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On the applications of Shimura�s mass formula

By

Manabu MURATA*

Abstract

We explain how to compute the mass of the genus of maximal lattices for quadratic form of
the sum of squares by applying Shimura�s mass formula when the basic field is a real quadratic
field (Section 1), and consider its applications in special cases (Section 2). This paper is also
a survey on [Mu] to which several examples are added.

§1. Shimura�s mass formula for computation

To apply Shimura�s mass formula in [ \mathrm{S}99\mathrm{a} , Theorem 5.8] to the case treated below,
we first recall some basic facts following [S].

Let V be the row vector space F^{n} over a real quadratic field F of dimension n and

 $\varphi$ the identity matrix  1_{n} of size n(n>1) . For x, y\in V , we set  $\varphi$(x, y)=x $\varphi$\cdot yt=x\cdot yt
and  $\varphi$[x]= $\varphi$(x, x)=x\cdot xt . We define

G=\{ $\gamma$\in GL_{n}(F)| $\gamma \varphi$\cdot{}^{t}$\gamma$= $\varphi$\}, G_{+}=\{ $\gamma$\in G|\det( $\varphi$)=1\},
which are written as G^{ $\varphi$}, G_{+}^{ $\varphi$} in [\mathrm{S}99\mathrm{a}] and [Mu], and also as O^{ $\varphi$}(V) , SO^{ $\varphi$}(V) in [S],

Let G_{\mathrm{A}} be the adelization of G . For a \mathrm{g}‐lattice L in V , which is a finitely generated
\mathrm{g}‐submodule in V containing a basis of V , and  $\alpha$\in G_{\mathrm{A}} , we denote by  L $\alpha$ the \mathfrak{g}‐lattice

in V such that (L $\alpha$)_{v}=L_{v}$\alpha$_{v} for any finite prime v of F . Here \mathrm{g} is the ring of integers of

F and L_{v} is the localization of L at v . We call \{L $\alpha$| $\alpha$\in G_{\mathrm{A}}\} (resp. \{L $\alpha$| $\alpha$\in G\} ) the

genus (resp. class) of L with respect to G ; we also call it the G‐genus (resp. G‐class)
of L . It is known that the genus of L consists of finitely many classes (cf. [\mathrm{S} , Lemma

9.21(iv) and (\mathrm{v}) ])
Let \{L_{i}\}_{i=1}^{h} be a complete set of representatives for G‐classes in the G‐genus of L.

Then we set

\displaystyle \mathfrak{m}(L)=\sum_{i=1}^{h}[$\Gamma$_{i}:1]^{-1}
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where $\Gamma$_{i}=\{ $\gamma$\in G|L_{i} $\gamma$=L_{i}\} . This is independent of the choice of \{L_{i}\}_{i=1}^{h} . We call

\mathrm{m}(L) the mass of the genus of L with respect to G . Similarly for G+ , we can define the

mass of the genus of L with respect to G+ and denote it by \mathfrak{m}_{+}(L) . It should be noted

that \mathfrak{m}_{+}(L)=2\mathrm{m}(L) (cf. [\mathrm{S}99\mathrm{a} , Lemma 5.6(1)] ).
For each finite prime v of F

, there exists $\alpha$_{v}\in GL_{n}(F_{v}) such that

(1.1) $\alpha$_{v} $\varphi$\cdot{}^{t}$\alpha$_{v}=\left\{\begin{array}{lll}
0 & \mathrm{O} & 1_{r_{v}}\\
0 & $\theta$_{v} & 0\\
1_{r_{v}} & 0 & 0
\end{array}\right\}
with an anisotropic symmetric matrix $\theta$_{v}\in GL_{t_{v}}(F_{v}) of size t_{v} . Here F_{v} is the v‐

completion of F
, and we say that $\theta$_{v} is anisotropic if $\theta$_{v}[x]=0\Rightarrow x=0 . In this paper,

we call a matrix as in the right‐hand side of (1.1) a Witt decomposition for  $\varphi$ over  F_{v}

(cf. [\mathrm{S} , Lemma 1.3]). Then n=2r_{v}+t_{v} and t_{v} is determined only by  $\varphi$ and  v . We call

t_{v} the core dimension of  $\varphi$ at  v . It is known that t_{v}\leq 4 for every finite prime v (cf. [\mathrm{S},
Theorem 7.6(ii)]).

For a \mathfrak{g}‐lattice L
,

we set

\tilde{L}= { x\in V|2 $\varphi$(x, y)\in \mathrm{g} for every y\in L }.

Then \tilde{L} is a \mathfrak{g}‐lattice in V , and L\subset\tilde{L} if  $\varphi$[L]\subset \mathrm{g} . Let \mathfrak{e} be the product of all finite

primes v satisfying \tilde{L}_{v}\neq L_{v}.
Let L be a \mathrm{g}‐maximal lattice with respect to  $\varphi$ , that is, a \mathrm{g}‐lattice L in V which is

maximal amorrg \mathrm{g}‐lattices on which the values  $\varphi$[x] are contained in \mathrm{g} . It is known that

the genus of L consists of all \mathrm{g}‐maximal lattices (cf. [\mathrm{S} , §9.7]) Then, by applying an

exact formula due to Shimura in [ \mathrm{S}99\mathrm{a} , Theorem 5.8] to our case, \mathfrak{m}_{+}(L) can be given
as follows:

Theorem 1.1. Let L be a \mathrm{g} ‐maximal lattice with respect to  $\varphi$ . Then

[ $\mu$]

 $\iota$ \displaystyle \mathfrak{n}_{+}(L)=2D_{F}^{[$\mu$^{2}]}\prod_{k=1}\{D_{F}^{1/2}((2k-1)!(2 $\pi$)^{-2h})^{2}$\zeta$_{F}(2k)\}\cdot[\tilde{L}:L]^{ $\mu$}\prod_{?)|e}$\lambda$_{v}
. \ovalbox{\tt\small REJECT}_{D_{F}^{1/2}((n/2-1)!(2 $\pi$)^{-n/2})^{2}L(n/2,$\psi$_{K/F})}^{2^{-2 $\mu$}} ifnifnisisoddeven.

Here  $\mu$=(n-1)/2 and D_{F} is the

$\psi$_{K/F} is the Hecke character of F corresponding to K/F , and we set $\psi$_{K/F}=1 when
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K=F;$\lambda$_{v} is given as follows:

$\lambda$_{v}=\left\{\begin{array}{ll}
1 & if t_{v}=1,\\
2^{-1} & if t_{v}=2 and 0_{v}\neq \mathfrak{r}_{v},\\
2^{-1}(1+q_{v})^{-1}(1-q_{v}^{1-n}) & if t_{v}=3,\\
2^{-1}(1+q_{v})^{-1}(1-q_{v}^{1-n/2})(1-q_{v}^{-n/2}) & if t_{v}=4_{ $\gamma$}
\end{array}\right.
where q_{v} is the norm of the prime ideal at v;\mathfrak{r}_{v} is the maximal order of K_{v}=F_{v}(\overline{-1})
and 0_{v} is the different of K_{v} relative to F_{v} when t_{v}=2.

We note that the case where t_{v}=2, $\tau$_{v}(=\mathfrak{r}_{v)} and \tilde{M}_{v}\neq M_{v} in [ \mathrm{S}99\mathrm{a} , Theorem 5.8]
cannot be possible in our quadratic space (F^{n}, 1_{n}) , because of \det($\theta$_{v})\equiv\pm\det( $\varphi$)=\pm 1
modulo \{a^{2}|a\in F^{\times}\}.

By virtue of Theorem 1.1, we can reduce the calculation of \mathrm{m}(L) to the following
two arguments:

One is to compute the special values of the Dedekind zeta function of F and the

L‐fUnction of F associated to the Hecke character of F corresponding to F(\overline{-1})/F.
These values can be obtained by calculating values of the Riemann zeta function and

Dirichlet L‐functions, since F(\overline{-1})/\mathrm{Q} is an abelian extension.

The other is to find all finite primes v satisfying \tilde{L}_{U}\neq L_{v} . The index [\tilde{L}_{v} : L_{v}] can

be computed by using [\mathrm{S}99\mathrm{a}, (3.2.1)] , which needs a Witt decomposition for 1_{n} over F_{?},.
To determine this, we first take an anisotropic matrix $\theta$_{p} of a Witt decomposition for

1_{n} over \mathrm{Q}_{p} for a rational prime p . Then the size of $\theta$_{\mathrm{p}} is \leq 4 . After that, we decompose
$\theta$_{p} on F_{v} for v lying above p . It should be noted that this method is useful only when

the quadratic form in question is given by a matrix with entries in Q.
To get a numerical example of the mass, let us consider the case where F=\mathrm{Q}(\overline{5})

and  $\varphi$=1_{4} . Then the quadratic form over \mathrm{Q} given by  $\varphi$=1_{4} is equivalent to the norm

form  $\beta$ of the quaternion algebra  B_{0} over \mathrm{Q} which is ramified only at 2 and the infinite

prime. In other words, 1_{4} is the matrix that represents  $\beta$ with respect to a suitable

\mathrm{Q}‐basis of B_{0} ; see §2 below. Thus we first consider a Witt decomposition for  $\beta$ over

\mathrm{Q}_{p} . It can be verified that the core dimension at v of the norm form of a quaternion
algebra A is 4 if A is ramified at v , and it is 0 if A is unramified at v . From this fact,
the core dimension of  $\beta$ at  p is 4 if p=2 , otherwise O. Next we consider  $\beta$ as the norm

form of  B=B_{0}\otimes_{\mathrm{Q}}F and ask whether  $\beta$ is decomposed over  F_{v} for v lying above 2,

Now, it is known that a quaternion algebra over a nonarchmedean local field splits over

an arbitrary quadratic extension of the local field (cf. [\mathrm{D} , VII, §2, Satz 4 Since 2

remains prime in F, B splits at 2 (as an algebra), and consequently B is unramified

at every finite prime. This implies that the core dimension t_{v} of the norm form  $\beta$ , or

rather, of  $\varphi$ is  0 for every prime v . Then by virtue of [\mathrm{S}99\mathrm{a}, (3.2.1)], [\tilde{L}_{v} : L_{v}]=1
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holds for an arbitrary v . Hence we have [\tilde{L} : L]=1 and \mathfrak{e}=\mathrm{g} . Combining this with

$\zeta$_{F}(2)= $\zeta$(2)L(2,  $\chi$) (  $\chi$ is the Dirichlet character of  F), by Theorem 1.1, we obtain the

mass of the genus of maximal lattices as follows:

\mathfrak{m}(L)=2^{-1}\mathfrak{m}_{+}(L)=5^{3}(2 $\pi$)^{-8}$\zeta$_{F}(2)^{2}=2^{-6}\cdot 3^{-2}\cdot 5^{-2}

From the above argument, for a finite prime v dividing 2 of an arbitrary real

quadratic field F , we can verify that

B\otimes_{F}F_{v}\cong(B_{0}\otimes_{\mathrm{Q}}\mathrm{Q}_{2})\otimes_{\mathrm{Q}_{2}}F_{v}

\underline{\simeq}\left\{\begin{array}{ll}
B_{0}\otimes_{\mathrm{Q}}\mathrm{Q}_{2} & \mathrm{i}\mathrm{f} 2 \mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{s} \mathrm{i}\mathrm{n} F,\\
M_{2}(F_{v}) & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
Since t_{v}=0 for the other primes v , we then find a Witt decomposition for 1_{4} over F_{v}

and the core dimension t_{v} for each prime v of F . A Witt decomposition for 1_{n} over F_{v}

for an arbitrary n and v was given in [Mu, Lemma 3.3]. By combining that lemma with

calculations of L‐values, Theorem 1.1 can be stated in a simpler form as follows:

Theorem 1,2. ([Mu, Theorem 3.6]) Let F=\mathrm{Q}(\overline{m}) with a squarefree positive

integer m
,

and let L be a \mathfrak{g} ‐maximal lattice with respect to  $\varphi$ . Let  $\chi$, $\chi$' , and $\chi$^{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}} be

the Dirichlet characters corresponding to F/\mathrm{Q}, \mathrm{Q}(\overline{-1})/\mathrm{Q} ,
and \mathrm{Q}(\overline{-m})/\mathrm{Q} , respec‐

tivety. Also let B_{k} and B_{k},  $\psi$ be the k‐th Bernoulli number and k‐th generalized Bernoulli

number associated with a Dirichlet character  $\psi$.

(1) If n\equiv 0 (mod8), then

\displaystyle \mathfrak{m}(L)=n^{-2}B_{n/2}B_{n/2},  $\chi$(\prod_{k=1}^{[(n-1)/2]}(4k)^{-2}B_{2k}B_{2k, $\chi$})
(2) If n\equiv\pm 1 (mod S), then

\displaystyle \mathfrak{m}(L)=\prod_{k=1}^{(n-1)/2}(4k)^{-2}B_{2k}B_{2k},  $\chi$.
(3) If n\equiv\pm 2(\mathrm{m}\mathrm{o}\mathrm{d} 8) ,

then

\displaystyle \mathfrak{m}(L)=n^{-2}B_{n/2}, x^{\prime B_{n/2}}, $\chi$''(\prod_{k=1}^{[(7 $\iota$-1)/2]}(4k)^{-2}B_{2k}B_{2k, $\chi$})
. \left\{\begin{array}{ll}
2^{-2} & if m\equiv 1 (\mathrm{m}\mathrm{o}\mathrm{d}8),\\
1 & ifm\equiv 3 (\mathrm{m}\mathrm{o}\mathrm{d}4),\\
2^{-1} & otherwise.
\end{array}\right.
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(4) If n\equiv\pm 3(\mathrm{m}\mathrm{o}\mathrm{d} 8) , then

\displaystyle \mathfrak{m}(L)=(\prod_{k=1}^{(n-1)/2}(4k)^{-2}B_{2k}B_{2k, $\chi$})
. \left\{\begin{array}{ll}
2^{-2}\cdot 3^{-2}(2^{r $\iota$-1}-1)^{2} & if m\equiv 1 (\mathrm{m}\mathrm{o}\mathrm{d} 8) ,\\
1 & otherwise.
\end{array}\right.

(5) If n\equiv 4(\mathrm{m}\mathrm{o}\mathrm{d} 8) , then

\displaystyle \mathrm{m}(L)=n^{-2}B_{n/2}B_{n/2},  $\chi$(\prod_{k=1}^{[(n-1)/2]}(4k)^{-2}B_{2k}B_{2k, $\chi$})
. \left\{\begin{array}{ll}
2^{-2}\cdot 3^{-2}(2^{n/2-1}-1)^{2}(2^{n/2}-1)^{2} & if m\equiv 1 (\mathrm{m}\mathrm{o}\mathrm{d}8),\\
1 & otherwise.
\end{array}\right.

These are analogues of the formulas for \mathfrak{m}_{+}(L) in the case where F=\mathrm{Q} and  $\varphi$=1_{n}
in [ \mathrm{S}99\mathrm{a} , Examples 5.16] to the case of real quadratic fields.

§2. Applications of the mass formula

We set again F=\mathrm{Q}(\overline{5}) . As applications of the mass formula, we shall determine

the number h of G‐classes of the G‐genus of maximal lattices in V=F^{r $\iota$} with respect
to  $\varphi$=1_{n} for n=2 , 3, 4, 5, 6. For a fixed \mathfrak{g}‐lattice L in V and q\in \mathrm{g} ,

we set

 $\Gamma$(L)=\{ $\gamma$\in G|L $\gamma$=L\},

n(L, q)=\{x\in L| $\varphi$[x]=q\}, N(L, q)=\# n(L, q) .

We first explain the case of n=4 , which was treated in [Mu, §4]. In this case, we

consider a \mathfrak{g}‐lattice L defined by

(2.1) L=\displaystyle \sum_{i=1}^{4}\mathrm{g}cx_{i}=\mathrm{g}^{4} $\alpha$,  $\alpha$=\left\{\begin{array}{l}
$\alpha$_{1}\\
\\
$\alpha$_{4}
\end{array}\right\}=\left\{\begin{array}{llll}
1 & 0 & 0 & 0\\
0 & 1 & 0 & 0\\
1/2(1+ $\epsilon$\grave{)}/2 &  &  $\epsilon$/2 & 0\\
1/21/2 &  & 1/21/2 & 
\end{array}\right\}
with  $\epsilon$= (1+ \prime 5)/2 . This is a \mathrm{g}‐maximal lattice with respect to  $\varphi$ , since [\tilde{L} : L]=1 by
using elementary divisors. Then the order of  $\Gamma$(L) becomes 2^{6}\cdot 3^{2}\cdot 5^{2} as shown below.
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While, we have seen that \mathfrak{m}(L)=2^{-6}\cdot 3^{-2}\cdot 5^{-2} . Hence, from the definition of the mass,

the genus of L consists of one class.

We are going to see that [ $\Gamma$(L) : 1]=2^{6}\cdot 3^{2}\cdot 5^{2} by a different way from that given in

[Mu, §4]. Since there exists  $\gamma$\in $\Gamma$(L) such that \det( $\gamma$)=-1 , it is sufficient to show that

[$\Gamma$_{+}(L) : 1]=2^{5}\cdot 3^{2}\cdot 5^{2} , where $\Gamma$_{+}(L)=G+\cap $\Gamma$(L) . First, as mentioned in §1,  $\varphi$=1_{4}
can be considered as the norm form  $\beta$ of the quaternion algebra  B=B_{0}\otimes_{\mathrm{Q}}F over F.

More precisely, the  $\beta$ is defined by  $\beta$(x, y)=2^{-1}Tr_{B/F} (xye) and  $\beta$[x]=N_{B/F}(x)=xx^{ $\iota$}
for x, y\in B . Here  $\iota$ is the main involution of  B, Tr_{B/F}(x) is the reduced trace, and

N_{B/F}(x) is the reduced norm of x . The quaternion algebra B_{0} can be written in the

form

B_{0}=\mathrm{Q}+\mathrm{Q}a+\mathrm{Q}b+\mathrm{Q}ab

with a, b\in B_{0} such that a^{2}=b^{2}=-1 and ba= −ab. By the isomorphism  $\xi$ :

 x=(x_{1}, x_{2}, x_{3}, x_{4})\mapsto x_{1}+x_{2}a+x_{3}b+x_{4}ab of F^{4} onto B=B_{0}\otimes_{\mathrm{Q}}F , we have

1_{4}[x]= $\beta$[x $\xi$]=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} . Then the mapping  $\gamma$\mapsto$\xi$^{-1} $\gamma \xi$ gives an isomorphism

of  G+ onto the special orthogonal group SO( $\beta$) of  $\beta$ . Hence if we set  0=L $\xi$ , then

 $\Gamma$_{+}(L)\cong$\Gamma$_{+}(0)=\{ $\tau$\in SO( $\beta$)|0 $\tau$=0\},

and so we consider the order of $\Gamma$_{+}(0) instead of $\Gamma$_{+}(L) . It can be seen that 0 is a

maximal order in B.

The following Lemma 2.1 is fundamental to observe $\Gamma$_{+}(0) (cf. [\mathrm{S}99\mathrm{a} , Lemma 1.5]).

Lemma 2.1.

SO( $\beta$)=\{$\tau$_{x}, y|x, y\in B^{\times} such that N_{B/F}(x)=\mathrm{N}_{B/F}(y)\},

where $\tau$_{x}, y
is defined by z$\tau$_{x}, y=y^{-1} zx for z\in B.

In view of Lemma 2.1, we set $\tau$_{x}=$\tau$_{x}, x and

$\Gamma$_{0}=\{$\tau$_{x}, y\in SO( $\beta$)|x, y\in 0^{\times}\}, $\Gamma$_{1}=\{$\tau$_{x}|x\in B^{\times}\},
$\Gamma$^{*}(0)=\{x\in B| xo =ox\}.

Also we set n(\mathrm{c}1, q)=\{x\in 0|N_{B/F}(x)=q\} and N(0, q)=\# n(C1, q) for q\in \mathrm{g}.

Lemma 2.2. Let the notation be as in above. Then the following three assertions

hold:

(1) [\mathrm{F}_{0}:$\Gamma$_{0}\cap$\Gamma$_{1}]=N(0,1) .

(2) $\Gamma$_{0}\cap \mathrm{F}_{1}\cong \mathfrak{c}l^{\times}/\mathrm{g}^{\times}
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(3) \mathrm{F}_{+}(0)/$\Gamma$_{0}\cong($\Gamma$_{+}(0)\cap$\Gamma$_{1})/(\mathrm{F}_{0}\cap \mathrm{F}_{1})\cong$\Gamma$^{*}(0)/F^{\times}o^{\times}

Proof. The mapping $\tau$_{x}, y\mapsto xy^{-1} leads the assertion (1). Noticing that $\tau$_{x}=$\tau$_{y}
if and only if xy^{-1}\in \mathfrak{g}^{\times} for x, y\in 0^{\times} , and considering the homomorphism $\tau$_{x}\mapsto x\mathrm{g}^{\times},
we have the isomorphism of (2). The last assertion (3) follows from the two mappings
$\tau$_{x}\mapsto$\tau$_{x}$\Gamma$_{0} and $\tau$_{x}\mapsto xF^{\times}\mathrm{o}^{\times}. \square 

From Lemma 2.2, we have

[$\Gamma$_{+}(0):1]=N(0,1)[$\Gamma$^{*}(0):F^{\times}o^{\times}][0^{\times}:\mathrm{g}^{\times}].

Furthermore, by virtue of the formula [\mathrm{E} , (16) ] , we have

[$\Gamma$^{*}(0):F^{\times}o^{\times}]=2^{r}h_{F}H(0)^{-1}

Here r is the number of all finite primes which are ramified in B and h_{F} is the class

number of F;H(0) is the class number of the two‐sided 0 ‐ideals of B and satisfies

H(0)\leq h(B) for the class number h(B) of B. (We do not explain it here; for a more

detailed explanation, the reader is referred to Eichler�s article [\mathrm{E} , §4 We know that

h_{F}=1 and r=0 when F=\mathrm{Q}(\overline{5}) , because B=B_{0}\otimes_{\mathrm{Q}}F is unramified at every finite

prime as observed in §1. Moreover, it is known that h(B)=1 (cf. [\mathrm{P} , §9, TABELLE

2 and so H(0)=1 . Consequently we have [$\Gamma$^{*}(0):F^{\times}\mathrm{o}^{\times}]=1 . Since

0^{\times}=\llcorner\rfloor x\mathrm{g}^{\times}x\in n( $\iota$ \mathrm{v},1)/\mathrm{Z}^{\times}
by N_{F/\mathrm{Q}}( $\epsilon$)=-1 , we have [0^{\times}:\mathrm{g}^{\times}]=2^{-1}N(0,1) . Thus we obtain

[$\Gamma$_{+}(0):1]=2^{-1}N(0,1)^{2}

Now, using the basis of L given before, we see that

N(0,1)=N(L, 1)=120=2^{3}\cdot 3\cdot 5

(cf. [Mu, §4 Hence the order of $\Gamma$_{+}(L) is

[$\Gamma$_{+}(0):1]=2^{-1}\cdot 2^{6}\cdot 3^{2}\cdot 5^{2}=2^{5}\cdot 3^{2}\cdot 5^{2}

Let us add further examples for n=2 , 3, 5, 6, which are not in [Mu].
If n=2 , then  $\varphi$ can be identified with the norm form of the quadratic extension

 F(\overline{-1})/F and

\displaystyle \frac{h_{+}}{w}=\mathfrak{m}_{+}(L) ,
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where h_{+} is the number of G_{+} ‐classes in the G_{+} ‐genus of maximal lattices with respect

to  $\varphi$ and  w is the order of the group of all roots of unity in F(\overline{-1}) . Moreover, \mathrm{a}

complete set of representatives for G+ ‐classes of the G+ ‐genus of maximal lattices can

be described in terms of the ideal classes of F(\overline{-1}) . These facts follow immediately
from the results on the two‐dimensional quadratic spaces in [\mathrm{S}99\mathrm{b}, \S 6.1] . By Theorem

1.2, we have \mathfrak{m}_{+}(L)=2\mathfrak{m}(L)=2^{-2} . This together with w=4 shows that h_{+}=1.
Since h\leq h+ (cf. [\mathrm{S} , Lemma 9.23(\mathrm{i})] ), we have h=1 . We note that L=\mathrm{g}^{2} is a

\mathfrak{g}‐maximal lattice of F^{2} with respect to 1_{2} because of [\tilde{L} : L]=2^{4}.
Let n=3 . We use the notation in the case n=4 before. Then  $\varphi$ can be identified

with the restriction  $\beta$^{\mathrm{o}} of the norm form of the quaternion algebra B=B_{0}\otimes_{\mathrm{Q}}F to

T=\{x\in B|x^{ $\iota$}=-x\} and SO($\beta$^{\mathrm{o}}) is generated by $\tau$_{x} for x\in B^{\times} ( [\mathrm{S}99\mathrm{a} , Lemma 1.4]).
Furthermore, by the results on the three‐dimensional quadratic spaces treated in [\mathrm{S},

§12.2], 0\cap T is a \mathrm{g}‐maximal lattice in T with respect to $\beta$^{\mathrm{O}} and 0 is the unique maximal

order in B containing \mathfrak{g} and 0\cap T . It can be verified from these facts that L=(0\cap T)$\xi$^{--1}
is a \mathrm{g}‐maximal lattice in F^{3} with respect to 13 and $\Gamma$_{+}(L)\cong$\Gamma$_{+}(0\cap T)\cong$\Gamma$_{+}(0)\cap$\Gamma$_{1}.
Thus

[$\Gamma$_{+}(L):1]=[0^{\times}:\mathrm{g}^{\times}]=2^{-1}N(0,1)=60.

As clearly -1_{3}\not\in \mathrm{F}_{+}(L) , we have [ $\Gamma$(L) : 1] =120 . While Theorem 1.2 in this case

shows that \mathfrak{m}(L)=2^{-3}\cdot 3^{-1}\cdot 5^{-1} Hence we have h=1 . We note that all \mathfrak{O}\cap T

for maximal orders \mathfrak{O} in B that are not mutually same type form a complete set of

representatives for the classes of the genus of maximal lattices with respect to $\beta$^{\mathrm{o}} , and

thus h is the type number of B ; see [\mathrm{S} , §12.2 ] . We also note that L can be written in

the form \mathrm{g}^{3} $\alpha$ with

(2.2)  $\alpha$=\left\{\begin{array}{ll}
01 & 0\\
10 & 0\\
- $\epsilon$/2(1- &  $\epsilon$)/21/2
\end{array}\right\}
If n=5 , then h=1 . This example and the result on (F^{6},1_{6}) presented below

are due to T.Hiraoka and the author. To determine h , we follow the method explained

in [Mu, §4]. Let L_{4} be the maximal lattice with respect to 1_{4} given in (2.1). Then

L=L_{4}+\mathrm{g}e_{5} is a \mathrm{g}‐maximal lattice in F^{5} with respect to 15 because of [\tilde{L} : L]=2^{2}.
Here \{e_{i}\} is the standard basis of F^{5} and F^{4} is embedding into F^{5} in a natural way. It

can be seen that for  $\gamma$={}^{t}[{}^{t}$\gamma$_{1} . . . \#_{$\gamma$_{5}]}\in M_{5}(F) ,  $\gamma$ belongs to  $\Gamma$(L) if and only if

(2.3) \left\{\begin{array}{l}
$\gamma$_{i}\in n(L, 1)(1\leq i\leq 5) , $\gamma$_{i}\cdot$\gamma$_{j}t=0(i\neq j) ,\\
2^{-1}($\gamma$_{1}+(1+ $\epsilon$)$\gamma$_{2}+ $\epsilon \gamma$_{3})\in n(L, 1+ $\xi$ j) ,\\
2^{-1}($\gamma$_{1}+$\gamma$_{2}+$\gamma$_{3}+$\gamma$_{4})\in n(L, 1) .
\end{array}\right.
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We also see that n(L, 1)=n(L_{4},1)\mathrm{U}\{\pm e_{5}\} ; all elements of n(L_{4},1) were given in [Mu,
§4]. Then we can verify that

(2.4)  $\Gamma$(L)=\{\left\{\begin{array}{l}
$\gamma$_{0}0\\
 $\delta$ 0
\end{array}\right\}\in $\Gamma$(L)|$\gamma$_{0}\in $\Gamma$(L_{4}) ,  $\delta$=\pm 1\}.
To show this, let  $\gamma$\in $\Gamma$(L) and $\gamma$_{i} be the ith row vecter of  $\gamma$ . Suppose  $\gamma$_{i}=e5 with

some 1\leq i\leq 4 . Then 2^{-1}($\gamma$_{1}+\cdots+$\gamma$_{4}) must be belonging to L
, but it is impossible

in our choice of L . Hence $\gamma$_{i}\neq e_{5} and so $\gamma$_{i}\in n(L_{4},1) for every 1\leq i\leq 4 . Thus we

have $\gamma$_{5}=\pm e_{5} . At the same time, in view of [Mu, (4.3)], {}^{t}[^{t}$\gamma$_{1} . . . t_{$\gamma$_{4}]}\in $\Gamma$(L_{4}) , which

proves (2.4). Here we should remark that in [Mu, page 142, line 9],  $\gamma$\in$\Gamma$_{1}
�

should be

read  $\gamma$\in $\Gamma$
� As a consequence, we have

[ $\Gamma$(L) : 1]=2[ $\Gamma$(L_{4}) : 1]=2^{7}\cdot 3^{2}\cdot 5^{2}

By Theorem 1.2, \mathfrak{m}(L)=2^{-7}\cdot 3^{-2}\cdot 5^{-2} , which implies h=1.

Let n=6 . Then we find three maximal lattices L=g^{6} $\alpha$, L^{\ovalbox{\tt\small REJECT}}=\mathrm{g}^{6}$\alpha$^{\ovalbox{\tt\small REJECT}}, L^{\ovalbox{\tt\small REJECT}\prime}=\mathrm{g}^{6}$\alpha$^{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}}
with respect to 1_{6} given by

 $\alpha$=\left\{\begin{array}{ll}
$\alpha$_{4} & 0\\
0 & 1_{2}
\end{array}\right\} , of =\left\{\begin{array}{ll}
$\alpha$_{3} & 0\\
0 & $\alpha$_{3}
\end{array}\right\},

$\alpha$^{\ovalbox{\tt\small REJECT}/}=[1_{000010}^{001000}/0102010100/210/02100/21/002]
where $\alpha$_{4} is the matrix in (2.1) and a3 is in (2.2). Let us compute the order of  $\Gamma$ for  $\Gamma$=

 $\Gamma$(L) ,  $\Gamma$(L^{\ovalbox{\tt\small REJECT}}) ,  $\Gamma$(L^{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}}) . In each cases, there is a suitable necessary and sufficient condition

for  $\gamma$\in $\Gamma$ such as (2.3). We will use the condition without a detailed explanation. First,
the order of  $\Gamma$(L) becomes 2^{3}[ $\Gamma$(L_{4}) : 1] , which can be handled in the similar manner as

in the case n=5 . Next we see that

 $\Gamma$(L^{\ovalbox{\tt\small REJECT}})=\{\left\{\begin{array}{l}
0 $\gamma$\\
 0 $\gamma$'
\end{array}\right\}, \left\{\begin{array}{ll}
0 &  $\gamma$\\
 $\gamma$^{\ovalbox{\tt\small REJECT}} & 0
\end{array}\right\}| $\gamma,\ \gamma$^{\ovalbox{\tt\small REJECT}}\in $\Gamma$(L_{3})\},
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where L3 is the lattice in F^{3} given in (2.2). This follows from the fact that every element

of n(L^{\ovalbox{\tt\small REJECT}}, 1) can be written in the form [x000] or [000x] with x\in n(L_{3},1) . Then

[ $\Gamma$(L^{l}) : 1]=2[ $\Gamma$(L_{3}) : 1]=2^{7}\cdot 3^{2}\cdot 5^{2} . Finally, we look at n(L^{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}}, 1)=n(2^{-1}\mathrm{g}^{6},1)\cap L^{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}}.
Then it can be verified that n(L^{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}}, 1)=n(L_{0},1) , where L_{0}=\mathrm{Z}^{6}$\alpha$^{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}} . From this, it follows

that  $\Gamma$(L^{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}})= $\Gamma$(L_{0}) . Since the order of \mathrm{F}(L_{0}) is known, we have [ $\Gamma$(L^{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}}) : 1] =2^{6}\cdot 6!.

Consequently these maximal lattices are not mutually same class, and

[ $\Gamma$(L):1]^{-1}+[ $\Gamma$(L^{\ovalbox{\tt\small REJECT}}):1]^{-1}+[ $\Gamma$(L^{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}}):1]^{-1}=2^{-10}\cdot 3^{-1}\cdot 5^{-1}

This coincides with the mass by Theorem 1.2, Therefore we conclude h=3 . We note

that the order of  $\Gamma$(L`) can be computed by applying [Ma, Theorem 1.4.6] to L'.

Summing up these results, we have

Theorem 2.3. Let F=\mathrm{Q}(\overline{5}) ,  $\varphi$=1_{n} ,
and let h(n) be the number of classes

of the genus of \mathrm{g} ‐maximal lattices with respect to  $\varphi$ . Then  h(n)=1 for 2\leq n\leq 5 , and

h(6)=3.

We shall end this paper with the following remark: The above applications of

the mass formula provided the examples that we can determine the class number h

of the genus. However we can not always determine h in this way. For example, if

F=\mathrm{Q}(\overline{229}) and  $\varphi$=1_{6} , then for a maximal lattice L with respect to  $\varphi$ , Theorem 1,2

shows

\displaystyle \mathrm{m}(L)=\frac{3^{3}\cdot 101\cdot 2203\cdot 199403}{2^{10}\cdot 5}.
In view of the definition of the mass, we find that h>200000000 . It seems that it is

almost impossible to determine h by the way explained above, though we are interested

how these classes can be found.
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