumke, “Granularitätsmetriken
für serviceorientierte Architekturen,” in DASMA Software Metrik Kongress
(METRIKON’2007), 2007.

[167] M. Stutz and S. Aier, “Vorgehensmodell zur fachlichen bewertung serviceorientierter
architekturen,” in Multikonferenz Wirtschaftsinformatik, M. Bichler, T. Hess, H. Kr-
cmar, U. Lechner, F. Matthes, A. Picot, B. Speitkamp, and P. Wolf, Eds. GITO-
Verlag, Berlin, 2008.

[168] E. A. Marks and M. Bell, Service-Oriented Architecture (SOA): A Planning and
Implementation Guide for Business and Technology. New York, NY, USA: John
Wiley & Sons, Inc., 2006.

[169] A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler, “WSMX – a semantic
service-oriented architecture,” in Proceedings of the 2005 IEEE International Confer-
ence on Web Services (ICWS’2005), Orlando, FL; USA. IEEE Computer Society,
2005, pp. 321–328.

[170] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres,
C. Feier, C. Bussler, and D. Fensel, “Web service modeling ontology,” Applied On-
tology, vol. 1, no. 1, pp. 77–106, 2005.

[171] H. Meyer, M. Eisenbarth, G. Laures, and K. Jank, “Adaptive services grid
deliverable d6.v-1 – reference architecture: Requirements, current efforts and
design,” March 2007, last accessed: December 10, 2007. [Online]. Available: http:
//tb0.asg-platform.org/download/downloadrequest.php?asgdocument=D6.V-1.pdf

[172] D. Kuropka and M. Weske, “Implementing a semantic service provision platform -
concepts and experiences,”Wirtschaftsinformatik, vol. 50, no. 1, pp. 16–24, January
2008.

[173] R. Ten-Hove and P. Walker, “The Java community process JSR, 208 - java business
integration (JBI),” 2005, last accessed: December 10, 2008. [Online]. Available:
http://www.jcp.org/en/jsr/detail?id=208

[174] M. Beisiegel, H. Blohm, D. Booz, M. Edwards, O. Hurley, S. Ielceanu, A. Miller,
A. Karmarkar, A. Malhotra, J. Marino, M. Nally, E. Newcomer, S. Patil, G. Pavlik,
M. Raepple, M. Rowley, K. Tam, S. Vorthmann, P. Walker, and L. Waterman.,“SCA
Service Component Architecture - assembly model specification v1.0,” Whitepaper,
March 2007, last accessed: December 10, 2008. [Online]. Available: http:
//www.osoa.org/display/Main/Service+Component+Architecture+Specifications

Distributed and Mobile Systems Group 263

http://www.konplan.com/public1/downloads/konplan_xinotes_en.pdf
http://www.konplan.com/public1/downloads/konplan_xinotes_en.pdf
http://www.omg.org/docs/ormsc/01-07-01.pdf
http://www.omg.org/docs/ormsc/01-07-01.pdf
http://tb0.asg-platform.org/download/downloadrequest.php?asgdocument=D6.V-1.pdf
http://tb0.asg-platform.org/download/downloadrequest.php?asgdocument=D6.V-1.pdf
http://www.jcp.org/en/jsr/detail?id=208
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

References

[175] Everware-CBDI Research, “CBDI Forum,” 2007, last accessed: December 10, 2008.
[Online]. Available: http://www.cbdiforum.com/

[176] ——, “CBDI-SAE meta model for SOA version 2.0,” 2007, last accessed: December
10, 2008. [Online]. Available: http://www.cbdiforum.com/public/CBDI SAE
META MODEL FOR SOA V2.0.pdf

[177] J. A. Zachman, “A framework for information systems architecture,” IBM Systems
Journal, vol. 38, no. 2/3, pp. 454–470, 1999.

[178] The Open Group, The Open Group Architecture Framework. The Open
Group, 2006, last accessed: December 10, 2008. [Online]. Available: http:
//www.opengroup.org/architecture

[179] Cap Gemini Consulting, “Architecture and the integrated architecture framework,”
Brochure, August 2006, last accessed: December 10, 2008. [Online]. Avail-
able: http://www.capgemini.com/resources/thought leadership/architecture and
the integrated architecture framework/?d=1

[180] P. Kruchten, The Rational Unified Process: An Introduction. Addison-Wesley
Professional, 2003.

[181] A. Bröhl and W. Dröschel, “Das V-Modell,” München, Wien: Oldenburg-Verlag,
1995.

[182] B. Daubner, B. Westfechtel, and A. Henrich, “Towards anchoring software measures
on elements of the process model,” in Proceedings of the 1st International Conference
on Software and Data Technologies (ICSOFT’2006), Setúbal, Portugal, September,
2006, pp. 232–237.

[183] S. Mantel, S. Eckert, M. Schissler, C. Schäffner, O. K. Ferstl, and E. J. Sinz, “Eine
Entwicklungsmethodik für die überbetriebliche Integration von Anwendungssyste-
men,” in Überbetriebliche Integration von Anwendungssystemen - FORWIN-Tagung
2004, D. e. a. Bartmann, Ed., Aachen, GER, 2004.

[184] M. Schissler, S. Mantel, S. Eckert, O. K. Ferstl, and E. J. Sinz, “Entwick-
lungsmethodiken zur Integration von Anwendungssystemen in überbetrieblichen
Geschäftsprozessen,” in Wirtschaftsinformatik 2005, O. Ferstl, E. J. Sinz, S. Eckert,
and I. T., Eds. Heidelberg, GER: Gesellschaft für Informatik, 2005, pp. 1463–1482.

[185] ebXML, ebXML Business Process Specification Schema, Version 1.01, 2001, last
accessed: December 10, 2008. [Online]. Available: http://www.ebxml.org/specs/
ebBPSS.pdf

[186] S. Jones, “A methodology for service architectures,” Oasis Draft, pp. 1–32,
2005, last accessed: December 10, 2008. [Online]. Available: http://
www.oasis-open.org/committees/download.php/15071/A%20methodology%20for%
20Service%20Architectures%201%202%204%20-%20OASIS%20Contribution.pdf

[187] ABLE Project, “ACME language in BNF 2.0,” Website, 2006, last accessed:
December 10, 2008. [Online]. Available: http://www.cs.cmu.edu/˜acme/html/
ArmaniParser.html

Distributed and Mobile Systems Group 264

http://www.cbdiforum.com/
http://www.cbdiforum.com/public/CBDI_SAE_META_MODEL_FOR_SOA_V2.0.pdf
http://www.cbdiforum.com/public/CBDI_SAE_META_MODEL_FOR_SOA_V2.0.pdf
http://www.opengroup.org/architecture
http://www.opengroup.org/architecture
http://www.capgemini.com/resources/thought_leadership/architecture_and_the_integrated_architecture_framework/?d=1
http://www.capgemini.com/resources/thought_leadership/architecture_and_the_integrated_architecture_framework/?d=1
http://www.ebxml.org/specs/ebBPSS.pdf
http://www.ebxml.org/specs/ebBPSS.pdf
http://www.oasis-open.org/committees/download.php/15071/A%20methodology%20for%20Service%20Architectures%201%202%204%20-%20OASIS%20Contribution.pdf
http://www.oasis-open.org/committees/download.php/15071/A%20methodology%20for%20Service%20Architectures%201%202%204%20-%20OASIS%20Contribution.pdf
http://www.oasis-open.org/committees/download.php/15071/A%20methodology%20for%20Service%20Architectures%201%202%204%20-%20OASIS%20Contribution.pdf
http://www.cs.cmu.edu/~acme/html/ArmaniParser.html
http://www.cs.cmu.edu/~acme/html/ArmaniParser.html

References

[188] W. M. P. van der Aalst, B. Benatallah, F. Casati, and F. Curbera, Eds., Business
Process Management, 3rd International Conference, BPM 2005, Nancy, France,
September 5-8, 2005, Proceedings, vol. 3649, 2005.

[189] S. Dustdar, J. L. Fiadeiro, and A. P. Sheth, Eds., Business Process Management,
4th International Conference, BPM 2006, Vienna, Austria, September 5-7, 2006,
Proceedings, ser. Lecture Notes in Computer Science, vol. 4102. Springer, 2006.

[190] A. P. Buchmann, F. Casati, L. Fiege, M. Hsu, and M.-C. Shan, Eds., Technologies
for E-Services, Third International Workshop, TES 2002, Hong Kong, China, Au-
gust 23-24, 2002, Proceedings, ser. Lecture Notes in Computer Science, vol. 2444.
Springer, 2002.

[191] A. Dan and W. Lamersdorf, Eds., Service-Oriented Computing - ICSOC 2006, 4th
International Conference, Chicago, IL, USA, December 4-7, 2006, Proceedings, ser.
Lecture Notes in Computer Science, vol. 4294. Springer, 2006.

Distributed and Mobile Systems Group 265

Index

Abstraction Level, 22
ACID, 46, 123
Adaptive Service Grid (ASG), 241–242
Aggregation Level, 22
Architectural Style, 6
Architecture of Integrated Information Sys-

tems (ARIS), 136
ATAM, 48
Atomicity, 45
Availability Metric

Avl, 44, 158, 213

Business Rules, 131

CBDI, 243
Class-internal cohesion

Lack of Cohesion in Methods (LCOM∗),
52

Lack of Cohesion in Methods (LCOM),
52

Complexity Handling Metric
Aggregator CentraliZation (ACZ), 36, 124,

156, 229–230
Density of Aggregation (DOA), 35, 156,

211–212, 229–230
Extent of Aggregation (EOA), 33–34, 229
System’s CentraliZation (SCZ), 32–33,

124, 156, 229–230
Complexity Metric

Aggregator CentraliZation (ACZ), 211–
212

Coupling of Service (cos), 25, 227
Coupling to Service (cts), 27, 227
Inter-Service Coupling (λ), 27
Number of Services (NS), 23, 230
Service Aggregators (SA), 25, 230
Service Consumers (SC), 24, 230
Service Coupling Factor (SCF), 31, 227–

229
Service Providers (SP), 25
System’s CentraliZation (SCZ), 211–212
Systems Service Coupling (SSC), 28–31,

124, 156, 211–212, 227–229
Component, 6
Control Centralization, 9
COTS, 7

Design, 22

Definition, 21
Design Quality, 21

Enterprise Service Bus, 17
Event-Driven Process Chain (EPC), 137

Formal Semantics of, 137

Fault-Tolerance, 45

Integrated Architecture Framework, 244
Integration Principles

Business Process Integration Oriented
Application Integration, 9

Information-Oriented Application Inte-
gration, 7

Portal-Oriented Application Integration,
7, 47

Service-Oriented Application Integration,
8

Service-Oriented Architecture, 9
ISO 9126, 19–21
ITIL, 207

Java Business Integration (JBI), 242–243

Measure, 21
Mediator Pattern, 13
MEMS, 48
Metric, 21
Model Driven Architecture, 170, 172, 237–

238
Modifiability, 23

Open Grid Services Architecture, 21

Portals, 7, 79, 178

Quasar Enterprise, 244

Re-Use, 37–41
Re-Use Metric

Aggregator to Aggregator Re-Use (AAR),
40, 104

Mediated Re-Use (MRU), 39, 161
Mediated Re-Use Ratio (MRR), 41
Multi-used Services (MS), 38
Number of Usages (nou), 39
Re-Use Ratio (RUR), 40–41, 161
Re-Used Mediation (RUM), 40

266

Index

Re-used Services (RS), 38
Reused Connections (RECON), 39

Recoverability, 46
Reliability, 42–47
RuleML, 133

SAP Composite Application Framework, 176
SAP Enterprise Portal, 177
SAP Exchange Infrastructure, 174
SAP NetWeaver, 173–178, 207
SAP R/3, 208
SAP XI, 174
Semantic Object Model (SOM), 136
Service

Availability of, 43
Cohesion, 50, 52–57, 144
Coupling, 57–62
Definition, 6
Granularity, 50
Meta-Model, 137–138
Re-Usability, 50–70
Re-Use, 37–41
Web Service, 6, 173

Service Aggregation, 13
Service Coupling, 25
Service Orchestration, 9
Service-Level Agreement, 43
Service-Oriented Architecture, 6

The Open Group Architecture Framework,
244

TOPSA, 22
Two-Phase Commit, 46, 123

Usability, 47

Web Service Description Language, 173
Web Services, 71
Web Services Business Process Execution Lan-

guage, 173

Zachman Framework, 244

Distributed and Mobile Systems Group 267

List of Figures

List of Figures

1 Service-Oriented Architecture according to [5] 10

2 Some Elements of the ACME Definition Represented as UML Components 15

3 SO Architecture Evaluation Roadmap [40] 18

4 Overview of Modifiability Metrics and their Dependencies 42

5 Architectural Sketch of the Application System 65

6 Reference Architecture for Composite Applications 73

7 Public Interface of the EventService . 84

8 Interfaces of the EventRegistry and EventIdGenerator Components . . . 84

9 Overview of the Event Creation and Process Initiation 84

10 Public Interface of the EventingAdministration Service 85

11 Smart Proxy Concept for Data Repository Integration 88

12 Public Interface of the SmartProxy . 89

13 Public Interface of the DatRepositoryAdministration Service 91

14 Micro-Flow of the Data Service . 93

15 Micro-Flow of the Fetch Data Activity . 94

16 Micro-Flow of the Retrieve Data Activity 95

17 Micro-Flow of the Trigger Service . 101

18 Micro-Flow of the Routing Service . 103

19 Activity Diagram of the Integration In-Flow 106

20 Activity Diagram of an Integration Out-Flow 110

21 Public Interface of the DecisionService 132

22 Collaboration between a Workflow Engine and a Decision Service 132

23 Public Interface of the RulesAdministration Service 133

24 Service Meta-Model . 137

25 Steps of the Design Methodology . 138

26 Control-Flow and Data-Flow of the Example Process 139

27 Data Model of the Example Process . 140

Distributed and Mobile Systems Group 268

List of Figures

28 Model of the Service Coordination for the Order Shipment Enterprise Service155

29 Revised Model of the Service Coordination for the Order Shipment Enter-
prise Service . 158

30 Model of the Service Coordination for the Order Shipment Enterprise Ser-
vice with Transactional Properties . 159

31 Model of the Revised Service Coordination for the Order Shipment Enter-
prise Service . 164

32 Final Orchestration for the Example Process 168

33 Trigger Service for the Example Process 169

34 Components of the SAP Web Application Server [141] 174

35 Functional Components of the SAP XI [143] 175

36 Components of the SAP XI Integration Server [143] 175

37 Components of the SAP Composite Application Framework [146] 176

38 Components of the SAP Enterprise Portal [149] 178

39 Structure of the Eventing System within the CAF 180

40 Structure of the Data Repository within the CAF 181

41 Example of a Fetch Data Activity with Correlation and Lookup in XI . . 188

42 Example of a Resequencer Activity with Correlation in XI 189

43 An Active Aggregator with Correlation Realized as a Process for the XI . . 190

44 Structure of a Validity Service that is Realized Using the CAF 192

45 Structure of a Coordination Service within the CAF 194

46 Event and EventType for NetWeaver . 196

47 Structure of a Decision Service for the CAF 197

48 Structure of a WebDynpro Component that can be Invoked Using Web
Services . 198

49 Example of the Interaction of all CAF Components 200

50 Functional Sketch of the FuL Creation Process 202

51 EPC Process Diagram as Part of the Functional Requirements 204

52 Data Model of the Case Study . 205

53 Initial Assessment of the Suitability of SO for the Use Case 206

54 Initial Orchestration Candidate for FuL Creation 211

Distributed and Mobile Systems Group 269

List of Figures

55 Service Coordination Candidates of the Case Study 212

56 Candidate IIF for the Mediation of the Method defineTemplateForRequest216

57 Data Service for the IIF that mediates the Method retrieveRequest . . 218

58 Candidate Integration Flows for Mediating the Method retrieveRequest . 219

59 Candidate Integration Flows for the Mediation of the Method createOffer 220

60 es1: defineAppropriateTemplate_SvcCoord 221

61 Data Model of the necessary Transfer Objects 222

62 Data Repository for the FuL Creation Process 223

63 Decision Service for the FuL Creation Process 223

64 Final Service Orchestration . 224

65 Trigger Service for the FuL Creation Process 225

66 Candidate IIF for the Mediation of the Method defineTemplateForRequest226

67 Components and Links of the FuL Application 228

68 Step 1: Creating a Sales Objective in the Lotus Notes Client 232

69 Step 2: Export the Sales Objective to the Composite Application 232

70 Step 3: User Interaction via Universal Worklist 233

71 Step 4: Actual Writing of the necessary FuL Description 233

72 Step 5: Created Quotation in the SAP ERP System 234

73 Raw Data for the Analysis of Chapter 4 A-7

74 EPC Process Diagram for Functional Requirements A-8

75 Structure of the Intermediate System Design after Step 6 A-9

Distributed and Mobile Systems Group 270

List of Tables

List of Tables

1 Examples of cos Values . 26

2 Examples of cts Values . 27

3 Examples of SSC Values . 29

4 Examples of SCF Values . 32

5 Examples of SCZ Values . 33

6 Examples of EOA Values . 34

7 Examples of DOA Values . 35

8 Examples of ACZ Values . 37

9 Group Statistics . 66

10 Test of Discriminant Function based on Wilks’ Lambda 67

11 Test of Equality – Group Mean Values . 67

12 Variables Included in the Analysis of Step 1 68

13 Variables NOT Included in The Analysis of Step 1 69

14 Properties of Relations . 75

15 Process Rules . 76

16 Event Type Rules . 77

17 How Service Interaction Requirements affect an IIF 114

18 How Service Interaction Requirements affect an IOF 115

19 Metrics for Assessing Coordination Design 211

20 Metrics for the Overall System Sketches 212

21 Tolerated Failure Rates of the Coordination Services 213

22 Size Metrics for the Overall Composite Application 229

23 Complexity Metrics for the Overall Composite Application 230

24 Complexity Handling Metrics for the Overall Composite Application 230

25 Size Metrics for the Intermediate Composite Application A-9

Distributed and Mobile Systems Group 271

A BNF of the ACME Language

APPENDIX

A BNF of the ACME Language

Listing 4: BNF Definition of the ACME Language (taken from [187])
NON−TERMINALS

parse AcmeDesign : := (<IMPORT> (Filename ”; ” | <STRING LITERAL> ”; ”))∗ (
TypeDeclarat ion | Fami lyDec larat ion | Des ignAna lys i sDec la ra t i on | PropertyDec larat ion |
Proper t i e sB lock | SystemDeclarat ion)∗ <EOF>
Filename : := (”$ ” | ”%”)? <IDENTIFIER> (((”. ”

| ”: ” | ”−” | ”+” | ”\\” | ”\\\\” | ”/” | ”$ ” | ”%”))+
<IDENTIFIER>)∗

Fami lyDec larat ion : := (<FAMILY> | <STYLE>)
<IDENTIFIER> (”; ” | (”=” FamilyBody (”; ”)?) | (

<EXTENDS> lookup SystemTypeByName (” , ” lookup SystemTypeByName)∗
<WITH> FamilyBody (”; ”)?))
FamilyBody : := ”{” ”}”
| ”{” (TypeDeclarat ion | SystemStructure)+ ”}”

TypeDeclarat ion : := ElementTypeDeclaration
| PropertyTypeDeclarat ion

ElementTypeDeclaration : := ElementProtoTypeDeclaration
| ComponentTypeDeclaration
| GroupTypeDeclaration
| ConnectorTypeDeclaration
| PortTypeDeclarat ion
| RoleTypeDeclarat ion

ElementProtoTypeDeclaration : := (<ELEMENT> <TYPE>
<IDENTIFIER> (”=” parse ElementProtoTypeDescr ipt ion (”; ”)? | ”; ”) |

<ELEMENT> <TYPE> <IDENTIFIER>

<EXTENDS> lookup ComponentTypeByName (” , ”
lookup ComponentTypeByName)∗
<WITH> parse ElementProtoTypeDescr ipt ion (”; ”)?)

ComponentTypeDeclaration : := (<COMPONENT> <TYPE>
<IDENTIFIER> (”=” parse ComponentDescr ipt ion (”; ”)? | ”; ”) |

<COMPONENT> <TYPE> <IDENTIFIER>

<EXTENDS> lookup ComponentTypeByName (” , ”
lookup ComponentTypeByName)∗
<WITH> parse ComponentDescr ipt ion (”; ”)?)
GroupTypeDeclaration : := (<GROUP> <TYPE>

<IDENTIFIER> (”=” parse GroupDescr ipt ion (”; ”)? | ”; ”) |
<GROUP> <TYPE> <IDENTIFIER>

<EXTENDS> lookup GroupTypeByName (” , ”
lookup GroupTypeByName)∗
<WITH> parse GroupDescr ipt ion (”; ”)?)
ConnectorTypeDeclaration : := (<CONNECTOR> <TYPE>

<IDENTIFIER> (”=” parse ConnectorDesc r ip t i on (”; ”)? | ”; ”) |
<CONNECTOR> <TYPE> <IDENTIFIER>

<EXTENDS> lookup ConnectorTypeByName (” , ” lookup ConnectorTypeByName)∗
<WITH> par se ConnectorDesc r ip t i on (”; ”)?)
PortTypeDeclarat ion : := (<PORT> <TYPE>

<IDENTIFIER> (”=” par s e Por tDes c r ip t i on (”; ”)? | ”; ”) |
<PORT> <TYPE> <IDENTIFIER>

<EXTENDS> lookup PortTypeByName (” , ” lookup PortTypeByName)∗
<WITH> par s e Por tDes c r ip t i on (”; ”)?)
RoleTypeDeclarat ion : := (<ROLE> <TYPE>

<IDENTIFIER> (”=” par s e Ro l eDes c r ip t i on (”; ”)? | ”; ”) |
<ROLE> <TYPE> <IDENTIFIER>

<EXTENDS> lookup RoleTypeByName (” , ”
lookup RoleTypeByName)∗
<WITH> par s e Ro l eDes c r ip t i on (”; ”)?)
lookup SystemTypeByName : := <IDENTIFIER>

lookup ComponentTypeByName : := (<IDENTIFIER> ”. ”)?
<IDENTIFIER>

lookup GroupTypeByName : := (<IDENTIFIER> ”. ”)?
<IDENTIFIER>

lookup ConnectorTypeByName : := (<IDENTIFIER> ”. ”)?
<IDENTIFIER>

lookup PortTypeByName : := (<IDENTIFIER> ”. ”)?
<IDENTIFIER>

Distributed and Mobile Systems Group A-1

A BNF of the ACME Language

lookup RoleTypeByName : := (<IDENTIFIER> ”. ”)?
<IDENTIFIER>

lookup PropertyTypeByName : := (<IDENTIFIER> ”. ”)?
<IDENTIFIER>

lookup arbitraryTypeByName : := (PropertyTypeDescr ipt ion |
<SYSTEM> | <COMPONENT> | <GROUP> | <CONNECTOR> |

<PORT> | <ROLE> | <PROPERTY> | <REPRESENTATION> |
NonPropertySetTypeExpression)
SystemDeclarat ion : := <SYSTEM> <IDENTIFIER> (”: ” lookup SystemTypeByName (” , ”

lookup SystemTypeByName)∗)? (”=” SystemBody (”; ”)? | ”; ”)
SystemBody : := (<NEW> lookup SystemTypeByName (” , ”

lookup SystemTypeByName)∗ |
”{” ”}” | ”{” (SystemStructure)+ ”}”)

(<EXTENDED> <WITH> SystemBody)?
SystemStructure : := ComponentDeclaration
| ComponentsBlock
| GroupDeclaration
| ConnectorDec larat ion
| ConnectorsBlock
| PortDec larat ion
| PortsBlock
| RoleDec la rat ion
| RolesBlock
| PropertyDec larat ion
| Proper t i e sB lock
| AttachmentsDeclarat ion
| Repre senta t i onDec la ra t i on
| Des ignAna lys i sDec la ra t i on
| parse Des ignRule

parse ElementProtoTypeDescr ipt ion : := ”{” (PropertyDec larat ion |
Proper t i e sB lock | Repre senta t i onDec la ra t i on)∗ ”}”
GroupDeclaration : := <GROUP> <IDENTIFIER>

(”: ” lookup GroupTypeByName (” , ” lookup GroupTypeByName)∗)?
(”=” parse GroupDescr ipt ion ”; ” | ”; ”)
parse GroupDescr ipt ion : := (<NEW> lookup GroupTypeByName

(” , ” lookup GroupTypeByName)∗ | ”{” (MembersBlock | PropertyDec larat ion |
Proper t i e sB lock | parse Des ignRule)∗ ”}”) (

<EXTENDED> <WITH> parse GroupDescr ipt ion)?
ComponentDeclaration : := <COMPONENT> <IDENTIFIER> (”: ”

lookup ComponentTypeByName (” , ” lookup ComponentTypeByName)∗)? (”=”
parse ComponentDescr ipt ion ”; ” | ”; ”)
ComponentsBlock : := <COMPONENTS> ”{” (<IDENTIFIER>

(”: ” lookup ComponentTypeByName (” , ” lookup ComponentTypeByName)∗)? (”=”
parse ComponentDescr ipt ion ”; ” | ”; ”))∗ ”}” (”; ”)?
parse ComponentDescr ipt ion : := (<NEW> lookup ComponentTypeByName (” , ”

lookup ComponentTypeByName)∗ | ”{” (PortDec larat ion | PortsBlock |
PropertyDec larat ion | Proper t i e sB lock | Repre senta t i onDec la ra t i on |

parse Des ignRule)∗ ”}”) (<EXTENDED> <WITH> parse ComponentDescr ipt ion)?
ConnectorDec larat ion : := <CONNECTOR> <IDENTIFIER> (”: ”

lookup ConnectorTypeByName (” , ” lookup ConnectorTypeByName)∗)? (”=”
parse ConnectorDesc r ip t i on ”; ” | ”; ”)
ConnectorsBlock : := <CONNECTORS> ”{” (<IDENTIFIER>

(”: ” lookup ConnectorTypeByName (” , ” lookup ConnectorTypeByName)∗)?
(”=” parse ConnectorDesc r ip t i on ”; ” | ”; ”))∗ ”}” (”; ”)?
par se ConnectorDesc r ip t i on : := (<NEW> lookup ConnectorTypeByName (” , ”

lookup ConnectorTypeByName)∗ | ”{” (Ro leDec la rat ion | RolesBlock |
PropertyDec larat ion | Proper t i e sB lock | Repre senta t i onDec la ra t i on |
parse Des ignRule)∗ ”}”) (<EXTENDED> <WITH> par se ConnectorDesc r ip t i on)?
PortDec larat ion : := <PORT> <IDENTIFIER> (”: ” lookup PortTypeByName (” , ”

lookup PortTypeByName)∗)? (”=” par s e Por tDes c r ip t i on ”; ” | ”; ”)
PortsBlock : := <PORTS> ”{” (<IDENTIFIER> (

”: ” lookup PortTypeByName (” , ” lookup PortTypeByName)∗)? (”=”
par s e Por tDes c r ip t i on ”; ” | ”; ”))∗ ”}” (”; ”)?
pa r s e Por tDes c r ip t i on : := (<NEW> lookup PortTypeByName

(” , ” lookup PortTypeByName)∗ | ”{” (PropertyDec larat ion |
Proper t i e sB lock | Repre senta t i onDec la ra t i on | parse Des ignRule)∗ ”}”)
(<EXTENDED> <WITH> par s e Por tDes c r ip t i on)?
Ro leDec la rat ion : := <ROLE> <IDENTIFIER> (”: ” lookup RoleTypeByName (” , ”

lookup RoleTypeByName)∗)? (”=” par s e Ro l eDes c r ip t i on ”; ” | ”; ”)
MembersBlock : := <MEMBERS> ”{” (Qua l i f i edRe f e r enc e (”; ”))∗ ”}” (”; ”)?
Qua l i f i edRe f e r enc e : := <IDENTIFIER> ((”. ”

<IDENTIFIER>))∗
RolesBlock : := <ROLES> ”{” (<IDENTIFIER> (

”: ” lookup RoleTypeByName (” , ” lookup RoleTypeByName)∗)? (”=”
par s e Ro l eDes c r ip t i on ”; ” | ”; ”))∗ ”}” (”; ”)?

Distributed and Mobile Systems Group A-2

A BNF of the ACME Language

par s e Ro l eDes c r ip t i on : := (<NEW> lookup RoleTypeByName
(” , ” lookup RoleTypeByName)∗ | ”{” (PropertyDec larat ion
| Proper t i e sB lock | Repre senta t i onDec la ra t i on | parse Des ignRule)∗ ”}”) (<EXTENDED>

<WITH> par s e Ro l eDes c r ip t i on)?
AttachmentsDeclarat ion : := ((<ATTACHMENTS> ”{” (

<IDENTIFIER> ”. ” <IDENTIFIER> ”to ” <IDENTIFIER> ”. ”
<IDENTIFIER> (”{” (PropertyDec larat ion | Proper t i e sB lock)∗ ”}”)?

”; ”)∗ ”}” (”; ”)?) | (<ATTACHMENT> <IDENTIFIER>

”. ” <IDENTIFIER> ”to ” <IDENTIFIER> ”. ” <IDENTIFIER> (
”{” (Proper tyDec larat ion | Proper t i e sB lock)∗ ”}”)? ”; ”))

Proper tyDec larat ion : := <PROPERTY> par s e Prope r tyDesc r ip t i on ”; ”
Proper t i e sB lock : := <PROPERTIES> ”{” (par s e Prope r tyDesc r ip t i on (”; ”

pa r s e Prope r tyDesc r ip t i on | ”; ”)∗)? ”}” (”; ”)?
pa r s e Prope r tyDesc r ip t i on : := (

<PROPERTY>)? <IDENTIFIER> (”: ” PropertyTypeDescr ipt ion)?
(”=” PropertyValueDec larat ion)?
(<PROPBEGIN> par s e Prope r tyDesc r ip t i on
(”; ” pa r s e Prope r tyDesc r ip t i on | ”; ”)∗
<PROPEND> | <PROPBEGIN> <PROPEND>)?
PropertyTypeDeclarat ion : := <PROPERTY> <TYPE>

<IDENTIFIER> (”=” (<INT> ”; ” | <FLOAT> ”; ” |
<STRING> ”; ” | <BOOLEAN> ”; ” | <ENUM> (”{”
<IDENTIFIER> (” , ” <IDENTIFIER>)∗ ”}”)? ”; ” | <SET> (
”{” ”}”)? ”; ” | <SET> ”{” PropertyTypeDescr ipt ion ”}” ”; ” |

<SEQUENCE> (”<” ”>”)? ”; ” | <SEQUENCE>
”<” PropertyTypeDescr ipt ion ”>” ”; ” | <RECORD> ”[”

pa r s e Reco rdF i e ldDesc r ip t i on (”; ” par s e Reco rdF i e ldDesc r ip t i on | ”; ”)∗ ”] ”
”; ” | <RECORD> (”[” ”] ”)? ”; ” | <IDENTIFIER>

”; ”))
PropertyTypeDescr ipt ion : := <ANY>

| <INT>

| <FLOAT>

| <STRING>

| <BOOLEAN>
| <SET> (”{” (PropertyTypeDescr ipt ion)? ”}”)?
| <SEQUENCE> (”<” (PropertyTypeDescr ipt ion)? ”>”)?
| <RECORD> ”[” par s e Reco rdF i e ldDesc r ip t i on

(”; ” pa r s e Reco rdF i e ldDesc r ip t i on | ”; ”)∗ ”] ”
| <RECORD> (”[” ”] ”)?
| <ENUM> (”{” <IDENTIFIER> (” , ”

<IDENTIFIER>)∗ ”}”)?
| <ENUM> (”{” ”}”)?
| lookup PropertyTypeByName

par s e Reco rdF i e ldDesc r ip t i on : := <IDENTIFIER> (” , ” <IDENTIFIER>

)∗ (”: ” PropertyTypeDescr ipt ion)?
PropertyValueDec larat ion : := <INTEGER LITERAL>
| <FLOATING POINT LITERAL>
| <STRING LITERAL>

| <FALSE>

| <TRUE>
| AcmeSetValue
| AcmeSequenceValue
| AcmeRecordValue
| <IDENTIFIER>

AcmeSetValue : := ”{” ”}”
| ”{” PropertyValueDec larat ion (” , ” PropertyValueDec larat ion)∗ ”}”

AcmeSequenceValue : := ”<” ”>”
| ”<” PropertyValueDec larat ion (” , ” PropertyValueDec larat ion)∗ ”>”

AcmeRecordValue : := (”[” RecordFieldValue
(”; ” RecordFieldValue | ”; ”)∗ ”] ” | ”[” ”] ”)
RecordFieldValue : := <IDENTIFIER> (”: ” PropertyTypeDescr ipt ion)? ”=” PropertyValueDec larat ion
Repre senta t i onDec la ra t i on : := <REPRESENTATION> (<IDENTIFIER>

”=”)? ”{” SystemDeclarat ion (BindingsMapDeclaration)? ”}” (”; ”)?
BindingsMapDeclaration : := <BINDINGS> ”{” (Bind ingDec larat ion)∗ ”}” (”; ”)?
Bind ingDec larat ion : := (<IDENTIFIER> ”. ”)?

<IDENTIFIER> ”to ” (<IDENTIFIER> ”. ”)? <IDENTIFIER> (
”{” (PropertyDec larat ion | Proper t i e sB lock)∗ ”}”)? ”; ”

Des ignAna lys i sDec la ra t i on : := ((<EXTERNAL> (<DESIGN>)?
<ANALYSIS> <IDENTIFIER> ”(” FormalParams ”) ” ”: ”

(PropertyTypeDescr ipt ion | <COMPONENT> |
<GROUP> | <CONNECTOR> | <PORT> |

<ROLE> | <SYSTEM> | <ELEMENT> | <TYPE>) ”=” JavaMethodCallExpr ”; ”) |
((<DESIGN>)? <ANALYSIS> <IDENTIFIER> ”(” FormalParams ”) ” ”: ”

(PropertyTypeDescr ipt ion | <COMPONENT> | <GROUP> | <CONNECTOR> | <PORT> |
<ROLE> | <SYSTEM> | <ELEMENT> | <TYPE>) ”=” DesignRuleExpress ion ”; ”))

Distributed and Mobile Systems Group A-3

A BNF of the ACME Language

parse Des ignRule : := (<DESIGN>)? (<INVARIANT> |
<HEURISTIC>) Des ignRuleExpress ion (<PROPBEGIN> par s e Prope r tyDesc r ip t i on (

”; ” pa r s e Prope r tyDesc r ip t i on | ”; ”)∗ <PROPEND>)? ”; ”
Des ignRuleExpress ion : := Quant i f i edExpres s ion
| BooleanExpress ion

Quant i f i edExpres s ion : := ((<FORALL> | <EXISTS> (
<UNIQUE>)?) <IDENTIFIER> ((”: ” | <SET DECLARE>) (Type |

lookup arbitraryTypeByName))? <IN> (SetExpress ion | Reference) ”| ”
DesignRuleExpress ion)
BooleanExpress ion : := OrExpression (<AND> OrExpression)∗
OrExpression : := Impl i e sExpre s s i on (<OR> Imp l i e sExpre s s i on)∗
Imp l i e sExpre s s i on : := I f fExp r e s s i o n (<IMPLIES> I f fExp r e s s i o n)∗
I f fExp r e s s i o n : := Equa l i tyExpres s ion (<IFF> Equa l i tyExpres s ion)∗

Equa l i tyExpres s ion : := Re la t i ona lExpre s s i on (<EQ>

Re la t i ona lExpre s s i on | <NE> Re la t i ona lExpre s s i on)∗
Re la t i ona lExpre s s i on : := Addit iveExpress ion (”<” Addit iveExpress ion | ”>”

Addit iveExpress ion | <LE> Addit iveExpress ion | <GE> Addit iveExpress ion)∗
Addit iveExpress ion : := Mu l t i p l i c a t i v eExp r e s s i on

(<PLUS> Mul t i p l i c a t i v eExp r e s s i on | <MINUS> Mul t i p l i c a t i v eExp r e s s i on)∗

Mul t i p l i c a t i v eExp r e s s i on : := UnaryExpression (

<STAR> UnaryExpression | <SLASH> UnaryExpression | <REM> UnaryExpression)∗

UnaryExpression : := <BANG> UnaryExpression
| <MINUS> UnaryExpression
| Pr imi t iveExpre s s i on

Pr imi t iveExpre s s i on : := ”(” DesignRuleExpress ion ”) ”
| Li t e ra lCons tant
| Reference
| SetExpress ion

Reference : := <IDENTIFIER> ((”. ”
<IDENTIFIER>) | (”. ” <TYPE>) | (”. ” <COMPONENTS>) |
(”. ” <CONNECTORS>) | (”. ” <PORTS>) | (”. ” <ROLES>)
| (”. ” <MEMBERS>) | (”. ” <PROPERTIES>) | (”. ”
<REPRESENTATIONS>) | (”. ” <ATTACHEDPORTS>) | (”. ”
<ATTACHEDROLES>))∗ (”(” ActualParams ”) ”)?

JavaMethodCallExpr : := <IDENTIFIER> (”. ” <IDENTIFIER>

)∗ ”(” ActualParams ”) ”
L i t e ra lCons tant : := (<INTEGER LITERAL>)
| (<FLOATING POINT LITERAL>)
| (<STRING LITERAL>)
| (<TRUE>)
| (<FALSE>)
| (<COMPONENT>)
| (<GROUP>)
| (<CONNECTOR>)
| (<PORT>)
| (<ROLE>)
| (<SYSTEM>)
| (<ELEMENT>)
| (<PROPERTY>)
| (<INT>)
| (<FLOAT>)
| (<STRING>)
| (<BOOLEAN>)
| (<ENUM>)
| (<SET>)
| (<SEQUENCE>)
| (<RECORD>)

ActualParams : := (ActualParam (” , ” ActualParam)∗)?
FormalParams : := (FormalParam (” , ” FormalParam)∗)?
ActualParam : := DesignRuleExpress ion
FormalParam : := <IDENTIFIER> (” , ” <IDENTIFIER>

)∗ ”: ” (<ELEMENT> | <SYSTEM> | <COMPONENT> |
<CONNECTOR> | <PORT> | <ROLE> | <TYPE> |
<PROPERTY> | <REPRESENTATION> | <ANY> | NonPropertySetTypeExpression |

PropertyTypeDescr ipt ion)
NonPropertySetTypeExpression : := <SET> ”{” (<ELEMENT> |

<SYSTEM> | <COMPONENT> | <CONNECTOR> | <PORT> |
<ROLE> | <TYPE> | <PROPERTY> | <REPRESENTATION> |
<ANY>) ”}”

Distributed and Mobile Systems Group A-4

A BNF of the ACME Language

SetExpress ion : := (L i t e r a l S e t | SetConstructor)
L i t e r a l S e t : := (”{” ”}” | ”{” (L i t e ra lCons tant | Reference)
(” , ” (L i t e ra lCons tant | Reference))∗ ”}”)
SetConstructor : := (”{” <SELECT> <IDENTIFIER> (

”: ” lookup arbitraryTypeByName)? <IN> (SetExpress ion | Reference) ”| ”
DesignRuleExpress ion ”}” | (”{” <COLLECT> <IDENTIFIER> ”. ” <IDENTIFIER> ”: ”
lookup arbitraryTypeByName ”. ” lookup arbitraryTypeByName <IN>

(SetExpress ion | Reference) ”| ” DesignRuleExpress ion ”}”))
RecordType : := <RECORD> ”[” RecordItem (” , ” RecordItem)∗ ”] ”
RecordItem : := <IDENTIFIER> ”: ” Type
SetType : := <SET> ”{” Type ”}”
SequenceType : := <SEQUENCE> ”{” Type ”}”
S ignature : := Type ”<−>” Type
Type : := (<IDENTIFIER> (”. ”

<IDENTIFIER>)∗)
PrimitiveType : := <COMPONENT>
| <GROUP>
| <CONNECTOR>
| <PORT>
| <ROLE>
| <SYSTEM>

Element : := (<IDENTIFIER> (”. ”
<IDENTIFIER>)∗)

| CompoundElement
CompoundElement : := Set
| Record
| Sequence

Set : := ”{” Element (” , ” Element)∗ ”}”
Record : := ”[” <IDENTIFIER> ”=” Element (” , ” <IDENTIFIER> ”=” Element)∗ ”] ”
Sequence : := ”<” Element (” , ” Element)∗ ”>”

Distributed and Mobile Systems Group A-5

B Raw Data For the Analysis of Chapter 4

B Raw Data For the Analysis of Chapter 4

The table can be found on page A-7

Distributed and Mobile Systems Group A-6

B Raw Data For the Analysis of Chapter 4

F
ig

u
re

73
:

R
aw

D
at

a
fo

r
th

e
A

n
al

y
si

s
of

C
h
ap

te
r

4

Distributed and Mobile Systems Group A-7

C Complete Agreement Management Process Model

C Complete Agreement Management Process Model

Figure 74: EPC Process Diagram for Functional Requirements

Distributed and Mobile Systems Group A-8

D Metrics for Step 6 of the Case Study

D Metrics for Step 6 of the Case Study

Figure 75: Structure of the Intermediate System Design after Step 6

Service s of Ω cos(s) γ(s) π(s) AD(Ω, s)

ServiceOrchestration 4 4 1 1
es1 2 2 1 0
es2 2 2 1 0
es4 2 2 1 0

Table 25: Size Metrics for the Intermediate Composite Application

Distributed and Mobile Systems Group A-9

	1 Introduction
	1.1 Problem Statement
	1.2 Approach
	1.3 Thesis Structure

	2 Service-Oriented Architecture
	2.1 Application Integration
	2.2 SOA as a Paradigm for Control Centralization
	2.3 SOA Defined
	2.4 Platform Requirements for the Service-Oriented Architectural Style

	3 Assessing the Application and Applicability of SOA
	3.1 Potential Benefits and Trade-Offs of SOA
	3.2 Assessing Design Quality
	3.2.1 Assessing Modifiability
	3.2.2 Assessing Reliability
	3.2.3 Assessing Usability

	3.3 Assessing the Suitability of SOA

	4 Is There Reuse by Design? A Quantitative Approach
	4.1 Candidate Metrics for Reusable Service Design
	4.2 Introduction to the Case Study
	4.3 On the Candidate Metrics' Discriminative Power
	4.4 Conclusion

	5 A Reference Architecture for Composite Applications
	5.1 Outline of the Architecture
	5.2 Events
	5.2.1 Event Relations
	5.2.2 Realizing Data Visibility using Event Types and Relations

	5.3 Heterogeneous Application Systems
	5.4 Connectivity to Application Systems
	5.5 Eventing System
	5.6 Data Repository
	5.7 Data Exchange and Data Transformation Layer
	5.7.1 Data Service
	5.7.2 Validity Service
	5.7.3 Heterogeneity Service
	5.7.4 Trigger Service
	5.7.5 Routing Service
	5.7.6 Integration In-Flow
	5.7.7 Integration Out-Flow
	5.7.8 Realizing Interactions using Integration Flows

	5.8 Service Coordination Layer
	5.9 Business Process Orchestration Layer
	5.9.1 Workflow System for Service Orchestration
	5.9.2 Decision Service

	5.10 Service Registry
	5.11 Summary

	6 Designing Composite Applications
	6.1 A Meta-Model for Services
	6.2 Composite Application Design -- A Step-by-Step Process
	6.2.1 An Example Scenario
	6.2.2 Step 1: List all Business Process Activities
	6.2.3 Step 2: Create Enterprise Service Candidates
	6.2.4 Step 3: Match Suitable Service Methods and Derive Missing Service Method Candidates
	6.2.5 Step 4: Describe Service Orchestration
	6.2.6 Step 5: Create Service Coordination Description
	6.2.7 Step 6: Refine Candidate Methods
	6.2.8 Step 7: Analyze QoS Requirements of Service Coordinations
	6.2.9 Step 8: Design of Application Services
	6.2.10 Step 9: Exchange and Transformation Design
	6.2.11 Step 10: Revise Service Coordination Description
	6.2.12 Step 11: Revise Enterprise Service Candidates
	6.2.13 Step 12: Define Events
	6.2.14 Step 13: Data Repository Design
	6.2.15 Step 14: Finalize Service Orchestration
	6.2.16 Step 15: Finalize Exchange and Transformation Design
	6.2.17 Step 16: Pass over to Implementation

	6.3 Summary

	7 Platform-Specific Reference Architecture
	7.1 Elements of the SAP NetWeaver Platform
	7.1.1 SAP Web Application Server
	7.1.2 SAP Exchange Infrastructure
	7.1.3 SAP Composite Application Framework
	7.1.4 SAP Enterprise Portal

	7.2 Platform-Specific Reference Architecture for SAP NetWeaver
	7.2.1 Eventing System
	7.2.2 Data Repository
	7.2.3 Connectivity to Application Systems
	7.2.4 Data Exchange and Data Transformation Layer
	7.2.5 Service Coordination Layer
	7.2.6 Business Process Orchestration Layer
	7.2.7 Service Registry
	7.2.8 Centralizing the User Interface

	7.3 Summary
	7.4 Conclusion

	8 A Case Study
	8.1 The Business Case
	8.1.1 Requirements
	8.1.2 On the Suitability of SOA for the Use Case
	8.1.3 Application Landscape and Constraints

	8.2 Design of the Composite Application
	8.2.1 Step 1: List all Business Process Activities
	8.2.2 Step 2: Create Enterprise Service Candidates
	8.2.3 Step 3: Match Suitable Service Methods and Derive Missing Service Method Candidates
	8.2.4 Step 4: Describe Service Orchestration
	8.2.5 Step 5: Create Service Coordination Description
	8.2.6 Step 6: Refine Candidate Methods
	8.2.7 Step 7: Analyze QoS Requirements of the Service Coordinations
	8.2.8 Step 8: Design Application Services
	8.2.9 Step 9: Exchange and Transformation Design
	8.2.10 Step 10: Revise Service Coordination Description
	8.2.11 Step 11: Revise Enterprise Service Candidates
	8.2.12 Step 12: Define Events
	8.2.13 Step 13: Data Repository Design
	8.2.14 Step 14: Finalize Service Orchestration
	8.2.15 Step 15: Finalize Exchange and Transformation Design
	8.2.16 Step 16: Pass over to Implementation

	8.3 Analysis of the Design
	8.4 The Composite Application
	8.4.1 Observations from the Development Phase
	8.4.2 Look and Feel

	8.5 Summary and Conclusion

	9 Related Work
	9.1 Incorporated Work
	9.1.1 Reference Architectures
	9.1.2 Service Design and Design Methodologies
	9.1.3 Design Assessment Metrics

	9.2 Complementary Work
	9.2.1 Reference Architectures
	9.2.2 Service Design and Design Methodologies

	9.3 Summary

	10 Conclusion
	10.1 Summary
	10.2 Future Work
	10.3 Conclusion

	References
	Index
	List of Figures
	List of Tables
	Appendix
	A BNF of the ACME Language
	B Raw Data For the Analysis of Chapter 4
	C Complete Agreement Management Process Model
	D Metrics for Step 6 of the Case Study

