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ABSTRACT

Mathematical models are often described by multivariate
functions, which are usually approximated by a sum of lower
dimensional functions. A major problem is the approxima-
tion error introduced and the factors that affect it. This
paper investigates the error of approximating a multivariate
function by a sum of lower dimensional functions in the set-
ting of high dimensional model representations. Two kinds
of approximations are studied, namely, the approximation
based on the ANOVA (analysis of variance) decomposition
and the approximation based on the anchored decomposi-
tion. We prove new theorems for the expected errors of
approximations based on anchored decomposition when the
anchor is chosen randomly and establish the relationship of
the expected approximation errors with the global sensitivity
indices of Sobol’. The expected approximation error give
indications on how good or how bad could be the approx-
imation based on anchored decomposition and when the
approximation is good or bad. The influence of the anchor
on the goodness of approximation is studied. Methods for
choosing good anchors are presented.

1 INTRODUCTION

Mathematical models are often described by multivariate
functions f (x), where x = (x1, . . . ,xs). We study represen-
tations of a multivariate function f (x) writing as a finite
sum of lower-dimensional functions

f (x) = f /0 +
s

∑
j=1

f{ j}(x j)+ ∑
1≤i< j≤s

f{i, j}(xi,x j)+ · · ·

+ f{1,...,s}(x1, . . . ,xs),

where f /0 is a constant, f{ j}(x j) represents the individual
contribution of the variable x j whereas f{i, j}(xi,x j) repre-
sents the the cooperative effects of xi and x j and so on.
Such decompositions are called high dimensional model
representations, see Rabitz et al (1999) and Sobol’ (2003).

It is argued in Rabitz et al (1999) that quite often in high
dimensional models in practice low order interactions of
input variables have the main impact on the output (usually
up to the third order). In many applications (for instance,
in mathematical finance), a multivariate function often has
small effective dimension, see Caflisch et al and Wang and
Fang (2003). Roughly, this means that the functions depend
mainly on a small number of variables or is nearly a sum
of functions that depend on a small number of variables.
A common practice is to use

f (x) = f /0 +
L

∑
m=1

∑
i1<···<im

f{i1,...,im}(xi1 , . . . ,xim) (1)

as an approximation to f (x) (where L < s).
Two decompositions, namely, the ANOVA decomposi-

tion and the anchored decomposition, are popular in practice.
ANOVA decomposition has some good properties and is
widely used in practice. However, the ANOVA terms and
their variances are difficult to compute due to the high
dimensional integrals involved (which may require Monte
Carlo or quasi-Monte Carlo methods). The anchored de-
composition might be less attractive in theoretical aspect,
but it is much easier to obtain. Due to the complexity in
computing the ANOVA terms, it is suggested to use the
low order terms in anchored decomposition to approximate
the model function f (x), see Rabitz et al (1999). A major
problem here is the approximation error and the factors that
affect it. The anchored decomposition contains an arbitrary
reference point (called anchor). The choice of a “good”
anchor is almost neglected in literature. It is pointed out in
Sobol’ (2003) that in some cases the choice of the anchor
is important in order to obtain a good approximation and a
careless choice may lead to unacceptable approximation.

This paper investigates the error of approximating a
multivariate function f (x) by a sum of lower dimensional
functions as in (1). We compare the approximations based
on ANOVA decomposition and on anchored decomposi-
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tion. For the latter one, we introduce the expected error of
approximation as a quality measure when the anchor is cho-
sen randomly. We prove new theorems about the expected
error of the approximation and establish the relationship of
the expected approximation error with the global sensitivity
indices. The expected error gives indications on how good
or bad could be the approximation, and when and why the
approximation is good or bad.

This paper is organized as follows. In Section 2, we
introduce high dimensional model representations, namely,
the ANOVA decomposition and the anchored decomposition.
In Section 3, we study the approximation error, with focus on
the expected error of anchored approximation. In Section 4,
we present methods to choose good anchors. In the last
section we present conclusions.

2 HIGH DIMENSIONAL MODEL
REPRESENTATION

2.1 The ANOVA decomposition

For any subset u ⊆ {1, . . . ,s}, let −u denote the comple-
mentary set and |u| denote the cardinality of u. Consider a
square-integrable function f (x) defined on [0,1]s. We say
that the representation

f (x) = ∑
u⊆{1,...,s}

f anova
u (x) (2)

is an ANOVA decomposition of f (x) if

∫ 1

0
f anova
u (x)dx j = 0 for j ∈ u. (3)

The condition (3) uniquely define the terms in (2). Indeed,
integrating both sides of (2) over [0,1]s and using (3), we
obtain that

f anova
/0 (x) =

∫
[0,1]s

f (x)dx.

Integrating both sides of (2) with respect to all variables
except x j and using (3), we obtain that∫

[0,1]s−1
f (x)dx−{ j} = f anova

/0 (x)+ f anova
{ j} (x),

thus

f anova
{ j} (x) =

∫
[0,1]s−1

f (x)dx−{ j}− f anova
/0 (x).

Similarly, integrating both sides of (2) with respect to vari-
ables x−u and using (3), we obtain that∫

[0,1)s−|u|
f (x)dx−u = ∑

v⊆u
f anova
v (x), (4)

thus we obtain the recursive formula for the ANOVA terms

f anova
u (x) =

∫
[0,1)s−|u|

f (x)dx−u−∑
v⊂u

f anova
v (x),

where ⊂ denotes strict inclusion, xu denotes the vector
comprised of the components of x with j in u. The term
f anova
u (x) depends only on the variable xu.

As an inverse linear relationship of (4), we have an
explicit formula for the ANOVA term

f anova
u (x) = ∑

v⊆u
(−1)|u|−|v|

∫
[0,1)s−|v|

f (x)dx−v, u⊆{1, . . . ,s}.

It follows from (3) that the ANOVA decomposition is
orthogonal∫

[0,1]s
f anova
u (x) f anova

v (x)dx = 0 for u 6= v.

Based on this orthogonal property, we have the decompo-
sition for the total variance

σ
2( f ) = ∑

/0 6=u⊆{1,...,s}
σ

2
u ( f ), (5)

where σ2( f ) and σ2
u ( f ) are the variances of f (x) and

f anova
u (x), respectively, with x being a random vector uni-

formly distributed on [0,1]s. Define

Du = ∑
v⊆u

σ
2
v ( f ), u⊆ {1, . . . ,s}.

An inverse linear relationship of this equality is

σ
2
u ( f ) = ∑

v⊆u
(−1)|u|−|v|Dv, u⊆ {1, . . . ,s}. (6)

To measure the importance of variables, we defined the
global sensitivity indices as

Su( f ) = σ
2
u ( f )/σ

2( f ), u⊆ {1, . . . ,s}.

Global sensitivity indices can be used to identify the key
variables and to fix the unessential variables, see Sobol’
(2003). We may also define

R`( f ) =
1

σ2( f ) ∑
|u|=`

σ
2
u ( f ), ` = 1, . . . ,s, (7)
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which measures the importance of all order-` terms taken
together. In particular, the sum of all first order global
sensitivity indices R1( f ) is referred as the degree of addi-
tivity, which measures the additive structure inherent in the
function. If R1( f ) = 1 (or R1( f )≈ 1), then the function is
perfectly additive (or nearly additive). If R1( f )� 1, then
the function is dominated by higher order terms.

A good property of the ANOVA decomposition is its
optimality (see Section 3). A main limitation of ANOVA
decomposition is the complexity in computing the ANOVA
terms, since high-dimensional integrals are involved (which
may require Monte Carlo or quasi-Monte Carlo method).

2.2 The anchored decomposition

An alternative decomposition — the anchored decompo-
sition — is available. Let a = (a1, . . . ,as) ∈ [0,1]s be an
arbitrary point. This point is called the anchor or the ref-
erence point. Iteratively define the component terms f a

u (x)
as

f a
/0 = f (a),

f a
{ j}(x j) = f (x j,a−{ j})− f (a),

and generally

f a
u (x) = f (xu,a−u)−∑

v⊂u
f a
v (x) for /0 6= u⊆ {1, . . . ,s},

where (xu,a−u) denotes an s-dimensional vector whose jth
component is x j if j ∈ u and is a j if j 6∈ u. For example,
(x j,a−{ j}) = (a1, . . . ,a j−1,x j,a j+1, . . . ,as). Since the last
term f a

{1,...,s}(x) is determined by the difference between
f (x) and all lower order terms, we have

f (x) = ∑
u⊆{1,...,s}

f a
u (x). (8)

Since

f (xu,a−u) = ∑
v⊆u

f a
v (x),

similarly as for ANOVA terms, we have an explicit formula
(inverse linear relationship) for the anchored terms

f a
u (x) = ∑

v⊆u
(−1)|u|−|v| f (xv,a−v), u⊆ {1, . . . ,s}.

Another explicit expression for the anchored term for
functions with continuous mixed first derivatives is as fol-
lows. Let u = { j1, . . . , jm}, where m = |u| > 0, then (see

Sobol’ 2003)

f a
u (x) =

∫ h j1

0
· · ·
∫ h jm

0

∂ m f (a+ t)
∂xu

dt j1 · · ·dt jm (9)

where t = (0, . . . ,0, t j1 ,0, . . . ,0, t jm ,0, . . . ,0) and hi = xi−ai.
The decomposition of the kind (8) is considered in

Rabitz et al (1999) under the name cut-HDMR. Since it
is related to the anchored function spaces (see Dick et al.
2004), we called it anchored decomposition.

Note that for |u|> 0, f a
u (x) vanish when any of its own

variables x j with j ∈ u takes the value a j, i.e.,

f a
u (x)

∣∣∣
x j=a j

= 0, j ∈ u.

There exists a simple relationship between the terms of
ANOVA and anchored decompositions

f anova
u (x) =

∫
[0,1]s

f a
u (x)da.

In contrast to ANOVA terms, the terms in the anchored
decomposition (8) are extremely simple to compute (at least
for low-order terms), since they do not necessitate the com-
putations of high-dimensional integrals. It is natural to use
the truncated anchored decomposition as an approximation
of f (x). It remains open whether such an approximation is
reasonably good and when it is good.

3 THE APPROXIMATION ERRORS

For an ANOVA or anchored decomposition of a function
f (x) contains 2s terms of components. We are interested in
approximating f (x) by the sum of the terms up to order L

fL(x) := f /0 +
L

∑
t=1

∑
|u|=t

fu(xu), L≤ s. (10)

This is called the ANOVA or anchored order-L approxi-
mation, and is denoted by f anova

L (x) or f a
L (x) (with anchor

a), respectively. If L = 1, the approximation is called the
(ANOVA or anchored) additive approximation. A major
problem is the approximation error introduced and the fac-
tors that affect the approximation error. The goodness of
approximation is measured by

e( f , fL) =
1

σ2( f )

∫
[0,1]s

[ f (x)− fL(x)]2 dx.

3.1 The ANOVA approximation error

For the ANOVA order-zero approximation f anova
0 = I( f ),

we have e( f , f anova
0 ) = 1. This serves as a benchmark of the
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goodness of approximation. A good approximation should
have an approximation error that is much smaller than 1.

For the ANOVA additive approximation f anova
1 (x),

based on the orthogonal property, we have

e( f , f anova
1 ) =

1
σ2( f ) ∑

|u|>1
σ

2
u ( f ) = 1−R1( f ). (11)

Similar result holds for the ANOVA order-L approximation

e( f , f anova
L ) = 1−R1( f )−·· ·−RL( f ).

The ANOVA order-L approximation is optimal. More
precisely, let h(x) be any other function of x expressible
as a superposition of lower-dimensional functions, each of
which depends on at most L components of x, then

e( f ,h)≥ e( f , f anova
L ). (12)

In fact, since f (x)− f anova
L (x) only contains ANOVA terms

with order larger than L, while f anova
L (x)−h(x) are a sum

of functions with at most L components, then from (3) we
have ∫

[0,1]s
[ f (x)− f anova

L (x)] [ f anova
L (x)−h(x)]dx = 0.

Thus∫
[0,1]s

[ f (x)−h(x)]2 dx =
∫

[0,1]s
[ f (x)− f anova

L (x)]2 dx

+
∫

[0,1]s
[ f anova

L (x)−h(x)]2 dx,

implying the inequality (12).

3.2 The anchored approximation error

Although the ANOVA decomposition has the optimal prop-
erty, it is difficulty to compute the ANOVA terms. We thus
turn to anchored order-L approximation

f a
L (x) = f (a)+

L

∑
t=1

∑
|u|=t

f a
u (xu), L≤ s.

The goodness of approximation depends on the anchor and
on the order L. It is obvious from (12) that for any anchor
a and any order L we have

e( f , f a
L )≥ e( f , f anova

L ).

We are interested in the questions: How good could be
the anchored order-L approximation? How does its goodness

depend on the anchor? How do we choose an anchor to
obtain a good approximation?

A uniform error bound for anchored order-L approxi-
mation is derived in Sobol’ (2003). Assume that the mixed
derivatives of the form ∂ |u| f /∂xu are piecewise continu-
ous for /0 6= u⊆ {1, . . . ,s}. Let Au := supx |∂ |u| f /∂xu| and
A := ∑|u|>L Au, then from (9) we have

| f (x)− f a
L (x)| ≤ ∑

|u|>L
| f a

u (x)| ≤ ∑
|u|>L

Au = A.

Therefore,

e( f , f a
L )≤ A2/σ

2( f ).

A sufficient condition for a good anchored order-L approx-
imation with an arbitrary anchor is that A2� σ2( f ).

However, for functions which do not satisfy the condi-
tions above the choice of anchor can be significant. To study
the influence of the anchor on the goodness of anchored
approximation, let the anchor a be random and uniformly
distributed over [0,1]s. We introduce the expected error of
the anchored order-L approximation

IE [e( f , f a
L )] .

This quantity measures the goodness of approximation on
the average when the anchor is chosen randomly.

If the expected error IE [e( f , f a
L )] is small, then we

are hopefully to achieve small approximation error with a
random choice of the anchor. Indeed, based on Markov
inequality, for b > 0 we have

Pr(e( f , f a
L ) < b IE[e( f , f a

L )])≥ 1− 1
b
. (13)

For example, if IE[e( f , f a
L )] = 1/100, then

Pr
(

e( f , f a
L ) <

1
10

)
≥ 9

10
.

On the other hand, if the expected error is large, then
there exists some choices of anchor such that the error
of the corresponding approximation is at least as large
as the expected error. Moreover, the probability of large
error of anchored approximation depends on the variance
D := Var(e( f , f a

L )). Based on Chebyshev inequality, we
have

Pr
(
|e( f , f a

L )− IE[e( f , f a
L )]|< ε

√
D
)
≥ 1− 1

ε2 .

It follows that

Pr
(

e( f , f a
L ) > IE[e( f , f a

L )]− ε
√

D
)
≥ 1− 1

ε2 . (14)
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Thus if the expected error IE[e( f , f a
L )] is large and the

variance D is small, then there is a large probability that the
error of the anchored approximation is large. For example,
if IE[e( f , f a

L )] = 1+ c with c > 0 and 3
√

D < c, then

Pr(e( f , f a
L ) > 1)≥Pr

(
e( f , f a

L ) > IE[e( f , f a
L )]− ε

√
D
)
≥ 8

9
.

3.3 The expected error of anchored order-zero
approximation

We first consider the simplest case, namely, the anchored
order-zero approximation

f a
0 (x) = f (a).

Since

e( f , f a
0 ) =

1
σ2( f )

∫
[0,1]s
| f (x)− f (a)|2 dx

= 1+
1

σ2( f )
[I( f )− f (a)]2, (15)

the expected error of the anchored order-zero approximation
is

IE [e( f , f a
0 )] = 1+

1
σ2( f )

∫
[0,1]s

[I( f )− f (a)]2 da = 2,

which is exactly twice as the error of the ANOVA order-zero
approximation. Thus there are some choices of anchors such
that the corresponding approximation errors are at least as
large as 2. This indicates that a random choice of anchor
may result in poor anchored order-zero approximation. We
point out that if f is continuous over [0,1]s, then there
exists a point a∗ such that f (a∗) = I( f ). Thus the anchor
a∗ achieves the minimal error of the anchored order-zero
approximation, which is the error of the ANOVA order-zero
approximation. On the other hand, from (15) the maximal
error of the anchored order-zero approximation is achieved
when the anchor is chosen as to

max
a∈[0,1]s

| f (a)− I( f )|.

Whether there is a large probability of large approxi-
mation error depends on the variance of e( f , f a

0 ), which is
given by

D =: Var([e( f , f a
0 )]) =

b4

σ4( f )
−1,

where b4 =
∫
[0,1]s [ f (x)− I( f )]4dx. This variance can be

small or large. Based on (14), if
√

D < 1/3, then

Pr(e( f , f a
1 ) > 1)≥ 8

9
.

3.4 The expected error of the anchored additive
approximation

Now we consider the anchored additive approximation (i.e.,
the approximation (10) with L = 1). Let f a

1 (x) denote the
anchored additive approximation with the anchor a. From
the definition of anchored decomposition, the first order
terms are

f a
{ j}(x j) = f (x j,a−{ j})− f (a),

and the anchored additive approximation is

f a
1 (x) = f (a)+

s

∑
j=1

f a
{ j}(x j)

= −(s−1) f (a)+
s

∑
j=1

f (x j,a−{ j}). (16)

The next theorem shows how the expected error of
the anchored additive approximation depends on the global
sensitivity indices of various order.

Theorem 1 Assume that the anchor a is random
and is uniformly distributed over [0,1]s. Then the expected
error of the anchored additive approximation is

IE [e( f , f a
1 )] = b2R2( f )+ · · ·+bsRs( f ), (17)

where

b` = `2− `+2, ` = 2, . . . ,s,

and R`( f ) is the sum of global sensitivity indices of order
` defined in (7).

Remark On the average the anchored additive approxima-
tion eliminates the variance contributions due to the first
order terms. The formula (17) should be compared with
the error of ANOVA additive approximation (11).

Proof We introduce several notations. For any subset u⊆
{1, . . . ,s}, let

Du := ∑
v⊆u

σ
2
v ( f ), (18)

where σ2
v denotes the variance of the ANOVA term

f (anova)
v (x). Moreover, let −{ j} and −{i, j} denote com-

plementary set of { j} and {i, j}, respectively.
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From (10) and (16), the expected error of the anchored
additive approximation is

e( f , f a
1 ) = 1

σ2( f )

∫
[0,1]s [ f (x)+(s−1) f (a)−

−∑
s
j=1 f (x j,a−{ j})]2 dx. (19)

Expanding the square inside the integral on the right hand
side of (19) and then integrating both side with respect to
the anchor a over [0,1]s, we have (after some calculations)

IE [e( f , f a
1 )] =

1
σ2( f )

[(s2− s+2)σ2( f )

−2
s

∑
j=1

σ
2
{ j}( f )−2(s−1)

s

∑
j=1

D−{ j}+2 ∑
i< j

D−{i, j}],

where we have used
∫
[0,1]2s f (x) f (a)dxda = [I( f )]2 and the

following formula (see Sobol’ 2001)

Du =
∫

[0,1]2s−|u|
f (x) f (xu,a−u)dxda−u− [I( f )]2.

In the derivation of (20), we have used this formula for
u = { j},u =−{ j} and u =−{i, j}, respectively; moreover,
the number of [I( f )]2 is exactly as required.

Since the total variance σ2( f ) and the quantities D−{ j}
and D−{i, j} are all the sums of some variance terms (see
(5) and (18)), we may write (20) as

IE [e( f , f a
1 )] =

1
σ2( f )

[b1 ∑
|u|=1

σ
2
u ( f )

+b2 ∑
|u|=2

σ
2
u ( f )+ · · ·+bs ∑

|u|=s
σ

2
u ( f )].

The fact that the variance terms σ2
u ( f ) with the same order

|u|= ` have the same coefficients is based on the symmetry.
It remains to determine the coefficients b`. To determine
b1, we just count the number of σ2

{1} contained in each sum
on the right hand side of (20). We have

b1 = (s2− s+2)−2−2(s−1)2 +(s−1)(s−2) = 0.

The coefficient of σ2
{1}( f ) and σ2

{ j}( f ) is exactly zero.
Similarly, by counting the number of σ2

{1,2}( f ) contained
in each sum on the right hand side of (20), we have

b2 = (s2− s+2)−2(s−1)(s−2)+(s−2)(s−3) = 4.

In general, we have for ` = 2, . . . ,s

b` = (s2− s+2)−2(s−1)(s− `)+(s− `)(s− `−1)
= `2− `+2.

Thus we have

IE [e( f , f a
1 )] = b2R2( f )+ · · ·+bsRs( f ).

The theorem is proven.

Corollary 2 Assume that the anchor a is random
and is uniformly distributed over [0,1]s. Then we have

4e( f , f anova
1 )≤ IE [e( f , f a

1 )]≤ (s2− s+2)e( f , f anova
1 ),

where e( f , f anova
1 ) is the error of the ANOVA additive ap-

proximation given in (11).
If the variances of ANOVA terms higher than L are

zeros (L < s), then we have

4e( f , f anova
1 )≤ IE [e( f , f a

1 )]≤ (L2−L+2)e( f , f anova
1 ).

Theorem 1 and Corollary 2 show what determines the
goodness of the anchored approximation, and answer how
good and how bad could be the anchored additive approx-
imation and when the approximation is good or bad. On
the average the anchored additive approximation eliminates
the variances due to the first order terms. This property
is similar with that of the ANOVA additive approximation.
Thus if R1( f ) dominates and if R2( f ), . . . ,Rs( f ) are all
very small (especially when the higher order ones are very
small), then the expected error of the anchored additive
approximation can be small. Based on (13), it is likely to
get good anchored additive approximation.

Note that the situation of very small higher order indices
is not rare in practice. For example in financial applications
the first order terms dominate the function and the higher
order ones are negligible (Wang and Sloan 2005). In some
cases, the dominancy of the first order terms may not be
encountered, but we may increase this dominancy by a
proper use of dimension reduction techniques (see Sobol’
and Kucherenko 2005 and Wang 2006).

However, comparing with the error of the ANOVA addi-
tive approximation, the expected error of anchored additive
approximation is at least 4 times large as the error of the
ANOVA additive approximation. Moreover, the expected
error of anchored additive approximation has a stronger de-
pendence on higher order global sensitivity indices than on
lower order ones. Thus the expected error of anchored addi-
tive approximation can easily become very large. Even when
the error of the ANOVA additive approximation is small,
the expected error of anchored additive approximation can
be large. For example, if s = 100,R1( f ) = 0.999,R2( f ) =
R3( f ) = · · ·= Rs−1( f ) = 0,Rs( f ) = 0.001, then the error of
the ANOVA additive approximation is 0.001, which is small.
But the expected error of anchored additive approximation
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is

IE [e( f , f a
1 )] = bsRs( f ) = 9.902,

which is unacceptable. In this case, there are some choices
of anchors such that the corresponding anchored additive
approximations are poor. The probability of large error of
anchored additive approximation depends on the variance
of e( f , f a

1 ) (see the arguments at the end of Section 3.2).
For an anchored order-L approximation with L > 1,

there is no simple expression for the expected approximation
error in general. However, for the anchored highest order
approximation and for functions with separate variables, it is
still possible to derive a simple expression for the expected
error of the anchored approximation.

3.5 The highest order approximation for multiplicative
functions

Consider functions of the multiplicative form

f (x) =
s

∏
j=1

g j(x j), (20)

where all g j(x j) are square integrable. Denote

µ j :=
∫ 1

0
g j(x)dx, λ

2
j :=

∫ 1

0
(g j(x)−µ j)2dx.

For a function f (x) of the form (20), both the ANOVA
decomposition and the anchored decomposition can be found
easily. Indeed, for all subset u ⊆ {1, . . . ,s}, the ANOVA
terms are

f anova
u (x) = ∏

j∈u
[g j(x j)−µ j] ∏

j 6∈u
µ j,

and the terms in anchored decomposition are

f a
u (x) = ∏

j∈u
[g j(x j)−g j(a j)] ∏

j 6∈u
g j(a j),

where a = (a1, . . . ,as) ∈ [0,1]s is the anchor. Clearly, if the
anchor a is chosen such that

g j(a j) = µ j, j = 1, . . . ,s, (21)

then the anchored decomposition coincides with the ANOVA
decomposition. This indicates that for function of the form
(20), if each g j(x j) is continuous, then it is always possible
to make the anchored decomposition being the same as the
ANOVA decomposition by properly choosing the anchor.

The variance of the ANOVA term f anova
u (x) is

σ
2
u ( f ) = ∏

j∈u
λ

2
j ∏

j 6∈u
µ

2
j ,

and the total variance is

σ
2( f ) =

s

∏
j=1

(λ 2
j + µ

2
j )−

s

∏
j=1

µ
2
j .

Now we consider the highest order approximation (i.e.,
the approximation (10) with L = s− 1). The error of the
ANOVA highest order approximation is

e( f , f anova
s−1 ) = Rs( f ) =

1
σ2( f )

s

∏
j=1

λ
2
j ,

where R`( f ) is the sum of the global sensitivity indices
of order `. The quantity e( f , f anova

s−1 ) is also the minimal
error of the anchored highest order approximation, when
the anchor a is chosen to satisfy (21).

For an arbitrary anchor a ∈ [0,1]s, the error of the
anchored highest order approximation is

e( f , f a
s−1) =

1
σ2( f )

∫
[0,1]2
| f (x)− f a

s−1(x)|2 dx,

where f a
s−1(x) is the anchored order-(s−1) approximation.

Since

f (x)− f a
s−1(x) = f a

{1,...,s}(x) =
s

∏
j=1

[g j(x j)−g j(a j)],

it follows that

e( f , f a
s−1) =

1
σ2( f )

∫
[0,1]s

s

∏
j=1

[g j(x j)−g j(a j)]2 dx

=
1

σ2( f )

s

∏
j=1

[λ 2
j +(g j(a j)−µ j)2]. (22)

Let the anchor a be random and uniformly distributed
over [0,1]s. Then from (22) the expected error of the
anchored highest order approximation is

IE
[
e( f , f a

s−1)
]
=

1
σ2( f )

s

∏
j=1

2λ
2
j = 2s Rs( f )= 2s e( f , f anova

s−1 ).

Once more, on the average the anchored highest order
approximation eliminates the variance contributions due to
ANOVA terms up to order s−1. Due to the factor 2s, the
expected error of the anchored highest order approximation
can be much larger than the error of the ANOVA highest
order approximation. The variance of e( f , f a

s−1) determines
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whether we have large or small probability of approximation
error which is close to the expected value. From (22) the
variance of e( f , f a

s−1) is

D := Var
[
e( f , f a

s−1)
]

=
1

σ4( f )

[
s

∏
j=1

[3λ
4
j +b j]−

s

∏
j=1

4λ
4
j

]
,

where b j =
∫ 1

0 [g j(x)− µ j]4dx. Based on the Chebyshev
inequality, we have for any ε > 0

Pr
(∣∣e( f , f a

s−1)− IE[e( f , f a
s−1)]

∣∣< ε
√

D
)
≥ 1− 1

ε2 .

To see how bad the anchored highest order approxi-
mation could be, consider an extreme case. From (22), if
the anchor a = (a1, . . . ,as) is chosen such that a j solves the
optimization problem

max
a j∈[0,1]

(g j(a j)−µ j)2 := c2
j , j = 1, . . . ,s, (23)

then the error of the anchored highest order approximation
achieves the maximal value. The maximal error is

max
a∈[0,1]s

e( f , f a
s−1) =

1
σ2( f )

s

∏
j=1

[λ 2
j + c2

j ] = GRs( f ),

where G := ∏
s
j=1[1 + c2

jλ
−2
j ]. From (23), it follows that

c2
j ≥ λ 2

j , thus G≥ 2s.
Summarizing the results above we have the following.

Theorem 3 Assume that the function f (x) has the
multiplicative form (20). Let the anchor a be random and
uniformly distributed over [0,1]s, then the expected error
of the anchored highest order approximation is

IE
[
e( f , f a

s−1)
]
= 2s Rs( f ) = 2s e( f , f anova

s−1 ).

The minimal error of the anchored highest order ap-
proximation is

min
a∈[0,1]s

e( f , f a
s−1) =

1
σ2( f )

s

∏
j=1

λ
2
j = Rs( f ) = e( f , f anova

s−1 ).

which is achieved when the anchor is chosen to satisfy (21).
The maximal error of the anchored highest order ap-

proximation is

max
a∈[0,1]s

e( f , f a
s−1) =

1
σ2( f )

s

∏
j=1

[λ 2
j + c2

j ] = Ge( f , f anova
s−1 ).

which is achieved when the anchor is chosen to solve (23),
where G = ∏

s
j=1[1+ c2

jλ
−2
j ].

From Theorem 3, for any anchor a ∈ [0,1]s, we have

e( f , f anova
s−1 )≤ e( f , f a

s−1)≤ Ge( f , f anova
s−1 ).

Both the equalities hold with some particular choices of the
anchors. The error of anchored approximation e( f , f a

s−1)
varies from Rs( f ) to GRs( f ), depending on the anchor (with
the expected error to be 2sRs( f )). Whether the expected
error is small (say, less than 1) depends on whether the
error of the ANOVA highest order approximation is very
small (say less than 1/2s). Clearly, if Ge( f , f anova

s−1 ) is small,
then any choice of anchor leads to small error of anchored
highest order approximation; if e( f , f anova

s−1 ) is large, then
any choice of anchor leads to large error of anchored highest
order approximation. In other cases, the expected error and
the variance determine the probability of large or small
approximation error.

4 FINDING A GOOD ANCHOR

For an arbitrary anchor a ∈ [0,1]s, the anchored decom-
position (8) is always an exact representation of f (x), but
the quality of the order-L approximation depends on the
anchor and the approximation error can be quite different.
In some cases the choice of the anchor becomes important.
A “bad” choice of the anchor may lead to a large approx-
imation error. We hope to choose a suitable anchor such
that the error of the anchored order-L approximation is as
small as possible. This leads to a general principle: finding
an anchor a such that the error of the anchored order-L
approximation is minimized, i.e., solving the optimization
problem

min
a∈[0,1]s

e( f , f a
L ).

This general principle includes the method of Sobol’ (2003)
as a special case.

Method A. For L = 0, the anchored order-zero approxima-
tion is f a

0 = f (a). In this case, we need to find the minimizer
for

min
a∈[0,1]s

∫
[0,1]s

[ f (x)− f (a)]2 dx. (24)

Since ∫
[0,1]s

[ f (x)− f (a)]2 dx =

=
∫

[0,1]s
[ f (x)− I( f )]2 dx+[I( f )− f (a)]2,

460



Wang

The first term on the right-hand side is independent of the
anchor, thus the optimization problem (24) is equivalent to

min
a∈[0,1]s

| f (a)− I( f )|.

That is to say, the anchor a∗ should be chosen such that

f (a∗)≈ I( f ).

This provides a justification for the suggestion of Sobol’
(2003). The searching process can be proceeded as follows:

(i) Generate a low discrepancy point set Pn := {x j ∈
[0,1]s, j = 1, . . . ,n} and calculate a rough estimate for I( f ),
i.e., Î( f ) := 1

n ∑
n
j=1 f (x j).

(ii) Select a point a∗ from Pn as the anchor, such that∣∣ f (a∗)− Î( f )
∣∣= min

1≤ j≤n

∣∣ f (x j)− Î( f )
∣∣ .

Method B. For an order L > 0 (say L = 1 or 2), we find
the anchor a such that the error of the anchored order-L
approximation is minimized, i.e., to find the minimizer

min
a∈[0,1]s

e( f , f a
L ).

This can be achieved similarly as in Method A:
(i) Generate a low discrepancy point set Pn := {x j ∈

[0,1]s, j = 1, . . . ,n} and calculate the error of the anchored
order-L approximation e( f , f a

L ). The involved integrals in
e( f , f a

L ) can be calculated numerically by quasi-Monte Carlo.
(ii) Select a point a∗ from the set Pn, such that the

error of the anchored order-L approximation is minimized,
i.e.,

e( f , f a∗
L ) = min

a∈Pn
e( f , f a

L ).

The comparisons of the errors of anchored approxi-
mations with good or bad choices of anchors for security
pricing problems are presented in Wang (2007). It turns out
that with a good choice of anchor, the anchored additive
approximation is quite satisfactory. Such a good anchored
additive approximation can be used to construct good im-
portance density or control variate to increase the efficiency
of quasi-Monte Carlo methods for security pricing problems
(see Wang 2007).

5 CONCLUDING REMARKS

The approximation of a function by a sum of lower dimen-
sional functions is an important problem in the theory and
applications of high dimensional model representation. We
studied and compared the error of approximating a function
by the sum of the low order ANOVA or anchored terms

in the settings of ANOVA decomposition and anchored
decomposition. We studied the expected error of the an-
chored approximation when the anchor is chosen randomly.
We proved new theorems about the expected error of the
anchored additive approximation and the anchored highest
order approximation. In particular, we show that on the
average the anchored additive approximation eliminates the
variance contributions due to the first order terms. These
theorems indicate the usefulness of an anchored approx-
imation, but it should be used with care. We presented
procedures to find a good anchor.
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