
On the Approximate Minimization of Functionals*

By James W. Daniel

Abstract. This paper considers in general the problem of finding the minimum of a given
functional f(u) over a set B by approximately minimizing a sequence of functionals
/„(«„) over a "discretized" set B„; theorems are given proving the convergence of the
approximating points un in Bn to the desired point u in B. Applications are given to the
Rayleigh-Ritz method, regularization, Chebyshev solution of differential equations,
and the calculus of variations.

1. Introduction. Many theoretical and computational problems either arise or
can be formulated as one of locating a minimizing point of some real-valued (non-
linear) functional over a certain set ; such variational settings often lead to existence
theorems as well as to computational methods for solving the problems in question.
Computationally, however, one is generally forced to deal with discrete data in
place of the original functional; it is therefore necessary to analyze the relationships
between variational problems and their discretized analogues.

In [7, Section 4], we first studied under certain equicontinuity assumptions the
question of approximately minimizing one functional by minimizing a sequence of
nearby functionals. In this present note we state the problem generally, give some
convergence theorems, and describe some particular examples.

2. Minimization over W-Compact Sets. Let F be a normed linear space and
let / be a real-valued (nonlinear) functional on E. Let there be another notion of
convergence (i.e., a topology) in E in addition to norm-convergence, IF"-continuity,
IF-compactness, etc. For example, if F is a reflexive Banach space, the IF-topology
might be the weak-topology. We wish to minimize / over a IP-compact set B.

Definition 2.1. A discretization for the functional/ on E consists of a family of
normed linear spaces En, a family of real-valued functionals /„ on En, a family of
mappings p„ of En into E, and a family of mappings rn of E into En-

Definition 2.2. A discretization for / on E is consistent if
(1) lim,,.,«, sup fnirnu) ^ /(w) if û minimizes / over the set in question,
(2) lim,,.,,» sup [fipnUn) — fnOun)] ^ 0 for any sequence un G En such that pnun

remains in the set B over which we wish to minimize /.
Remark. Generally one would demonstrate that (1) is valid for û by proving its

validity for all u in E.
We now state the basic minimization problem over B (MPP) : Let / be IF-lower

semicontinuous and bounded below on a IF-compact set B ; find û G B such that
fOû) ̂  fiu) for all m G P.

Remark. At least one such û exists [17]. Recall that lower semicontinuity means
fOu) 1% lim inf fOû,/} whenever un IF-converges to u.

We wish to find û solving MPP by solving similar problems for /„ on En. Thus
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consider the basic approximating minimization problem over Bn (MPB„) : Let fn be
bounded below on sets Bn satisfying pnBn C B and rnB C Bn; find ûn G Bn such
that fnOân) ^ fnOun) + e„ for all Un G Bn, tn > 0 converging to zero.

We can now prove the following fundamental theorem on the approximate
minimization of functionals.

Theorem 2.1. Let f be W-lower semicontinuous and bounded below on a W-compact
set B and suppose /„, En, pn, rn gives a consistent discretization for f on E with sets
Bn C En satisfying pn P„ C B,rnB C Bn. Then there exist û and ûn solving MPB and
MPP„. For any such solutions, \imn^x fipnû„) = lim,,-,«, /„.(«») = fiu) and all W-limit
points of puûn, at least one of which exists, solve MPB. If MPB has a unique solution,
then pnûn W-converges to it.

Proof. The existence of û was noted earlier; the existence of ûn is obvious. Since
û solves MPP, for all n we have fOû) £1 /(pj„) = /„(w„) + i)n where -qn = fipnûn) —
fnOu-n) satisfies lim,.-,,,, sup r>n ̂  0 by part two of the consistency assumption. On the
other hand, ûn solves MPB„ in the sense that fniûn) ^ infBn/„(«„) + e„; therefore we
have fOu) á /(pnw„) = fn0û,n) + Vn ^ inij3n fn0un) + en + r>n á fnOrJO) + «n + yn,
the latter inequality resulting from the fact that rnû G Bn. By part one of the con-
sistency assumption lim,,.,.,, sup/„(rvu) tí f(û) ; therefore by letting n tend to infinity
in the last string of inequalities we obtain limn^,K f(pnûn) = lim,,.-,«,/„(«„) = f(û).
Since B is IF-compact and pHûn G B, there exists at least one IF-limit point of
pnûn in B; let u' be any such point associated with a subsequence pn-unj. The W-
lower semicontinuity of/ yields fOu) ^ f(u') ^ lim«^«, inf f(pnjun/) = fOu), so u'
solves MPP; if the solution to MPP is unique, the sequence pnun clearly is W-
convergent to it. Q.E.D.

This theorem is a strengthening of Proposition 1, Section 4, in [7], which is con-
cerned with collective compactness and thereby with approximate solutions of
integral equations. Somewhat similar results, in essence directed toward Hammer-
stein equations, were obtained in unpublished notes by J.-P. Aubin and J. L. Lions
[4]; their results, other than those giving explicit conditions on the Hammerstein
operators which guarantee the satisfaction of the assumptions of our theorems, are
contained in Theorem 2.1. The general ideas concerning discretization schemes are
those of [2], [3], in which examples of pn and rn are given.

In practice it is often necessary to minimize a given functional over the entire
space E; under further restrictions on the discretization scheme, we can handle this
case also.

3. Minimization over E. Consider the following global minimization problem
over E (MPP) : Let / be IF-lower semicontinuous and bounded below on E; find û
such that f(u) ^ fOu) for all m G P.

Remark. A solution to MPP need not exist.
We approximate this problem by the following approximating global minimiza-

tion problem over En (MPPn) : Let /„ be bounded below on En. Find un such that
fnOun) Ú fnOun) + e„ for all un G En, where e„ > 0 converges to zero.

Remark. MPPn always has a solution.
We now wish to study situations in which solutions to MPP exist and can be

obtained via solutions to MPP„. The type of condition that usually is imposed to
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guarantee the existence of a solution to MPP is a growth condition enabling us to
restrict ourselves to bounded sets and then use results for that case. Therefore we
now assume that solid spheres in E are W-compact, i.e., for all real R, Sr
= {u;\\u\\ ;£ R] is IF-compact.

Definition 3.1. The functional/ is said to satisfy a T-condition if there exists an
R > 0 and w0 in E with ||w0|| á R such that |(m|| > R implies fOu) > f(uo).

Remark. If there exists a real number b and a monotone function s(t) such that
lim,,.,,,, s(t) =  œ and such that/(w) ^ 6 + s(||it||), then / satisfies a T-condition.

Thus, for a functional satisfying a T-condition, problem MPP can be reduced
to problem MPP over the TF-compact set B = Sr, for which we know a solution
exists. It is possible, however, to have a consistent discretization for a functional /
satisfying a T-condition but such that the points ûn satisfy lim,,-,,» ||pnM„|| = oo ;
thus we need further conditions in order to solve MPP via MPFB. What we need is a
type of uniform growth condition on the functionals /„ and a stability condition on
the discretization.

Definition 3.2. A discretization for f on E satisfies a uniform growth condition if
lim,!_,00 sup fn(u„) = oo whenever lim»^» sup ||w„||B = oo.

Definition 3.3. A discretization for / on P is stable if there exists a constant A
such that HpbWbII ^ A||m„||b for all Un G En for all n.

Now we can prove the following theorem on solving MPP via MPFB.
Theorem 3.1. Let solid spheres in E be W-compact. Let the W-lower semicontinuous

functional f be bounded below on E and satisfy a T-condition with R = Ro. Let the
given discretization for f on E be stable and consistent (condition 2 must hold if ||pBwn|| is
bounded) and satisfy a uniform growth condition ; suppose each /„ is bounded below on
En. Then solutions û and ûn exist solving MPP and MPP„ respectively. For any such solu-
tions lim„^x fOpnûn) = \imn-.„ fn(ûn) = fOu), and all W-limit points of pnûn, at least
one of which exists, solve MPP. If the solution to MPP is unique, then pnûn W-con-
verges to it.

Proof. By our assumptions, ûn and û exist. Since rnû G En, we have /„(w„) g
fnOrnû) and lim«..,«, sup/„(r„w) ¿ f(u) by the consistency assumption ; therefore there
exists a constant C such that f„(ûn) ^ C for all u and hence, because of the uniform
growth condition, there exists a constant D such that Hi^ll« ^ D. Therefore, by
stability, ]|p«w„|| ^ A||m»||b ^ AD. Let R = max (P0, AD). Let Bn = \un; ||wB||B g
D], B = Sr = \u; \\u\\ g P}. The theorem now follows by applying Theorem 2.1
with the sets P„ and B as defined above, recalling that B is IF-compact. Q.E.D.

It is quite straightforward to apply our two main theorems to generate results
concerning, for example, the approximate solution of nonlinear operator equations
(by looking at conditions guaranteeing that w is an interior point of B or of P and
deducing that the derivative of / must vanish there) and the approximate solution
of nonlinear eigenvalue-eigenvector problems (by guaranteeing û to be on the
boundary of B for certain types of sets and applying the extended Lagrange multi-
plier theorem). Results of this type are contained in Sections 4 and 5 of [7]; we
pursue this no further here. Instead we look briefly at a number of methods cur-
rently in use for solving certain types of problems to see how they fit into the above
theory and how the theory indicates the necessary characteristics of the particular
methods.
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4. Examples.
I. Rayleigh-Ritz. Perhaps the simplest and oldest example is that of the Rayleigh-

Ritz procedure. Here we let E be a Hubert space with complete basis </>i, ■ ■ ■ ,<¡>n,
and for each n let En be the subspace of P spanned by </>i, • • •, d,n, with pnun = un
considered as an element of E, and rnu = 2"=1 (w, 4>i)<t>i where (w, v) is
the inner product on E; the inner product on P« is the one induced by ( -, • ) on
P. Given a functional/, let/« = /for all n. Such a discretization is stable and, if/
is norm-continuous, it is consistent. A great deal of interest has arisen lately in the
application of this method to the numerical solution of differential equations using
various bases <pi, • • -, that is, different finite-dimensional subspaces En. In par-
ticular, in [5] it is shown how very good error bounds can be computed; essentially
this approach assumes that / has a differentiable gradient J = Vf with uniformly
positive-definite derivative J'. If û (ûn) minimizes / (/B) on E (En) then JOu) = 0
and (J(ûn), 4>i) = 0, i = 1, • • -, n; hence 0 = (JOu) — J(ûn), <p/) =
(J' (ûn + -&(û — ûn))(û — ûn), <¡>i) which states that ûn is the projection under
the inner product [u, v] = (J'(ûn + &(û — ûn))u, v) of û onto
En. Thus [û — ûn, û — ûn] ^ [û — un, û — un] for ail un G En which provides an
error estimate. Details and extensions of this approach are contained in [5], [6].

One difficulty not mentioned in the above papers is that of minimizing /« over
PB; in this case/« is an integral of a complicated differential form, often nonlinear.
In practice this is discretized by a quadrature sum so that we do not in fact have
fn = f. The difficulties therein created are treated in [9].

II. Regularization. Often one seeks not just any arbitrary minimizing point to a
functional but one which, in some sense, is smoothest or most regular. For example,
let / and g be weakly lower semicontinuous functionals on a reflexive Banach space
E, and let g be nonnegative. Let P« = E, pn = rn = the identity, /»==/+ aHg
where an > 0 converges to zero. Let B be a weakly compact set in E with / bounded
below on B. The consistency condition (1) becomes lim«_«, sup [f(û) + ang(u)] á
f(u) which clearly is satisfied. Condition (2) becomes lim«^«, sup — ang(un) ^ 0
which follows from the nonnegativity of an and g. For future reference we note that
fiûn) + OngOûn) ¿ fOA) + OngOu) ̂  fiûn) + a^gOu), implying g(ûn) ^ gOu). It follows
then from Theorem 2.1 that any weak limit point u' of [un] minimizes / over P;
moreover, since g(u') ^ lim«.,«, inf giûn) ^ giu), giu') is the minimum value of g
over the set of minimizing points of / in P. One says that the minimizing point has
been regularized by g [11], [16]; if P is convex and g is uniformly convex, then u' is
in fact a norm limit point and moreover if / is quasi-convex [12], the entire sequence
{un} converges in norm to u' [11].

III. Chebyshev Solution of Differential Equations. Suppose one seeks to solve
Au = b where A is a uniformly elliptic linear differential operator in two variables
over a bounded domain D, under the condition u = 0 on T, the boundary of D,
assumed to be sufficiently smooth; more general types of equations may also be
treated by the method to be presented. A numerical method of recent popularity
[10], [14] given a sequence of functions {<¿>¿} satisfying the boundary data, consists in
choosing numbers a«, i, ■ ■ -, a«,B to minimize maxigy-gM {[Ai^AiOn.&ùKxj) —bix,)\
where the M points {xj} form a "grid" over D. Strictly for convenience we take
M = An and suppose that the grid is such that any point in D is at a distance of
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at most hn from a grid-point x}\ We wish to find conditions under which ûn =
^A¡=i an,i4>i will converge, in some sense, to the solution û of our problem.

Since we seek to minimize a supremum norm, the norm must be defined; so let
P = {u; u = 0 on T, all partial derivatives of u through second order are continuous
onD = D U r};forw G E, let ||w|| = ||m||m = max¿ |w(a;)|. Let/(w) = ||Aw — fell«,,
where we now need to assume that b is bounded on D. Let En be that subset of P
spanned by the functions <t>i, ■ ■ ■, <pn, assumed to lie in P; let pB be the identity map-
ping, and r„ be at the moment undefined. Define

/«(««) = ||A«n - 6||4B.» = max |[A«„](a:f) - bOx/)\;
1S1S4«

we now seek conditions for consistency. Consider (2) of our Definition
2.2. fipnUn) — fnOun) = \\Aun — b||«, — \\Aun — b\\4«,«,. Since this quantity is always
nonnegative, the requirement lim«-,«, sup [/(p«wB) — /«(%»)] á 0 in fact demands
convergence; in order to compare suprema over discrete and continuous sets, we
need to know something about the growth of the functions Aun — b between grid-
points. Hence we now need to assume that A</>, satisfies a Lipschitz condition with
Lipschitz constant X, (this restricts A somewhat also) and that b satisfies one with a
constant X0. From this it follows that \f(pnun) — /n(w«)l = hn 22"=o |a«,.| |A.|, where
an,o = 1. Thus we need next a growth condition on y7¿=o |o«,,-| |X,-|. For example, the
conditions that (i) there exists a constant C such that ^"=0 \an,/ ^ C for all n, and
(ii) hnkn tends to zero, where A« = maxiStS« X¿, would be sufficient; in practice the
A« do in fact become large, while the restriction on the an,i is easy to implement. In
essence, the above restrictions are defining P„, i.e., P« = {««; y,"=o \on,i\ ^ C).

Next consider condition (1) of Definition 2.2, where rn is to be defined. We re-
quire lim«_«, sup fnOrnu) g fOu). Now/«(r„w) ti fOrnu), so we need only require that
lim,,-.«, sup fOrnu) ^ fOu) ; this is certainly true if rnu is an approximation method in
which Arnu converges uniformly to Au, for example, if rnu and all its partial deriva-
tives through second-order converge uniformly to those for u. We remark that it is
necessary to have rnu in PB.

Under the above conditions, it follows from Theorem 2.1 and its proof that
limB _,«,/«($«) = lim«^«,/(pnM„) = /(w) = 0, where û solves Au = b and lies in P; the
conditions on IF-compactness and IF-lower semicontinuity are needed only to prove
convergence for pnu„, a problem easily handled differently here. We know that
11 Am« — 611«, = fipnUn) converges to zero. By a simple use of the maximum principle
[13], we deduce ||m« — û\\x ^ ||Amb — 6||«, ||iü||«, where w solves Aw = —1 in D,
w = 0 on V; therefore ûn converges uniformly to the solution û.

The application of the theory in Section 2 to this problem indicates the type of
approach necessary to prove convergence for this numerical method. One requires :
(1) smooth functions <£, with Lipschitz constants X» for A<j>i that do not grow too
rapidly, (2) results from approximation theory that state that if one approximates
functions b by combinations of functions A<j>i, the sums /!L.i \an,i\ remain bounded,
and (3) functions 0 can be approximated by functions A</>¿. The requirements (1)
and (3) here are probably less difficult; generalized Bessel inequality results like (2),
however, are not known to this author for general cases. While numerical work with
this method proceeds, theoretical results of the type suggested by our theorem
should be sought.
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IV. Calculus of Variations. Consider the problem of minimizing the functional
fiu) — Jo 9(t> u> u)dt, w(0) = w(l) = 0, where ù = du/dt. The following simple
case of a general numerical method has been suggested [8] : minimize

/«(««) = J2 hig [ti-i, Un.i-i, ,   "'' 1) , (¿n, 0 wn tn U j       fh %  —   I i I %-1    !

where the minimization is over the set of values of un,i, ■ ■ ■, un,n-i', this method can
be fit neatly into the theory of Theorem 2.1. In [8], under the assumption that
there exist unique minimizing points for/ (in C^O, 1]) and/« satisfying the "spike"
condition |(wBli — w«,¿_i)//V¿| ^ A for some constant A independent of n, it was
purportedly proved that pnûn, the piecewise-linear interpolation to ûn, converges
uniformly to w; because the authors inadvertently left out an assumption guarantee-
ing a lower semicontinuity property for the functional/, the proof is in fact incorrect.
However, as we shall show below by use of Theorem 2.1, the usual assumptions
guaranteeing a unique minimizing point for /, in conjunction with an assumption
guaranteeing the satisfaction of a type of spike condition, yield a convergence proof.

For convenience let us take hi = h = 1/n for all i. For a fixed p > 1, let E =
{u; w(0) = w(l) = 0, u is absolutely continuous on [0, 1], ù G Lp[0, 1]} ; for u G E,
let

IN = \\A\p = y \ûit)\pdt\1/P.

For each n, let P« be (n — 1)-dimensional Euclidean space, where un G En has the
norm

'~U>) i/j>(        n    H IT,
II J 7    V*      \Un,i Un,i— 1    I^"rSLI—i—U

where w„,o = u„,n = 0 by definition. Let p„ be the mapping defined by piecewise-
linear joining of the values un,i at the points tt = ih, thus pnun G F- Define the
mapping r„ via 0rnu)i = tt(í<), i — 1, • • •, n — 1. Define IF-convergence as follows:
A sequence u(n) in E IF-converges to u in P if J¿ 0ùM — ü)v dt converges to zero for
every function vit) G P<,(0, 1), 1/p + 1/q = 1.

Proposition 4.1. Solid spheres in E are W-compact. If uM W-converges to u,
then u{n) converges to u uniformly, i.e., in the supremum norm.

Proof. If we take any sequence uM in P with ¡|w(n,|| = ||w(n)||p ^ P, then, by
Alaoglu's Theorem [15, p. 228], there exists a subsequence «W and a function s in
Lp such that for all v in Lt, /„ 0àini) —s)v dt tends to zero. Let w(f) = J0' s(i) d<; it
follows that u G E and «'"j1 IF-converges to u. For the second part of the proof, we
note first that ||w(n)|| is bounded, by the uniform-boundedness principle [15, p. 202].
Thus

\An)ih) - An\t2)\ ^ /('2 \An)\dt ^ [/'2 \AnAdtj\t2 - ti\llq

^ \\An)\\\t>-tiA\
which implies that the sequence uM is uniformly bounded and equicontinuous. If
uM does not converge uniformly to u, then there exists e > 0 and a sequence t¡ such
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that |M(n>>(fj) — uitj)\ 4> e; applying Ascoli's theorem [15, p. 276] to the bounded,
equicontinuous sequence u^0 yields a contradiction. Q.E.D.

We now make the standard type of assumption in the calculus of variations in
order to guarantee the existence of a minimizing point for/(w).

Assumptions, (i) git, u, w) is jointly continuous in its variables for 0 S t ^ 1 and
— oc ^ u, w ^ oo. (ii) There exist constants a, b with b > 0 such that git, u, w) ¡î
a + b \w\p for all t in [0,1], u finite, (iii) g is differentiably convex in w, i.e., git, u, w/)
— git, u, w2) ^ Owi — w2)gAh u, w2).

Proposition 4.2. The functional f is ~W-lower semicontinuous on E, bounded below,
and satisfies a T-condition.

Proof. For the last two statements, note that /(w) = J¿ git, u, u) dt
= Jo Ia + & \û\p] dt = a + b \\u\\p. The proof of the IF-lower semicontinuity is
straightforward using the convexity of g; details may be found in [1, p. 137-139].
Q.E.D.

Proposition 4.3. The discretization scheme defined above is stable and satisfies a
uniform growth condition.

Proof.
/l n       rti

I OPnUn) '\Pdt  =   23   / | iPnUn) ' \"dt
O ¿=1 ■* ti-i

n     Pi i "lp
7    X~^ I   \nn,i Un,i—l\   I ii       m  p= h § L—i—J = |W|» ■

/b(m«) = hJ2 g\ti-i, Un.i-i,   "'*   ,—'— ) ^ h X \a + ° <¿n, j_lin, i—1

h
= a + b\\Un\\nP . Q-E.D.

The only remaining ingredient for application of Theorem 3.1 is the consistency;
in [8], the spike condition was needed for this. In our case, we must make the follow-
ing assumptions.

Assumptions, (iv) Some solution û minimizing fOu) lies in Cx[0, 1], i.e., u is
continuous, (v) There exist constants c and d and a continuous function s(i, v) such
that |gr(fi, vi, z) — git2, v2, z)\ ¿ (c + d\z\p)\siti, vL) — s(tt, v2)\ where h, t2 are
arbitrary points in [0, 1] and vi, v2, z are arbitrary real numbers.

Remark. If gOt, u, w) = w2/2 + rit, u), then (v) is satisfied with s = r.li git, u, w)
= liw)mit, u) with \liw)\ S c + d\w\v, then (v) is satisfied with r = m; many
actual problems are of the above types.

Proposition 4.4. The discretization is consistent.
Proof. For condition (1), we prove lim«.,«, |/„(r„w) — fOu)\ = 0. Since, by as-

sumption, û is in C'[0, 1], given t, for sufficiently large n, |m(¿¿_i) — û(fi)\ < e and
\u Ot) — iûi — û,-i)/h\ < e for íi_i ^ t S ti. For convenience, we write merely
u for û.

\fOu) - fnOrnu)\ ^ Ya I      Wit, u, û) - g[ti-i, wf_i, Ul     Ul ') dt

But, by uniform continuity of g, given ¿5 > 0 there exists e > 0 and then N such that
n > N implies \fOu) — /„(r„w) | ^ 2j*_i J ! j_, 5dt = 8. Since ô > 0 was arbitrary, con-
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dition (1) is proved. For condition (2), we show that limB_«, \fipnun) — fn0un)\ = 0
if ||pBM«|| is bounded.

|/(P«MB)   —   fnOUn)\   la   A  X   /     \9\ti-l + «h,   (1   -  o/)Un,i-l + aUn.i,.   "''      ,     "'"')
i=l J o I   \ h /

I, l'Un,i Un,i—1 \\  ,— g\ti-i,un,i-iu-7-J\aa

SÄSJ0 Vc + d—r—U
•  |s(f,-_i + «A, (1 — a)un,i-i + aUn.i) — sQ.i-1, un,i-i)\da .

Now ||w«||B = ||p«M„|| is bounded, \un,/ is bounded, and |m«,¿ — un,i-i\ ik hl-i/p \\un\\n.
Thus, using the uniform continuity of sit, u), given e > 0 there exists N such that
n > N implies

*    f1 ( I        — \p\
\f0pnUn)   -   fniun)\   â  A  X)   /      ( C + ¿ ~^-      "''"M   jerfa  =   e[c + dllttnll/]  ;

t=l ' 0    \ I a I /

since e > 0 was arbitrary, condition (2) follows. Q.E.D.
We now can state the following theorem which follows immediately from

Theorem 3.1 and the above propositions.
Theorem 4.1. Let Assumptions (i) — (v) be valid and let the discretization method

described above be used. Then all W-limit points of pnûn (ai least one of which exists)
minimize f. If the solution û is unique, then in particular pnûn converges uniformly to
û and the derivatives converge Lp-weakly.
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