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On the Applications of Robust PCA in Image and

Video Processing
Thierry Bouwmans, Sajid Javed, Hongyang Zhang, Zhouchen Lin, IEEE Fellow, and Ricardo Otazo

Abstract—Robust PCA (RPCA) via decomposition into low-
rank plus sparse matrices offers a powerful framework for a
large variety of applications such as image processing, video
processing and 3D computer vision. Indeed, most of the time
these applications require to detect sparse outliers from the
observed imagery data that can be approximated by a low-
rank matrix. Moreover, most of the time experiments show that
RPCA with additional spatial and/or temporal constraints often
outperforms the state-of-the-art algorithms in these applications.
Thus, the aim of this paper is to survey the applications of RPCA
in computer vision. In the first part of this paper, we review
representative image processing applications as follows: (1) low-
level imaging such as image recovery and denoising, image com-
position, image colorization, image alignment and rectification,
multi-focus image and face recognition, (2) medical imaging like
dynamic Magnetic Resonance Imaging (MRI) for acceleration
of data acquisition, background suppression and learning of
inter-frame motion fields, and (3) imaging for 3D computer
vision with additional depth information like in Structure from
Motion (SfM) and 3D motion recovery. In the second part, we
present the applications of RPCA in video processing which
utilize additional spatial and temporal information compared
to image processing. Specifically, we investigate video denoising
and restoration, hyperspectral video and background/foreground
separation. Finally, we provide perspectives on possible future
research directions and algorithmic frameworks that are suitable
for these applications.

Index Terms—Robust PCA, Image processing, Video process-
ing, 3D Computer Vision, Medical Imaging.

I. INTRODUCTION

PRincipal component analysis was introduced by Karl

Pearson in 1901 and was first widely used in statistics.

But its main limitation includes its sensitivity to outliers, its

high computation time and memory requirements, which make

the model unsuitable for high dimensional data as in computer

vision applications. The robustness of Principal Component

Analysis (PCA) methods was first addressed in statistics by

replacing the standard estimation of the covariance matrix with

a robust estimator [36],[128] or by using projection pursuit

techniques [56],[129]. On the other hand, in neural networks
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PCA was robustified by designing a neural network that relied

on self-organizing rules based on statistical physics [298].

But all these robust methods are still limited to relatively

low-dimensional data and thus they are not applicable for

computer vision applications with high dimensional data. In

a further work which appeared on arXiv in 2009, Candès et

al. [37] addressed the robustness by decomposition into low-

rank plus sparse matrices (also called L+S decomposition),

and practically provided by several ways a suitable framework

for many signal processing and computer vision applications.

Practically, Candès et al. [37] proposed a convex optimization

to address the robust PCA problem. The observation matrix A

is assumed represented as:

A = L + S (1)

where L is a low-rank matrix and S must be sparse matrix

with a small fraction of nonzero entries. The straightforward

formulation is to use l0-norm to minimize the energy function:

min
L,S

rank(L) + λ||S||0 subj A− L− S = 0 (2)

where λ > 0 is an arbitrary balanced parameter. But this

problem is NP -hard, typical solution might involve a search

with combinatorial complexity. This research seeks to solve

for L with the following optimization problem:

min
L,S

||L||∗ + λ||S||1 subj A− L− S = 0 (3)

where ||.||∗ and ||.||l1 are the nuclear norm (which is the l1-

norm of singular value) and l1-norm, respectively, and λ > 0
is an arbitrary balanced parameter. Usually, λ = 1√

max(m,n)
.

Under these minimal assumptions, this approach called Prin-

cipal Component Pursuit (PCP) solution perfectly recovers the

low-rank and the sparse matrices.

The main difference between robust PCA based either on

robust estimators and projection pursuit, and the L+S decom-

position model is that the first approaches assume outlying

data points in which entire row or column of the data matrix

is corrupted whilst the second approach assumes outliers that

are uniformly distributed. In addition, the classical approaches

on robust PCA focus mostly on estimators with excellent worst

case robustness but poor computational profiles because they

are NP hard to compute or they involve combinatorial search

making them unsuitable for computer vision applications with

high dimensional data. On the other hand, Candès et al.

[37] showed results with the L+S decomposition model in

computer vision applications like face images and background

modeling that demonstrated encouraging performance. This

original RPCA formulation suffices in applications (such as
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image denoising, and image alignment) where the information

of interest is in the low-rank L matrix. But, applying directly

this original RPCA formulation in applications in which there

is also information of interest in the sparse matrix S (such as

background/foreground separation) results that outliers con-

tains both the information of interest (moving objects that

is considered as sparse) and the noise. Thus, most of the

time, the stable RPCA formulation [344] is preferred for this

kind of computer vision applications. The stable formulation

PCP (also called L+S+E decomposition) assumes that the

observation matrix A is represented as follows:

A = L + S + E (4)

where E is a noise term (say i.i.d. noise on each entry of the

matrix) and ||E||F < δ for some δ > 0. To recover L and S,

Zhou et al. [344] proposed to solve the following optimization

problem, as a relaxed version to PCP:

min
L,S

||L||∗ + λ||S||1 subj ||A− L− S||F < δ (5)

where ||.||F is the Frobenius norm and λ = 1√
n

. Further-

more, to enhance the adequacy of the RPCA formulation for

computer vision, spatial and/or temporal additional constraints

need to be introduced by using specific regularization terms or

function applied on L, S and E. A general formulation of the

optimization problem suitable for a RPCA formulation applied

to a computer vision application can be written as follows:

min
L,S,E

||T (L)||∗ + λ1||Π(S)||1 + λ2||E||F︸ ︷︷ ︸
Constrained Stable RPCA Decomposition

+ δ1F (L) + δ2G(S)︸ ︷︷ ︸
Computer Vision Application

,

s.t. A = L + S + E, or A = W ◦ (L + S + E),
or A ◦ τ = L + S + E,

(6)

where T (·) and Π(·) are linear operators applied on L and S,

respectively. They allow to take into account spatial and tem-

poral constraints as well as the functions F (·) and G(·) that are

usually suitable norms for the specific constraints met in the

application. A weighting matrix W or a transformation τ can

also be used in the constraint of the minimization. In literature,

numerous publications used the robust PCA formulation by

improving its computational efficiency and its adequacy to the

concerned application in (1) signal processing applications like

in satellite communication [150], seismology [67],[53], speech

enhancement [125][290], Synthetic-Aperture Radar (SAR)

imaging [127],[307],[240],[159],[155],[329],[23],[24],[95] and

direction-of-arrival tracking [167],[61], (2) computer vision

applications like in image processing, video processing and

3D computer vision as developed in Bouwmans et al. [28],

(3) computer science applications such as the detection traffic

anomalies [191][216], and (4) astronomy for auroral substorm

detection [304] and exoplanet detection [101],[217]. A full

list of publications of RPCA in these different applications is

available at the DLAM website1.

Thus, even if PCA is a problem that has existed for

over a century, and also applied in computer vision since

1https://sites.google.com/site/robustdlam/

2000s [268],[269], the work of Candès et al. [37] is the

main reason why there has been a resurgence of interest

in robust PCA and extensions in computer vision since the

last six years. The other reasons concern two main points.

First, new Singular Value Decomposition (SVD) solutions

have been developed to make the iterations as efficient as

possible and to deal with the fact that the standard SVD

solution fails if the data are corrupted by anything other than

small noise. For example, approximated SVD solutions exist to

avoid full SVD computations in order to reduce computation

time such as partial SVD algorithms [170], linear time SVD

algorithms [303], limited memory SVD algorithms [178],

symmetric low-rank product-Gauss-Newton algorithms [179],

Block Lanczos with Warm Start (BLWS) algorithms [172], and

randomized SVD algorithms [83][335][145]. Moreover, a lot

of video data arrive sequentially over time and the subspace in

which the data lie can change with time. Motivated by these

reasons, there has been an array of papers using online or

streaming robust PCA (also called robust subspace tracking

[274]), and some of them specifically focused on online

dynamic robust PCA [182],[274] with performance guaran-

tees [181],[183],[201],[315] and memory efficient algorithms

[200]. This line of research allows its application in computer

vision such as background/foreground separation which re-

quires incremental and real-time computations. Furthermore,

robust PCA often outperforms previous state-of-the-art meth-

ods in several computer vision applications [38],[104],[169]

with rigorous theoretical analysis [19],[37],[318]. Indeed, as

this decomposition is non-parametric and does not make many

assumptions, it is widely applicable to large scale problems

ranging from image processing to video processing.

II. PRELIMINARY OVERVIEW

Many tasks in image and video processing present in the ob-

served data combination of (1) one information of interest and

perturbations, or (2) combination of two information of interest

and perturbations. Here, perturbations include both notion of

noise and errors than occur in computer vision systems. In

the first case, information of interest and perturbations present

low-rank and sparsity aspects, respectively. Thus, RPCA via

L+S decomposition offers a suitable framework for these

processing. Then, the low-rank component mathematically

contains the inliers (information of interest) and the sparse

components contains the outliers (noise). In the second case,

the first information of interest and the second information

of interest present low-rank and sparsity aspects, respectively.

Thus, the stable RPCA formulation is required to avoid the

matrix S to contain both the second information of interest

and the perturbations. Furthermore, the spatial aspects present

in images, and the temporal constraints in video sequences can

be used in the L+S decomposition and L+S+E decomposition

to enforce its adequacy to the concerned task.

A. Image processing

RPCA framework was applied with a great success in the

following imaging applications:
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• Low-level imaging and analysis: image restora-

tion and denoising [105],[149],[261],[280],[281], tex-

ture image denoising [166], hyperspectral image denois-

ing [50],[100],[285], image completion and inpainting

[39],[299], image composition for high-dynamic range

imaging [21], image decomposition for intrinsic im-

age computation [151],[313] and for structural image

decomposition [43], image alignment and rectification

[219],[231],[259],[293],[328], image stitching and mo-

saicking [163], image colorization [306], multi-focus im-

age [277],[278],[325],[326],[327], pansharpening [322],

change detection [51], face recognition [185],[289],[320],

partial-duplicate image search [302], image saliency de-

tection [147],[160],[161],[222],[228] and image analysis

[343],[173].

• Medical imaging: RPCA has become a powerful

tool to increase the performance of data acquisition

[89],[90],[210],[211],[270], image reconstruction

[215] and image analysis of brain images

[14],[89],[212],[213],[250],[13], cardiac images

[48],[49],[90],[210],[211],[270],[215],[296], vessels

images [143] and retina images [86]. A key initial

application was to reduce the number of measurements

in dynamic imaging (space + time), which resulted in

increased imaging speed for MRI [90],[210],[211],[270]

and radiation dose reduction for CT [89]. In addition, the

separation of the background in the low-rank component

performed automated background suppression for

angiography and contrast-enhanced studies. RPCA

can also perform a robust separation of common and

individual information when analyzing a group of

clinical datasets, such as functional and diffusion MRI

of the brain [14],[212],[213]. In an other way, RPCA can

also detect changes in the retina [86] and also aligned

image for speckle reduction of retinal OCT images [18].

• Imaging for 3D computer vision: This application

requires mechanical measurement of the camera positions

or manual alignment of partial 3D views of a scene.

Thus, RPCA can also be used to reduce outliers and

noise in algorithms such as Structure from Motion (SfM)

[177],[291],[9],[8], 3D motion recovery [283], and 3D

reconstruction [10].

B. Video processing

This application is the most investigated one. Indeed,

numerous authors used RPCA problem formulations in

applications such as background/foreground separation

[4],[208],[223], background initialization [255],[258], moving

target detection [241], motion saliency detection [47],

[300], [332], motion estimation [238], visual object tracking

[168][276], action recognition [126], key frame extraction

[60], video object segmentation [130],[153],[197],[317],[319],

video coding [45],[46],[110],[331], video restoration and

denoising [142],[334],[109],[318],[176], video inpainting

[142], hyperspectral video processing [96],[42], and video

stabilization [68].

In the following sections, we introduce how the RPCA

formulation is employed in these applications. Particularly, we

indicate how the observed image and video data are stacked

in the input matrix A, and the signification of the low-rank

L and sparse S matrices. Furthermore, several authors have

added specific constraints in the RPCA formulation to make

it suitably designed for the target applications. The rest of

this paper is organized as follows: Section III reviews the

applications of RPCA in image processing. Particularly, low-

level imaging is surveyed in III-A whilst the specific case

of medical imaging is then investigated in Section III-B.

We review the 3D computer vision applications in Section

III-C. Section IV review the applications of RPCA in video

processing. Finally, we present the conclusion with future

research directions.

III. IMAGE PROCESSING

In image processing, several tasks can be formulated into

low-rank and/or sparsity aspects. Thus, the L+S decomposition

presents a suitable framework for these different tasks. In

addition, the spatial aspects in images is exploited in the L+S

decomposition to enforce its use to the concerned task. In

the following sub-sections, we review these different tasks

categorized in low-level imaging, medical imaging and 3D

computer vision.

A. Low-level imaging

In low-level processing tasks, RPCA via L+S decomposition

is of interest in tasks in which (1) the observed image can

be viewed as the sum of a low-rank clean image and a

sparse perturbations like in image restoration and denoising,

hyperspectral image denoising and image composition,

(2) the observed image can be viewed as the sum of a

low-rank image and a sparse image like in intrinsic image

computation, (3) only the low-rank aspect is of interest like

in image alignement, image stitching, image colorization and

pan-sharpening, and (4) only the sparse aspect is of interest

like in multi-focus image fusion.

1) Image Restoration and Denoising: Image restoration is

one of the most fundamental problems in image processing

and computer vision, especially in the current days with the

growing number of cameras and closed circuit monitors. Its

goal is to restore a clear image from degraded images. There

are two main kinds of degradations: geometric distortion and

blur. Lau et al. [149] addressed the degradation issues by

first optimizing a mathematical model to subsample sharp and

mildly distorted video frames, and then applying a two-step

stabilization to stabilize the subsampled video with Beltrami

coefficients, replacing blurry images with sharp ones by optical

flow and robust PCA. In particular, for every frame I
samp
k , Lau

et al. [149] calculated the deformation fields V
j
k from a fixed

frame I
samp
k to other ones. Define

Vk : = (vec(V1
k), vec(V

2
k), ..., vec(V

n
k ))

= Vk,1 + iVk,2,
(7)
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Fig. 1: Image Restoration. From top to bottom: Ground truth image,
distorted and blurred image, Sobolev gradient-Laplacian method
[184], Centroid method [195] deblurred [248], Two-stage reconstruc-
tion method [206] and RPCA algorithm [149] (Images from Lau et
al. [149]).

where vec(V) indicates the vectorization of V and Vk,1 :=
Re(Vk) and Vk,2 := Im(Vk) contain the horizontal and ver-

tical displacement vectors, respectively. They applied robust

PCA to decompose each of {Vk,p | p = 1, 2} into low-rank

and sparse terms:

Vk,p = L∗
k,p + S∗

k,p,

(L∗
k,p,S

∗
k,p) = argmin

L+S=Vk,p

‖L‖∗ + λ‖S‖1, for p = 1, 2.

(8)

where ‖L‖∗ =
∑

i σi(L) is the nuclear norm, i.e, sum of

singular values, ‖S‖1 =
∑

ij |Si,j | is the ℓ1-norm, and the

sparse part S∗
k,p corresponds to the outlier. Lau et al. [149]

then warped I
samp
k by a post-processing of low-rank part Lk

for each k to obtain the stabilized frames. Experiments on both

synthetic and real experiments demonstrate the effectiveness

of the proposed method in alleviating distortions and blur,

restoring image details and enhancing visual quality against

several state-of-art methods as can be seen in Fig 1.

Image denoising is a problem closely related to image

restoration, where the degradation is caused by noise. The

goal of image denoising is to effectively identify and remove

noise from the ground-truth image. To this end, many classic

image denoising algorithms assume a specific statistical model

of the noise, and apply the maximum likelihood estimator

to do the inference. However, the assumed statistical model,

e.g., the Gaussian white noise, cannot always hold true in

practice. This observation motivates some new ideas to the

problem of image denoising. The seminal work of [34] first

proposed the non-local self-similarity based methods for image

denoising. The idea is that the repeated local patterns across a

natural image may help reconstruct the similar local patches.

Inspired by this idea, Gu et al. [105] combined with the new

technique of weighted nuclear norm minimization to perform

image denoising. In particular, for a local patch yi in an image,

Gu et al. [105] searched for its non-local similar patches

by block matching methods. Then they stacked those non-

local similar patches into a matrix Yj and decomposed it as

Xj + Nj , where the subscript j indicates the j-th class of

patches. Intuitively, matrix Xj should be of low rank as it

is stacked by the similar local patches while Nj corresponds

to the noise. With this observation, Gu et al. [105] proposed

to minimize the following objective function with weighted

(a) (b) PSNR: 14.16dB (c) PSNR: 26.78dB (d) PSNR: 26.65dB

(e) PSNR: 26.77dB (f) PSNR: 26.65dB (g) PSNR: 26.63dB (h) PSNR: 26.98dB

Fig. 2: Image Denoising. From top to bottom: (a) Ground-truth
image, (b) noiy image, (c) BM3D [59], (d) EPLL [345], (e) LSSC
[190], (f) NCSR [64], (g) SAIST [63], and (h) RPCA algorithm called
WNNM [105] (Images from Gu et al. [105]).

nuclear norm regularization:

min
Xj

λ‖Yj −Xj‖2F + ‖Xj‖w,∗, (9)

where ‖ · ‖w,∗ is the weighted nuclear norm defined as

‖X‖w,∗ =
∑

i wiσi(X), in which σi(X) is the i-th largest

singular value of matrix X and w = [w1, ...,wn]
T is the

nonnegative weight vector. To set an appropriate weight vector

w, Gu et al. [105] chose wi to be inversely propositional to

σ(Yi), thus encouraging low-rank solutions more effectively

than the usual nuclear norm. Extensive experiments show

that the proposed method called Weighted Nuclear Norm

Minimization (WNNM) is able to recover more details,

generate much less artifacts, and preserves much better edges

against the following state-of-art methods BM3D [59], EPLL

[345], LSSC [190], NCSR [64] and SAIST [63] as can be

seen in Fig. 2.The main drawback to the above approach is

that iteratively reweighted algorithms can only approximate

either the low-rank component or the sparse one with a non-

convex surrogate. One important reason for this is that it is

difficult to solve a problem whose objective function contains

two or more nonsmooth terms. In this context, Wang et al.

[281] employed a Schatten-p norm and ℓq-norm regularized

Principal Component Pursuit (p, q-PCP) to approximate the

low rank and sparse functions with non-convex surrogates

with few iterations. Experiments show that p, q-PCP achieves

the best image recovery performance. Liang [166] considered

the restoration of a low rank texture contaminated by both

Gaussian and salt-and-pepper noise. The algorithm formulates

texture image denoising in terms of solving a low rank matrix

optimization problem.

2) Hyperspectral Image Denoising: Traditional RGB

images capture light in the red, green, and blue portions

of the visible light spectrum. Each band represents the

amount of energy emitted at a particular wave length. Images

having more than three bands are referred to as multispectral

or hyperspectral images. These images can involve light

that is outside the visible spectrum, such as infrared (IR)

and UV (ultra-violet) light. Hyperspectral images have a
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higher spectral resolution compared to multispectral images

while being limited to a narrow spectral bandwidth. By

imaging the light that is absorbed and reflected in high detail

within a certain region of the electromagnetic spectrum, it

is possible to identify particular materials present in the

image. Thus, hyperspectral images contain rich spectral

information which facilitates lots of computer vision tasks.

But, hyperspectral data are easily affected by different factors

such as noise, missing data, etc., which degrades the image

quality and makes hyperspectral data incomplete. Wei et al.

[285] addressed hyperspectral data denoising in the RPCA

formulation by taking advantage of hyperspectral unmixing

and modeling it probabilistically. Let X be an observed

3D hyperspectral image with X ∈ R
nr×nc×nb where nr,

nc and nb are the height, width and the number of bands,

respectively. For convenience, X is rearranged in a 2D matrix

A by reshaping the image of each band as a vector of

A ∈ R
np×nb with np = nr × nc which corresponds to the

number of pixels. Suppose that a noisy hyperspectral image

A can be decomposed into a noiseless/clean hyperspectral

image L ∈ R
np×nb and a noise image S ∈ R

np×nb . rank(S)
is always full with rank(A) ≈ rank(S) = min(np, nb). L can

be represented as a multiplication of a matrix L1 ∈ R
np×ne

with a matrix L2 ∈ R
ne×nb , called endmember matrix

and abundance matrix, respectively. ne is the number

of endmembers and rank(L) is no larger than ne (i.e

rank(L) ≤ ne). Because ne is far smaller than np and nb,

rank(L)≪ rank(A). Thus, L is effectively a low-rank matrix

and we have A = L + S. Experimental results show that

RPCA algorithms outperforms the standard approach based

on wavelet as can be seen in Fig. 3 on the Washington DC

Mall dataset which contains hyperspectral images of size

1208 × 307 pixels. Each has 191 spectral channels and a

subimage of size 256 × 256 × 191 is cropped from this

dataset. Even if this RPCA based method outperforms the

state-of-the-art methods, real noise in hyperspectral date often

exhibits very complex statistical distributions, rather than

simply being sparse. So the noise cannot be easily described

by a simple norm like the ℓ1-norm. From the probabilistic

perspective, the low-rank part Land the noise part S can be

modeled more directly and flexibly with a generative model

using a mixture of Gaussians model as in the MOG-RPCA

model [333], or using a Mixture of Exponential Power

(MoEP) distributions as in the penalized MoEP (PMoEP)

model [40]. Experiments show that this probabilistic method

can denoise noisy incomplete hyperspectral data more

effectively when compared with previous denoising methods.

3) Image Composition: Image composition is the problem

of combining multiple images captured by a camera or multi-

ple cameras to generate a desired image of a scene. A typical

example is a high-contrast scene captured by a low-dynamic

range (LDR) camera. It has many important applications in

computational photography, such as High Dynamic Range

(HDR) imaging and flash/no-flash imaging. Classic techniques

for this problem suffer from issues caused by defocus blur and

1http://lesun.weebly.com/hyperspectral-data-set.html

Fig. 3: Hyperspectral image denoising results of band 100 for

Washington DC Mall dataset1. From top to bottom: Original

band, noisy band, wavelet based result, GoDec [339], and

RPCA algorithm [285] (Images from Wei et al. [285]).

dynamic objects which typically results in ghosting artifacts.

Bhardwaj and Raman [21] addressed the above-mentioned

issues by the robust PCA framework. Specifically, they first

modelled the camera response function by a gamma correction

function to linearize the intensity values. This operation is

applied to all n images and a matrix A is constructed by

stacking each image as a column of A. They then applied

robust PCA to A:

min
L,S
‖L‖∗ + λ‖S‖1, s.t. A = L+ S, (10)

which is solved by the Alternating Direction Method of

Multipliers (ADMM) [171]. Next, they used the inverse of

the gamma correction to the columns of L to obtain the

high-contrast LDR images which are free from defocus

blur and ghosting artifacts. Finally, they fused the obtained

high-contrast LDR images into a high-quality HDR image

by an existing method. The motivation here is that the static

part of the scene imaged in all images should be of low-rank

(L) as they are similar to each other. This RPCA technique

penalizes the lower singular values while retaining the higher

singular value. Experiments on multi-exposure images and

multi-aperture images show that the proposed method can

capture better contrast details and have less defocus blur and

specularities as can be seen in Fig. 4.

4) Intrinsic Image Computation: Intrinsic image computa-

tion aims at separating a given input image into its material-

related properties, such as reflectance or albedo, and its light-

related properties, e.g., shading and shadows. It is probably

one of the most important preprocessing steps for photometric

computer vision and image based modeling.

The seminal work by Candès et al. [37] first proposed to

apply robust PCA to compute the intrinsic image of face

images. The idea is simple: by stacking multiple facial images

from the same person taken under different lightings as the

columns of a matrix A, A should be decomposed as L + S

with a low-rank matrix L and a sparse matrix S. This idea
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Fig. 4: Image Composition (HDR). From left to right: Tone

mapped [87], and multi-exposed images obtained with the

RPCA based approach [21]. The differences are noticeable

within the regions delimited by a circle. (Images from Bhard-

waj and Raman [21]).

utilizes the fact that the intrinsic image, which reflects the

light reflectance properties of a face, is common for the face

images taken under different lightings. The decomposition can

thus be done by solving the robust PCA problem (10).

However, inappropriate choice of the regularization param-

eter λ between the low-rank and the sparse matrices in the

classic robust PCA problem often results in an L with a rank

greater than one, while for intrinsic image computation the

rank of L should be one as there should be only one intrinsic

image. To resolve this issue, Yu [313] proposed the rank-

constrained PCA (RCPCA) model, by explicitly enforcing the

rank of L to be one:

min
L,S
‖S‖1, s.t. rank(L) = 1, A = L+ S. (11)

The above model can also be easily solved by ADMM

[171]. Experiments on the MIT intrinsic image dataset and

the Yaleface dataset (see Fig. 6) show that the proposed

fixed rank model in Equation (11) enjoys a lower local mean

squared error than the prior methods for intrinsic image

computation. Similarly, Leow et al. [151] used a different

norm, the Frobenius norm, for the matrix S in Equation (11)

and reasonably good intrinsic images were obtained.

5) Image Alignment and Rectification: Image alignment

refers to the problem of transforming different images into

the same coordinate system. It is a critical pre-processing

step for multiple applications, such as background modeling,

where the frames of a video are assumed to be aligned in

order to obtain a low-rank background. Practically, robust

and efficient image alignment remains a challenging task, due

to the massiveness of images, great illumination variations

between images, partial occlusion and corruption. Peng et

al. [219] first proposed Robust Alignment by Sparse and Low-

Rank (RASL) to solve the problem based on the assumption

that a batch of aligned images should form a low-rank matrix

L. The sparse component S models local differences among

images. Let A be the matrix which stacks each frame as its one

column, the mathematical model of RASL is similar to robust

PCA but with a characterization of geometric deformation τ :

min
τ,L,S

‖L‖∗ + λ‖S‖1, s.t. A ◦ τ = L+ S, (12)

(a) RPCA (b) RCPCA (c) RPCA (d) RCPCA

Fig. 5: Intrinsic Image Computation on two subsets of the

Extended Yale B database. From left to right (by group of

6 images=: (a) RPCA results on the subset 18, (b) rank-

constrained RPCA results on the subset 18, (c) RPCA results

on the subset 22, and (b) rank-constrained RPCA results on the

subset 22. Note that the reflectance image remains the same

for the rank-constrained RPCA (Images from Yu [313]).

where A◦τ refers to applying frame-wise geometric deforma-

tion τ to each frame. For efficient solution, Peng et al. [219]

converted the non-convex problem to a computable convex

optimization by iteratively linearizing τ locally and updating

with the increment ∆τ of τ :





min∆τk,L,S ‖L‖∗ + λ‖S‖1, s.t. A ◦ τk + J∆τk = L+ S,

τk+1 ← τk +∆τk,

k ← k + 1.
(13)

Here J is the Jacobian of A ◦ τ w.r.t. the parameters

of deformation τ . The above convex optimization problem

can also be efficiently solved by ADMM [171], and the

solution of Equation 13 converges to solution of Equation

12. An improved optimization method for RASL can be

found in [231], where ∆τk is cancelled first. Such a local

linearization algorithm can be viewed as a Gauss-Newton

method for minimizing the composition of a non-smooth

convex function with a smooth, nonlinear mapping. The con-

vergence behavior of such algorithms has been established

in the literature [219]. There are many generalizations of

RASL. For example, Wu et al. [293] proposed a method

for Online Robust Image Alignment (ORIA) by employing

a fixed-rank model along with a basis update scheme and

by assuming that the aligned image without corruption is

a linear composition of well-aligned basis. Although quite

efficient on large datasets, the heuristic basis updating scheme

using thresholding and replacement reduces the robustness

of image alignment. Motivated by online robust PCA, Song

et al. [259] took advantage of closed-form solutions and a

Stochastic Gradient Descent (SGD) updating scheme, which

have better convergence performance. However, as well as

RASL, ORIA [293] and SGD [259] all assume that large

errors such as occlusion and corruption among the images are

sparse and separable with respect to intensity, which may fail

in aligning images with severe intensity distortions. To address

this limitation, Zheng et al. [337] employed an online image

alignment method via subspace learning from Image Gradient
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(a) Original (b) Result

Fig. 6: Image Alignement. From left to right: (a) Original

images from the LFW dataset [124], (b) Result obtained by

Online Robust Image Alignment (ORIA) [293] (Images from

Wu [293]).

Orientations (IGO). Fig. 6 shows alignment of faces from the

Labeled Faces in the Wild (LFW) dataset [124].

Image rectification is a similar task as image alignment, both

of which are to deform (one or more) images into a “standard”

coordinate system. However, the difference is that, instead of

transforming multiple images into the same coordinate system

as in the alignment problem, image rectification has only

access to one image, which is more challenging. Transform

Invariant Low-Rank Textures (TILT) [328] provides a possible

solution to this problem. The intuition is as follows: an image,

viewed as a matrix, should be of approximately low-rank if

it is in its regular status, e.g., being symmetric or periodic.

Interestingly, TILT has the same mathematical model (12) as

RASL, and the solution methods of TILT and RASL are also

identical. The only difference is on the interpretation of matrix

D. In TILT D consists of an image patch of a single image,

while in RASL D consists of a collection of images, stacked

in columns. Therefore, RASL and TILT are complementary

to each other in that they try to capture temporal and spatial

correlation among image(s), respectively.

There are some other generalizations and improvements

of TILT. For example, Zhang et al. [330] considered

the parameterized transformations of TILT, in particular

generalized cylindrical transformations, which can be

conveniently applied to unwrapping textures from buildings.

Zhang et al. also applied TILT to text rectification [323] and

text detection [324].

6) Image Stitching: Image stitching refers to the problem

of aligning and stitching multiple images. It has many ap-

plications in computer vision and computer graphics, such

as video stabilization and augmented reality. Despite signif-

icant progress on this problem, many methods have limited

robustness to occlusions and local object motion in different

captures. In order to remove this obstacle, Li and Monga [163]

formulated the alignment problem as a low-rank and sparse

matrix decomposition problem with incomplete observations,

and the stitching problem as a multiple labeling problem that

(a)

(b) (c) (d)

Fig. 7: Image Stiching. First row: (a) Input images from the

Shanghai dataset. Second row: (b) Brown and Lowe [33], (c)

Gao et al. [91], and (d) SIASM [163] (Images from Li and

Monga [163]).

utilizes the sparse components. Their model is

min
τ,L,S

‖S‖1, s.t. A◦τ = PΩ(L+S), rank(L) ≤ r, (14)

where A is constructed by stacking each image as one

column, τ models the geometric transformation on each

image, and PΩ is the standard projection operator on the

observed set Ω due to the fact that each image is a partial

observation of the underlying mosaics in terms of pixels

values. Thus the columns of the output matrix L are the

desired aligned images. Problem (14) can also be solved by

ADMM [171]. With a few postprocessing steps the multiple

images can be stitched together. Experiments on the Shanghai

dataset (See Fig. 7) and the Windows dataset show that the

proposed method creates much less ghosting artifacts and

blur than the prior methods.

7) Image Colorization: Image colorization is the problem

of recovering the original color of a monochrome image from

only a few user-provided color pixels. A strategy to solve

this problem is by matrix completion, which assumes that the

underlying color image is of low rank. Though it is shown that

many images can be modeled by low-rank matrices, the low-

rank assumption is typically untrue for the coloring of global

image but holds true for local similar patches of the images.

With this observation, Yao and Kwok [306] achieved image

colorization by Patch-based Local Low-Rank (PaLLR) matrix

completion. In particular, instead of assuming the whole m×n
image to be low-rank, they first extracted groups of similar

image patches, each of which has its own low-rank structure.

The extraction of similar patches is by the similarity measure

‖Pi,j − Pi′,j′‖2F + β

(
1

m2
(i− i′)2 +

1

n2
(j − j′)2

)
(15)

between the patch Pi,j at position (i, j) and the patch Pi′,j′ at

position (i′, j′), where β > 0 is a trade-off parameter. For each

image patch, denote by G the matrix that contains the k most

similar patches including itself. Yao and Kwok [306] proposed
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to minimize the local low-rank approximation problem:

min
L

1

2
‖LT−G‖2F︸ ︷︷ ︸

consistency with gray values

+
λ

2
‖Ω⊙ (L−O)‖2F

︸ ︷︷ ︸
sparse labeled errors

+ µ |L|∗︸ ︷︷ ︸
local low-rank

,

(16)

where ⊙ is the dot product which is the sum of the products

of the corresponding entries and returns a single number,

T is the color-to-monochrome linear transform, L is the

target colorization of G. O and Ω indicate the values and

positions of the color pixels in the k patches, respectively.

The effectiveness of PaLLR is guaranteed by the observation

that the singular value spectrum of a typical patch group

decays quickly, i.e., the patch is low-rank. Finally, the color

of a pixel is obtained by averaging the color values in patches

that contain the pixel.

8) Multi-Focus Image Fusion: Robust PCA has important

applications in multi-focus image fusion as well. Existing

imaging devices, such as auto-focus cameras, have limited

focus range: only objects around a particular depth are clear

while other objects are blurry. Multi-focus image fusion aims

at resolving this issue: it creates a single image in which all

scene objects appear sharp. It has many applications in digital

photography and computer vision.

Wan et al. [277],[278] formulated the problem of multi-

focus image fusion as choosing the most significant features

from a sparse matrix which is obtained by robust PCA to

form a composite space of features. They then integrated

the local sparse features that represent the salient regions

of the input images to construct the desired fused images.

Their method consists of five steps: (1) Stack the images

with different focuses as columns of matrix A; (2) Perform

robust PCA decomposition (10) on matrix A so as to obtain

the low-rank matrix L and the sparse matrix S. Unstack

each column of S into multiple matrices, each of which

corresponds to one source image; (3) Divide the resultant

matrices into small blocks. Choose the blocks with lager

standard deviations to construct the fused image, with a

sliding window technique; (4) Record the feature comparison

results; (5) Apply a consistency verification process to refine

the decision map by a majority filter. In a further work, Zhang

et al. [325],[326],[327] proposed to use the Pulse-Coupled

Neural Network (PCNN) to record the feature comparison

results. The advantage is that the biological characteristics of

PCNN is able to take full use of the local features obtained

from sparse matrices and improve the accuracy of determining

in-focus objects.

9) Pan-sharpening: With the development of optical sen-

sors, more and more remote sensing images are collected, with

numerous applications in environment monitoring, battlefield

reconnaissance, etc. Unfortunately, due to the uncontrolled

environments and some physical limitations of sensors, images

from a single sensor typically have low spatial and spectral

resolution. The technique of pan-sharpening is designed to

resolve the issue: it fuses the panchromatic (PAN) image with

the low-resolution multi-spectral (LRMS) images to generate

the synthetic high-resolution multi-spectral (HRMS) images

with high spatial and spectral resolutions.

Yang et al. [322] proposed to apply low-rank decomposi-

tion to the problem of pan-sharpening with spatial-spectral

offsets. The idea is that the spatial redundancy and spectral

correlation among the multi-spectral images naturally imply

the inherent low-rank property of the matrix formed by

stacking HRMS images together. To be more specific, denote

by A = [A1,A2, ...,An] the matrix by stacking the bands

of n LRMS images, each being a column of A, and let

L = [L1,L2, ...,Ln] be the matrix of stacking the n HRMS

images. Yang et al. [322] decomposed A as the sum of L and

two offset matrices S1 and S2:

A = L+ S1 + S2. (17)

The spatial offset matrix S1 counteracts the spatial details in

HRMS images while the spectral offset matrix S2 contains

the information of spectral changes between the LRMS and

the HRMS images, both of which should be sparse. The

matrix L should be of low-rank due to the spatial and spectral

correlations among the HRMS images. Besides, the PAN

image P can be viewed as the spectral degradation of HRMS

images. Therefore, the PAN image can be represented by the

HRMS image: P = LW for some representation coefficient

matrix W. So the pan-sharpening problem can be formulated

as the optimization problem:

min
L,S1,S2,W

‖L‖∗ + α‖S1‖1 + β‖S2‖1,

s.t. A = L+ S1 + S2, LW = P,
(18)

where α and β are the regularization parameters. With

additional physical constraints on S1 and S2 and solving

problem (18) by ADMM [171], extensive experiments show

that the calculated spatial and spectral offsets S1 and S2 are

able to approach the reference differences well, implying that

the fused images by the two offsets are of high quality.

10) Face Modeling and Recognition: Robust face modeling

under uncontrolled conditions is crucial for the face recog-

nition systems, and it is a pre-step before face recognition.

Common objects, such as sunglasses and scarves, cause facial

features partially occluded. Fig. 8 shows an example with

face images of size 84× 60 pixels the AR dataset [193]. For

example, Luan et al. [185] used 15 images for an individual

that are stacked in the observed matrix A. The first row of

Fig. 8 shows 8 images of the same individual with varied

facial expression and contiguous occlusion (sunglasses). The

low-rank components L among different images look very

similar, even if in the presence of expressions and occlusion.

The sparse errors S depict the difference between original and

corresponding low-rank face images. In the case of sunglasses

occlusion, nothing but a pair of sunglasses can be seen from

the error image. In a probabilistic approach, Cao et al. [40]

modeled the low-rank part L and the noise part S with a gen-

erative model using a Mixture of Exponential Power (MoEP)

distributions. This model called penalized MoEP (PMoEP)

outperforms both Gaussian model (RPCA-MOG [196]) and
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Fig. 8: Face Modeling: Removal of facial occlusion using

RPCA. First row: Original face images with facial expression

and occlusion. Second row: Low-rank images. Third row:

Sparse error images (Images Luan et al. [185]).

Laplacian model (RegL1ALM [338]) on the Extended Yale B

database.

Robust face recognition, i.e., automatically recognizing hu-

man faces from views with varying expression and illumina-

tion as well as disguise and occlusion, is one of the most

important problems in computer vision and pattern recogni-

tion. The basic problem in face recognition is to use labeled

training data from k distinct classes to correctly identify the

class of a new test sample. The challenge is that the disguise

and occlusion may heavily degrade the performance of the

traditional methods.

To robustify the existing methods, Wright et al. [289]

proposed to use sparse representation to perform face recog-

nition. The intuition is based on a simple observation that

the test samples are approximately representable by a linear

combination of those training samples from the same class.

Therefore, the representation should be sparse, involving only

a small fraction of samples in the same class, and is robust

to outliers/disguise/occlusions. Pursuing the sparsest represen-

tation naturally discriminates between various classes by the

following convex optimization problem:

x̂ = argmin
x

‖x‖1, s.t. Ax = y. (19)

Here, as usual A is the matrix formed by stacking each

training sample as a column of the matrix and y is a column

vector corresponding to the test image. Finally, the given test

image is assigned to the class with the smallest reconstruction

error by the representation coefficient x̂.

However, the sparsest representation (19) is not robust

to large contiguous occlusion such as scarf and sunglasses.

To mitigate the issue, rather than minimizing the sparse

representation model (19), Luan et al. [185] proposed an

approach for robust face recognition by exploiting the sparse

term obtained by robust PCA (10). In particular, they first

constructed a matrix of normalized (training and testing)

samples by stacking all facial images as the columns of

the matrix. Their algorithm then applies robust PCA to the

constructed matrix. Focusing on the sparse term obtained by

robust PCA, Luan et al. [185] combined sparsity descriptor

Fig. 9: Face Recognition: Low-rank and sparse error images

of a given test image. (a) Test image. (b) Training images of

6 individuals. (c) Low-rank images of the test image under

6 individuals. (d) Corresponding sparse error images (Images

from Luan et al. [185]).

and smoothness descriptor to characterize the similarity

between a testing image and any given class. The testing

image is finally assigned to the class with the highest

similarity. Practically, RPCA is employed for removal of

facial specularities and shadows, and for removal of facial

occlusion. Experiments show that the associated sparse term

by robust PCA exhibits more discriminative information for

face identification, being more robust to varying illumination

and pixel corruption on both synthetic and real datasets (Yale

Face Database2, Extended Yale Face Database B3 and AR

face database4 [193]). As an illustration, Fig. 9 shows the

decomposition of a test face image under different subjects

using RPCA.

11) Partial-Duplicate Image Search: Partial-duplicate

image search refers to the problem of searching images

from a database containing the same contents as the query

image. The challenge is that the retrieved images might be

modified versions of the query image, such as the changes in

color, scale, rotation and contrast, having partial occlusions

and different viewpoints, etc. Traditional methods, e.g., the

bag of visual words, suffer from low retrieval precision

and recall as they only consider the local features and the

feature quantization error may easily lead to false matches

among images. To remedy these issues, Yang et al. [302]

introduced the global geometric consistency to detect the

2http://vision.ucsd.edu/content/yale-face-database
3http://vision.ucsd.edu/content/extended-yale-face-database-b-b
4http://www2.ece.ohio-state.edu/ aleix/ARdatabase.html
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false matches by a low-rank model. They noticed that the

rank of the squared Euclidean distance matrix between the

feature points is at most 4 when the matchings are correct. In

contrast, when there are false matches between feature points,

the stacked squared distance matrix should be of higher

rank. Applying robust PCA to the stacked squared Euclidean

distance matrices, false matches can be detected effectively.

12) Saliency Detection: Saliency detection in still image

is a crucial step for improving visual experience, which has

many applications such as image cropping, image collection

browsing, video compression, etc. The goal of image saliency

detection is to find the image regions in which one or more

features differ significantly from their surroundings. In other

words, if we use other regions to “predict” the selected salient

region, the representation error should be large. Based on this

observation, Lang et al. [147] proposed a method called Multi-

Task Sparsity Pursuit (MTSP) which decomposes the feature

matrix A of image patches into a highly-correlated low-rank

component AZ and a sparse salient component S:

(Z∗,S∗) = argmin
Z,S

‖Z‖∗ + λ‖S‖2,1, s.t. A = AZ+ S.

(20)

The idea is that by breaking an image into patches with the

extracted features A (stacked by columns as usual), the salient

regions should correspond to those with large sparse noise in S.

Lang et al. [147] then defined the score function S(Pi) for the

i-th patch Pi by S(Pi) = ‖S∗
:i‖2. The salient regions are then

identified by a threshold which is set to discard small S(Pi)’s.

Fig. 10 shows that MTSP obtained competitive results against

state-of-the-art methods even if a standard approach named FT

[1] offers the best overall performance.

Note that the model in Equation (20) is actually called

Low-Rank Representation (LRR) [175],[174]. It also has wide

applications in image processing, such as motion segmenta-

tion [175],[174], image segmentation [52], and image tag com-

pletion and refinement [123]. More thorough investigations on

LRR can be found in [173].

Instead of working on all the image, Li and Haupt

[161],[160] estimate the saliency map directly from

compressive samples in applications where the goal is

to identify regions of anomalous behavior rather to image the

entire scene. Furthermore, saliency detection is also addressed

as anomaly detection in spectral images [222],[228]. Thus,

anomaly detection is viewed as a matrix decomposition

problem with the minimum volume constraint for the multi-

modular background and sparsity constraint for the anomaly

image pixels.

In summary, the RPCA formulation provides better or

similar performances than previous state-of-art methods over

these twelve low-level processing tasks.

B. Medical Imaging

In medical imaging, the L+S decomposition was used for

applications in which the observed image can be considered as

Fig. 10: Saliency Detection: Comparison on images from

MSRA dataset [1]. The rows for top to bottom are: original

images and saliency maps produced by GBVS [116], CSD

[99], FT [1], and the RPCA algorithm (MTSP) [147], respec-

tively. The last row is the ground truth. (Images from Lang et

al. [147]).

the sum of a low-rank clean image and a sparse perturbations

like in background suppression in accelerated dynamic [211]

and in change detection [86]. In the application of joint image

reconstruction and registration, only the low-rank aspect is of

interest as it concerned image alignment [215].

1) Accelerated Dynamic MRI with Automated Background

Suppression: Dynamic MRI techniques acquire a time-series

of images that encode physiological information of clinical

interest, such as organ motion [12], contrast agent uptake

[11],[146], signal relaxation [242], among others. The ac-

quisition of each time point needs to be short relative to

the dynamic process to obtain an instantaneous snapshot.

However, MRI hardware is not fast enough to sample k-

space (Fourier space of the image) for each time point at the

Nyquist/Shannon rate, particularly if the required spatial and

temporal resolution is high and/or volumetric coverage is large.

As a consequence, spatial resolution and/or volumetric cover-

age are usually sacrificed for temporal resolution. Dynamic

MRI has a real need for speed.

Given the extensive spatio-temporal correlations in the

series of images of dynamic MRI, acquiring fully-sampled

images at each time point is a wasteful process since the

information that is common to all frames is sampled over

and over again. Not surprinsingly, a number of methods

have been developed to acquire undersampled k-space data

at each time point and exploit spatiotemporal correlations in

order to reconstruct a time-series of images without aliasing

artifacts [271]. For example, the application of compressed

sensing to dynamic MRI [189],[209] exploits temporal sparsity

along with incoherent sampling to reduce the number of

measurements needed at each time point without information

loss. RPCA or low-rank plus sparse (L+S) decomposition

can be applied in the context of compressed sensing to

replace the pulse sparsity model by a L+S model, where L

would represent the common background among all frames
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and S the frame-by-frame innovation. L+S reconstruction of

undersampled dynamic MRI data is performed by solving

[211]:

[L, S] = argmin
L,S

1
2 ‖E(L + S)− d‖22

+λL ‖L‖∗ + λS ‖T (S)‖1 , (21)

here, T is a linear sparsifying transform for S, E is the

encoding operator and d is the undersampled k-t data. L and

S are defined as space-time matrices, where each column

is a temporal frame, and d is defined as a stretched-out

single column vector. We assume that S has a sparse

representation in some transformed domain (e.g. temporal

frequency domain, temporal finite differences), hence the

idea of minimizing ‖T (S)‖1 and not ‖S‖1 itself. For a

single-coil acquisition, the encoding operator E performs

a frame-by-frame undersampled spatial Fourier transform.

For acquisition with multiple receiver coils, E is given

by the frame-by-frame multicoil encoding operator, which

performs a multiplication by coil sensitivities followed by an

undersampled Fourier transform. The multicoil reconstruction

case enforces a joint multicoil L+S model, which presents

improved performance over enforcing a coil-by-coil L+S

model due to the exploitation of inter-coil correlations, as

demonstrated previously for the combination of compressed

sensing and parallel imaging based on joint multicoil sparsity

[165],[209]. L+S reconstruction aims to simultaneously

(a) remove aliasing artifacts in the space-time domain (or

equivalently to estimate the value of nonsampled points in k-t

space) and (b) separate the resulting spatiotemporal low-rank

and sparse components. Fig. 11 shows the application of

L+S reconstruction for 4D contrast-enhanced liver MRI

(3D+time), where L+S presented improved spatiotemporal

resolution with respect to compressed sensing (sparsity

alone) and the automatic background suppression in

the S component improved the visualization of contrast

enhancement. L+S compares favorably to CS, which suffers

from spatiotemporal blurring. Moreover, the S component, in

which the background has been suppressed, offers improved

visualization of contrast-enhancement.

2) Joint Image Reconstruction and Registration: The su-

perposition of organ motion with the physiological process

of interest (e.g., contrast enhancement) introduces significant

challenges for reconstruction of undersampled data based on

spatio-temporal sparsity [144],[214],[272] (including the L+S

reconstruction approach). Organ motion causes misalignment

among temporal frames, which reduces the degree of temporal

correlations; consequently, the low-rank and sparsity assump-

tions break down. Under these conditions, L+S reconstruction

introduces temporal blurring, leading to non-diagnostic infor-

mation, or even worse, information that can lead to a false

diagnosis. Using ideas from computer vision RPCA techniques

such as TILT [328] and RASL [219], the L+S model can

be modified to include a inter-frame motion operator W that

describes the deformation between consecutive frames, this is,

M = W(L + S). Optical flow [122] can be used to estimate

Fig. 11: CS (sparsity-only) and L+S reconstruction of 4D

dynamic contrast-enhanced abdominal data acquired with

golden-angle radial sampling (8 spokes/frame, undersampling

factor is 48 and temporal resolution is 0.94 seconds per 3D

volume) corresponding to a representative slice and three

contrast-enhancement phases (aorta, portal vein, liver).

motion between consecutive frames. For frames Mt−1 and Mt,

the optical flow constraint is:

0 = Mt−1 −Mt +
∂Mt

∂x
wx,t +

∂Mt

∂y
wy,t,

0 = Mt +∇MtWt, (22)

where Wt =

(
wx,t

wy,t

)
is the unknown motion field for the

frame Mt. This linear system is undetermined since there are

two unknowns and only one equation. We follow the solution

proposed by Thirion [265], also known as the demons method,

which corresponds to a second order gradient descent on the

sum of squares difference between Mt−1 and Mt:

Wt =
∇Mt ·Mt

‖∇Mt‖2 + ‖Mt‖2
. (23)

Motion-guided L+S reconstruction [215] aims to estimate

L, S and W from undersampled data only. The dependency

between L+S and W makes the optimization problem non-

convex and alternating optimization was employed to update

L and S with fixed W, and vice-versa, update W with fixed

M + L + S, as follows:

[Lk+1, Sk+1] = argmin
L,S

1
2 ‖EWk(L + S)− d‖22
+λL ‖L‖∗ + λS ‖TS‖1 , (24)

Wk+1 =
∇(Lk+1 + Sk+1) ·mk+1

‖∇(Lk+1 + Sk+1)‖2 + ‖mk+1‖2”
, (25)

where mk+1 is a vector that concatenates the differences

between consecutive frames from Lk+1 + Sk+1. Here, the

first step reconstructs and registers the dynamic image using

the previous update on the motion fields, and the second

step updates the motion fields based on the current dynamic

image update using the demons algorithm. Motion-guided
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Fig. 12: Standard and motion-guided L+S reconstruction of

8-fold accelerated free-breathing cardiac perfusion MRI for a

representative contrast phase and slice. The arrows indicate

temporal blurring artifacts in standard L+S caused by mis-

alignment among frames, which are significantly removed by

motion-guided L+S. In addition, motion-guided L+S enables

access to motion fields between consecutive frames.

L+S exploits an inherent self-consistency between the L+S

model and image registration, this is, the rank of L will be

lowest and the sparsity of S will be highest when temporal

frames are registered, and vice versa, to perform image

reconstruction and registration jointly. Fig. 12 shows the

application of motion-guided L+S to free-breathing 8-fold

accelerated cardiac perfusion MRI data, where in addition

to improved reconstruction, motion-fields that describe inter-

frame motion are estimated as additional piece of information.

3) Change Detection: Change detection between at least

two images of the same scene at different time is of widespread

interest in many applications including medical imaging, re-

mote sensing and so on [229]. Fu et al. [86] presented a change

detection method based on RPCA for retinal fundus images.

After alignment and illumination correction, each considered

couple of temporal images is expanded into an image serial

through linear interpolation between the grey image and

the normalized one to progressively decrease the intensity

variation between two frames. Then, the linear interpolation

images between the grey image and the normalized one are

used for the RPCA decomposition to obtain the change mask.

Suppose that the given interpolated longitudinal retinal fundus

images are of N frames of size M = m × n, and each

frame Ai with i = 1, ..., N . Vectorizing these frames and

concatenating them together, one can obtain an image matrix

A of size M × N . The matrix A is then decomposed as

L+S. The decomposition can thus be done by solving the

robust PCA problem (10). The sparse component contains the

changes between the two images, that are lesion. Extensive

experimental results are made on clinical medical show that

this method is of lower complexity and higher effectiveness

compared to the conventional change detection image, and it is

more robust to noise and the registration error. Fig. 13 shows

an example of results obtained on retina fundus images.

C. 3D Computer Vision

In 3D computer vision, several tasks need to avoid outliers

to obtain a reliable 3D reconstruction like in Struture from

Motion and 3D motion recovery in which the information of

interest is in the low-rank matrix L.

Fig. 13: From left to right: Original image, the low-rank

component, and the sparse component (Images from Fu et

al. [86]).

1) Structure from Motion: Structure from Motion (SfM)

refers to the process of automatically generating a 3D

structure of an object by its tracked 2D image frames.

Practically, the goal is to recover both 3D structure, namely

3D coordinates of scene points, and motion parameters,

namely attitude (rotation) and position of the cameras,

starting from image point correspondences. Then, finding

the full 3D reconstruction of this object can be posed as a

low-rank matrix recovery problem [9],[177],[291]. Suppose

that the object is rigid, there are N frames and M tracked

points L0 = [X,Y ]2M×N , and the intrinsic camera parameters

are fixed, then the trajectories of the feature points all lie

in a linear subspace of R
2M×N with rank(L0) ≤ 4. L0

can be factorized as L0 = PQ where P ∈ R
2M×4 contains

the rotations and translations whilst the first three rows of

Q ∈ R
4×M represent the relative 3D positions for each feature

point in the reconstructed object. But, when there exists errors

due to occlusion, missing data or outliers, the feature matrix

is no longer of rank 4 and can be viewed as A0 = L0 + S0

where S0 corresponds to the noise. Then, recovering the full

3D structure of the object can be a low-rank matrix recovery

problem in the RPCA formulation. Practically, Liu et al. [177]

employed an ℓ1- filtering approach to solve the decomposition

while Wu et al. [291] used the augmented Lagrange multiplier

(ALM) method [170]. Experiments on 43344 tracked points

over 1001 frames show that this approach provides the best

compromise between time and accuracy in comparison with

RSL [268] and the original RPCA-ALM [291]. In an other

work, Arrigoni et al. [8], [9] employed the RPCA and the

Robust Matrix Completion (RMC) formulations that are

robust to outliers and missing data, respectively. Thus, A

is decomposed into L + S1 + S2 + E where S1 is a sparse

matrix over a sampling set Ω representing the outliers in

the measurements, and S2 has a support on ΩC and it is an

approximation of PΩC (L), representing the completion of the

missing entries. Then, a modified version of GoDec [339]

called R-GoDec in [9] and dubbed R-GoDec in [8] is used

to solve this decomposition. Extensive experiments show that

this method outperforms in accuracy as compared to previous

state-of-the-art methods.

2) 3D Reconstruction: In robotics, the optical sensor

begins by capturing points of objects that exist in robots field

of vision but the acquired 3D point clouds are usually noisy

and they also have misalignment. To remedy these problems,

Arvanitis et al. [10] employed RPCA for removing outliers
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and noise of 3D point clouds. Let’s assume that the captured

3D point cloud A consists of m points represented as a

vector v = [x, y, z] in a 3D coordinate space x, y, z ∈ R
m×1

and v ∈ R
m×3. Then, some of these points are considered

as outliers and A is considered to be equal to L+S. L is a

low-rank matrix representing the space of real data while

S is a sparse matrix representing the space where outliers

lie. Once RPCA is applied, the number of vertices decrease

due to the removal of the outliers, so the number of the

remaining vertices are mr where mr < m. Because the

acquired 3D point cloud is unorganized in L, meaning

that the connectivity of its points is unknown, Arvanitis et

al. [10] used a triangulated model based on the k nearest

neighbors (k-NN) algorithm. The triangulation process allows

to specify the neighbors of each point so that the bilateral

filtering method can be used efficiently as the denoising

technique. At the end, a smoothed 3D mesh is obtained which

has a exploitable form to be used by other applications or

processing tasks.

3) 3D Motion Recovery: Skeleton tracking is a useful and

popular application of Microsoft Kinect but it cannot provide

accurate reconstructions for complex motions like in the pres-

ence of occlusion. Indeed, the human skeleton is represented

by a collection of joints, which are easily influenced by noises

and have drifting problems. To address this issue, Wang et

al. [283] developed a 3D motion recovery based on the time

coherence in a skeleton. Thus, this approach used a low-rank

matrix analysis to correct invalid or corrupted motions. Let the

captured skeleton sequence be stored in an observation matrix

A ∈ R
m×n which is obtained by stacking the 3D positions of

all the joints together, where m = 3 × nf with nf being the

number of frames of the input skeleton sequence, and n is the

number of joints (21 in [283], ignoring the finger joints). Then,

A is decomposed into L + S. L contains the clean motions

and S contains the noise. Experiments [283] with Microsoft

Kinect V2.0 show that this method accurately recovers high

quality skeletons from the invalid corrupted motion data in

high efficiency.

IV. VIDEO PROCESSING

As well as in image processing, video processing tasks

present either or both low-rank and sparsity aspects but

with the temporal information in addition of the spatial

information. Thus, both spatial and temporal aspects present

in video sequences can be exploited in the L+S decomposition

to enforce its adequacy to the concerned task. In practice,

RPCA via L+S decomposition is suitable for video processing

tasks in which (1) the observed video can be viewed as

the sum of a low-rank clean video without perturbation

and a sparse perturbations like in video restoration and

denoising, background/foreground separation, motion saliency

detection, video object segmentation and hyperspectral video

processing, (2) the observed video can be viewed as the

sum of a low-rank video and a sparse video like in key

frame extraction and UHD super resolution video, and (3)

only the low-rank aspect is if interest like in background

initialization, motion estimation, action recognition and video

summarization.

A. Background-Foreground Separation

Background-foreground separation in a video taken

by a static camera is a crucial step for detecting

moving objects in the video surveillance systems

[25],[26],[29]. Before the work of Candès in 2009,

this task was usually addressed by statistical modeling

[244],[251],[260], fuzzy modeling [15],[16],[17],[27]

and conventional subspace learning model either

reconstructive [65],[66],[162],[239],[207],[253],[282],[321]

and discriminative [84],[85],[192]. However, RPCA methods

immediately provided a very promising solution towards

moving object detection. However, because of the well-

known challenges such as dynamic backgrounds, illumination

conditions, color saturation, shadows, etc., the state-of-the-art

RPCA methods do not often provide accurate segmentation

[69],[72],[73],[74],[112],[113],[114],[115],[264],[297].

In RPCA, the background sequence is modeled by the low-

rank subspace that can gradually change over time, while

the moving foreground objects constitute the correlated sparse

outliers. Thus, A contains the observed video in which the

frames are stacked into column vectors and further decom-

posed as L+S. The decomposition is then solved via the

minimization problem (10). Fig. 14 shows original frames

of synthetic sequences from the BMC 2012 dataset [273]

and its decomposition into the low-rank matrix L and sparse

matrix S. We can see that L corresponds to the background

whereas S corresponds to the foreground. The fourth image

shows the foreground mask obtained by thresholding the

matrix S. The rank(L) influences the number of modes of the

background that can be represented by rank(L): if rank(L) is

too high, the model will incorporate the moving objects into

its representation whereas if rank(L) is too low, the model

tends to be uni-modal and then the multi-modality which

appears in dynamic backgrounds will not be captured.The

quality of the background-foreground separation is directly

related to the assumption of the low-rank and sparsity of

the background and foreground, respectively. However, as the

matrix S could contain both the moving objects and noise, the

stable decomposition A = L + S + E (with E is the noise) is

more suitable to separate moving objects from noise such as

those proposed by Zhou et al. [344].

This application of RPCA is the most investigated one

in the literature [31] because it is the most representative

challenging and demanding application as it needs to take into

account both spatial and temporal constraints with incremental

and real-time constraints [30],[32]. We summarize the main

solutions, a comparative evaluation on the CD.net 2012

dataset [102] and the extension of background/foreground

separation for moving cameras in the following sub-sections.

More details can be found in Bouwmans et al. [31],[32], and

Namrata et al. [274].
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Fig. 14: Background/foreground separation. From left to right:

Original images, low-rank matrix L (background), sparse

matrix S (foreground), and foreground mask (Sequences from

BMC 2012 dataset [273]).

1) Adding spatial and temporal constraints: In the liter-

ature, spatial and/or temporal constraints are mainly added

in the minimization problem. A general formulation can be

expressed as follows [31]:

min
L,S,E

||T (L)||p1

norm1
+ λ1||Π(S)||p2

norm2
+ λ2||E||p3

norm3︸ ︷︷ ︸
Decomposition

+λ3||L||2,1 + δ1||grad(S)||1 + δ2TV (S) + δ3Ω(S)︸ ︷︷ ︸
Application

,

s.t. A = L + S + E, or A = W ◦ (L + S + E), or

A ◦ τ = L + S + E,
(26)

where p1, p2 and p3 are power in the set {1, 2}. λ1, λ2, λ3,

δ1, δ2 and δ3 are regularization parameters. norm1, norm2

and norm3 are norms which are used in the loss functions

to enforce the low-rankness, sparsity and noise constraints

on L, S, and E, respectively. norm1 is taken to provide

the following loss functions: ℓ0-loss function (|| · ||0), ℓ1-loss

function (||·||1), ℓ2-loss function (||·||2), nuclear norm function,

Frobenius loss function, and log-sum heuristic function [62].

Other loss functions can be used such as ℓσ-loss function

[305], Least Squares (LS) loss function (|| · ||2F ), Huber loss

function [7], M -estimator based loss functions [121], and

the generalized fused Lasso loss function [294],[295]. norm2

is usually taken to force spatial homogeneous fitting in the

matrix S, that is for example the norm ℓ2,1 with p2 = 1
[69],[72],[73],[74],[112],[113],[115],[114],[264]. It is impor-

tant to note that the first part of (26) concerns mainly the de-

composition into low-rank plus sparse and noise matrices and

second part concerns mainly the application of background-

foreground separation. The terms associated with background-

foreground separation can be described as follows:

• The function T (·) is a set of invertible and independent

transformations processed on L like in incPCP-TI [236],

[252] to tackle translational and rotational camera jitter.

• The function Π(·) is a linear operator processed on S to

enforce spatial and/or temporal constraints. Π(·) weights

its entries according to their confidence of correspon-

dence to a moving object such that the most probable

elements are unchanged and the least are set to zero. Π(·)

can be computed with optical flow [208] and with salient

motion detection [256].

• The term λ3||L||2,1 ensures that the recovered L has exact

zero columns corresponding to the outliers.

• ||grad(S)||1, TV (S), and Ω(S) are the gradient

[113],[114],[115],[287], the total variation

[41],[111],[113],[114],[288] and the static/dynamic

tree structured sparsity norm [70],[71],[74],[180],[267]

applied on the matrix S to enforce the spatial and/or

temporal constraints, respectively.

• A weighting matrix W [256],[301],[308] or a transforma-

tion τ [68],[69],[70],[71],[72],[73],[74],[119],[120],[219]

can also be used as a constraint in (26) to enforce

the recovery of the background that appears at only

a few frames and to eliminate the influence of light

conditions, camouflages, and dynamic backgrounds, and

to model potential global motion that the foreground

region undergoes, respectively.

2) Online/incremental and real-time algorithms:

Even if fast solvers [35],[158],[164],[314],[336] were

developed to make the iterations as few as possible as

well as SVD algorithms [83],[145],[335] were designed

to make the iterations as efficient as possible, batch

algorithms can not reach the requirement of real-time

computation for background/foreground separation. Thus,

to update the model when a new data arrives, several

online/incremental algorithms can be found and they

can be classified in the following categories [274]: (1)

dynamic RPCA algorithms such as the Recursive Projected

Compressive Sensing (ReProCS) algorithm and its variants

[107],[107],[108],[106][224],[226] provided with performance

guarantees, (2) incremental PCP algorithms such as incPCP

and its variants [232],[233],[234],[235],[236],[252], (3)

online deomposition algorithms [140], (4) subspace tracking

algorithms such as the Grassmannian Robust Adaptive

Subspace Tracking Algorithm (GRASTA) [117], the ℓp-

norm Robust Online Subspace Tracking algorithm (pROST)

[243], the Grassmannian Online Subspace Updates with

Structured-Sparsity algorithm (GOSUS) [297], Fast Adaptive

Robust Subspace Tracking algorithm (FARST) [3], and (5)

life-long learning algorithm [20]. As it is expected that

background-foreground separation also needs to be achieved

in real-time, several strategies have been developed which

are generally based on compressive sensing algorithms

[188],[218],[279],[221],[187],[186], sub-matrices computation

[220] and GPU implementations [6],[232].

3) Dealing with the challenges: Several challenges appear

in a video because of the type and locations of the camera,

and its environments. Thus, several authors designed RPCA

formulation for videos taken by a fixed color CCD camera

(in most of the cases), but also by hyperspectral camera

[257], by camera trap [97],[98],[246] and by aerial camera

[79],[80],[81],[82]. Furthermore, dedicated methods also exist

for infrared cameras [241] and RGB-D cameras [267],[132].

For the environments which present dynamic backgrounds,

illumination changes, camera jitter, etc., many modified
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RPCA approaches have been designed according to the

following very popular background modeling challenges:

• Noisy images: To cope with noisy videos in the presence

of rainy or snowy conditions, Javed et al. [131] used a

real time Active Random Field (ARF) constraints using

a probabilistic spatial neighborhood system. After that,

Online Robust PCA (OR-PCA) is used to separate the

low-rank and sparse component from denoised frames. In

addition, a color transfer function is employed between

the source and input image for handling global illumi-

nation conditions which is a very useful technique for

surveillance agents to handle the nighttime videos.

• Bootstrapping: In clutter scenes, where background is

always occluded by heavy foreground objects, Javed et

al. [136] developed a Motion-Aware Graphs Regularized

RPCA (MAGRPCA).

• Camera motion: Several strategies are used in literature

to deal with camera motion: (1) transformation based

methods in which a transformation τ(·) is applied to

the data matrix A [68],[70],[72],[74],[120],[219],[259] or

to the low-rank matrix L [236],[252], (2) compensation

based methods in which the motion due to the camera

is compensated in the pre-processing step like in Tian

et al. [267] and Javed et al. [136], and (3) endoge-

nous convolution based methods in which convolutional

sparse representations model the effects of non-linear

transformations such as translation and rotation, thereby

simplifying or eliminating the alignment pre-processing

task [286].

• Illumination changes: To be robust to illumination

changes, Javed et al. [136] incorporated spectral graph

regularization in the RPCA framework while Newson et

al. [204] used a weighted cluster graph. In the case of

time-lapse videos and low-frame rate videos, Shakeri and

Zhang [246] proposed a Low-rank and Invariant Sparse

Decomposition (LISD) method where a prior illumination

map is incorporated into the main objective function.

• Dynamic backgrounds: Zhou and Tao [340],[341]

tracked multiple sparse object flows (motions) in video

by using a Shifted Subspaces Tracking (SST) strategy in

order to segment the motions and recover their trajectories

by exploring the low-rank property of background and

the shifted subspace property of each motion. Thus, SST

allows the model to separate the motions of the moving

objects of interest and the motions of background objects

such as trees and waves. Javed et al. [139],[141] used

Markov Random Field (MRF) in OR-PCA. In RPCA

based on Salient Motion Detection (SMD-RPCA), Chen

et al. [47] defined a saliency clue over the sparse matrix

S to filter out the dynamic backgrounds globally. In an

other work, Wu et al. [292] employed a Multi-Component

Group Sparse RPCA in which the observed matrix is

decomposed into a low-rank static background L, a group

sparse foreground S1, and a dynamic background S2.

Moreover, each images iis over-segmented into 80 super-

pixels using the Simple Linear Iterative Clustering (SLIC)

[2] to take into accoun the spatial constraint.

• Intermittent motion of foreground objects: In MAGR-

PCA, Javed et al. [136] used an optical flow algorithm

between consecutive frames to generate the binary mask

of motion. This motion mask allows to remove the mo-

tionless video frames and create a matrix comprising only

dynamic video clips. Thus, MAGRPCA incorporates the

motion message and encodes the manifold constraints and

is very efficient because motionless frames are removed

in order to handle large outliers in the background model.

In SMD-RPCA, Chen et al. [47] leveraged the previously

detected salient motion to guide the update of the current

low-rank prior. Newson et al. [204] used a weighted

cluster graph.

• Ghost suppression: Rodriguez and Wohlberg [237] pro-

posed an algorithm called gs-incPCP which can suppress

the ghost by using two simultaneous background esti-

mates based on observations over the previous N1 and N2

frames with N1 ≪ N2 in order to identify and diminish

the ghosting effect. Ebadi et al. [70], [71] proposed a

tandem algorithm which involves an initialization step

before the optimization takes place. It is different from

algorithms that require a two-pass optimization [92],[93],

where the optimization is twice performed to refine

results. Introducing a prior knowledge of the spatial dis-

tribution of the outliers to the model, Ebadi et al. further

proposed methods for faster convergence [70],[71].

• Shadows: Li et al. [154] designed a box constraint RPCA

(BC-RPCA) to separate the moving objects and the

shadows. So BC-RPCA models the input video as three

parts which are low rank background, sparse foreground

and moving shadows. Experiments on several scenes

show that BC-RPCA works well on shadow and varying

lighting condition challenges.

All these aforementioned key limitations need to be addressed

in the RPCA formulation for background/foreground

separation. Furthermore, the evaluation needs to be conducted

with a large scale dataset such as the CD.net 2012/2014

dataset5 [102][103] or the BMC 2012 dataset6 [273] to allow

full and fair comparisons.

4) Comparative Evaluation: In this part, we show the per-

formance of the current state-of-the-art RPCA-based methods

for background/foreground separation using the CD.net 2012

dataset [102], and a more detailed analysis can be found in

Namrata et al. [274]. This dataset contains almost 31 video

sequences which are divided into six different video categories

comprising ‘Baseline’, ‘Dynamic Backgrounds’ (DB), ‘Inter-

mittent Object Motion’ (IOM), ‘Thermal’, ‘Camera Jitter’,

and ‘Shadows’ presenting the different challenges previously

enumerated. The resolution of the videos also varies from

320 × 240 to 480 × 720 with hundred to thousand number

of frames. We compared a total of 25 existing methods

comprising 15 batch algorithms and 10 online algorithms. The

implementation of all these algorithms is also available in

5http://changedetection.net/
6http://bmc.iut-auvergne.com/
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the LRSLibrary. These methods are classified into three main

categories:

• Provable methods: Principal Component Pursuit (PCP)

[37], non-convex Alternating Projections based RPCA

(AltProj) [203], Near Optimal RMC (NO-RMC)[54],

RPCA via Gradient Descent (RPCA-GD) [309], Recur-

sive Projected Compressive Sensing (ReProCS-provable)

[201],[315], and Modified-PCP [316].

• Heuristic methods: Recursive Projected Compressive

Sensing (ReProCS) [106], Grassmannian Robust Adap-

tive Subspace Tracking Algorithm (GRASTA) [118],

Three Term Decomposition (3TD) [208], Two-Pass

RPCA (2PRPCA) [92], Go Decomposition (GoDec)

[339], Online RPCA (OR-PCA) [139], [134], ℓp Robust

Online Subspace Tracking (pROST) [243] and Probabilis-

tic Robust Matrix Factorization (PRMF) [284] .

• Heuristic methods with application specific con-

straints: incremental Principal Component Pursuit (in-

cPCP) [235], Motion-assisted Spatiotemporal Cluster-

ing of Low-rank (MSCL) [138], Detecting Contiguous

Outliers in the LOw-rank Representation (DECOLOR)

[342], Low-rank Structured-Sparse Decomposition (LSD)

[180], Total Variation RPCA (TVRPCA) [41], Spa-

tiotemporal RPCA (SRPCA) [137], Robust Motion As-

sisted Matrix Restoration (RMAMR) [301], Generalized

Fussed Lasso [294], Grassmannian Online Subspace Up-

dates with Structured-sparsity (GOSUS) [297], Contigu-

ous Outliers Representation via Online Low-rank Ap-

proximation (COROLA) [245], and Online Mixture of

Gaussians for Matrix Factorization with Total Variation

(OMoGMF+TV) [310], respectively.

For qualitative evaluation, visual results were reported using

15 challenging sequences which contained two sequences

namely ‘highway’ and ‘office’ from ‘Baseline’ category,

three sequences ‘canoe’, ‘boats’, and ‘overpass’ from DB

category, two sequences ‘traffic’ and ‘badminton’ from

‘Camera Jitter’ category, three sequences ‘winterDriveway’,

‘sofa’, and ‘streetLight’ from IOM category, three sequences

‘backdoor’, ‘copyMachine’ and ‘cubicle’ from ‘Shadows’

category, and two sequences ‘library’ and ‘lakeside’ from

‘Thermal’ category. Fig. 15 provides qualitative results

and comparisons of 22 current state-of-the-art RPCA-based

methods on 15 sequences. The execution times required by

all of the algorithms were compared on a machine with

a 3:0 GHz Intel core i5 processor and 4GB of RAM. For

quantitative evaluation, the used metrics come from the

CD.net 2012 dataset [102] such as the recall, the precision,

and the F1-measure score. Recall gives the percentage of

corrected pixels classified as background when compared with

the total number of background pixels in the ground truth.

Precision gives the percentage of corrected pixels classified

as background as compared at the total pixels classified as

background by the algorithm. A good performance is obtained

when the detection rate also known as recall is high without

altering the precision. Based on these metrics, the F1-measure

is computed as F1 = 2×Recall×Precision
Recall+Precision

. The F-measure

characterizes the performance of classification in precision-

recall space. The aim is to maximize F1-measure closed to

one. Table I shows the quantitative results in terms of average

F1 measure score as well as the computational time in seconds

for all of the compared algorithms applied on the large video

sequence known as boats from DB category. On average,

among all algorithms that do not use extra constraints,

PRMF, 2PRPCA, ReProCS-provable, ReProCS had the best

performance with F1 scores of 74-78%. On average for all

datasets, only two of the methods that use extra constraints

that are MSCL and GOSUS were better and only by a little by

achieving 83 and 81% scores, respectively. For computational

time, ReProCS, ReProCS-provable are the fastest methods

in provable methods category, while from the heuristic

methods category, OR-PCA and GRASTA are even faster but

have worse performance. COROLA and OMoGMF+TV in

heuristic methods with additional constraints category are top

performing methods in terms in computation time in seconds.

Practically speaking, these results testify the fact that a RPCA

method for background/foreground should take into account

both spatial and temporal constraints as well as it should be

incremental to be effectively usable in real applications.

5) Extension to moving cameras: Background-foreground

separation is also needed in video taken by moving cameras

such as PTZ cameras and handheld cameras [194]. This

issue is actually less investigated than the static case. Unlike

strategies [71],[119],[219],[236],[252] for small camera jitter

which used affine transformation model that describes the

motion of the frames in the quasi-static cameras case, Gao

et al. [88],[198] produced a panoramic low-rank component

that spans the entire field of view, automatically stitching

together corrupted data from partially overlapping scenes.

Practically, the algorithm proceeds by registering the frames

of the raw video to a common reference perspective and then

it minimizes a modified RPCA cost function that accounts

for the partially overlapping views of registered frames and

includes TV regularization to decouple the foreground from

noise and sparse corruption. The augmented RPCA problem

formulation is then expressed as follows:

min
L,S1,S2

1

2
||PM (A− L− S1 − S2)||2F + λ1||L||∗

+ λ2||S1||1 + λ3TV (S2),
(27)

where L, S1, and S2 represent the background (low-rank

component), the sparse corruptions (sparse component), and

the foreground (smoothly-varying matrix), respectively. TV (.)
is the total variation regularizer [114]. The low-rank compo-

nent is obtained via the optimal low-rank matrix estimator

(OptShrink [199]) that requires no parameter tuning. Exper-

iments show that this algorithm is robust to both dense and

sparse corruptions of the raw video and yields superior back-

ground/foreground separations compared to the original RPCA

[37] and total variation regularized RPCA [41]. For slowly

moving cameras in the case of anomaly detection in videos,

Thomaz et al. [266] employed an algorithm that computes the

union of subspaces that best represents all the frames from a

reference video as a low-rank projection plus a sparse residue.
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Fig. 15: Comparison of the qualitative results of the 15 input images from ChangeDetection.net dataset. From left to right: (a)

set of 15 input images. (b) the ground truth of foreground objects. (c) background subtraction estimated by RPCA via PCP

method. (d) GoDec. (e) RPMF. (f) RPCA-GD. (g) 3TD. (h) pROST. (i) incPCP. (j) RMAMR. (k) GRASTA. (l) ReProCS. (m)

TVRPCA. (n) SRPCA. (o) NO-RMC. (p) LSD. (q) GOSUS. (r) OMoGMF+TV. (s) COROLLA. (t) OR-PCA. (u) 2PRPCA. (v)

DECOLOR. (w) GFL. (x) MSCL. From to bottom: Rows (1)-(2): Sequences ‘Highway’ and ‘office’ from category ‘Baseline’.

Rows (3)-(5): Sequences ‘canoe’, ‘boat’, and ‘overpass’ from category DB. Rows (6)-(7): Sequences ‘badminton’ and ‘traffic’

from category ‘Camera Jitter’. Rows (8)-(10): Sequences ‘sofa’, ‘winter Driveway’, and ‘streetLight’ from category IOM. Rows

(11)-(13): Sequences ‘BackDoor’, ‘cubicle’, and ‘copyMachine’ from category ‘Shadow’. Rows (14)-(15): Sequences ‘library’

and ‘lakeside’ from category ‘Thermal’ (Images from Namrata et al. [274]).

The intrinsic structure of the sparse decomposition is used

in order to detect the anomalies without requiring previous

video synchronization. Because the original RPCA is able to

project the data onto a single subspace only, Thomaz et al.

[266] designed an algorithm based on the Robust Subspace

Recovery (RoSuRe [22]) which is able to project a data

onto a union of subspaces of lower dimensions. The moving-

camera RoSuRe (mcRoSuRe) provides good detection results

while at the same time avoiding the need for previous video

synchronization. For moving and panning cameras, Chau and

Rodriguez [44] designed an incremental PCP algorithm called

incPCP-PTI which continuously aligns the low-rank compo-

nent to the current reference frame of the camera. Based on the

translational and rotational jitter invariant algorithm incPCP-

TI [236], incPCP-PTI continuously estimates the alignment

transformation T (·) in order to align the previous low-rank

representation with the observed current frame. Furthermore,

instead of using iterative hard threshold as in incPCP-TI, the

low-rank approximation problem is solved in the reference

frame by applying an adaptive threshold to the residual.

Further research might focus on other types of distortions like

perspective changes, zooming in/out of the camera, and the

reduction of the time for high frame rate real-time applications.

B. Motion Saliency Detection

Motion saliency detection is crucial for video processing

tasks, such as video segmentation, object recognition and

adaptive compression. Different from image saliency, moving

objects catch human being’s attention much easier than static

ones. Xu et al. [300] used the low-rank and sparse decomposi-

tion on video slices along X−T and Y−T planes to achieve the

separation of foreground moving objects from backgrounds.

Naturally, the low-rank component L corresponds to the back-

ground and the sparse component S captures the motion ob-

jects in the foreground. Then, the motion matrices, i.e., abs(S)

obtained from the X−T(Y−T) slices are integrated together

as ScubeXT (ScubeYT) along X − Y − T. The initial saliency

map cube is obtained by computing norm(ScubeXT ∗ScubeYT)
where ∗ is the element-wise product operator, and norm()
represents normalization processing. The size of T equals the

size of the video and it can also be defined as the size of a sub-

video. In addition, a spatial information refinement preserve
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TABLE I: Average F1 score of provable methods, heuristic methods, and heuristic methods with specific constrains for

background/foreground separation. Time is shown for a video having 320 × 240 resolution of 8, 000 frames. The best and

second best performing methods are shown in bold and bold italic, respectively.
Provable Methods Baseline DB Camera Jitter Shadow Thermal IOM Average Time (secs/frame)

PCP (batch) Fig. 15 (c) [37] 0.75 0.69 0.62 0.73 0.65 0.48 0.65 4.19
AltProj (batch) [203] 0.78 0.71 0.60 0.76 0.69 0.58 0.68 2.38

NO-RMC (batch) Fig. 15 (o) [54] 0.71 0.64 0.64 0.66 0.71 0.50 0.64 2.85
RPCA-GD (batch) Fig. 15 (f) [309] 0.74 0.62 0.68 0.75 0.66 0.49 0.65 2.46

ReProCS-provable (online) [201], [315] 0.77 0.77 0.69 0.71 0.74 0.70 0.73 0.74
Mod-PCP (online) [316] 0.75 0.64 0.70 0.65 0.69 0.70 0.68 0.44

Heuristic Methods Baseline DB Camera Jitter Shadow Thermal IOM Average Time

ReProCS (online) Fig. 15 (l) [106] 0.80 0.76 0.72 0.75 0.77 0.69 0.74 0.61

GRASTA (online) Fig. 15 (k) [118] 0.66 0.35 0.43 0.52 0.42 0.35 0.45 1.16
3TD (batch) Fig. 15 (g) [208] 0.88 0.75 0.72 0.68 0.78 0.55 0.72 2.17

2PRPCA (batch) Fig. 15 (u) [92] 0.92 0.79 0.81 0.80 0.76 0.65 0.78 1.63
GoDec (batch) Fig. 15 (d) [339] 0.77 0.58 0.48 0.51 0.62 0.38 0.55 1.56

OR-PCA (online) Fig. 15 (t) [139] 0.86 0.75 0.70 0.74 0.76 0.56 0.72 0.22

pROST (online) Fig. 15 (h) [243] 0.79 0.59 0.79 0.70 0.58 0.48 0.65 2.03
PRMF (batch & online) Fig. 15 (e) [284] 0.92 0.77 0.85 0.88 0.83 0.48 0.78 2.40

Heuristic Methods with Specific Constraints Baseline DB Camera Jitter Shadow Thermal IOM Average Time

incPCP (online) Fig. 15 (i) [235] 0.81 0.71 0.78 0.74 0.70 0.75 0.74 0.41
MSCL (batch) Fig. 15 (x) [138] 0.87 0.85 0.83 0.82 0.82 0.80 0.83 1.68

DECOLOR (batch) Fig. 15 (v) [342] 0.92 0.70 0.68 0.83 0.70 0.59 0.73 1.88
LSD (batch) Fig. 15 (p) [180] 0.92 0.71 0.78 0.81 0.75 0.67 0.77 1.43

TVRPCA (batch) Fig. 15 (m) [41] 0.84 0.55 0.63 0.71 0.69 0.57 0.66 1.48
SRPCA (batch) Fig. 15 (n) [137] 0.82 0.84 0.78 0.77 0.79 0.80 0.80 0.59
RMAMR (batch) Fig. 15 (j) [301] 0.89 0.82 0.75 0.73 0.75 0.66 0.76 1.32

GFL (batch) Fig. 15 (w) [294] 0.83 0.74 0.78 0.8 2 0.76 0.59 0.75 2.40
GOSUS (online) Fig. 15 (q) [297] 0.90 0.79 0.82 0.84 0.80 0.74 0.81 0.89

COROLA (online) Fig. 15 (s) [245] 0.85 0.86 0.82 0.78 0.80 0.71 0.80 0.39

OMoG+TV (online) Fig. 15 (r) [310] 0.85 0.76 0.78 0.68 0.70 0.71 0.74 0.19

(a) (b) (c) (d) (e) (f)

Fig. 16: Motion Saliency Detection. From left to right: (a)

Original images, (b) consecutive frame difference, (c) MOG

[260], (d)Temporal Spectrum Residual (TSR) [57], (e) Raw

saliency map [57], and (f) final result obtained by the RPCA

algorithm [57] (Images from Xu et al. [300]).

the completeness of the detected motion objects. From Fig. 16,

we can see that the RPCA algorithm outperforms a standard

approach called Temporal Spectrum Residual (TSR) [57]as

well as background subtraction algorithms like Consecutive

Frame Difference (CFD) and Mixture of Gaussians (MoG)

[260].

C. Motion Estimation

Motion estimation concerns the process of determining

motion vectors for the transformation from one 2D image

to another which is usually done from adjacent frames in a

video sequence. Ros et al. [238] addressed this problem with

a modified formulation of RPCA in the special case of camera-

pose recovery and visual odometry. Practically, Ros et al. [238]

considered the estimation of motion models Mi
N
i=1 between

pair of stereo frames Fi,Fi+1 along a given sequence of N

frames {Fi}Ni=1. Each frame Fi = (Vl
i,Vr

i ) consists of two

images taken from the left and right cameras at the same time

instant ti. This formulation is suitable for the stereo visual

odometry problem with a rigid 3D transformation [94]. When

estimating the transformation Mi, one should account for the

presence of noise and outliers in the observations in order to

avoid a biased solution. Thus, Ros et al. [238] exploited the

rank constraints present in rigid 3D motions to identify out-

liers. Practically, the information resultant from the low-rank

and sparse decomposition is used to make a binary decision

on each tuple of point matches (column) about its pertinence

to the outlier set. Despite the impossibility of performing an

exact recovery of every element of the observation matrix,

the resultant information is enough to make this set of binary

decisions. Thus, a Robust Decomposition with Constrained

Rank (RD-CR) is employed and is formulated as follows:

min
L,S

1

2
||A− L− S||2F + λ||S||1, s.t. rank(L) ≤ r, (28)

This formulation enables solving problems in harder condi-

tions, i.e., higher ranks and greater proportions of outliers.

However, in motion estimation problems, the rank is still too

high to achieve an exact estimation of L and S. For this reason,

the problem is addressed by using the residual matrix S to infer

which columns (point matches) are outliers. From the results,

this approach is competitive against state-of-the-art methods

on the KITTI dataset7 [94] in terms of accuracy and is more

efficient in terms of computation.

D. Tracking

Tracking in computer vision refers to a problem which

allows to track an object from a temporal sequence, and then

7http://www.cvlibs.net/datasets/kitti/eval-odometry.php
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allows to estimate the trajectory of an object in the image

plane when it moves around a scene. Object detection and

tracking are two independent processes in video sequences.

But, object detection can be improved by using a tracking

feedback. Thus, Lin et al. [168] introduced tracking feedback

in the RPCA formulation as follows:

min
L,Gi,j∈{0,1}

1

2
||PG⊥(A− L)||2F + λ1||L||∗

+ λ2||f(G)||1 + λ3||t(G)||1 + γ||B · vec(G)||1,
s.t. rank(L) ≤ r,

(29)

where G ∈ {0, 1}n×m
denotes the foreground support and its

value is 0 if (i, j) is background and 1 if (i, j) is foreground.

PG(X) is the orthogonal projection of the matrix X onto the

linear space of matrice supported by G, and PG⊥(X) is the

complementary projection. f(G) is the fractal dimension of

the object support G and B and it is the node-edge incidence

matrix. t(G) is the object tracking process of support G. As

the objective function of (29) is non-convex, an alternating

method is to separate the energy minimization over L and G

into two steps, respectively. L-step is a convex optimization

problem using the RPCA algorithm, and G-step can be solved

by a Graph Cut algorithm. This algorithm called Group Ob-

ject Detection and Tracking (GODT) outperforms DECOLOR

[342] on the I2R dataset [156].

Shan and Chao [247] designed an improved ℓ1-tracker in a

particle filter framework using RPCA and random projection.

Practically, three target templates and several background

templates are employed into a template set:

• The target templates are obtained as follows: (1) a fixed

template obtained from a manually selected target in the

first frame, (2) a dynamic template updated via RPCA

which builds a stable appearance model for long-time

tracking, and (3) a dynamic template which is frequently

reinitialized based on the stable template and is updated

rapidly to represent the fast appearance change of the

target. First, a dataset A0 is constructed based on the

tracking results in the former N frames. For the similarity

of the tracking results, a low-rank matrix is recovered

from the dataset by removing the gross corruption and

even outlier. Each column of A0 is a reduced dimensional

feature vector from one normalized tracking result. When

a next N+ tracking results are available in A+, they are

used to update the data matrix A0. So,
[
A0A+

]
is cleaned

by RPCA as follows:

min
[L0L

+],[S0S
+]

∥∥[L0L+
]∥∥

∗ + λ
∥∥[S0S+

]∥∥
1
,

s.t.
[
A0A+

]
=

[
L0L+

]
+
[
S0S+

]
,

(30)

where
[
L0L+

]
denotes the new cleaned matrix, and[

S0S+
]

is the new sparse error matrix. The j-th column

of matrix A0 is then replaced by the i-th column of matrix

A+ to be used when the next N+ tracking results arrive.

• The background templates consist of several background

image patches cropped from the background regions of

the former frames in order to strengthen the algorithms

ability of distinguishing the background and foreground.

These templates combined with the three target templates

are then used to represent the candidate image patches

sparsely.

Finally, the candidate with the minimum distance to its

linear combination corresponding to only the target templates

is selected as the tracking target. Experiments show that

this RPCA based ℓ1-tracker outperforms in certain critical

situations as compared to several state-of-the-art algorithms.

In another work, Elnakeeb and Mitra [78] considered the

incorporation of a line constraint for structured estimation.

Practically, multiple forms of structure on matrices are

extended from low-rank and sparsity. The line constraint is

introduced via a rotation that yields a secondary low rank

condition. Then, Elnakeeb and Mitra [78] applied this method

to single object tracking in video wherein the trajectory can be

parameterized as a line. Noticeable performance improvement

is obtained over previous background subtraction methods

that do not exploit the line structure.

E. Action Recognition

Motion representation is an important task in human action

recognition and most traditional methods usually require in-

termediate processing steps such as actor segmentation, body

tracking, and interest point detection, making these methods

sensitive to errors due to these processing steps. To remedy this

limitation, Huang et al. [126] designed a motion representation

method for action recognition by extracting refined low-rank

features of RPCA. After extensive experiments, Huang et al.

[126] determined the optimal λ for extracting the discrim-

inative information of motion. Then, the RPCA algorithm is

applied on the all action image sequences with the appropriate

parameter λ to obtain the low-rank images and sparse error

images. The low-rank images of all the action image sequences

are very similar and represent the discriminative information

of motion, while the sparse error images are different and

represent the individual differences of each action image.

Thus, the low-rank images are kept to perform action recog-

nition, and the sparse error images are discarded. To represent

the characteristic of the obtained low-rank images, Huang et

al. [126] employed the Edges Distribution Histogram (EDH)

and Accumulative Edges Distribution Histogram (AEDH) to

encode the statistical distribution of the low-rank images into

a feature vector. Finally, the Support Vector Machine (SVM)

is applied to recognize human actions represented by EDH or

AEDH feature. Experiments on the KTH action dataset8 [148]

show that this algorithm outperforms previous approaches with

an average accuracy of 96.16%.

F. Key Frame Extraction

Key frame extraction concerns the problem of selecting

a subset of the most informative frames from a video to

summarize its content such as in video summarization, search,

8http://www.nada.kth.se/cvap/actions/
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indexing, and prints from video. Most state-of-the-art methods

work directly with the input video dataset, without considering

the underlying low-rank structure of the dataset. Other meth-

ods exploit the low-rank component only but they ignored the

other key information in the video. On the other hand, Dang

et al. [60] developed a Key Frame Extraction (KFE) algorithm

based on RPCA which decomposes the input video data into

a low-rank component which reveals the information across

the elements of the dataset, and a set of sparse components

each of which containing distinct information about each

element. Then, Dang et al. [60] combined the two information

types into a single ℓ1-norm based non-convex optimization

problem to extract the desired number of key frames. Extensive

experiments on a variety of consumer and other types of videos

show that RPCA-KFE with the ground truth and with related

state-of-the-art algorithms clearly illustrates its viability.

G. Video Object Segmentation

Video segmentation concerns the partition of a video into

several semantically consistent spatio-temporal regions. It is a

fundamental computer vision problem in several applications

like video analytics, summarization and indexing. But, its

computational complexity and inherent difficulties such as

the large intra-category variations and the large inter-category

similarities make this task very challenging. For streaming

video segmentation, Li et al. [152],[153] employed a Sub-

Optimal Low-rank Decomposition (SOLD) algorithm which

tracks the low-rank representation by exploiting the low-

rank structure of low-level supervoxel features. Since the

supervoxel feature matrix is often noisy or grossly corrupted,

the low-rank representation can be formulated as follows:

A = AL + S + E, s.t. rank(Z) ≤ r, (31)

where r is the desired rank and r ≪ n. Then, Li et

al. [152],[153] integrated the discriminative replication prior

based on internal video statistics into SOLD based on the

observation that small-size video patterns within the same ob-

ject. An inference algorithm is employed to perform streaming

video segmentation in both unsupervised and interactive sce-

narios. Extensive experiments show that SOLD outperforms

other video segmentation approaches in both accuracy and

efficiency.

H. Video Coding

Video coding aims to generate a content representation

format for storage or transmission. Due to the growing needs

for public security, traffic surveillance and remote healthcare

monitoring, efficient compression and fast transmission of

large amount of surveillance videos are required in practice.

Surveillance videos are usually with a static or gradually

changing background. The state-of-the-art block-based codec,

H.264/AVC, is not sufficiently efficient for encoding surveil-

lance videos since it cannot exploit the strong background

temporal redundancy in a global manner. First, Chen et al. [45]

applied the RPCA formulation called Low-Rank and Sparse

Decomposition (LRSD) to decompose a surveillance video

into the low-rank component (background) and the sparse

component (moving objects). Then, the Go Decomposition

(GoDec) algorithm [339] which is a randomized algorithm for

low-rank and sparse matrix decomposition in noisy case is em-

ployed to separate the components of A, so that A = L+S+E,

where L is a rank-r matrix. Then, different coding methods

for the two different components were designed. The frames

of the background are representing by very few independent

frames based on their linear dependency, which significantly

removes the temporal redundancy. Experimental results show

that LRSD significantly outperforms H.264/AVC, up to 3 dB

PSNR gain, especially at relatively low bit rate. But, LRSD

cannot handle high-resolution or long-time videos due to its

high memory requirement. To remedy to these limitations,

Chen et al. [46] designed an incremental LRSD (ILRSD) algo-

rithm that can effectively handle large-scale video sequences

without much performance loss. Guo et al. [110] employed

a dictionary approach based on a small number of observed

frame. With the trained background dictionary, every frame

is separated into the background and moving object via the

RPCA formulation. As in LRSD, GoDec [339] is also used

for the decomposition. Then, the compressed motion are stored

together with the reconstruction coefficient of the background

corresponding to the background dictionary. The decoding is

carried out on the encoded frame in an inverse procedure. This

algorithm outperforms H.264/AVC codec in terms of both file

size and PSNR for surveillance videos.

For surveillance video coding, the rate-distortion analysis

shows that a larger penalty λ needs to be used if the back-

ground in a coding unit had a larger proportion. To address

this problem, Zhao et al. [331] performed an analysis on the

relationship between the optimal penalty and the background

proportion, and then designed a penalty selection model to

obtain the optimal coding performance for surveillance video.

I. Hyperspectral Video Processing

Chang and Gerhart [42],[96] employed the RPCA decom-

position for the detection of gaseous chemical plumes in

hyperspectral video data. These video sequences are typically

very large in size due to the fact that the images themselves

are of high resolutions. An algorithm which decomposes a

hyperspectral video sequence into a low-rank and sparse repre-

sentation A = L+S is then used and applied to the detection of

chemical plumes. As the problem is the same as background-

foreground separation, the input frames are stacked as columns

in the matrix A. But, the memory requirement of this problem

is typically more challenging than in the color case. Let each

frame of a dataset be a nr×nc×nb (128×320×129) data cube,

then by concatenating along the spectral dimension it produces

a vector of length nr×nc×nb (5, 283, 840). The data matrix A

with N frames is of size nr×nc×nb×N (5, 283, 840×100). In

practice, pre-processing techniques are used to make the task

computationally feasible. For example, one can select a subset

of the spectral bands based on noise or performing dimension

reduction on each frame of the video sequence. Experiments

show that the low rank approximation captures the background

very well. After the plume is released, the sparse component

captures the movement of the plume through each band of the
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video sequence. Applying this method to the original (non-

reduced) video sequence results in the background matrix

approximating stationary signals and the sparse component

showing moving signals and noise.

J. Video Restoration and Denoising

Video restoration concerns the recovery of the original one

from the degraded video data. It is one of the fundamental

problems in video processing, especially in the current days.

Indeed, old films which need to be restored present noise

contamination, image blurring and missing data. Second, with

the prevalence of webcams and camera phones, the problem

of video restoration has become even more important than

before. Practically, there are two main kinds of restoration:

video denoising in the presence of random-valued noise in

the data acquisition and transmission due to faulty sensor

or transmission, and video inpainting for archived film to

repair videos corrupted by line scratches, hairs and dust. Ji

et al. [142] grouped similar patches in the spatio-temporal

domain and formulated the video restoration problem as a

joint sparse and low-rank matrix approximation problem. First,

for each reference patch p, similar patches are found in the

spatio-temporal domain by using a patch matching algorithm.

Assume that m match patches are found and denoted as

{pi}
m

i=1. If each patch pi is represented by a vector pi ∈ R
n×n

by concatenating all columns of the patch into a column vector,

the resulting patch stack is then a matrix A ∈ R
n2×m with

A = (p1, p2, ...p3). As the matrix A can be corrupted by noise

and/or outliers, A is then decomposed with the stable RPCA

formulation A = L + S + E, where L is the original patch

matrix for recovery, S is the matrix of outliers and E is the

random image noise:

min
L,S
||L||∗ + λ||S||1 +

1

2µ
||A− L− S||2F , (32)

with µ defined with an empirical parameter. Experiments show

that this method compares favorably against many existing

algorithms on both video denoising and video inpainting. This

method can effectively remove the noise, but must transform

two-dimensional samples to one-dimensional vectors and the

input matrix should be approximatly low rank matrix. To

remedy this limitation, Zhao et al. [334] used an extended

RPCA algorithm called Low Rank Approximations of Matri-

ces (GLRAM) to obtain better performance than RPCA. As

Ji et al. [142], Guo and Vaswani [109] also considered that

many noisy or corrupted videos can be split into three parts

but they used the notion of layers instead of patches. Thus,

PCP are first used to initialize the low-rank layer, the sparse

layer, and the small residual which is small and bounded.

After, ReProCS [106] is used overtime to quickly separate

the layers in videos with large-sized sparse components and/or

significantly changing background images. This video-layering

step is followed by VBM3D [58] on each of the two layers.

Thus, VBM3D exploits the specific characteristics of each

layer and is able to find more matched blocks to filter over,

resulting in better denoising performance. Practically, very

noisy videos becomes easier if the denoiser is applied to

each layer separately or to only the layer of interest. Fig.

17 shows an examples of videos denoising and enhancement,

respectively. For video denoising, we compare RPCA-VBM3D

[109] with VBM3D [58]. For video enhancement, we show

the comparison between the RPCA algorithm called ReProCS

[106] to the histogram equalization which is the standard

approach for such low light data. In each case, the RPCA

algorithms outperform the classical state-of-the-art method.

The code for this experiment is downloadable from http:

//www.ece.iastate.edu/∼hanguo/ReLD Denoising.zip.

K. Video Summarization

Video summarization is a quick way to overview its content

and is a challenging problem because finding important or

informative parts of the original video requires to understand

its content. Furthermore, the content of videos is very diverse,

ranging from home videos to documentaries, which makes

video summarization much more difficult as prior knowledge

is almost unavailable. To tackle this problem, Ramani and Atia

[230] employed a scalable column/row subspace pursuit algo-

rithm based on the RPCA formulation that enables sampling in

challenging scenarios in which the data are highly structured.

The idea consists of searching for a set of columns whose the

low-rank component can cancel out the low-rank component

of all the columns. Thus, informative columns are employed

for video summarization. For face sampling, Ramani and Atia

[230] tested this algorithm on the Yale Face Database B which

consists of face images from 38 human subjects. For each

subject, there are 64 images with different illuminations. A

containing the vectorized image is built with the images of

6 human subjects (384 images in total, so A ∈ R
32,256×384.

Experiments [230] show that this sampling algorithm is robust

in the presence of corrupted data.

L. UHD Super Resolution Video

The recovery of high-resolution (HR) images and videos

from low-resolution (LR) content is a topic of great interest

in digital image processing. The global super-resolution (SR)

problem assumes that the LR image is a noisy, low-pass

filtered, and downsampled version of the HR image. Recent

approaches are sparsity-based techniques which assume that

image patches can be well-represented as a sparse linear

combination of elements from an appropriately chosen over-

complete dictionary. In order to fully utilize the spatio-

temporal information, Ebadi et al. [75] employed a multi-

frame video SR approach that is aided by a low-rank plus

sparse decomposition of the video sequence. First, Ebadi et

al. [75] defined Group of Pictures (GOP) structure and saught

a rank-1 low-rank part that recovers the shared spatio-temporal

information among the frames in the GOP. Then, the low-rank

frames and the sparse frames are super-resolved separately.

This algorithm results in significant time reduction as well as

surpassing state-of-the-art performance, both qualitatively and

quantitatively.

V. CONCLUSION

The RPCA formulation has been successfully applied in

the last seven to ten years in computer vision applications,
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original noisy RPCA-VBM3D VBM3D

(PSNR=30dB) (PSNR=25dB)

(a) Denoising a very noisy video. PSNR shown in parenthesis

original RPCA Hist-Eq

(b) Video enhancement: “Seeing” in the dark

Fig. 17: Video denoising and enhancement: (a) Denoising a very noisy video with Gaussian noise of standard deviation σ = 70
and hence PSNR is 11dB. From left to right: Original videos, noisy videos, RPCA-VM3D [109] results, VBM3D [58] results.

Note that VBM3D gives a much more blurred denoised image. Peak Signal to Noise Ratio (PSNR) is noted below each figure

too. (b) Video enhancement. From left to right: Original videos, RPCA algorithm (ReProCS [106]) results and histogram

equalization (Hist-Eq) results (Images from Namrata et al. [274]).

outperforming previous state-of-the-art techniques. This suc-

cess is due to its robustness to outliers and its flexibility to

be applied in different types of outliers due to its ability

to allow specific additional constraints such as spatial and

temporal ones. In the early times, its memory and time

requirements limited its applications in online and/or real-time

applications. But, dynamic RPCA [182],[274] has received

significant attention much more recently, reducing these lim-

itations with performance guarantees [183],[181],[201],[315]

and memory efficient algorithms [200], and thus allowing to

consider its uses in very challenging applications such as

background/foreground separation in videos taken static or

moving cameras.

However, there are still many important issues which need

to be solved to allow the RPCA formulation to be fully

and broadly employed in image and video processing and

3D computer vision. The first issue concerns the guarantee

for dynamic RPCA under even weaker assumptions. Second,

even if robust matrix completion and undersampled robust

PCA have been well studied, their dynamic extensions have

received almost no attention. It is an important question for

very long image or video datasets where a changing subspace

assumption is a more appropriate one. Third, simple and

provable RPCA or dynamic RPCA solutions that are streaming

are required in several computer vision applications. Even if a

streaming RPCA solution has been developed in recent work

[205], it works only for one-dimensional RPCA. On the other

hand, ReProCS [225] is a nearly memory optimal solution to

dynamic RPCA, but it requires more than one pass through

the data.

An open question is how can the RPCA formulation be

successfully adapted to solve other more general computer

vision problems. One such problem is subspace clustering

which involves clustering a given image or video dataset into

one of K different low-dimensional subspaces. This can be

viewed as a generalization of PCA which tries to represent a

given dataset using a single low-dimensional subspace. There

has been a lot of work on the subspace clustering problem,

developed in the frameworks of both sparse representation

[76][77] and low-rank representation [175],[174], where each

sample is represented by other samples and the representa-

tion matrix is regularized by either sparsity [76][77], low-

rankness [175],[174], or both [76]. Other works also con-

cern scalable subspace clustering [275] which can be solved

using algorithms [275],[312],[311] that are provably correct

when subspaces are sufficiently separated and data are well

distributed within each subspace. A complete review can be

found in [173]. Then, given that subspace clusters have been

computed for a given dataset, if more data vectors come in

sequentially, how can one incrementally solve the clustering

problem, i.e., either classify the new vector into one of the K

subspaces, or decide that it belongs to a new subspace? There

has been sporadic work on this problem. For example, Shen et

al. proposed an online version of low-rank subspace clustering

[249].

Another open question is whether one can solve the phase-

less RPCA or L+S problem. Indeed, one can only acquire

magnitude-only measurements in applications like ptychog-

raphy, sub-diffraction imaging or astronomy. If the unknown

image sequence is well modeled in the RPCA formulation, the

main question is how this model can be exploited to recover

it from under-sampled phaseless measurements.

Finally, this article does not review the literature on the

recent works on RPCA for tensor data. Interested readers

may refer to the works in [55],[157],[262],[263] for appli-

cation to background/foreground separation, to the works in

[5],[133],[135],[202],[254],[227],[257] for online/incremental

tensor algorithms, and to the works of Lin et al. [173] for

some recent results. All of above are active research topics

with many open questions.
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