
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1996 

On The Approximate Pattern Occurrences in a Text On The Approximate Pattern Occurrences in a Text 

Mireille Régnier 

Wojciech Szpankowski 
Purdue University, spa@cs.purdue.edu 

Report Number: 
96-083 

Régnier, Mireille and Szpankowski, Wojciech, "On The Approximate Pattern Occurrences in a Text" (1996). 
Department of Computer Science Technical Reports. Paper 1337. 
https://docs.lib.purdue.edu/cstech/1337 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


ON THE APPROXIMATE PATTERN
OCCURRENCES IN A TEXT

Mireille Regnier
Wojciech Szpankowski

CSD-TR 96-083
December 1996



ON THE APPROXIMATE PATTERN OCCURRENCES IN A TEXT"

December 14, 1996

Mireille Regniert

INRIA
Rocquencourt
78153 Le Chesnay Ccdex
France
Mireille.Regnier~inria.fr

Wojciech Szpankowskit

Department of Computer Science
Purdue University
W. Lafayette, IN 47907
U.S.A.
spa0cs.purdue.edu

Abstract

Consider a given pattern H and a random text T generated by a Bernoulli source. We
study the frequency of approximate occurrences of the pattern H in a random text when
overlapping copies of the approximate pattern are counted separately. We provide exact and
asymptotic formulre for mean, variance and probability of occurrence as well as asymptotic
results including the central limit theorem and large deviations. Our approach is combina
torial: we first construct certain language expressions that characterize pattern occurrences
which are traIlBlated into generating functions, and finally we use analytical methods to
extract asymptotic behaviors of the pattern frequency. Applications of these results include
molecular biology, source coding, synchronization, wireless communications, approximate
pattern matching, games, and stock market analysis. These findings are of particular in
terest to information theory (e.g., second-order properties of the relative frequency), and
molecular biology problems (e.g., finding patterns with unexpected high or low frequencies,
and gene recognition).
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1 Introduction

Repeated patterns and related phenomena in words (sequences, strings) are known to playa

central role in many facets of computer science, telecommunications, and molecular biology.

Qne of the most fundamental questions arising in such studies is the frequency of pattern

occurrences in another string known as text. For applications even more important is to

know how many times a given pattern approximately occurs in a (random) text. Byapprox

imate occurrence we mean that there exists a substring of the text within given distance

from the (given) pattern. The definition of the distance is irrelevant in this paper. This

problem is also more challenging that the exact pattern occurrence. Applications include

wireless communications, approximate pattern matching (cf. [15]), molecular biology (cf.

[29]), games, code synchronization, (cf. [9, 10, 11]), source coding (cf. [4], stock market

analysis, and so forth.

We study the problem in a probabilistic framework in which the text is generated ran

domly according to the so called Bernoulli model in which every symbol of a finite alphabet

S is created independently of the other symbols with different probabilities of symbol gen

erations (if all the probabilities are the same, then the model is called symmetric Bernoulli

model). Our approach to this problem is combinatorial: We construct certain languages

that characterize approximate pattern occurrences in a text which are further translated

into generating functions. This falls under the methodology of "combinatorics 011 words"

(d. [3, 10, 11, 18])

Pattern occurrences in a random string is a classical problem (cf. [6]). Several authors

also contributed to this problem, however, the most important recent contributions belong

to Guibas and Odlyzko, who in a series of papers (cf. [9, 10, 11]) laid the foundations for

the exact pattern occurrence in the symmetric Bernoulli model. In particular, the authors

of [11] computed the moment generating function for the number of strings of length n

that do not contain any of the given set of patterns. Certainly, this suffices to estimate the

probability of at least one pattern occurrence in a random string generated by the symmetric

Bernoulli model. Fudos et al. [8] computed the probability of exactly r occurrences of a

pattern in a random text in the asymmetric Bernoulli model, just directly extending the

results of Guibas and Odlyzko. This was recently further generalized to Markovian model

by us (d. [24]) where "combinatories on words" approach was used. In [24] we deal only

with a single pattern while in this paper we consider a set of patterns or approximate

pattern occurrences. The Markovian model was also tackled by Li [17]' Chrysaphinou and

Papastavridis [2] who extended the Guibas and Odlyzko result of no pattern occurrence to
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Markovian texts. Recently, Prum et al. [23] (see also [26]) obtained the limiting distribution

for the number of pattern occurrences in the Markovian model.

In this paper, we provide a complete characterization of the frequency of approximate

pattern occurrences in a random text generated according to the Bernoulli model using a

combinatorial approach that might be of interest to other problems on words. Let On('tl)

denote the number of approximate occurrences of a given pattern H in a random text when

overlapping approximate copies of the pattern are counted separately. In the above 1i is a

set of all strings of length m which are within given distance from H. We compute exactly

the generating function of On (cf. Theorem 2.1) which further provides the mean EOn and

the variance Var On (cf. Theorem 2.2). Evaluation of the variance is quite challenging since

it depends on the internal structure of the patterns through the so called autocorrelation

matrix introduced in this paper. In addition, we present several of asymptotic results

concerning Pr{On = r} for different range of r. We consider r = 0(1), as well as the

central limit and the large deviations range of r.

Our results should be of particular interest to information theory (e.g., relative fre

quency, code synchronization, source coding, etc.) and molecular biology. Two problems

of molecular biology can benefit from these results. Namely: finding patterns with unex

pected (high or low) frequencies (the so called contrast words) [29], and recognizing genes

by statistical properties (29]. Statistical methods have been successfully used from the early

80's to extract information from sequences of DNA. In particular, identifying deviant short

motifs, the frequency of which is either too high or too low, might point out unknown bi

ological information (cf. [29] and others for the analysis of functions of contrast words in

DNA texts). From this perspective, our results give estimates for the statistical significance

of deviations of word occurrences from the expected values and allow a biologist to build a

dictionary of contrast words in genetic texts.

One can also use these results to recognize statistical properties of various other m

formation sources such as images, text, etc. In information theory, the relative frequency

defined as f::.n(1-l) = On('tl)j(n - m + 1), where m is the length of the pattern, is often

used to estimate the statistics of the information source. The relative frequency was mostly

studied for exact pattern occurrence, while in this paper we extend it to approximate oc

currence. Such an extension is relevant to some recent applications such as lossy extension

of the Lempel-Ziv scheme (cf. [19, 20, 30]) and lossy extension of the shortest common

superstring problem (cf. [7,31]). It is well known [4, 21] that f::.n(H) for the exact pattern

occurrence converges almost surely to the probability P(H) of the pattern H. Of course, the

same holds for the approximate pattern occurrence if one replace P(H) by P(ll). Recently,
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Marton and Shields [21J proved that .6.n (H) for the exact pattern occurrence converges ex

ponentially fast to P(H) for sources satisfying the so called blow-up property (e.g., Markov

sources, hidden Markov, etc). Qur results extends Marton and Shields results to approx

imate pattern occurrences (for the Bernoulli model but our results from [24] suggest that

extension to Markovian model is possible). Such a rate of convergence is needed in some

applications (cf. [20]).

This paper is organized as follows. In the next section we present our main results

and their consequences. The proofs are delayed until the last section. Qur derivation in

Section 3.1 use a combinatorial approach of languages. In Section 3.2 we translate language

relationships into associated generating functions, and finally we use analytical tools in

Section 3.3 to derive asymptotic results.

2 Main Results

Let us consider two strings, a pattern string H = h1h2 ••• hm and a text string T = tltZ'" tn
of respective lengths equal to m and n over an alphabet S of size V. We shall write

S = {I, 2, ... , V} to simplify the presentation. Throughout, we assume that the pattern

string is fixed and given, while the text string is random. More precisely, the text string T is a

realization of an independently, identically distributed sequence of random variables (LLd.),

such that a symbol s E S occurs with probability P(s). This defines the so called Bernoulli

model. We shall write P(H[i,j]) ~ Pr{T(i + k,j + kJ ~ H[i,j]} for the probability of the

substring H[i,j] = hi ... hi occurring in the random text T[i + k,j + kJ between symbols

i + k and j + k for any k. In particular, we denote P(H) = P(H[l, m]).

Our goal is to estimate the frequency of overlapping approximate pattern occurrences in

the text generated by a Bernoulli source. More precisely, let d(H, F) be a distance between

patterns Hand F (which are assumed to be of equal length). The distance d(·,.) can be any

distance such as the Hamming distance, the edit distance, etc. For the given pattern H, we

define its D-neighbourhood 1£ = {Ht, ... ,HM } such that for any 1 ~ i ~ M the following

holds d(H,Hi ) ~ D or d(H, Hi) = D for fixed D > O. (In fact, our results hold when 1£ is a

set of any given patterns HI, . .. ,HM such that none contains another as a substring, but in

this paper we concentrate on the approximate pattern occurrence case.) By an approximate

pattern occurrence we mean that there exists 1 ,:5; j ,:5; n such that d(Tfj,j +m-1J,H) ,:5; D,

or in other words, there exists Hi E 1£ such that Tfj,j+m-lJ = Hj[l,m] for some 1 ~ j ~ n.

We find it convenient and useful to express our findings in terms of languages. A

language £, is a collection of words satisfying a certain property_ We associate with every
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language £, a generating function defined as below:

Definition 1 For any language £, we define its generating function L(z) as

L(z) ~ I: P(w)zlw l

wEL

(1)

where pew) is the probability of the word w, Iwl is the length of w, and we adopt the usual

convention that pet) = 1.

It turns out that several properties of pattern occurrences depend on the so called

correlation polynomial that is defined next.

Definition 2 Given two strings Hand F of lengths IHI and IFI, let H F be the set of

positive integers such that for any k E H F the last k symbols of H are equal to the first k

symbols of F, that is, the suffix of length k of H is equal to the prefix of the same length of

F. Then the correlation polynomial AHP(Z) is defined as:

AI/p(z) ~ I: P{H[k + 1, IHID)HH
keHF

In particular, the autocorrelation polynomial of H becomes

A,fH(z) ~ I: P(H(k + 1, IHIDzIHI-k
keHH

In addition, we define the autocorrelation matrix of1£ as A(z) = {AHiHj hJ=l,M.

(2)

(3)

In the sequel, we denote by On(ll) (or simply by On) a random variable representing the

number of approximato.occurrences of H in T. Let r,. be a language of words that contains

exactly T approximate occurrences of H (or more generally: T occurrences of patterns from

an arbitrary set 1i). We denote by TCr)(z) its generating function which becomes:

T(')(z) = I: Pr{On(11) ~ r}zn
n~O

for [zl ~ 1. In addition, we introduce a bivariate generating function as follows:

00 00 00

T(z,u) ~ I:T(')(z)u' = I:I: Pr{On(1i) ~r}zV.
r=l r=ln=O

(4)

(5)

We shall work with matrices and vectors, so we adopt the following convention. Bold

upper-case letters are reserved for vectors which are assumed to be column vectors; e.g.,

Ut(z) = (U1(z), ... , UM(Z)) where Uj(z) is the generating function of a language UHi (see
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next section), and the upper index "t" denotes transpose. We shall use blackboard bold

letters for matrices (e.g., A(z) = {AH;Hj(Z)h-,j=l,M)' In particular, we write Hfor the

identity matrix, and 1 = (1, ... , l)t for the unit vector. Finally, we recall that (H _ M)-l =

Lr2::0 M'" provided the inverse matrix exists (I.e., det(H - M) 1= 0 or II M1(z) II < 1 where )I . 1/

is any matrix norm).

Now, we are ready to summarize our main findings in the form of two following theorems.

The first theorem presents exact formulre for the generating functions T(r)(z) and T(z,u),

and can be used to compute exactly parameters related to the pattern occurrence On (1l).

In the second theorem, we provide aBymptotic results for the probability Pr{On = r} for

various ranges of r. All proofs are presented in the next section. The method of derivation

extends the method presented in [24]. The proof of Theorem 2.1 is presented in Section 3.2

while the proof of Theorem 2.2 can be found in Section 3.3.

Theorem 2.1 Let H be a given pattern of size m, 1£ be the D-neighbourhood of H, and

T be a random text 01 length n generated according to the Bernoulli model. The generating

junctions T(r)(z) and T(z, u) can be computed as follows:

where

T(;)(z) ~ R'(z)MI(zy-1U(z)

zmH'(TIl(z) + (z -1)ny-l[TIl(z)t('H) 1 ,

T(z, u) R'(z)u(n - uMI(zW'U(z) ,

(6)

(7)

(8)

(n - MI(Z))-I

TIl( z)

U(z)

R'(z)

zm
A(z) + --1· H' ,

l-z
(1 - z)(n - MI(Z))-l = (1- z)A(z) + zml· HI ,

1
1 _ )n - MI(z» . 1 ,

zm
~ --H'· (n - MI(z»

l-z

(9)

(10)

(11)

(12)

In the above, H = (P(H1), ... ,P(HM)Y, and A(z) = {AH;,Hj(Z)}i,j=l.M is the matrix of

the correlation polynomials of patterns from the set 1£.

The above theorem is a key to the next asymptotic results. These results are derived in

the next section using analytical tools.

Theorem 2.2 Let the hypotheses of Theorem 2.1 be fulfilled, and in addition nP(1£) -} 00

where P(1i) = Lll,E" P(H;) = H' . 1.
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(i) MOMENTS. We obtain

EOn (11.) - (n - m + I)P(1I.) (13)

V", On(1I.) - (n - m + 1) (P(1I.) + P 2 (1I.) + 2mp2 (1I.) + 2H'(A(I) -il)l) (14)

+ m(m _1)P2(1I.) - 2H'A(I)·1 , (15)

where A(l) denotes the derivative of the matrix A(z) at z = 1.

(ii) DISTRIBUTION: CASE r = 0(1). Let P1i. be the smallest root of detlDl(z) = a outside

the unit circle Izl < 1, and let p > P1i.. Then.-

(16)

(17)

where (n)r = n(n -1) _.. (n - r + 1) and

H' (W(Pll) + (Pu -1)ilr l W(Pll))'+l ·1
ar+l = (det' [II(P1i.)r+1

where IDi*(z) is the adjoint matrix of [II(z), and det'[II(P1i.) denotes the derivative ofdetIDl(z)

at z = P1i.. The remaining coefficients aj can be computed according to the following formula:

I dr+l-j
. - li (TC')()( _ ),+1)

aJ - (r + 1 _ j)! Z-l-~ dzr+1 j Z Z P1i

with j = 1,2, .. . r.

(iii) DISTillBUTION: CASE r = EOn + XVVar On' Let x = 0(1). Then:

(iv) DISTillBUTION: CASE r = (1 + o)EOn with 01=0. Define r(t) to be the root of

de'(il- e'1\1l(eT
)) = 0 ,

and Wa to be the root of

where a = 1+ o. Then:

(18)

(19)

(20)

(21)

P,{On(1I.) ~ r} ~ I e-((n-m+l)ICo) (I +0(~)) (22)
Wa.j2trVar On n

where I(a) = awa - r(wa).
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[;,.(11.) = 0.(11.)
n-m+l

Relative frequency appears in the definition of types and typical types (cf. [4]), and is often

used to estimate information source statistics. The reader is referred to [24] for more details.

As mentioned before, the above results have abundance of applications in information

theory and molecular biology. For example, they can be used to estimate the relative

frequency defined as

3 Analysis

The key element of our analysis is a derivation of the generating function T(z, u) presented in

Theorem 2.1. The first part of below derivation is quite general. It is based on constructing

some special languages and finding relationships among them. Later in Section 3.2 we

translate them into generating functions.

3.1 Combinatorial Relationships Between Certain Languages

A collection of words sharing a given property is usually called a language. This section

is devoted to present some combinatorial relationships between certain languages that are

crucial to derive our results. In this section we do not make any probabilistic assumptions.

We start with some definitions:

Definition 3 Let H. be a set oj patterns H. = {HihE{l, ... ,M]:

(i) Let r be a language oj words containing at least one occurrence from H., and Jor any

integer r, let T;. be the language oj worns containing exactly T occurrences from 11.

(ii) For i,i E {I, ... ,M}, we define Jor r ~ I the language M~J-l) as

Mt- 1
) = {w: HiW ET;. and H j occurs at the right end oJw} (23)

We write Mj -; = MP?,.., ~,]

(iii) The language 1li is the set oj words containing only one occurrence oj Hi, located at

the right end. We also define Ui as

(24)

In other words a word u E Ui iJ the only occurrence from 11. in HiU is Hi.
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(iv) Finally, we define the sets Ai,j associated with the correlation of Hi and Hj , for

i,jE {l, ... ,M}, that is:

A;J = {Hj[k+l,m] 0 kEHiHj},

where HiHj is the autocorrelation sequence introduced in Definition 2.

Remark:

(i) When Hi dees not overlap on its right end with Hj, the set Ai'; is empty and Ai,j(z) =

o.

(ii) It is worth noting that E belongs to Ai,j if and only if i = J. In other words, Hi

coincides with H j on its first character if and only if i = j. Hence, the constant term

in Ai';(Z) is 0 when i:l j and 1 when i = j.

We now can describe the languages T and Tr in terms of the languages just introduced.

This will further lead to a simple formula for the generating function of On (11.). We prove

below the following:

Theorem 3.1 The language Tr can be represented for any r 2: 1 as follows:

Tr = " ~M~r~l)UJ·L..J I,}

j';E{l,...,M]

The language T satisfies the fundamental equation:

T = L L R.;Mlj-l)Uj
r;::':l i,jE{1,...,M}

(25)

(26)

Proof: We first prove (25) and obtain our decomposition of Tr as follows. Let the first

occurrence of 11. in a word belonging to Tr be, say, Hi; it determines a prefix p of this

word that is in 1(.j. Then, one concatenates a non-empty word w that produces the second

occurrence of 1£, say Hk . Hence, w is in some Mi.k. This process is repeated r - 1 times

and we may assume the last occurrence is H j ; e.g. the word concatenated to the right of p

is in M~J-l). Finally, one adds after the last 1£ occurrence a suffix u that does not produce

a new occurrence of 1£. Equivalently, 11. is in Uj, and w is a proper subword of Hju. Finally,

a word belongs to T if it belongs to Tr for some r 2: 1. •

We now prove the following result that summarizes relationships between the languages

introduced in Definition 3. Below, we use the following notation: We define $, e and· as

disjoint union, subtraction and concatenation of languages. For sake of clarity, we assimilate

below a singleton {w} to its unique element w.
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Theorem 3.2 The languages Mi,j, Ui and nj satisftJ, for i,j E {I, ... , M}:

UM1k) W· Hj EBA;j e {,} (27),,]

k2:1

Uj·5 UMEBU'e{,} (28)t,) t

j

s· n j - (n; - Hj) ~ UHiMi,j , (29)

where W is the set of all words, 5 is the alphabet set, E is the empty word.

Proof: All the above relations are proved in a similar fashion. We first deal with (27). Let

w be in W·1-£ and k + 1 be the number of subwords of Hi . w that are in 1£. Certainly, this

number is greatcr than or equal to 2 and the last occurrence, say Hj , is on the right of Hiw:

This implies that w E M~~. Furthermore, a word w in Uk2:1 M~~ is not in W . Hj iff its

size Iwl is smaller than IHjl. Then, the right 1-£ occurrence in Hiw overlaps with Hi, which

means that w is in Aj,j. Reciproca.lly, any word in Ai,j qualifies, but the empty word, when

it belongs to it. Although E is not in Ai,j when i =f j, our set expression remains correct;

c.g. Ai,j - {E} = Ai,j when E~ Ai,j.

Let us turn now to (28). When one adds a character s right after a word u from Ui, two

cases may occur. Either HiUS still does not contain a second occurrence of 1£, which means

that us is a non-empty word of Uj. Or a new clement of 1£ appears, say H j , clearly at the

right end. Then, us is in Mi,j and we get the left inclusion. FUrthcrmore, any non-empty

word of Ui - {E} is in Uj' 5, and a strict prefix of a word w in Mi,j cannot contain any

1£-occurrence; hence, this prefix is in Ui and w is in Ui ·5.

We now prove (29). Let x = sw be a word in Hi' Mi,j where s is a symbol from 5. As

x contains exactly two occurrences of 1-£, Hi located at its left end, and Hj located at its

right end, w is in R j and x is in 5· R j - R j . Reciprocally, if a word swHj from 5· 'R.j is

not in nj, then swHj contains a second 1£ occurrence, say Hi. As w'H. is in nj, the only

possible position is on the left end, and then x is in Hi' Mi,j. We now rewrite:

s·nj -nj ~ s· nj - (nj ns· nj) = s ·nj - (n; - Hj )

which completes the proof.•

3.2 Associated Generating Functions

In this section, we translate the language relationships into generating functions. We need

a few rules associated with two operations on languages. Namely: the disjoint union Ell and
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concatenation· become the sum operation + and the multiplication operation on generating

functions. Namely, the union language £ = £1 EB £2 is transferred into the generating

function L(z) = L 1(z)+L2(z), whenever Lln£2 = 0. The generating function of £ = £1'L2

is L(z) = L 1(z)L 2 (z) for the Bernoulli model (cf. [24] for extension to Markov model).

Lemma 3.1 The generating functions associated with languages Mi,j,Ui and'Ri satisfy

the following matrix equations:

(IT - MI(zW'

(I - MI(zW'U(z)

R'(z)(IT - MI(zW'

that are defined for Izl < 1.

zm
A(z) +-- .1 . H'

1-z
1

--1
I-z '

m
_z_H'
1-z

(30)

(31)

(32)

Proof: We first prove (31). We rewrite the language relationship (28) from Theorem 3.2

as Ui . 5 - (Ui - E) = Ut!:l Mi,j for any i E {I, ... ,M}. The left side of this equation yields

Ui(Z) ·(z-I)+ 1. The right-hand side is the sum of the terms of the i-th row of matrix M1(z),

or, equivalently, the i-th row of M(z). As the result holds for any i, we get the equation

(28) between two column vectors.

We now turn our attention to (32). The left~hand side of (29), i.e., S· 'Rj - ('Rj - Hj),

translates into (z-I)Rj(z)+p(Hj)zm, while I:f,;1 Hi·Mi,j translates into I:t!l P(Hi)zTllMi,j(Z).

These are the j-th elements of the row vectors (z-l)Rt(z)+zmHt and zmHt·M(z) . Group-

ing the results for all j yields the equation (32) between row vectors.

Finally, we deal with (30). In the left-hand side of (27) all languages Mfj are disjoint

and the generating function ofM~1 is the (i, j)-element of matrix M[I.: (z). As the elements of

M1(z) are probability generating functions, one has IIM(z)11 < 1 for Izl < 1; hence the series

Ek=O MIl.: (z) converges, and (IT - M(Z)) -1 is well defined for Izl < 1. Moreover, I:.r::o MIl.: (z)

is MI(z) . (n - MI(z)) -1. Now, the right-hand side, Ai,j - {E} translates into A - II. As W . H j

translates into l~Z . zm (d. [24]), the associated matrix is t:z1. Ht.

Finally, (8) in Theorem 2.1 is a direct consequence of (26) using Theorem 3.2 and Lemma

3.1. •

3.3 Moments and Limiting Distribution

In this final subsection, we derive the first two moments of On as well as asymptotics

for Pr{On = r} for different ranges of T, that is, we prove Theorem 2.2. Actually, we

11



T'(z, l)

T"(z,1) =

should mention that using general results from renewal theory one immediately guesses

that the limiting distribution must be normal for T = EOn + O( V7i). However, here the

challenge is to estimate precisely the variance. Our approach offers an easy, uniform, and

precise derivation all of moments, including the variance, as well as local limit distributions

(including the convergence rate) for the central and large deviations regimes.

A. MOMENTS

First of all, from Theorem 2.1 we shall conclude that

z mH t ·1 L.HiE1l P (Hi )zm
(1 - z)2 ~ (1- Z)2 (33)

2zm(Ht ·1)2zm 2zmHt (A(z) - TI)l
+(l-z)3 (l-z)2

2 (2:If'E1lp(Hi)zm)2 2zm (Li,jP(Hi)AiJ(Z) - LIf'E1lP(H;J)
(l-z)' + (l-z)2 .(34)

Indeed, we observe that

T'(z, u) = R'(z)(n - ul\1l(z))-2U(z)

and then by (9)-(12) we directly prove

zm
T'(z,l) = R'(z) . (n - l\1l(Z))-2U(Z) = (1 _ z)2H' ·1

which leads to (33).

To establish (34) we need a little more algebra. First, we derive from (8)

TO(z,u) = 2R'(z)l\1l(z)(n - ul\1l(z))-3U(z)

which further yields frOID (10) - (12)

TO(z, l) = 2R(z)'l\1l(z)(n -l\1l(z))-3U(Z)
2

( )
3R'(z) .l\1l(z)W(z) . W(z)l

l-z
2zm

= (1- z)3 H 'W(Z)-'(W(Z) + (z -1)n)llJ(z)·l

2zm

(1 _ z)3 H'(W(Z) + (z -1)n)l

2zTll

( )
2H'[(n -l\1l(zW' - nil

l-z

( 2z
m

)2Ht (A(Z) +~l . H' - n) 1 .
1-z 1-z

12



In 'he ahove we often use (I - Ml)-I ~ (1 - z)-Ill(z) (ef. (9)). Then (34) follows.

Now, we observe that both expressions admit as a numerator a function that is entire

beyond the unit circle. This allows for a very simple computation of the expectation and

variance, based on the following basic formula:

[zn](1 _ z)-p ~ r(n + p)
r(p)r(n + 1)

To obtain EOn we proceed as follows:

EOn = [znJT'(z, 1) = L: p(Hi)[Zn-mJ(I- z)' = (n - m + 1) L: P(Hi)
ffiE~ ~EH

(35)

Computation of the variance is a little more intricate. To simplify our computations, let

<I;'(z)

if>,(z)

2(Ht . 1)2z m ,

2H'(A(z) - n)l .

Using Cauchy's theorem, we also observe that

[z,,-mJif>,(z)(I- z)-3

[zn-mJif>,(z)(l _ z)-'

if>,(I) (n - m + 2~(n - m + 1) + if>~ (1)(n _ m + 1) + ~if>~(I) ,

if>,(I)(n - m + 1) - if>;(l) .

Then, a simple algebra leads to the formula on the variance (d. (15) of Theorem 2.2).

B. ASYMPTOTIC RESULTS

We now establish Theorem 2.2, that is, we compute Pr{On = r} for different ranges of

r. OUf derivation is along the lines of our previous paper [24], hence we skip most of the

details referring the reader to the above paper.

We start with r = 0(1), and turn our attention to formula (6) of Theorem 2.1, that is:

where ID(z) is given by (10). To establish an asymptotic expression for Pr{On = r} one

needs to extract the coefficient at zn of T(r)(z). By Hadamard's theorem (cf. [25]) we

conclude that the asymptotics of the coefficients of T(r)(z) depend on the singularities of

T(r)(z). In our case, the generating function is a rational function. Indeed, we first observe

tha' (ef. [12])

[1l(ZJr' = Il"(z)
de' Il(z)

where [Il* (z) is the adjoint matrix of ID(z). Thus, all singularities of T(r) (z) are contained in

the set of roots of det [ll(z). But since every entry in A(z) is a polynomial, we conclude that

13



det lI)(z) is a polynomial. Thus, there exists the smallest root P1l of det lI)(z) = 0 outside Izi >
1, and it is of multiplicity r+ 1. In particular, det lIJJ(z) = (z- P1£) det' lI)(p1£) +O((z - p1£)2).

The rest of the derivation follows exactly our footsteps from [24], so we refer the reader to

it for details.

Now, we deal with r = EOn + x";Var On when x = 0(1) (the so called central limit

regime). Let J1-n = EOn(1i.) and u~ = Var On(1i.). Thus, we consider formula (8) on T(z,u)

for complex z (actually, we assume z = eT with T = tJ1-n/un -+ 0 for fixed complex t). To

establish normality of (On(1i.) - J.tn)/un, it suffices, according to Levy's theorem, to prove

the following

lim e-tP.,,/UnTn(et/u,,) = et2j2
n~oo

(36)

for some complex t around zero. In the above, we write Tn(u) = Euo" (i.e., the probability

generating function for On) for u = et/ u". The computations are standard and go as below.

The equation

det(n - e'M(e')) = 0 (37)

implicitly defines in some neighbourhood of t = 0 a unique Coo function T(t), satisfying

T(O) = O. Then, an elementary application of the residue theorem leads for some R> 1 to

(38)

G(t) is a polynomial in t, and one has, uniformly in t, T(t) = tT'(O) + T"(O)t2 /2 + O(tJ ).

From the cumulant formula, it appears that EOn(1i.) = [t] log Tn (t) "" nT'(O) as well as

Var On "" nT"(O), where W]T(t) denotes the the coefficient ofT(t) at t r.

After some algebra, this leads (d. [1]) to

oxp (t; + O(nt'la'))
0"/2 (1 +O(l/vn))

which completes the proof of the result.

Finally, we consider a large deviations result, that is r = (1 + J)EOn = aEOn for a > 1.

From (38) we conclude that

lim logTn(e') ~ T(t) .
n---HlO n

Thus, directly from Gartner-Ellis theorem [5] we prove that

lim logPr{On > na} ~ -I(a)
n--+oo n '

14



where, after defining Wa as a solution of r'(t) = a, we obtain

The detailed computations are exactly the same as in (24], thus left for the reader.
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