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Abstract. This study describes an analytical method to study two well-known systems of nonlinear oscillators. One of these

systems deals with the strongly nonlinear vibrations of an elastically restrained beam with a lumped mass. The other is a Duffing

equation with constant coefficients. A new implementation of the Variational Approach (VA) is presented to obtain highly

accurate analytical solutions to free vibration of conservative oscillators with inertia and static type cubic nonlinearities. In the

end, numerical comparisons are conducted between the results obtained by the Variational Approach and numerical solution

using Runge-Kutta’s [RK] algorithm to illustrate the effectiveness and convenience of the proposed methods.
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1. Introduction

In engineering and physics, differential equations that govern dynamic systems have widely been investigated

recently [1,2]. Nonlinear dynamic problems have fascinated applied mathematicians, physicists and engineers for a

long time. Over the past few decades applications in solid and structural mechanics as well as fluid mechanics have

appeared, and there is now a widespread interest in the engineering and applied science communities in nonlinear

oscillators, strange attractors, chaotic and dynamical systems theories. In spite of the great elegance and simplicity

of such equations, the solutions of specific problems are significantly cumbersome to derive [3]. Finding innovative

methods to analyze and solve these equations has been an interesting subject in the field of ordinary and partial

differential equations and dynamical systems [4–6]. For most real-life nonlinear problems, it is not always possible

and sometimes not even advantageous to express exact solutions of nonlinear differential equations explicitly in

terms of elementary functions or independent spatial and/or temporal variables; however, it is possible to find

approximate solutions. In recent years, many ingenious analytical methods have been developed for solving different

kinds of strongly nonlinear equations, such as homotopy perturbation method [7,8], energy balance method [9–12],

variational iteration method [13,14], variational approach [15–18], iteration perturbation method [19], Hamiltonian

Approach [20], max-min approach [21–24], parameter expansion method [25], and other analytical and numerical

methods [26–30].

TheVariationalApproach (VA) has recently becomean efficient analytical technique in solving nonlinear problems.

In this method, the first iteration leads to a highly accurate solution as compared with other analytical methods such

as homotopy perturbation method, parameter expansion method, homotopy analysis method. Thus, an attempt has

been made to apply VA for solving the governing equation of an elastically restrained beam with a lumped mass and

a Duffing equation with constant coefficients. The investigations of cantilever beam models have been studied by

∗Corresponding author: Mahmoud Bayat, Department of Civil Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

E-mail: mbayat14@yahoo.com.

ISSN 1070-9622/13/$27.50  2013 – IOS Press and the authors. All rights reserved



44 M. Bayat and I. Pakar / On the approximate analytical solution to non-linear oscillation systems

many researchers. Hamdan and Shabahen [31] studied the large amplitude free vibrations of a uniform cantilever

beam carrying an intermediate lumped mass and rotary inertia. Hu et al. [32] developed the work on the nonlinear

vibration of a cantilever with a Derjaguin–Müller–Toporov contact end by considering the principal resonance. Ke

et al. [33] analyzed the flexural vibration of a functionally graded cantilever beam. Chen and Chen [34] applied
the differential transformation method to cope with a fifth-order nonlinear problem. Mehdipour et al. [35] used

the energy balance method for solving the nonlinear equation of cantilever beams. In the present work, the prime

objective is to explore the application of the VA method for the fifth-order strongly nonlinear problem. The paper has

been collocated as follows: primarily, the basic concept of He’s variational approach is described. This is followed
by the basics of the Ruge-Kutta’s algorithm. Then the mathematical formulations of the problems are considered. In

the next section, some applications of He’s variational approach have been studied, to demonstrate the applicability

and preciseness of the method. Some comparisons between analytical and numerical solutions are presented and

eventually, it is shown that VA can converge to a precise cyclic solution for nonlinear systems.

2. Basic concept of Variational Approach (VA)

He suggested a variational approach which is different from the known variational methods in open literature [16].
Hereby a brief introduction of the method is presented. Consider the following differential equation.

ü + f(u) = 0 (1)

Its variational principle can be easily established utilizing the semi-inverse method [16];

J(u) =

∫ T/4

0

(

−
1

2
u̇2 + F (u)

)

dt (2)

where T is period of the nonlinear oscillator, ∂F/∂u = f . Assume that its solution can be expressed as

u(t) = A cos(ωt) (3)

where A and ω are the amplitude and frequency of the oscillator, respectively. Substituting Eq. (3) into Eq. (2)

results in:

J(A, ω) =

∫ T/4

0

(

−
1

2
A2ω2 sin2 ωt + F (A cosωt)

)

dt

=
1

ω

∫ π/2

0

(

−
1

2
A2ω2 sin2 t + F (A cos t)

)

dt (4)

= −
1

2
A2ω

∫ π/2

0

sin2 tdt+
1

ω

∫ π/2

0

F (A cos t)dt

Applying the Ritz method, it is required that

∂J

∂A
= 0 (5)

∂J

∂ω
= 0 (6)

However with a careful inspection, for most cases we find that

∂J

∂ω
= −

1

2
A2

∫ π/2

0

sin2 tdt−
1

ω2

∫ π/2

0

F (A cos t)dt < 0 (7)

Thus, we modify the conditions in Eqs (4) and (7) into a simpler form:

∂J

∂ω
= 0 (8)

from which the relationship between the amplitude and frequency of the oscillator can be obtained.
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Fig. 1. Geometry and coordinate system for a beam with a lumped mass [31].

3. Basic idea of Runge-Kutta’s algorithm (RK)

For a boundary value problem given, some numerical methods have been developed. Here, we apply the fourth-

order RK algorithm to solve the governing equations subject to the given boundary conditions. The well-known and

widely used RK iterative formulae for the second-order differential equations are:

u̇(i+1) = u̇i +
∆t

6
(k1 + 2k2 + 2k3 + k4) ,

(9)

u(i+1) = ui + ∆t

[

u̇i +
∆t

6
(k1 + k2 + k3)

]

,

where ∆t is the increment of the time and k1, k2, k3 and k4 are determined from the following formulas:

k1 = f (ti, ui, u̇i) ,

k2 = f

(

ti +
∆t

2
, ui +

∆t

2
, u̇i +

∆t

2
k1

)

, (10)

k3 = f

(

ti +
∆t

2
, ui +

∆t

2
u̇i,

1

4
∆t2k1, u̇i +

∆t

2
k2

)

,

The numerical solution starts from the boundary at the initial time, where the first value of the displacement

function and its first-order derivative are determined from the initial conditions. Then, with a small time increment

[∆t], the displacement function and its first-order derivative at the new position can be obtained using Eq. (10). This

process continues until the convergence criterion in satisfied.

4. Applications of the variational approach

In order to assess the advantages and the accuracy of the Variational Approach, let us consider the following

examples:

4.1. Example 1

Hamdan [31] presented the Eq. (11) for a restrained uniform beam carrying an intermediate lumpedmass. Figure 1

shows the schematic representation of the free vibration of a beam carrying a lumped mass along its span.

ü + λu + ε1u
2ü + ε1uu̇2 + ε2u

4ü + 2ε2u
3u̇2 + ε3u

3 + ε4u
5 = 0, u(0) = A, u̇(0) = 0 (11)

The motion is assumed to start from the position of maximum displacement with zero initial velocity. λ is an integer

which may take values of 1, 0 or −1, and ε1, ε2, ε3 and ε4 are positive parameters [31].
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Its variational formulation can be readily obtained from Eq. (2) as follows:

J(u) =

∫ t

0

(

1

2
u̇2 +

1

2
λu2 +

1

2
ε1u̇

2u2 +
1

2
ε2u̇

2u4 +
1

4
ε3u

4 +
1

6
ε4u

6

)

dt (12)

Choosing the trial function u(t) = A cos(ωt) and substituting into Eq. (12), we obtain:

J(A) =

∫ T/4

0

⎛

⎜

⎝

1

2
A2ω2 sin2 (ωt) +

1

2
λA2 cos2 (ωt) +

1

2
ε1A

4ω2 sin2 (ωt) cos2 (ωt)

+
1

2
ε2A

6ω2 sin2 (ωt) cos4 (ωt) +
1

4
ε3A

4 cos4 (ωt) +
1

6
ε4A

6 cos6 (ωt)

⎞

⎟

⎠
dt (13)

The stationary condition with respect to A leads to:

∂J

∂A
=

∫ T/4

0

⎛

⎝

Aω2 sin2 (ωt) + λA cos2 (ωt) + 2ε1A
3ω2 sin2 (ωt) cos2 (ωt)

+3ε2A
5ω2 sin2 (ωt) cos4 (ωt) + ε3A

3 cos4 (ωt) + ε4A
5 cos6 (ωt)

⎞

⎠dt = 0 (14)

Or in a more simplified form:

∂J

∂A
=

∫ π/2

0

⎛

⎝

Aω2 sin2 t + λA cos2 t + 2ε1A
3ω2 sin2 t cos2 t

+3ε2A
5ω2 sin2 t cos4 t + ε3A

3 cos4 t + ε4A
5 cos6 t

⎞

⎠dt = 0 (15)

Solving Eq. (15) for ω, we have:

ω2 =

∫ π

2

0

(

λA cos2 t + ε3A
3 cos4 t + ε4A

5 cos6 t
)

dt
∫ π

2

0

(

A sin2 t + 2ε1A3 sin2 t cos2 t + 3ε2A5 sin2 t cos4 t
)

dt
(16)

Thus,

ωVA =

√

5ε4A
4 + 6ε3A

2 + 8λ

3A4ε2 + 4A2ε1 + 8
(17)

According to Eqs (3) and (17), we can obtain the following approximate solution:

u(t) = A cos

⎛

⎝

√

5ε4A
4 + 6ε3A

2 + 8λ

3A4ε2 + 4A2ε1 + 8
t

⎞

⎠ (18)

4.2. Example 2

In this example, we have considered the Duffing equation with constant coefficients as shown in Fig. 2. It may be

easily verified that the governing equation of the oscillation is as follow:

ẍ +
k1

m
x +

k2

2mh2
x3 =

F0

m
sin ω0t, x(0) = A, ẋ(0) = 0 (19)

where x is the dimensionless displacement and t is the time variable.

Its variational formulation can be readily obtained from Eq. (2) as follows:

J(x) =

∫ t

0

(

1

2
ẋ2 +

1

2

k1

m
x2 +

1

8

k2

mh2
x4

−

F0 sin (ω0t)

m
x

)

dt (20)

Choosing the trial function x(t) = A cos (ωt) and substituting into Eq. (20), we obtain:

J(A) =
∫ T/4

0

(

1

2
A2ω2 sin2 (ωt) +

1

2

k1

m
A2 cos2 (ωt) +

1

8

k2

mh2
A4 cos4 (ωt)

−
F0 sin(ω0t)

m
A cos (ωt)

)

dt

(21)
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Fig. 2. The physical model of Duffing equation with constant coefficients.

The stationary condition with respect to A leads to:

∂J

∂A
=

∫ T/4

0

(

Aω2 sin2(ωt) + A
k1

m
cos2(ωt) +

1

2

k2

mh2
A3cos4 (ωt) −

F0 sin(ω0t)

m
cos(ωt)

)

dt = 0 (22)

Or in more simplified form:

∂J

∂A
=

∫ π/2

0

(

Aω2 sin2 t + A
k1

m
cos2 t +

1

2

k2

mh2
A3cos4t −

F0 sin(ω0t)

m
cos t

)

dt = 0 (23)

Solving Eq. (23) for ω, we have:

ω2 =

∫ π

2

0

(

A
k1

m
cos2 t + 1

2

k2

mh2
A3cos4t −

F0sin(ω0t)

m
cos t

)

dt

∫ π

2

0

(

A sin2 t
)

dt
(24)

Thus,

ωVA =
1

4

√

2

√

8k1Ah2π − 32F0 sin(ω0t)h2 + 3k2A3π

mh2πA
(25)

According to Eqs (3) and (25), we can obtain the following approximate solution:

x(t) = A cos

(

1

4

√

2

√

8k1Ah2π − 32F0 sin(ω0t)h
2 + 3k2A

3π

mh2πA
t

)

(26)

5. Results and discussions

To illustrate and verify the accuracy of this new approximate analytical approach, some comparisons of the time

history oscillatory displacement responses with those of the numerical solution using Runge-Kutta algorithm are

presented for Example 1 in Table 1 and Figs 3–6, and for Example 2 in Table 2 and Figs 7–10. The values of

parameters ε1, ε2, ε3, ε4 associated with each of the six calculation modes are shown in Table 1.

Table 1 gives the comparison of the obtained results with those obtained by Qian et al. [36] and Runge-Kutta

algorithm for different values of λ, ε1, ε2, ε3, ε4 and different initial conditions. It can be observed from Table 1

that there is high level of agreement between the results obtained from the variational approach and those by Qian

et al. [36] and Runge-Kutta algorithm. The maximum relative error between the variational approach results and the

numerical results is 0.068%. Figure 3 represents a comparison of the analytical solution of u(t) based on time with

the numerical solution. The time history diagram of u(t) starts without an apparent deviation with A = 0.3. The
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Table 1

The comparison of the numerical and analytically derived frequencies corresponding to various parameters in Eq. (17)

Constant parameter Approximate solution Numerical solution Relative error (%)

A λ ε1 ε2 ε3 ε4 ωVA ωHAM [36] ωNum
(ωVA−ωNum)

ωNM

0.2 1 4.0515 1.6652 0.2814 0.1497 0.9655 0.9665 0.9666 0.1211

0.3 1 8.2056 3.1454 0.2723 0.1337 0.8597 0.8714 0.8643 0.5274
0.5 1 1.6420 0.9131 0.3136 0.2043 0.9326 0.9386 0.9364 0.4094

0.8 1 0.8940 0.4674 0.3136 0.2043 0.9412 — 0.9477 0.6865

1 1 0.3268 0.1296 0.2326 0.0876 1.0071 1.0123 1.0102 0.3059

1.2 1 0.3038 0.1151 0.2326 0.0876 1.0214 — 1.0283 0.6795

Table 2

The comparison of the variational approach solution and those of the energy balance method and Runge-Kutta algorithm

Case 1 Case 2

t X(t)VA X(t)EBM [35] X(t)RK t X(t)VA X(t)EBM [35] X(t)RK

0 0.5 0.5 0.5 0 0.2 0.2 0.2

0.4 −0.3290 −0.3292 −0.3269 0.4 −0.1948 −0.1948 −0.1927

0.8 −0.0695 −0.0688 −0.0563 0.8 0.1842 0.1841 0.1798

1.2 0.4169 0.4165 0.4119 1.2 −0.1622 −0.1621 −0.1615

1.6 −0.4855 −0.4855 −0.4851 1.6 0.1209 0.1218 0.1349

2 0.2462 0.2450 0.2265 2 −0.1050 −0.1043 −0.0991

2.4 0.1535 0.1555 0.1734 2.4 0.0682 0.0674 0.0571
2.8 −0.4608 −0.4614 −0.4694 2.8 0.0084 0.0064 −0.0143

3.2 0.4400 0.4402 0.4407 3.2 −0.0188 −0.0194 −0.0258

3.6 −0.0868 −0.0893 −0.1132 3.6 0.0456 0.0474 0.0639

4 −0.3206 −0.3179 −0.2806 4 −0.1318 −0.1299 −0.1018

4.4 0.4991 0.4990 0.4986 4.4 0.1395 0.1395 0.1383

4.8 −0.3788 −0.3783 −0.3700 4.8 −0.1432 −0.1453 −0.1686

Fig. 3. The comparison of the analytical solution of u(t) with the numerical solution for ε1 = 8.20557, ε2 = 3.145368, ε3 = 0.272313,

ε4 = 0.133708, λ = 1, A = 0.3.

motion of the system is a periodic motion and the amplitude of the vibration is a function of the initial conditions.

The best accuracy can be seen at the extreme points. Although the deviation of the solutions is expected to increase

as time progresses, the analytical solutions have adequate accuracy for the period shown. Figures 4(a)–4(d) show

the phase plan curves (u̇(t) versus u(t) curve) of Eq. (18) to show the effect of the small parameters ε1, ε2, ε3, ε4.

The phase plots show the behavior of the oscillator when the constant parameters are changed. It is periodic with its

center at (0, 0). This situation also occurs in the unforced, undamped cubic Duffing oscillators.
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Fig. 4. a. The phase plan for A = 1, λ = 1, ε2 = 0.5, ε3 = 0.5, ε4 = 0.5 b. The phase plan for A = 1, λ = 1, ε1 = 0.5, ε3 = 0.5, ε4 = 0.5
c. The phase plan for A = 1, λ = 1, ε1 = 0.5, ε2 = 0.5, ε4 = 0.5 d. The phase plan for A = 1, λ = 1, ε1 = 0.5, ε2 = 0.5, ε3 = 0.5.

The variation of frequency with respect to amplitude (A) and ε1 and ε4 at λ = 1, ε2 = 0.8, ε3 = 0.2, ε4 = 2
are shown in Figs 5 and 6. These figures show that the amplitude of the vibration (A) has a greater effect on the

frequency than the constant parameters ε1, ε2, ε3, ε4.

For the second example, Table 2 presents the comparison of VA with Rung-kutta algorithm and the energy balance

method for the following two cases:

Case 1 where, A = 0.5, L = 1 m, h = 0.8 m, m = 10 kg, k1 = 300 N/m, k2 = 200 N/m, F0 = 1 N,

ω0 = 2 rad/s.

Case 2 where, A = 0.2, L = 1 m, h = 0.5 m, m = 10 kg, k1 = 500 N/m, k2 = 600 N/m, F0 = 1 N,

ω0 = 5 rad/s.
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Fig. 5. Sensitivity analysis of frequency for 0 < A < 5, λ = 1,

0.5 < ε1 < 2.5, ε2 = 0.8, ε3 = 0.2, ε4 = 2.

Fig. 6. Sensitivity analysis of frequency for 0 < A < 5, λ = 1,
ε1 = 2, ε2 = 0.8, ε3 = 0.2, 0.5 < ε4 < 2.5.

Fig. 7. The comparison of the analytical solution of x(t) with the

numerical solution for A = 0.5.

Fig. 8. The comparison of the frequency corresponding to various

parameters of amplitude (A) for m = 10 kg, k1 = 300, k2 = 200,
F0 = 1 N, ω0 = 2.

The VA solutions demonstrate excellent agreement with those of Runge-Kutta algorithm and energy balance

method. Figure 7 shows that the behavior of the system is periodic and that it is a function of the initial conditions.

For a better understanding of the motion of the considered system, the effect of h is shown in Fig. 8. The influence

of h becomes more apparent when h has smaller values. The comparison of the frequency corresponding to various

parameters such as the amplitude (A) and the stiffness of springs k1, k2 for m = 10, h = 1, F0 = 1, ω0 = 2 have

been studied in Figs 9 and 10. These figures represent the significant effects of k1, k2 on the nonlinear frequency of

the system for different values of amplitude. It is evident that VA shows an excellent agreement with the numerical

solutions VA is quickly convergent and is valid for a wide range of vibration amplitudes and initial conditions. The

accuracy of the results shows that the VA can be potentially used for the analysis of strongly nonlinear oscillation

problems accurately.
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Fig. 9. Sensitivity analysis of frequency for 1 < A < 5, m = 10,

h = 1, 200 < k1 < 300, k2 = 200, F0 = 1, ω0 = 2.

Fig. 10. Sensitivity analysis of frequency for 1 < A < 5, m = 10,

h = 1, k1 = 200, 200 < k2 < 300, F0 = 1, ω0 = 2.

6. Conclusions

In this paper a quite uncomplicated but productive new method for non-natural oscillators called the Variational

Approach has been used to obtain analytical solutions for the Duffing equation with cubic-quintic nonlinearities,

which are not studied as extensively as other cubic nonlinearities. Comparing with other numerical results in

the literature, it has been shown that the results of VA require smaller computational effort and only a first-order

approximation, which leads to high accuracy solutions. The analytical solutions yield to a broader insight into the

effects of various system parameters and initial conditions. Also, the analytical solutions give a reference frame

for the verification and validation of other numerical approaches. Variational Approach can be simply extended

as a powerful approximate analytical technique, which provides an effective and convenient mathematical tool for

solving non-linear differential equations with quadratic and cubic nonlinearities.
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