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ON THE APPROXIMATE CONTROLLABILITY OF

STACKELBERG-NASH STRATEGIES FOR STOKES EQUATIONS

F. GUILLÉN-GONZÁLEZ, F. MARQUES-LOPES, AND M. ROJAS-MEDAR

(Communicated by Walter Craig)

Abstract. We study a Stackelberg strategy subject to the evolutionary Stokes
equations, considering a Nash multi-objective equilibrium (not necessarily co-
operative) for the “follower players” (as they are called in the economy field)
and an optimal problem for the leader player with approximate controllability
objective.

We will obtain the following three main results: the existence and unique-
ness of the Nash equilibrium and its characterization, the approximate control-
lability of the Stokes system with respect to the leader control and the associate
Nash equilibrium, and the existence and uniqueness of the Stackelberg-Nash
problem and its characterization.

1. Introduction

The use of the optimization problems has characterized an increase in the devel-
opment of engineering or economy areas in the last few decades.

Initially, problems involving a unique objective were considered, but afterwards,
more realistic situations with several (in general conflicting) objectives have been
considered. Normally, in the classical mono-objective control problem, a functional
adding the objectives of the problem is defined and a unique control is used. When
it is not clear how to average the different objectives or when several controls are
used, the introduction of the multi-objective problems is essential.

The different equilibrium notions for multi-objective problems were introduced
in economics and games theory (see [14], [16], [13]).

In this work, we are interested in developing a Stackelberg-Nash strategy where
the dynamics of the system is given by partial differential equations from fluid me-
chanics. We assume that we can act in the dynamics of a Stokes problem in velocity
and pressure formulation by a hierarchy of controls. According to the formulation
given by H. Von Stackelberg in 1934 [16], there are local controls that will be called
followers and a global control called a leader. In fact, several followers are consid-
ered with their own objectives, and the leader has an approximate controllability
objective admitting Nash equilibrium for the followers.
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Some works related with this theme are the following. When linear parabolic
differential equations are considered as constraints, Lions’ works ([10], [11], [12])
present some results on Pareto and Stackelberg equilibrium. Dı́az and Lions [2]
studied the existence of Stackelberg-Nash equilibrium, and this study is extended
by Dı́az [3] given a characterization of the solution by means of Fenchel-Rockafellar
duality theory. In [2] and [3], the followers and the leader have the same ap-
proximate controllability objective, the followers in a local manner and the leader
globally.

On the other hand, Ramos, Glowinski and Periaux [8, 9] studied Nash equlibrium
from the theoretical and numerical point of view, first for linear parabolic differential
equations [8] and afterwards for the Burgers equation [9].

To our best knowledge, there are not any works on Stackelberg-Nash equilibrium
associated to fluid mechanics. In this work, we will study the Stackelberg-Nash
equilibrium with constraints given by the evolution Stokes equations; see [7] for a
description of the problem.

For simplicity, we consider two (local) control functions (v(1),v(2)) acting in the
system, distributed in two open regions ω1 and ω2 respectively, a (global) control f
distributed on the region ω (containing in particular a ω1 ∪ ω2) and an associated
state u considered as the solution of the Stokes system with previous distributed
controls.

We consider that the objective of the leader is of controllability type. In fact,
the leader want to drive the state velocity u at final time T “very closed” (in the
L2(Ω)-sense) of a wished state uT , without a big cost for the control f . On the other
hand, the main objective of each follower acting on the control v(i) (i = 1, 2) is to
hold the state u near a desired state ui,d for all time t ∈ (0, T ) in an observability

region ωi,d, without a big cost for the control v(i).
In order to combine these two different objectives, we introduce the following

strategy of Stackelberg-Nash type. Given f acting in ω, we consider a Nash equilib-
rium for the multi-objective control problem for the followers v(i), i = 1, 2, acting
in ωi. Afterwards, we will consider the (mono-objective) control problem with re-
spect to f subject to the objective of approximate controllability type. Since each
follower has its own objective, a global control for the leader (acting at the least
in all control subdomains of the followers) will be necessary in order to achieve the
approximate controllability objective. This is written as the following hypothesis:

ω1 ∪ ω2 ⊂ ω.

In this paper, we will obtain the following three main results: the existence
and uniqueness of the Nash equilibrium and its characterization, the approximate
controllability of the Stokes system with respect to the leader control and the
associated Nash equilibrium, and the existence and uniqueness of the Stackelberg-
Nash problem.

The rest of the paper is organized as follows. In Section 2 the formulation of
the problem is established. The existence and uniqueness of the Nash equilibrium
is deduced in Section 3 jointly with its characterization. In Section 4, we solve the
approximate controllability problem with respect to the leader control. Finally, the
existence and uniqueness of the Stackelberg-Nash problem is deduced via a duality
argument in Section 5.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONTROLLABILITY OF STACKELBERG-NASH STRATEGIES 1761

2. Problem formulation

Let Ω be a bounded domain of R
d, d = 2 or 3, with boundary ∂Ω of class

C1,1 (because H2(Ω) regularity for the Stokes problem will be applied), ω an open
subset of Ω (the control domain), and ω1, ω2 open subsets of ω (i.e. ω1, ω2 ⊂ ω) the
secondary control domains. In order to consider a (possibly noncooperative) Nash
equilibrium, it is usual to consider ω1 ∩ω2 = ∅ (although it is not necessary for the
mathematical problem). Finally, let ω1,d, ω2,d be open subsets of Ω, representing the
observability domains for the followers, which are localized in an arbitrary manner
in Ω.

We denote by H and V the spaces of types L2 and H1 respectively, associated
to the incompressibility and adherence velocity conditions:

H = {u ∈ L2(Ω) : ∇ · u = 0, u · n|∂Ω = 0},
V = {u ∈ H1(Ω) : ∇ · u = 0, u|∂Ω = 0}.

Observe that the boldface is used to denote the vectorial spaces in order to distin-
guish from the scalar ones. For instance, L2(Ω) = L2(Ω)d.

We will consider the two (secondary) objective functionals (i = 1, 2)

(2.1) Ji(f ,v
(1),v(2)) =

αi

2

∫ T

0

∫
ωi,d

|u− ui,d|2dxdt+
μi

2

∫ T

0

∫
ωi

|v(i)|2dxdt

and the (main) objective functional

(2.2) J(f) =
1

2

∫ T

0

∫
ω

|f |2dxdt,

where μi > 0, αi > 0 are constants, ui,d ∈ L2(ωi,d× (0, T )) are given functions, the

function f ∈ L2(ω × (0, T )) is the (leader) control and v(i) ∈ L2(ωi × (0, T )) are
the (follower) controls. In (2.1) the state u is defined as the strong solution of the
evolution Stokes problem (for instance, see [17])

(2.3)

⎧⎨⎩ ∂tu− νΔu+∇p = g + fχω + v(1)χω1
+ v(2)χω2

, in Q;
div u = 0, in Q;
u(0) = u0, in Ω; u |Σ = 0

(i.e. u ∈ L∞(0, T ;V)∩L2(0, T ;H2), ∂tu ∈ L2(0, T ;H) and p ∈ L2(0, T ;H1)), where
we denote Q = (0, T )×Ω and Σ = (0, T )× ∂Ω. Also observe that for instance fχω

denotes the extension of f by zero from ω to the whole domain Ω.
Here, u is the velocity of the fluid, p is the pressure, ν > 0 is the (constant)

viscosity coefficient and u0 ∈ V and g ∈ L2(0, T ;L2(Ω)) are given functions (the
initial velocity and the external force respectively). Since there exists a unique
strong solution of (2.3), we can denote in the state u the dependence on the controls
implicitly as follows:

u = u(x, t; f ,v(1),v(2)).

Functionals Ji (i = 1, 2) measure the difference between the state velocity u and
a prescribed velocity ui,d in the observability domain of interest ωi,d (i = 1, 2).

2.1. The control problem: Find control (f ,v(1),v(2)) and the corresponding
state u verifying (2.3) and the Nash equilibrium related to the functionals Ji de-
fined in (2.1), minimizing the functional J defined in (2.2) subject to the following
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(approximate) controllability constraint:

u(·, T ; f ,v(1),v(2)) ∈ BL2(uT ;α),

where uT is a given function in L2(Ω) and BL2(uT ;α) denotes the ball of L2(Ω)
with center in uT ∈ L2(Ω) and ratio α > 0 (a given number).

To explain this optimal problem, we are going to consider the following two
subproblems:

• Problem 1. For any fixed leader control f , find follower controls (v(1),v(2))

(depending on f) and the associated state u = u(f ,v(1)(f),v(2)(f)) solution
of (2.3) satisfying the Nash equilibrium related to (J1, J2) defined in (2.1).

That is, given f , find (v(1),v(2)) such that

J1(f ,v
(1),v(2)) = min

v(1)
J1(f ,v

(1),v(2)),(2.4)

J2(f ,v
(1),v(2)) = min

v(2)
J2(f ,v

(1),v(2)).(2.5)

From the convexity of J1 and J2, one has that (v(1),v(2)) is a Nash
equilibrium with respect to (J1, J2) if and only if〈

∂J1
∂v(1)

(f ,v(1),v(2)),v(1)

〉
= 0, ∀v(1) ∈ L2(ω1 × (0, T )),(2.6) 〈

∂J2
∂v(2)

(f ,v(1),v(2)),v(2)

〉
= 0, ∀v(2) ∈ L2(ω2 × (0, T )).(2.7)

The minimization problems (2.4) and (2.5), considered in an independent

manner, are well-posed owing to the term μi

2

∫ T

0

∫
ωi
|v(i)|2dxdt in the cost

functional Ji which introduces any a priori constraints on the size of the
control v(i).

• Problem 2. After finding the controls v(1) = v(1)(f),v(2) = v(2)(f) and

the state u = u(f ,v(1)(f),v(2)(f)) solution of (2.6)-(2.7) for each f , we will
look for an optimal control f such that

(2.8) J(f) = min
f

J(f ,v(1)(f),v(2)(f))

subject to the restriction of the approximate controllability type

(2.9) u(·, T ; f ,v(1)(f),v(2)(f)) ∈ BL2(uT , α).

3. On the existence and uniqueness of the Nash equilibrium

Firstly, we are going to rewrite the system (2.6)-(2.7). For this, we consider the
following functional spaces Hi = L2(ωi × (0, T )), i = 1, 2, H = H1 × H2 and the
(resolvent) operators

Li ∈ L(Hi,L
2(Q)) defined as Liv

(i) = u(i),

where u(i) ∈ L2(0, T ;H2) ∩ L∞(0, T ;H1) is the (strong) solution of the Stokes
problem: ⎧⎨⎩

∂tu
(i) − νΔu(i) +∇p(i) = v(i)χωi

in Q;

div u(i) = 0, in Q;
u(i)(0) = 0, in Ω, u(i) |Σ = 0.
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Then for any f ∈ L2(ω× (0, T )), we can write the solution of the state system (2.3)
as

u = L1v
(1) + L2v

(2) + q(f),

where q(f) is the solution of⎧⎨⎩
∂tq− νΔq+∇r = g + fχω, in Q;
div q = 0, in Q;
q(0) = u0, in Ω, q |Σ = 0.

With this notation we can rewrite the functionals defined in (2.1) by

(3.1)

Ji(f ,v
(1),v(2)) =

αi

2

∫ T

0

∫
ωi,d

|L1v
(1) + L2v

(2) − yi,d|2dxdt

+
μi

2

∫ T

0

∫
ωi

|v(i)|2dxdt (i = 1, 2),

where yi,d = ui,d − q(f)|ωi,d
. Hence, (v(1),v(2)) ∈ H is a Nash equilibrium if and

only if

(3.2) αi(L1v
(1) + L2v

(2) − yi,d, Liv
(i))ωi,d×(0,T ) + μi(v

(i),v(i))ωi×(0,T ) = 0,

for each i = 1, 2 and for all pairs of controls (v(1),v(2)) ∈ H. It follows that

(3.3) αi(L
∗
i [(L1v

(1) + L2v
(2))|ωi,d

− yi,d],v
(i))ωi×(0,T ) + μi(v

(i),v(i))ωi×(0,T ) = 0,

where L∗
i ∈ L(L2(Q),Hi) is the adjoint operator of Li. Consequently, we have

(3.4) αiL
∗
i [(L1v

(1) + L2v
(2))χωi,d

] + μiv
(i) = αiL

∗
i (yi,d), in Hi (i = 1, 2);

or equivalently, if we consider the operator R = (R1, R2) ∈ L(H,H) defined as

∀v = (v(1),v(2)) ∈ H, Riv = μiv
(i) + αiL

∗
i [(L1v

(1) + L2v
(2))χωi,d

], i = 1, 2,

then v = (v(1),v(2)) ∈ H is a Nash equilibrium iff Rv = z := αi(L
∗
iyi,d(f))i=1,2 ∈

H. Moreover, for fixed (u1,d,u2,d) ∈ L2(ω1,d × (0, T ))×L2(ω2,d × (0, T )), the map

f ∈ L2(ω × (0, T )) −→ (L∗
iyi,d)i=1,2 ∈ H

is one-to-one, since this map is the composition of the (one-to-one) maps

f −→ q(f) −→ (yi,d)i=1,2 = (ui,d − q(f)χωi,d
)i=1,2 −→ (L∗

iyi,d)i=1,2.

Proposition 3.1 (Existence and uniqueness of the Nash equilibrium). Assume
that

(3.5) α1‖L2‖2 < 4μ2 and α2‖L1‖2 < 4μ1,

where ‖Li‖ denotes the norm of the linear operator Li from L2(ωi×(0, T )) to L2(Q).
Then R is an invertible operator. In particular, for each f ∈ L2(ω × (0, T )), there

exists a unique Nash equilibrium (v(1)(f),v(2)(f)) that is a solution of Problem 1.

Proof. We observe that

(3.6) (Rv,v)H =
2∑

i=1

μi‖v(i)‖2L2(ωi×(0,T )) +
2∑

i=1

αi

⎛⎝ 2∑
j=1

Ljv
(j), Liv

(i)

⎞⎠
ωi,d×(0,T )

,
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where the last term of the right-hand side is computed as

2∑
i=1

αi

⎛⎝ 2∑
j=1

Ljv
(j), Liv

(i)

⎞⎠
L2(ωi,d×(0,T ))

= α1‖L1v
(1)‖2L2(ω1,d×(0,T )) + α1(L2v

(2), L1v
(1))ω1,d×(0,T )

+ α2(L1v
(1), L2v

(2))ω2,d×(0,T ) + α2‖L2v
(2)‖2L2(ω2,d×(0,T )).

Owing to the Young inequality, the cross terms can be bounded as

α1(L2v
(2), L1v

(1))ω1,d×(0,T ) ≥− α1‖L1v
(1)‖2L2(ω1,d×(0,T ))

− α1

4
‖L2v

(2)‖2L2(ω1,d×(0,T )),

α2(L1v
(1), L2v

(2))ω2,d×(0,T ) ≥− α2‖L2v
(2)‖2L2(ω2,d×(0,T ))

− α2

4
‖L1v

(1)‖2L2(ω2,d×(0,T )).

(3.7)

Therefore, setting these bounds in (3.6), we obtain

(Rv,v)H ≥ μ1‖v(1)‖2L2(ω1×(0,T )) + μ2‖v(2)‖2L2(ω2×(0,T ))

− fracα14‖L2v
(2)‖2L2(ω1,d×(0,T )) −

α2

4
‖L1v

(1)‖2L2(ω2,d×(0,T ))

≥ μ1‖v(1)‖2L2(ω1×(0,T )) + μ2‖v(2)‖2L2(ω2×(0,T ))

− α1

4
‖L2‖2‖v(2)‖2L2(ω2×(0,T )) −

α2

4
‖L1‖2‖v(1)‖2L2(ω1×(0,T )).

By using hypotheses (3.5), we have

(3.8) (Rv,v)H ≥ γ ‖v‖2H, for γ = min
{
μ1 −

α2

4
||L1||2, μ2 −

α1

4
||L2||2

}
> 0.

Now, we define the functional a : H×H → R by

a(v,w) = (Rv,w)H.

Obviously, from the definition of the operator R and the inequality (3.8), a(·, ·) is
a coercive, continuous bilinear form. Consequently, the conclusion follows from the
Lax-Milgram Theorem. �

Remark 3.2. The previous result can be generalized to an arbitrary number N of
local controls v(i) and N local objectives Ji, changing the hypothesis (3.5) by

(3.9) (N − 1)

⎛⎝∑
j �=i

αj

⎞⎠ ‖Li‖2 < 4μi, ∀ i = 1, . . . , N.

For this, it is sufficient to develop the sum

N∑
i=1

αi

⎛⎝ N∑
j=1

Ljv
(j), Liv

(i)

⎞⎠
ωi,d×(0,T )
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and to use the Young inequality in order to prove the coercivity of the operator R.
Indeed, instead of (3.8), we now have

N∑
i=1

μi‖v(i)‖2 − N − 1

4

N∑
i=1

αi

⎛⎝∑
j �=i

‖Lj‖2‖v(j)‖2
⎞⎠

=

N∑
i=1

μi‖v(i)‖2 − N − 1

4

N∑
i=1

‖Li‖2‖v(i)‖2
⎛⎝∑

j �=i

αj

⎞⎠ .

Corollary 3.3 (Characterization of the Nash equilibrium). Given f ∈ L2(ω ×
(0, T )), the pair (v(1),v(2)) is a Nash equilibrium of Problem 1 if and only if v(i) =

− 1

μi
q(i)χωi

, i = 1, 2, where (u,q(1),q(2)) is the solution of the coupled system

(3.10)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tu− νΔu+∇p = g + fχω − 1

μ1
q(1)χω1

− 1

μ2
q(2)χω2

, in Q;

−∂tq
(i) − νΔq(i) +∇ri = αi(u− ui,d)χωi,d

in Q (i = 1, 2);
div u = 0, in Q; div q(i) = 0, in Q (i = 1, 2);
u(0) = u0, in Ω, u |Σ = 0,
q(i)(T ) = 0, in Ω, q(i) |Σ = 0 (i = 1, 2).

Notice that Corollary 3.3 implies in particular the existence and uniqueness of
problem (3.10), which is a coupled problem of elliptic type with respect to the
vectorial variable (t,x).

Proof. We observe that characterization (2.6)-(2.7) of the Nash equilibrium of Prob-

lem 1 can be written as (3.2), i.e.: the pair (v(1),v(2)) is a Nash equilibrium if and
only if

(3.11) αi(u− ui,d, z
(i))ωi,d×(0,T ) + μi(v

(i),v(i))ωi×(0,T ) = 0 (i = 1, 2),

for any v(i) ∈ L2(ωi×(0, T )), where z(i) is the strong solution of the Stokes problem

(3.12)

⎧⎨⎩
∂tz

(i) − νΔz(i) +∇pi = v(i)χωi
in Q;

div z(i) = 0, in Q;

z(i)(0) = 0, in Ω, z(i) |Σ = 0.

Notice that (3.12) is the derivative of the state problem (2.3) with respect to v(i).
To express (3.11) only in functions of v(i), we introduce the adjoint states q(i)(i =

1, 2), as the strong solution of the problems

(3.13)

⎧⎨⎩
−∂tq

(i) − νΔq(i) +∇ri = αi(u− ui,d)χωi,d
in Q;

div q(i) = 0, in Q;

q(i)(T ) = 0, in Ω, q(i) |Σ = 0.

Multiplying (3.13) by z(i), performing an integration by parts, and using (3.12), we
obtain

αi(u− ui,d, z
(i))ωi,d×(0,T ) = (q(i), ∂tz

(i) − νΔz(i))Q = (q(i),v(i))ωi×(0,T ).
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Setting the above identity in (3.11), we have

(q(i),v(i))ωi×(0,T ) + μi(v
(i),v(i))ωi×(0,T ) = 0, ∀v(i) ∈ L2(ωi × (0, T ));

hence we arrive at

v(i) = − 1

μi
q(i)χωi

, i = 1, 2,

which jointly with (3.13) and the state system generate the optimality system (3.10).
�

4. On the approximate controllability problem

In this section, we give a result of the approximate controllability type when
a Stackelberg–Nash strategy is used. Such a result will imply, in particular, that
Problem 2 is well defined, because the corresponding admissible set is nonempty.

First of all, we will define a generic Nash problem:

Problem (P )aux:
Given h ∈ L2(Ω), we consider the following auxiliary multi-objective problem:

To optimize the two functionals (i = 1, 2)

(4.1) Ii(w
(1),w(2)) =

αi

2

∫ T

0

∫
ωi

|y|2dxdt+ μi

2

∫ T

0

∫
ωi,d

|w(i)|2dxdt,

with respect to (w(1),w(2)) in the Nash sense, with the state y solution of the
problem:

(4.2)

⎧⎨⎩ −∂ty − νΔy +∇s = w(1)χω1,d
+w(2)χω2,d

, in Q;
div y = 0 in Q;
y(T ) = h, in Ω; y |Σ = 0.

Lemma 4.1 (Existence, uniqueness and characterization of Nash problem (P )aux).
(i) Assume that

(4.3) α1‖M2‖2 < 4μ2 and α2‖M1‖2 < 4μ1,

where the operators Mi are defined in (4.5) below. Then, for any h ∈ L2(Ω), one
has existence and uniqueness of the Nash equilibrium problem (P )aux.

(ii) Given h ∈ L2(Ω), the Nash equilibrium (w(1),w(2)) for (P )aux is character-

ized by w(i) = αip
(i)χωi,d

, i = 1, 2, where (y,p(1),p(2)) satisfy the coupled system
of Stokes type:

(4.4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∂ty − νΔy +∇s = α1p

(1)χω1,d
+ α2p

(2)χω2,d
, in Q;

∂tp
(i) − νΔp(i) +∇δ(i) = − 1

μi
yχωi

, in Q;

div y = div p(i) = 0 in Q;
y(T ) = h, p(i)(0) = 0, in Ω; y |Σ = p(i) |Σ = 0.

Proof. First of all, we show (i); i.e., there exists a unique Nash equilibrium for the
problem (P )aux. Recall that Hi = L2(ωi,d × (0, T )), i = 1, 2, H = H1 × H2 and

we consider the operators Mi ∈ L(Hi,L
2(Q)) defined as

(4.5) Miw
(i) = z(i),
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where (z(i), ri,w
(i)) satisfy the problem

(4.6)

⎧⎨⎩
−∂tz

(i) − νΔz(i) +∇r(i) = w(i)χωi,d
, in Q;

div z(i) = 0 in Q;
z(i)(T ) = 0, in Ω; z(i) |Σ = 0.

Notice that z(i) is the derivative of the state y with respect to w(i).
Thus, we can write the solution of the state equation (4.2) as

y = M1w
(1) +M2w

(2) −G,

where G is the solution of the problem

(4.7)

⎧⎨⎩
−∂tG− νΔG+∇P = 0, in Q;
div G = 0 in Q;
G(T ) = −h, in Ω; G |Σ = 0.

With this notation, we can rewrite the functionals defined in (4.1) as follows:

(4.8)

Ii(w
(1),w(2)) =

αi

2

∫ T

0

∫
ωi

|M1w
(1) +M2w

(2) −G|22dxdt

+
μi

2

∫ T

0

∫
ωi,d

|w(i)|22dxdt.

Consequently, (w(1),w(2)) is a Nash equilibrium for (P )aux if and only if

(4.9)

〈
∂Ii

∂w(i)
(w(1),w(2)),w(i)

〉
= 0, i = 1, 2, ∀ (w(1),w(2)),

which yields

(4.10) αi

(
M1w

(1) +M2w
(2) −G,Miw

(i)
)
ωi×(0,T )

+ μi

(
w(i),w(i)

)
ωi,d×(0,T )

= 0,

for all (w(1),w(2)) and i = 1, 2; hence

(4.11) αiM
∗
i [(M1w

(1) +M2w
(2))χωi

] + μiw
(i)χωi,d

= M∗
i (Gχωi

), i = 1, 2,

where M∗
i ∈ L(L2(Q),Hi) is the adjoint operator of Mi. The rest of the proof

follows an analogous form of the proof of Proposition 3.1.
Now, we prove the characterization (ii). We know that (w(1),w(2)) is a Nash

equilibrium for (Paux) if and only if (4.10) holds, that is,

(4.12) αi(y, z
(i))ωi×(0,T ) + μi(w

(i),w(i))ωi,d×(0,T ) = 0 (i = 1, 2),

where (z(i), ri) is the solution of the system (4.6). In order to write (4.12) only as
a function of w(i), we consider the adjoint system

(4.13)

⎧⎪⎪⎨⎪⎪⎩
∂tp

(i) − νΔp(i) +∇δ(i) = − 1

μi
yχωi

, in Q;

div p(i) = 0 in Q;
p(i)(0) = 0, in Ω; and p(i) |Σ = 0.

Multiplying (4.13) by z(i), integrating by parts and using (4.6), we can arrive at

(4.14) − 1

μi

(
y, z(i)

)
ωi×(0,T )

=
(
p(i),w(i)

)
ωi,d×(0,T )

.

From the identities (4.12) and (4.14), we obtain

(4.15) −αiμi(p
(i),w(i))ωi,d×(0,T ) + μi(w

(i),w(i))ωi,d×(0,T ) = 0, i = 1, 2
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for each w(i); hence (since μi > 0),

(4.16) w(i) = αip
(i)χωi,d

, i = 1, 2,

and part (ii) of the proof is completed. �

In order to prove the approximate controllability of problem 1 we will need the
following unique continuation result:

Lemma 4.2. Assume ω1 ∪ ω2 ⊂ ω. If (y,p(1),p(2)) is a solution of problem (4.4)
such that y ≡ 0 in ω × (0, T ). Then (y,p(1),p(2)) ≡ 0 in Q.

Proof. From the hypothesis ωi ⊂ ω (i = 1, 2), we have in particular that y ≡ 0 in
(ω1∪ω2)× (0, T ); hence the right-hand side of the system for p(i) in (4.4) vanishes.
Therefore, p(i) ≡ 0 in Q. Substituting this result in the first equation of system
(4.4), we obtain that (y, s) is a solution of the Stokes problem

(4.17)

⎧⎨⎩
−∂ty − νΔy +∇s = 0, in Q;
div y = 0 in Q;
y(T ) = h, in Ω; y |Σ = 0.

Therefore, the Unique Continuation Theorem for the Stokes problem [6] implies
that

y ≡ 0 in Q. �

Now, we are in a position to prove the approximate controllability result.

Theorem 4.3. Suppose hypotheses (3.5) and (4.3) hold (in particular, for each

f ∈ L2(ω × (0, T )), and Problem 1 has a unique solution (v(1)(f),v(2)(f))). Then,
the set

{u(T ) = u(·, T ; f ,v(1),v(2)) ∈ H ; f ∈ L2(ω × (0, T ))}

is a dense subset of H.

Remark 4.4. For instance, both hypotheses (3.5) and (4.3) are verified if we change

||Li||2 and ||Mi||2 in (3.5) and (4.3) respectively by C̃ > 0, a constant such that

||S(e)||L2(Q) ≤ C̃||e||L2(Q), where S(e) is the velocity solution of the Stokes problem

with right-hand side equal to e ∈ L2(Q).

Proof. Firstly, we decompose the Nash equilibrium as follows:

(u,q(1),q(2)) = (ũ, q̃(1), q̃(2)) + (û, q̂(1), q̂(2)),

where (ũ, q̃(1), q̃(2)) depends on (g,u1,d,u2,d,u0) via the problem

(4.18)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tũ− νΔũ+∇p̃ = g − 1

μ1
q̃(1)χω1

− 1

μ2
q̃(2)χω2

, in Q;

−∂tq̃
(i) − νΔq̃(i) +∇r̃i = αi(u0 − ui,d)χωi,d

in Q (i = 1, 2);
div ũ = 0, in Q div q̃(i) = 0, in Q (i = 1, 2);
ũ(0) = u0, in Ω, ũ |Σ = 0,
q̃(i)(T ) = 0, in Ω, q̃(i) |Σ = 0 (i = 1, 2),
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and (û, q̂(1), q̂(2)) depends on f via the problem

(4.19)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tû− νΔû+∇p̂ = fχω − 1

μ1
q̂(1)χω1

− 1

μ2
q̂(2)χω2

, in Q;

−∂tq̂
(i) − νΔq̂(i) +∇r̂(i) = αi ûχωi,d

in Q (i = 1, 2);
div û = 0, in Q; div q̂(i) = 0, in Q (i = 1, 2);
û(0) = 0, in Ω, û |Σ = 0,
q̂(i)(T ) = 0, in Ω, q̂(i) |Σ = 0 (i = 1, 2).

Notice that the two previous problems have a unique solution, because they are
particular cases of problem (3.10).

Secondly, since (ũ, q̃(1), q̃(2)) is fixed (independently of f), it suffices to prove the
density of the set furnished by û(T ) in H. For this, let h be a given function in H
and suppose

(4.20) (û(T ),h)Ω = 0, ∀ f ∈ L2(ω × (0, T )).

Then, it suffices to show that h ≡ 0.
Let {y, s,p(i), δ(i)} be the unique solution of system (4.4) associated to h, which

exists thanks to Lemma 4 and hypothesis (4.3). Taking as test functions û, q̂(1)

and q̂(2) in the respective equations of the system (4.4) and performing integrations
by parts, taking into account (4.19), we get

(α1p
(1)χω1,d

+ α2p
(2)χω2,d

, û)Q = −(h, û(T ))Ω(4.21)

+ (y, fχω − 1

μ1
q̂(1)χω1 −

1

μ2
q̂(2)χω2)Q

and

(4.22) (− 1

μi
yχωi

, q̂(i))Q = αi(p
(i), û)ωi,d×(0,T ).

Adding the identity (4.22) for i = 1, 2,

(4.23) (y,− 1

μ1
q̂(1)χω1

− 1

μ2
q̂(2)χω2

)Q = (α1p
(1)χω1,d

+ α2p
(2)χω2,d

, û)Q.

Comparing identities (4.21) and (4.23), we obtain

(4.24) (h, û(T ))Ω = (y, fχω)Q, ∀ f ∈ L2(ω × (0, T )).

From the above identity and the condition (4.20), we have

(4.25) y ≡ 0 in ω × (0, T ).

Then, the unique continuation result given in Lemma 4.2 implies that

y ≡ 0 in Q.

In particular, h ≡ 0. This completes the proof. �

Remark 4.5. Let us observe that the result of approximate controllability given in
Theorem 4.3 is related to the unique continuation property of the adjoint prob-
lem (4.4) given in Lemma 4.2. One possible question arises: is it possible to obtain
the null controllability (which is stronger than approximate controllability) of the
Stackelberg-Nash strategies for Stokes equations? More precisely, is it possible to
obtain f such that u(T ) := u(·, T ; f ,v(1),v(2)) = 0? The answer is not obvious,
because this null controllability must be related to an observability inequality of
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the adjoint problem (4.4); i.e. given y(T ) = h, one should bound in appropriate
weighted spaces a norm of (y,p(1),p(2)) only by a norm of yχω1∪ω2

.

5. The action of the optimal leader

For each f , let (v(1)(f),v(2)(f)) be the Nash equilibrium solution of Problem 1
and α > 0 be a given number. We will show that there exists an optimal leader
control f solution of the following problem:

(5.1) inf
f∈L2(ω×(0,T ))

{
1

2

∫ T

0

∫
ω

|f |2dxdt; u(·, T ; f ,v(1),v(2)) ∈ BL2(uT , α)

}
.

Note that this minimization problem is well-posed because the corresponding fea-
sible set is not empty, owing to Theorem 4.3.

Theorem 5.1.
(i) The dual minimization problem

(5.2) inf
h∈L2(Ω)

{
1

2

∫ T

0

∫
ω

|y|2dxdt+ α‖h‖L2(Ω) −
∫
Ω

h · uT dx

}
has a unique solution.

(ii) The minimum f of problem (5.1) is characterized by f = yχω, where
(y,p(1),p(2)) is the solution of (4.4) associated to h given as the solution of (5.2).

Notice that the problem (5.1) has a unique solution as a consequence of (i) and
(ii).

Proof. To prove (ii), we consider the following maps F : f ∈ L2((0, T ) × ω) → R

and G : h ∈ L2(Ω) → R defined as

F (f) =
1

2

∫ T

0

∫
ω

|f |2dxdt,

G(h) =

{
0 if h+ ũ(T ) ∈ BL2(uT , α);
+∞ if h+ ũ(T ) ∈ L2(Ω) \BL2(uT , α),

where ũ(t) is the solution of (4.18). Then problem (5.1) is equivalent to the problem

(5.3) inf
f∈L2(ω×(0,T ))

{
F (f) +G(Lf)

}
,

where L : f ∈ L2((0, T ) × ω) → L2(Ω) is the linear functional defined as Lf =

û(·, T ; f ,v(1),v(2)) and where û is the solution of (4.19). By the duality theory of
Fenchel and Rockafellar (see [15]), we have

inf
f∈L2(ω×(0,T ))

{
F (f) +G(Lf)

}
= sup

h∈L2(Ω)

{
F ∗(L∗h) +G∗(−h)

}
,

where L∗ is the adjoint operator of L and F ∗ is the polar function of F , that is,

F ∗(y) = sup
y∗∈L2(ω×(0,T ))

{∫ T

0

∫
ω

y · y∗dxdt− F (y∗)

}
.

From (4.4) we obtain the identity (4.24), i.e. (h, û(T ))Ω = (y, fχω)Q for any f .
Then

(L∗h, f)Ω = (h, Lf)Ω = (h, û(T ))Ω = (y, fχω)Q = (yχω, f)Q, ∀ f .
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Therefore, we deduce

L∗h = yχω.

It is well known ([5]) that

F ∗(y) =
1

2

∫ T

0

∫
ω

|y|2dxdt

and

G∗(h) = α‖h‖L2(Ω) +

∫
Ω

h · uT dx;

hence we can deduce (ii).
To prove (i), we use the analogous arguments of [3], [4]. We observe that given

h ∈ L2(Ω), Lemma 4 implies that there exists a unique solution to the system (4.4).
Obviously, the functional

R(h) =
1

2

∫ T

0

∫
ω

|y|2dxdt+ α‖h‖L2(Ω) −
∫
Ω

h · uTdx

is convex and continuous. Now, we are going to prove that the functional R is
coercive, in fact that R satisfies

(5.4) lim inf
‖h‖L2(Ω)→∞

R(h)

‖h‖ L2(Ω)

≥ α.

To prove (5.4), let us consider a sequence (hj) in L2(Ω) with ‖hj‖L2(Ω) → ∞ and
define the normalized sequence

ĥj =
hj

‖hj‖L2(Ω)

.

By using Lemma 4, we obtain by linearity that yj = ‖hj‖L2(Ω)ŷj , where yj =

y(·, ·;hj) and ŷj = y(·, ·; ĥj). Consequently, we get

R(hj)

‖hj‖ L2(Ω)

=
‖hj‖L2(Ω)

2

∫ T

0

∫
ω

|ŷj |2dxdt+ α‖ĥj‖L2(Ω) −
∫
Ω

ĥj · uT dx

≥
‖hj‖L2(Ω)

2

∫ T

0

∫
ω

|ŷj |2dxdt+ α− ||uT ||L2(Ω).(5.5)

Now, we consider two cases:

• Case 1: Assume

lim inf
j→∞

∫ T

0

∫
ω

|ŷj |2dxdt > 0.

From (5.5), we have

lim inf
j→∞

R(hj)

‖hj‖ L2(Ω)

= +∞.

• Case 2: Assume

lim inf
j→∞

∫ T

0

∫
ω

|ŷj |2dxdt = 0.
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In this case, we consider a convergent subsequence, which we denote the
same way as the sequence, such that

(5.6)

∫ T

0

∫
ω

|ŷj |2dxdt → 0 as j → ∞

and

(5.7) ĥj ⇀ h weakly in L2(Ω), as j → ∞.

Using (5.7), the solution of system (4.4), ŷj = y(·, ·; ĥj) converges to
y(·, ·;h) for any given h. Therefore, owing to (5.6),

(5.8) y = 0 in ω × (0, T ).

Then, Lemma 4.2 implies that

y ≡ 0 in Q.

In particular, h ≡ 0 in Ω and, consequently, from (5.7),

(5.9) ĥj ⇀ 0 weakly in L2(Ω), as j → ∞.

Taking the limit in (5.5), we infer that (5.4) is verified.
Finally, since R is strictly convex, R has a unique critical point that is

the minimum of R. �
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[10] Lions, J. L., Contrôle de Pareto de Systèmes Distribués. Le cas stationnaire. C.R. Acad. Sc.
Paris, t. 302, Série I, n 0 6, 1986, 223-227. MR832049 (87d:93043)
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