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Abstract. We present efficient techniques for the numerical approximation of complicated
dynamical behavior. In particular, we develop numerical methods which allow to approximate SRB-
measures as well as (almost) cyclic behavior of a dynamical system. The methods are based on an
appropriate discretization of the Frobenius-Perron operator, and two essentially different mathemat-
ical concepts are used: the idea is to combine classical convergence results for finite dimensional
approximations of compact operators with results from Ergodic Theory concerning the approxima-
tion of SRB-measures by invariant measures of stochastically perturbed systems. The efficiency of
the methods is illustrated by several numerical examples.
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1. Introduction. The approximation of the behavior of a dynamical system
is typically done by direct simulation. This method is particularly useful in the
situation where a specific trajectory has to be approximated for a finite period of
time. However, if one is interested in the long term behavior and if the underlying
system exhibits complicated dynamics then the information derived from one single
trajectory is not always satisfying. Rather in this case it seems more appropriate to
determine a statistical description of the dynamical behavior, and this information is
encoded in an underlying (natural) invariant measure.

In this paper we describe a numerical method for the approximation of such in-
variant measures based on a discretization of the Frobenius-Perron operator. Using
the fact that invariant measures are fixed points of this operator we first approximate
it by a Galerkin projection and then compute eigenvectors of the discretized operator
corresponding to the eigenvalue one. This allows us to identify regions in state space
where trajectories are likely – or, on the other hand, hardly – to be observed. In
addition to this information we show how to use other parts of the spectrum of the
Frobenius-Perron operator to determine the dynamical behavior of the system. First
we describe how to decompose an invariant set into components which are cyclically
permuted by the dynamics. Secondly we develop techniques for the approximation of
almost invariant sets, that is, regions in state space which are visited for a “long” pe-
riod of time before the dynamical process leads to different areas. More generally the
same techniques allow us to detect almost cyclic behavior, that is, to identify compo-
nents of invariant sets which are “frequently” cyclically permuted by the dynamical
process. Moreover, we can quantify the probability by which the cycle occurs de-
pending on the absolute value of a corresponding eigenvalue of the Frobenius-Perron
operator. Roughly speaking,

we construct an approximation of the essential dynamical behav-
ior, that is, the dynamics modulo complex (unpredictable) behavior
which is due to the presence of chaos.
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From the practical point of view the most important invariant measures are the so-
called SRB-measures. The reason is that for these measures the spatial and temporal
averages of observables are identical for a set of initial conditions which has positive
Lebesgue measure. The introduction of the underlying concept goes back to Y.G.
Sinai (see [?]), and the existence of these measures has been shown for Axiom A
systems by D. Ruelle and R. Bowen ([?, ?]). In this article we suggest a numerical
method for the approximation of SRB-measures and in this context their stochastic
stability is particularly important: first we use this fact as an analytical tool in our
main convergence result in §??, and secondly it is of practical importance if we view
the numerical approximation as a small random perturbation. Indeed, stochastic
stability of SRB-measures is guaranteed for Axiom A systems ([?, ?]).

More precisely there are two essential mathematical ingredients which allow us to
develop a numerical method for the approximation of SRB-measures. We use a result
of Yu. Kifer on the convergence of invariant measures in stochastic perturbations of
the underlying dynamical system to the SRB-measure (see [?]) and combine this with
results on the convergence of eigenspaces of discretized compact operators (see e.g.
[?]). The same technique is used for the approximation of the subsets in state space
which are (almost) cyclically permuted by the dynamical process. With respect to
the approximation of SRB-measures a similar result has previously been obtained by
F. Hunt (see [?]). However, our methods are quite different to the ones used in that
work. In particular, the results stated here cover the important situation where the
random perturbations have a probability distribution with local support. In fact,
this is the relevant case having in mind that the round off error in the numerical
approximation can be interpreted as such a local perturbation. Another approach
for the computation of SRB-measures – avoiding the approximation of the Frobenius-
Perron operator – has recently been suggested by Yu. Kifer ([?]).

As mentioned above in addition to the approximation of SRB-measures the main
development in this paper is a numerical method which allows to identify (almost)
cyclic behavior. To accomplish this we use a Galerkin method to discretize the
Frobenius-Perron operator in such a way that the discretization has the same cyclic
properties as the operator itself. More precisely, if the underlying dynamical system
has a cycle of order r then the rth roots of unity are eigenvalues of the Frobenius-
Perron operator, and we will show that the corresponding eigenmeasures ν0, . . . , νr−1

yield the desired information on the cyclic components: these components can be
identified as supports of probability measures obtained by specific linear combina-
tions of ν0, . . . , νr−1. Our Galerkin approximation respects the cyclic behavior in the
sense that the rth roots of unity are also eigenvalues of the discretized operator and
that the corresponding eigenvectors converge to the eigenmeasures ν0, . . . , νr−1 with
increasing dimension of the approximating space. We will illustrate how to use these
results to determine the subsets in state space which are almost cyclically permuted.

Finally let us remark that the results on the approximation of the essential dy-
namical behavior obtained in this article can also be used to compute other statistical
quantities such as the entropy, dimensions (depending on the particular invariant mea-
sure) or Lyapunov exponents. In fact, the efficient numerical use of invariant measures
for the computation of Lyapunov exponents is currently under investigation.

An outline of the paper is as follows. In §?? we begin with a brief review of
the results on Markov processes which will be needed later on. The Frobenius-Perron
operator is introduced in §??. In that section we also describe the Galerkin projection
that we use in the numerical approximation. In §?? we use Kifer’s result on small
random perturbations of diffeomorphisms to prove convergence of the approximations
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to an SRB-measure in the hyperbolic case (Theorem ??). In the main section of this
article, §??, we show how to extract numerically the information on the (almost) cyclic
components from the spectrum of the Frobenius-Perron operator. In particular, we
present a method to identify regions in phase space where, on average, trajectories stay
for a long period of time. Finally, in §?? we illustrate the usefulness of our methods
as tools in the numerical analysis of dynamical behavior by several examples.

2. Stochastic Transition Functions. For our main theoretical results we are
using the concept of small random perturbations of dynamical systems. Since we
assume that the typical reader is not familiar with this concept we begin by recalling
some basic notions and results on Markov processes that will be needed later on. For
a detailed introduction the reader is referred to [?].

Invariant Measures. Our aim is to approximate the dynamical behavior of
discrete dynamical systems of the form

xi+1 = f(xi), i = 0, 1, 2, . . . ,

where f : X → X is a diffeomorphism on a compact subset X ⊂ R
n. We denote by

B the Borel σ–Algebra on X and by m the Lebesgue measure on B. Moreover, let M
be the space of probability measures on B. Recall that a measure µ ∈ M is invariant
if

µ(B) = µ(f−1(B)) for all B ∈ B.

On the other hand, a set A ∈ B is invariant if

f(A) ⊂ A.

We now turn our attention to the more general stochastic framework.

Definition 2.1 A function p : X × B → [0, 1] is a stochastic transition function, if
(i) p(x, ·) is a probability measure for every x ∈ X,
(ii) p(·, A) is Lebesgue-measurable for every A ∈ B.

Let δy denote the Dirac measure supported on the point y ∈ X. Then p(x,A) =
δh(x)(A) is a stochastic transition function for every m-measurable function h. We
will see below that the specific choice h = f represents the deterministic situation in
this more general set-up.

We set p(1)(x,A) = p(x,A) and define recursively the i-step stochastic transition
function p(i) : X × B → R by

p(i+1)(x,A) =

∫

p(i)(y,A) p(x, dy), i = 1, 2, . . . ,

where p(x, dy) indicates that the integration is done with respect to the measure
p(x, ·). It is easy to see that p(i) is indeed a stochastic transition function. In partic-
ular, for the case where p(x,A) = δf(x)(A) we obtain for i ≥ 1

p(i)(x,A) = δfi(x)(A).

We now define the notion of an invariant measure in the stochastic setting.
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Definition 2.2 Let p be a stochastic transition function. If µ ∈ M satisfies

µ(A) =

∫

p(x,A) dµ(x)

for all A ∈ B, then µ is an invariant measure of p.

Remarks 2.3 (a) In the literature on Markov processes (e.g. [?]) an invariant
measure is typically referred to as a stationary absolute probability measure.
However, having the situation in mind that we consider stochastically per-
turbed dynamical systems we prefer the notion of an invariant measure (see
also [?, ?]).

(b) If µ is an invariant measure of p then it follows that

µ(A) =

∫

p(i)(x,A) dµ(x)

for all i = 1, 2, . . ..

The following example illustrates the previous remark that we recover the determin-
istic situation in the case where p(x, ·) = δf(x).

Example 2.4 Suppose that p(x, ·) = δf(x) and let µ be an invariant measure of p.
Then we compute for A ∈ B

µ(A) =

∫

p(x,A) dµ(x) =

∫

δf(x)(A) dµ(x) =

∫

χA(f(x)) dµ(x) = µ(f−1(A)),

where we denote by χA the characteristic function of A. Hence µ is an invariant
measure for the diffeomorphism f .

Definition 2.5 A set A ∈ B is called a consequent set of x, if p(i)(x,A) = 1 for all
i ≥ 1. The set A is invariant if it is the consequent set of all of its points. Furthermore
if C ∈ B is a set for which

lim
i→∞

p(i)(x,C) = 0 for all x ∈ X,

then C is called a transient set.

Considering our guiding example let p(x, ·) = δf(x) and let A be an invariant set
for p. Then we have for y ∈ A

1 = p(y,A) = δf(y)(A).

Hence f(A) ⊂ A and A is an invariant set for the diffeomorphism f .

Absolutely Continuous Stochastic Transition Functions. Now we assume
that for every x ∈ X the probability measure p(x, ·) is absolutely continuous with
respect to the Lebesgue measure m. Hence we may write p(x, ·) as

p(x,A) =

∫

A

k(x, y) dm(y) for all A ∈ B,

with an appropriate transition density function k : X ×X → R. Obviously,

k(x, ·) ∈ L1(X,m) and k(x, y) ≥ 0.
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In this case we also call the stochastic transition function p absolutely continuous.
Note that

∫

k(x, y) dm(y) = p(x,X) = 1 for all x ∈ X.

We let k(1)(x, y) = k(x, y) and define the i-step transition density function as

k(i+1)(x, y) =

∫

k(x, ξ)k(i)(ξ, y) dm(ξ), i = 1, 2, . . . .

With this definition we obtain for A ∈ B

p(i)(x,A) =

∫

A

k(i)(x, y) dm(y),

that is, the i-step transition density function k(i) is the stochastic transition density
function for p(i).

The following theorem provides a characterization of all invariant measures of a
certain class of stochastic transition functions.

Theorem 2.6 Let p be an absolutely continuous stochastic transition function with
density function k. Suppose that k(x, y) ≤ M for some positive constant M > 0 and
all x, y ∈ X.

Then X can be decomposed into finitely many disjoint invariant sets E1, E2, . . . , Ee

and a transient set F = X – ∪e
j=1Ej such that for each Ej there is a unique probability

measure πj ∈ M with πj(Ej) = 1 and

lim
N→∞

1

N

N
∑

i=1

p(i)(x,A) = πj(A) for all A ∈ B and all x ∈ Ej.(2.1)

Furthermore the left hand side q(x,A) in (??) exists uniformly in x and defines for
every fixed x ∈ X an invariant measure. Finally, every invariant measure of p is a
convex combination of the πj’s.

A proof of this theorem can be found in [?].

Remarks 2.7 (a) The Ej’s are called the ergodic sets of p.
(b) One can show that the invariant measures πj are absolutely continuous with

density functions κj ∈ L1, that is, we have

πj(A) =

∫

A

κj(x) dm(x), j = 1, . . . , e.

It follows that for every x ∈ X the limit q(x, ·) in (??) is also absolutely
continuous with a density function ℓ(x, ·) ∈ L1.

3. Approximation of the Frobenius–Perron Operator. The main purpose
of this section is to describe an appropriate Galerkin method for the approximation
of the Frobenius–Perron operator. But first we introduce this operator and derive
certain spectral properties.



6 M. DELLNITZ AND O. JUNGE

The Frobenius–Perron Operator.

Definition 3.1 Let p be a stochastic transition function. Then the Frobenius–Perron
operator P : MC → MC is defined by

Pµ(A) =

∫

p(x,A) dµ(x),

where MC is the space of bounded complex valued measures on B. If p is absolutely
continuous with density function k then we may define the Frobenius–Perron operator
P on L1 by

Pg(y) =

∫

k(x, y)g(x) dm(x) for all g ∈ L1.

Remarks 3.2 (a) By definition a measure µ ∈ M is invariant if and only if
it is a fixed point of P . In other words, invariant measures correspond to
eigenmeasures of P for the eigenvalue one.
Moreover, let λ ∈ C be an eigenvalue of P with corresponding eigenmeasure
ν, that is, Pν = λν. Then in particular

λν(X) = Pν(X) =

∫

p(x,X) dν(x) = ν(X)

since p(x,X) = 1 for all x ∈ X. It follows that ν(X) = 0 if λ 6= 1.
(b) Observe that in the deterministic situation where p(x, ·) = δf(x) we obtain

Pµ(A) =

∫

p(x,A) dµ(x) = µ(f−1(A))

(cf. Example ??). This is indeed the standard definition of the Frobenius–
Perron operator in the deterministic setting (see e.g. [?]).

(c) Note that in the case where p is absolutely continuous we have P : L1 → L1

since for each g ∈ L1

∫

Pg(y) dm(y) =

∫∫

k(x, y)g(x) dm(x) dm(y)

=

∫

g(x)

∫

k(x, y) dm(y) dm(x)

=

∫

g(x) dm(x) < +∞.

Correspondingly a nonnegative fixed point g ∈ L1 of P with ‖g‖1 = 1 is the
density of an invariant probability measure and conversely the density of every
absolutely continuous invariant probability measure is a fixed point of P .

We are particularly interested in approximating cyclic dynamical behavior of the
underlying dynamical system. In the stochastic setting this corresponds to the sit-
uation where there are disjoint compact subsets Xj ⊂ X, j = 0, . . . , r − 1, such
that

X =

r−1
⋃

j=0

Xj ,
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and for which the stochastic transition function p satisfies

p(x,Xj+1mod r) =

{

1 if x ∈ Xj

0 otherwise.
(3.1)

We now relate the cyclic dynamical behavior described by (??) to spectral prop-
erties of the corresponding Frobenius-Perron operator P .

Proposition 3.3 If the stochastic transition function p satisfies (??) then we have
for the corresponding Frobenius-Perron operator P :

(a) The r-th power P r has an eigenvalue one of multiplicity at least r. Moreover,
there are r corresponding invariant measures µk ∈ M, k = 0, 1, . . . , r − 1,
with support on Xk, that is, supp(µk) ⊂ Xk. These measures can be chosen
to satisfy

µk = P kµ0, k = 0, 1, . . . , r − 1.

(b) The r-th roots of unity ωk
r , k = 0, 1, . . . , r − 1, where ωr = e2πi/r, are eigen-

values of P .

Proof.
(a) Observing that for each µ ∈ MC

P jµ(A) =

∫

p(j)(x,A) dµ(x),

where p(j) is the j-step stochastic transition function, the existence of the
measures µk, k = 0, 1, . . . , r − 1, follows from standard results on Markov
processes (see e.g. [?], Chapter V). Moreover, these measures can be chosen
so that

µk+1 mod r = Pµk, k = 0, 1, . . . , r − 1.

Simply note that if µk is invariant for P r then

P r(Pµk) = P (P rµk) = Pµk

and hence Pµk is an invariant measure with support on Xk+1.
(b) Let µ be one of the probability measures which exist by part (a). We show

that for k ∈ {0, 1, . . . , r − 1}

νk =
r−1
∑

j=0

ω−kj
r P jµ ∈ MC(3.2)

is an eigenmeasure of P for the eigenvalue ωk
r . Indeed, using the fact that

P rµ = µ we compute

Pνk = Pµ+ ω−k
r P 2µ+ · · ·+ ω−k(r−2)

r P r−1µ+ ω−k(r−1)
r µ

= ωk
r

(

µ+ ω−k
r Pµ+ · · ·+ ω−k(r−1)

r P r−1µ
)

= ωk
r νk.

Finally, νk 6= 0 since νk(Xj) 6= 0 for j = 0, 1, · · · , r − 1.
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Approximation by a Galerkin Method. We begin with the following obser-
vation which immediately follows from standard results on integral operators (see e.g.
[?], p. 277).

Lemma 3.4 Suppose that the transition density function k satisfies

∫∫

|k(x, y)|2 dm(x)dm(y) <∞.(3.3)

Then the Frobenius-Perron operator P : L2 → L2 is compact.

From now on we consider the case where P is given by a dynamical process with a
transition density function k satisfying the condition (??). The aim is to use a Galerkin
method for the approximation of such a Frobenius–Perron operator together with its
spectrum. More precisely, let Vd, d ≥ 1, be a sequence of d–dimensional subspaces
of L2 and let Qd : L2 → Vd be a projection such that Qd converges pointwise to the
identity on L2. If we define the approximating operators by Pd = QdP then we have

‖Pd − P‖2 → 0 as d→ ∞.

Denote by σ(P ) and ρ(P ) the spectrum and resolvent set of P respectively and
by Rz = (zI−P )−1, z ∈ ρ(P ), the resolvent operator. Let λ 6= 0 ∈ σ(P ) be a nonzero
eigenvalue of P and let Γ ⊂ C be a circle in ρ(P ) with center λ such that no other
point of σ(P ) is inside Γ. Then the operator defined by

E = E(λ) =
1

2πi

∫

Γ

Rz(P ) dz

is a projection onto the space of generalized eigenvectors associated with λ and P .
The following theorem – which is a specific application of the main result of [?] on
compact operators – allows to approximate eigenvectors of P by eigenvectors of Pd.

Theorem 3.5 ([?]) Let λd be an eigenvalue of Pd such that λd → λ for d→ ∞, and
let gd be a corresponding eigenvector of unit length. Then there is a vector hd ∈ R(E)
and a constant C > 0 such that (λI − P )hd = 0 and

‖hd − gd‖2 ≤ C‖(P − Pd)|R(E)‖2,

where R(E) denotes the range of E.

Next we use Theorem ?? to approximate the eigenvalues of P which are lying
on the unit circle. For this we construct a Galerkin projection which possesses the
same cyclic behavior in the approximation. Suppose that (??) holds and let {ϕj

i},
j = 0, 1, . . . , r − 1, i = 1, 2, . . . , dj be a basis of Vd with the following properties:

(i) supp(ϕj
i ) ⊂ Xj (j = 0, 1, . . . , r − 1, i = 1, 2, . . . , dj),

(ii)
dj
∑

i=1

ϕj
i (x) = 1 for all x ∈ Xj , j = 0, 1, . . . , r − 1.

(3.4)

Remarks 3.6 (a) In §?? we will see how to generate a basis satisfying (??). In
that case, Vd consists of functions which are locally constant.
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(b) Observe that by construction

∑

i,j

ϕj
i (x) = 1 for all x ∈ X.

The Galerkin projection Qdg of g ∈ L2 is defined by

(Qdg, ϕ
j
i ) = (g, ϕj

i ) for all i, j,

where (·, ·) is the usual inner product in L2. The following result is a generalization of
Lemma 8 in [?], where just the fixed point of P is considered. Recall that ωr = e2πi/r.

Proposition 3.7 Suppose that the Galerkin projection satisfies (??). Then the ap-
proximating operators Pd = QdP possess the eigenvalues ωk

r , k = 0, 1, . . . , r − 1.

Proof. Suppose that λ is an eigenvalue of Pd with corresponding eigenvector
ψ(x) =

∑

i,j β
j
iϕ

j
i (x). Then Pdψ = λψ is equivalent to

∑

i1,k1

βk1

i1
(Pϕk1

i1
, ϕk2

i2
) = λ

∑

i1,k1

βk1

i1
(ϕk1

i1
, ϕk2

i2
) for all i2, k2.

Introducing the coefficient vector β = (βj
i ) we may write this equation in matrix form

as

M1β − λM2β = 0,(3.5)

where both M1 and M2 have non-negative entries. Moreover, noting that

∫

Qdg dm =

∫

Pdg dm =

∫

g dm for every g ∈ L2,

and using the fact that
∑

i,j ϕ
j
i (x) = 1 we can proceed in the same way as in [?],

Lemma 8, to see that (1, 1, . . . , 1) is a left eigenvector with eigenvalue 1 for the gener-
alized eigenvalue problem (??). The fact that M2 is invertible – since {ϕj

i} is a basis
of Vd – now implies that there is an eigenvector α with

M−1
2 M1α = α.

We claim that M−1
2 M1 has a cyclic structure so that (M−1

2 M1)
r is of block diagonal

form where the blocks have the dimensions dj , j = 0, 1, . . . , r − 1. Decomposing α
with respect to this block structure we may proceed as in the proof of part (b) of
Proposition ?? to show that ωk

r , k = 0, 1, . . . , r− 1, are eigenvalues of (??) and hence
of Pd as desired.

We now prove the claim. Since the matrix M2 in (??) already has the desired
block diagonal form (by (i) in (??)), it remains to show that the basis functions are
cyclically permuted by Pd respecting the block structure of M2. More precisely we
will show that (Pϕk1

i1
, ϕk2

i2
) = 0 if k2 6= (k1 + 1)mod r.

By (??) we have

∫

X
j+1mod r

k(x, y) dm(y) =

{

1 if x ∈ Xj

0 otherwise.
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It follows that
∫

Xk2

∫

Xk1

k(x, y) dm(x)dm(y) =

∫

Xk1

∫

Xk2

k(x, y) dm(y)dm(x) = 0

if k2 6= (k1 + 1)mod r, and therefore

(Pϕk1

i1
, ϕk2

i2
) =

∫

Xk2

∫

Xk1

k(x, y)ϕk1

i1
(x)ϕk2

i2
(y) dm(x)dm(y) = 0

if k2 6= (k1 + 1)mod r as desired.

Now we may combine Theorem ?? and Proposition ?? to obtain a convergence
result for eigenvectors corresponding to eigenvalues of P of modulus one.

Corollary 3.8 Suppose that P and its approximation Pd satisfy the hypotheses
stated above. Then each simple eigenvalue e2πik/r of P on the unit circle is an
eigenvalue of Pd and there are corresponding eigenvectors gd of Pd converging to an
eigenfunction h of P . More precisely, there is a constant C > 0 such that for all d ≥ 1

‖h− gd‖2 ≤ C‖Pd − P‖2.

4. The Computation of SRB-Measures.

SRB-Measures. Let us briefly recall the notion of an SRB-measure. In the
existing literature several different definitions can be found which are all equivalent
in the case where the underlying dynamical behavior is Axiom A. This is precisely
the situation we will consider, and hence we can – without loss of generality – work
with just one of them.

Definition 4.1 An ergodic measure µ is an SRB-measure if there exists a subset
U ⊂ X with m(U) > 0 and such that for each continuous function ψ

lim
N→∞

1

N

N−1
∑

j=0

ψ(f j(x)) =

∫

ψ dµ(4.1)

for all x ∈ U .

Remark 4.2 (a) Recall that (??) always holds for µ-a.e. x ∈ X by the Birkhoff
Ergodic Theorem. The crucial difference for an SRB-measure is that the
temporal average equals the spatial average for a set of initial points x ∈ X
which has positive Lebesgue-measure. This is the reason why this measure is
also referred to as the natural or the physically relevant invariant measure.

(b) The concept of SRB-measures in the context of Anosov systems has been
introduced by Y.G. Sinai in the 1960’s (e.g. [?]). Later the existence of SRB-
measures has been shown for Axiom A systems by R. Bowen and D. Ruelle
(see [?, ?]). More recently M. Benedicks and L.-S. Young have shown that the
Henon-map has an SRB-measure for a “large” set of parameter values, [?].
However, it is still one of the major problems in Ergodic Theory to establish
the existence of SRB-measures for a more general class of dynamical systems.



ON THE APPROXIMATION OF COMPLICATED DYNAMICAL BEHAVIOR 11

Small Random Perturbations. We specify concretely the stochastic transi-
tion function p underlying the numerical realization. Recall that the purpose is to
approximate the Frobenius-Perron operator of a deterministic dynamical system rep-
resented by a diffeomorphism f . Hence the stochastic system that we consider should
be a small perturbation of this original deterministic system.

For ε > 0 we set

kε(x, y) =
1

εnm(B)
χB

(

1

ε

(

y − x
)

)

, x, y ∈ X.(4.2)

Here B = B0(1) denotes the open ball in R
n of radius one and χB is the characteristic

function of B. Obviously kε(f(x), y) is a transition density function and we may define
a stochastic transition function pε by

pε(x,A) =

∫

A

kε(f(x), y) dm(y).(4.3)

Remark 4.3 Note that pε(x, ·) → δf(x) for ε → 0 uniformly in x in a weak*–sense.
Hence the Markov process defined by any initial probability measure µ and the transi-
tion function pε is a small random perturbation of the deterministic system f in the
sense of Yu. Kifer ([?]).

Observe that we can apply the results from §?? since

∫∫

|kε(f(x), y)|
2 dm(x)dm(y) ≤

(

m(X)

εnm(B)

)2

<∞,

and therefore the Frobenius-Perron operator Pε : L2 → L2 is compact (see Lem-
ma ??).

Approximation of SRB-Measures. We now combine Corollary ?? with a
result of Yu. Kifer [?] to show that the approximations of the invariant measures
converge to an SRB-measure with decreasing magnitude of the random perturbations.

Let us be more precise. Suppose that the diffeomorphism f possesses a hyperbolic
attractor Λ with an SRB-measure µSRB , and let pε be a small random perturbation
of f . Then, under certain hypotheses on pε, it is shown in [?] that the invariant
measures of pε converge in a weak*–sense to µSRB as ε → 0. On the other hand we
can approximate the relevant eigenmeasures of Pε by Corollary ?? and this leads to
the desired result.

Theorem 4.4 Suppose that the diffeomorphism f has a hyperbolic attractor Λ, and
that there exists an open set UΛ ⊃ Λ such that

kε(x, y) = 0 if x ∈ f(UΛ) and y 6∈ UΛ.

Then the transition function pε in (??) has a unique invariant measure πε with support
on Λ and the approximating measures

µε
d(A) =

∫

A

gεd dm

converge in a weak*–sense to the SRB–measure µSRB of f as ε→ 0 and d→ ∞,

lim
ε→0

lim
d→∞

µε
d = µSRB .(4.4)
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Proof. It is straightforward to check that the conditions of Theorem 1 in [?] are
satisfied for the densities

qεx(y) = kε(x, y),

provided ε < 1. Hence – denoting the unique invariant measure of the transition
function pε with support in UΛ by πε – this theorem implies that

πε
weak∗
−→ µSRB for ε→ 0.(4.5)

By Remark ?? we know that πε is absolutely continuous, and we denote its density
function by κε. Then Corollary ?? guarantees that the fixed points gεd of P ε

d converge
to κε as d→ ∞. Therefore

∣

∣

∣

∣

∫

h dµε
d −

∫

h dπε

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

h(gεd − κε) dm

∣

∣

∣

∣

≤ ‖h‖2‖g
ε
d − κε‖2 → 0

as d→ ∞ for every h ∈ L2 and, in particular,

µε
d

weak∗
−→ πε as d→ ∞.

Combining this with (??) leads to (??), as desired.

5. Extracting Dynamical Behavior. In the previous section we have seen
that we can approximate the physically relevant invariant measure – the SRB-measure
– of our original deterministic system by the computation of the invariant measure of a
randomly perturbed system. However, dynamically also the non-stationary behavior
is interesting, and we will now describe how to detect numerically components in state
space which are (almost) cyclically permuted.

Extraction of Cyclic Behavior. Suppose that the stochastic transition func-
tion of the randomly perturbed dynamical system satisfies the cycle condition (??).
Then the purpose is to identify the components Xj . By Proposition ?? we know that
the approximating operator P ε

d has the eigenvalues ωk
r , k = 0, 1, . . . , r−1, and we now

show that the cyclic components can be approximated by certain linear combinations
of the corresponding eigenvectors.

It is instructive to consider the simplest case where r = 2 before we turn our
attention to the general situation. Suppose that we have two components X0 and X1

which are cyclically permuted by our process. Then the aim is to find approximations
of eigenmeasures µ0 and µ1 = Pεµ0 of P 2

ε with support on X0 and X1 respectively,
see Proposition ??. By the same proposition we know that ω0 = 1 and ω1 = −1 are
eigenvalues of Pε. Let ν0 and ν1 be corresponding (real) eigenmeasures. Then, by
(??), there are α0, α1 ∈ R such that

ν0 = α0(µ0 + Pεµ0) and ν1 = α1(µ0 − Pεµ0).

Rescaling ν0 and ν1 so that ν0(X0) = ν1(X0) = 1 we can compute µ0 and µ1 by

µ0 =
1

2
(ν0 + ν1) and µ1 =

1

2
(ν0 − ν1) .
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This process also shows how to construct eigenvectors of the Galerkin approxima-
tion for which linear combinations are appropriate approximations of the probability
measures µ0 and µ1.

We now consider the general case. For ℓ = 0, 1, . . . , r − 1 denote by µℓ = P ℓ
εµ0

the invariant measure of P r
ε with support on Xℓ (see Proposition ??).

Lemma 5.1 For s ∈ {0, 1, . . . , r − 1} let

νsk =

r−1
∑

j=0

ω−kj
r P j

ε µs(5.1)

be a specific choice for the eigenmeasures of Pε corresponding to the eigenvalues ωk
r ,

k = 0, 1, . . . , r − 1 (see (??)). Then

1

r

r−1
∑

k=0

ωℓk
r ν

s
k = µ

ℓ+s mod r
.

Proof. We compute

1

r

r−1
∑

k=0

ωℓk
r ν

s
k =

r−1
∑

j=0

(

1

r

r−1
∑

k=0

ω(ℓ−j)k
r

)

P j
ε µs = P ℓ

εµs = µℓ+s mod r.

Here we have used the identity

1

r

r−1
∑

k=0

ω(ℓ−j)k
r = δℓj ,

where δℓj is the Kronecker symbol.

The previous lemma indicates how to approximate the cyclic components of X:
we have to find eigenvectors vs0, . . . , v

s
r−1 of the matrix M−1

2 M1 (see (??)) which are
approximations of the eigenmeasures νsk in (??) for an s ∈ {0, 1, . . . , r − 1}. Then we
can compute

uℓ+s mod r =
1

r

r−1
∑

k=0

ωℓk
r v

s
k

for ℓ = 0, 1, . . . , r− 1, and the positive components of uj provide the desired informa-
tion about the support of µj on Xj (j = 0, 1, . . . , r − 1).

Hence it remains to describe how to construct eigenvectors vs0, . . . , v
s
r−1 approxi-

mating the νsk in (??) for an s ∈ {0, 1, . . . , r − 1}. We do this for the case where the
eigenvalues ωk

r are simple – the case of several coexisting cycles will be treated in the
following paragraph.

Suppose that we have a set of eigenmeasures ρk corresponding to the eigenvalues
ωk
r , k = 0, 1, . . . , r − 1. Since the eigenvalues are simple we know that for each
s ∈ {0, 1, . . . , r − 1} there is a constant αs

k ∈ C such that ρk can be written as

ρk = αs
kν

s
k.
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Hence the task is to rescale ρk so that αs
k = 1 for all k. By (??) it is easy to see that

for each s ∈ {0, 1, . . . , r − 1}

ρk(Xs) 6= 0.

We choose a particular s and rescale the ρk’s by (complex) factors so that

ρk(Xs) = 1 for all k = 0, 1, . . . , r − 1.

With this choice it follows that ρk = νsk.
In the realization of the approximation of the νsk’s we proceed with the eigenvectors

of M−1
2 M1 in an analogous way: by our choice of the Galerkin approximation we just

need to find an index such that the corresponding components of the eigenvectors do
not vanish. The scaling as described above can then be done in a similar way: find
complex multiples of the eigenvectors so that they possess (real) positive components
which add up to one for each vector. We will illustrate the method by examples in
§??.

Identification of Several Coexisting Cycles or Invariant Sets. In appli-
cations it may occur that there exist several different cycles in the dynamical system
under consideration. We now show how to identify these sets numerically. Replacing
Pε by an appropriate power P r

ε if necessary we can, without loss of generality, restrict
our attention to the case where there are different invariant sets.

Again we begin with the simplest case and assume that Pε has two linearly inde-
pendent invariant probability measures ν1 and ν2. Then, by Theorem ??, there are
constants αi

j (i, j = 1, 2) with

α1
1ν1 + α1

2ν2 = π1 and α2
1ν1 + α2

2ν2 = π2,

where π1 and π2 are probability measures with πi(Ei) = 1 for invariant sets E1 and
E2. Let Bi ⊂ Ei be subsets with νi(Bi) 6= 0. Then the coefficients αi

j can be found
as the solutions of the equations

α1
1ν1(B2) + α1

2ν2(B2) = 0

α2
1ν1(B1) + α2

2ν2(B1) = 0,

with the additional requirement that πi = αi
1ν1 + αi

2ν2 are probability measures.
Indeed, let βi

j be constants such that

α1
1ν1 + α1

2ν2 = β1
1π1 + β1

2π2

α2
1ν1 + α2

2ν2 = β2
1π1 + β2

2π2

Then, in particular,

0 = α1
1ν1(B2) + α1

2ν2(B2) = β1
1π1(B2) + β1

2π2(B2) = β1
2π2(B2)

0 = α2
1ν1(B1) + α2

2ν2(B1) = β2
1π1(B1) + β2

2π2(B1) = β2
1π1(B1).

Since νi(Bi) 6= 0 it follows that πi(Bi) 6= 0 and therefore β1
2 = β2

1 = 0 as desired.
We now generalize this observation. Suppose that the eigenspace of the Frobe-

nius-Perron operator corresponding to the eigenvalue one is e-dimensional. Then, by
Theorem ??, there are e distinct invariant sets E1, E2, . . . , Ee and invariant measures
π1, π2, . . . , πe such that πj(Ej) = 1.
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Lemma 5.2 Let νj, j = 1, . . . , e, be invariant measures spanning the e-dimensional
eigenspace of the Frobenius-Perron operator corresponding to the eigenvalue one. Let
Bi ⊂ Eki

be subsets such that νi(Bi) 6= 0, i = 1, 2, . . . , e. We have:
(a) the matrix M = (νj(Bi))i,j=1,...,e has full rank if and only if

{k1, k2, . . . , ke} = {1, 2, . . . , e};(5.2)

(b) if rank(M) = e then the invariant measures πj, j = 1, . . . , e, are given by

πkℓ
=

e
∑

j=1

αℓ
jνj ,

where αℓ = (αℓ
j) is the (rescaled) nullvector of Mℓ = (νj(Bi))i,j=1,...,e, i 6=ℓ.

Proof. Suppose that (??) holds. Let α ∈ R
e be an element of the kernel of the

matrix M = (νj(Bi)), that is,

e
∑

j=1

αjνj(Bi) = 0, i = 1, 2, . . . , e.

Using the fact that there are constants βj , j = 1, . . . , e, such that

e
∑

j=1

αjνj =

e
∑

j=1

βjπj

we obtain

0 =
e
∑

j=1

βjπj(Bi) = βki
πki

(Bi), i = 1, 2, . . . , e.

Since 0 6= νi(Bi) = γiπki
(Bi) for appropriate constants γi it follows that βi = 0 for

i = 1, 2, . . . , e (here we have used (??)). Hence
∑e

j=1 αjνj = 0 and since the νj ’s span
the e-dimensional eigenspace of the Frobenius-Perron operator corresponding to the
eigenvalue one we may conclude that α = 0.

To complete the proof of part (a) it remains to show that M = (νj(Bi)) is
singular if (??) is not satisfied, that is, if there is a k ∈ {1, 2, . . . , e} which is not in
{k1, k2, . . . , ke}. Writing πk as

πk =
e
∑

j=1

αjνj

and using Bi 6⊂ Ek we obtain for i = 1, . . . , e

0 = πk(Bi) =

e
∑

j=1

αjνj(Bi).

Hence α = (αj) is a nontrivial nullvector of M . The statement in part (b) is an
immediate consequence.

For the numerical identification of the sets E1, . . . , Ee we choose nonvanishing
components of the e approximations v1, . . . , ve of eigenmeasures ν1, . . . , νe in such a
way that the matrix M = (vji )i,j=1,...,e is nonsingular. Then we identify the distinct
invariant components as the support of the eigenmeasures approximated by the scaled
nullvectors of the matrices Mℓ = (vji )i,j=1,...,e, i 6=ℓ.
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Extraction of Almost Cyclic Behavior. We distinguish two different scenar-
ios by which an almost cyclic behavior may occur in a dynamical system:

(i) The first scenario we have in mind is that cyclic componentsX0, X1, . . . , Xr−1

merge while a control parameter is varied in the system. If this has happened
then the cyclic behavior can frequently be observed although it is strictly no
longer present.

(ii) Secondly it may happen that two different cycles merge while a control param-
eter is varied. For instance, if two invariant sets “collide” then immediately
after the collision there are still two subsets in state space which are almost
invariant.

In §?? we will illustrate both scenarios by numerical examples.
We know that the r-th roots of unity are eigenvalues of Pε if there are r cyclic

components. If these components merge then these eigenvalues leave the unit circle.
The main purpose of this paragraph is to relate the modulus of these eigenvalues to
the probability that the cyclic behavior is still observed. As in the previous subsection
we may just consider almost invariant sets by replacing Pε by P r

ε if necessary. In this
case a bunch of eigenvalues moves away from one along the real line while several
(precisely) invariant sets disappear.

Definition 5.3 A subset A ⊂ X is δ-almost invariant with respect to ρ ∈ M if
ρ(A) 6= 0 and

∫

A

pε(x,A) dρ(x) = δρ(A).

Remark 5.4 (a) Using the definition of pε we compute for a subset A ⊂ X

pε(x,A) =
m(A ∩Bf(x)(ε))

m(B0(ε))
.

Hence

δ =
1

ρ(A)

∫

A

m(A ∩Bf(x)(ε))

m(B0(ε))
dρ(x).

(b) We have seen that pε(x, ·) → δf(x) for ε → 0. Thus, we obtain in the deter-
ministic limit

∫

A

p0(x,A) dρ(x) =

∫

A

δf(x)(A) dρ(x) = ρ(f−1(A) ∩A).

Therefore in this case δ is the relative ρ-measure of the subset of points in A
which are mapped into A.

According to the classification of the occurrence of almost cyclic behavior given
at the beginning of this paragraph we identify almost cyclic behavior in the numerical
realization as follows:

(i) If cyclic components X0, X1, . . . , Xr−1 merge while a control parameter is
varied in the dynamical system then we use the same linear combinations as
in the unperturbed case to identify the components of the “almost-cycle”.
The overlap of the different components indicates the subset of points which
do no longer follow the cyclic behavior.
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(ii) If two invariant sets merge then we use the results obtained for the identifica-
tion of coexisting invariant sets. However, observe that in the perturbed case
we can no longer expect that an approximation of the matrixM in Lemma ??

will be singular although the chosen subsets do not properly represent the (al-
most) cyclic behavior. In the numerical realization we take this into account
and use as a criterion the condition number of these matrices: in the con-
struction of the matrix M we choose the components of the approximating
vectors in such a way that the condition number of M is as small as possible.

From now on we assume that λ 6= 1 is an eigenvalue of Pε with corresponding
real valued eigenmeasure ν ∈ MC, that is,

Pεν = λν.

Recall that in this case ν(X) = 0 (see Remark ?? (a)). The aim is to relate the value
of this eigenvalue to the probability δ in Definition ??. We begin with the following
elementary observation.

Lemma 5.5 Suppose that ν is scaled so that |ν| ∈ M, and let A ⊂ X be a set with
ν(A) = 1

2 . Then ν = |ν| on A.

Proof. Obviously, ν(B) ≤ |ν|(B) for all measurable B. For contradiction let
B ⊂ A be a measurable set with ν(B) < |ν|(B). It follows that there is a C ⊂ A with
ν(C) < 0. Hence we have for E = A – C

ν(E) > ν(A) =
1

2
.

Using ν(X) = 0 and |ν|(X) = 1 this leads to a contradiction

1 = |ν|(E) + |ν|(X – E) ≥ |ν(E)|+ |ν(X – E)| >
1

2
+

1

2
= 1.

Remark 5.6 Observe that by the Hahn decomposition (see e.g. [?]) the existence of
a set A with ν(A) = 1

2 is guaranteed.

Proposition 5.7 Suppose that ν is scaled so that |ν| ∈ M, and let A ⊂ X be a set
with ν(A) = 1

2 . Then

δ + σ = λ+ 1,(5.3)

if A is δ-almost invariant and X – A is σ-almost invariant with respect to |ν|.

Proof. By Lemma ?? we have
∫

A

pε(x,A) dν(x) =

∫

A

pε(x,A) d|ν|(x) = δν(A)

since ν(A) = 1
2 . Similarly,
∫

X – A

pε(x,A) dν(x) =

∫

X – A

1− pε(x,X – A) dν(x)

= ν(X – A)− σν(X – A)

= (σ − 1)ν(A),
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since ν(X – A) = −ν(A). Finally, using the fact that ν is an eigenmeasure we compute

λν(A) =

∫

A

pε(x,A) dν(x) +

∫

X – A

pε(x,A) dν(x)

= δν(A) + (σ − 1)ν(A) = (δ + σ − 1)ν(A),

yielding (??).

Remarks 5.8 (a) Observe that in the case where λ is close to one we may as-
sume that the probability measure |ν| is close to the invariant measure µ of
the system. In this sense we have derived the desired relation between the
eigenvalue λ and the probability that the system is still behaving in a cyclic
way.

(b) In our numerical computations we will work with the unperturbed equations
rather than introducing noise artificially. Thus, it would be important to know
whether the eigenvalues of P0 and Pε are close to each other for small ε. First
results concerning the stochastic stability of the spectrum of the Frobenius-
Perron operator are obtained in [?].

In (??) both δ and σ occur, and in general there will be no relation between these
constants. However, if the underlying system possesses an additional symmetry, then
we can express one of them in terms of the other one.

To illustrate this fact let us consider the simplest case where we have a symmetry
transformation κ in the problem with κ2 = id. In that case

pε(x,B) = pε(κx, κB) for all measurable B ⊂ X,(5.4)

which implies that for any ρ ∈ M
∫

B

pε(x,B) dρ =

∫

κB

p(x, κB) dκ∗ρ.

Hence we have

Corollary 5.9 Suppose in addition to the assumptions in Proposition ?? that
(i) pε is symmetric, that is (??) holds,
(ii) the set A satisfies κA = X – A, and
(iii) the measure |ν| is κ-symmetric, that is κ∗|ν| = |ν|.

Then X – A is δ-almost invariant with respect to |ν| if and only if A is δ-almost
invariant, and in particular

δ =
λ+ 1

2
.(5.5)

Numerical Solution of the Eigenvalue Problems. Since in this article we
were mainly interested in the description of how to extract numerically information on
the dynamical behavior from the spectrum of Pε we just outline the algorithmic steps
which are necessary for the numerical approximation and solution of the eigenvalue
problem (??). For the details concerning the implementation the reader is asked to
consult the references listed below.

All the algorithms described in the following are integrated into the C++ code
GAIO (Global Analysis of Invariant Objects),
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which can be obtained via http. (Consult the homepages of the authors.)
(i) Construction of a box-covering: we begin with the construction of a box-

covering of the interesting (randomly perturbed) dynamics in state space.
This can be done either by a subdivision technique (see [?, ?, ?, ?]) or by a
cell-mapping approach (see e.g. [?, ?]). This way we obtain a collection of
boxes Bk, k = 1, 2, . . . , N , such that the part of state space containing the
interesting dynamics is covered by their union.

Remark 5.10 To simplify the description we assume that all the boxes have
the same volume. However, it turned out that a box-covering can be con-
structed in an even more efficient way, if the size of the boxes is chosen in an
adaptive way in each step of the subdivision procedure. This fact is explored
in [?].

(ii) Galerkin approximation: the basis functions we have chosen are the charac-
teristic functions of the Bk’s,

ϕk = χBk
.

We assume that the Hausdorff distance between X and the covering ∪Bk is
small enough so that the assumption (??) on the ϕk’s is satisfied.

Remark 5.11 In practice we use the subdivision technique from [?] to con-
struct a box-covering for which (??) holds. In fact, we simply neglect those
boxes which have measure zero once a certain number of steps in the subdivi-
sion algorithm has been performed.

(iii) Approximation and solution of the eigenvalue problem: we approximate the
coefficients of the matrices M1 and M2 in (??) by a numerical evaluation
of the integrals which are involved. Observe that by our specific choice of
the boxes and the ϕk’s the matrix M2 is a multiple of the identity. Hence
the main numerical effort lies in the computation of the inner products to
approximate the operator Pε. This is done either by a Monte-Carlo method
or by an exhaustion technique as described in [?].
For the computation of eigenvalues and corresponding eigenvectors we use
ARPACK which provides an iterative eigenvalue solver for sparse matrices
(see [?]). Alternatively we use an approach based on bordered matrices for
finding specific single eigenvectors. For the solution of the corresponding
system of linear equations we use an iterative method taking the fact into
account that the matrix M1 is extremely sparse.

6. Examples. In this section we illustrate our numerical methods by three ex-
amples in which the transition from a true cyclic behavior to an almost cycling one
becomes apparent. First we use the well known Hénon map as an example to analyze
a 2-cycle and an almost 2-cycle. The second example is a Z3-equivariant mapping in
the complex plane which shows a cycling behavior of period six. Finally we investi-
gate numerically the Chua circuit. Since this is an ordinary differential equation no
nontrivial cycling is expected to be seen. However, in this case we will identify two
sets in phase space which are almost invariant with respect to the flow.

All the computations were done without an artificial introduction of noise. Ra-
ther it turned out to be sufficient for our purposes to interpret the round off error as
a small random perturbation.
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A Two Cycle in the Hénon Map. We consider a scaled version of the well
known Hénon map,

f(x, y) = (1− ax2 + y/5, 5bx),

where we fix b = 0.2 and vary a. For a = 1.2 this map possesses a 2-cycle, and we have
used the approximation procedure described in §?? to identify the two components X0

and X1. In Figure ?? we show the approximations v0 and v1 of the two eigenmeasures
of the Frobenius-Perron operator corresponding to the eigenvalues λ0 = 1 and λ1 =
−1.
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Fig. 6.1. Eigenvectors of the approximation of the Frobenius-Perron operator for the Hénon
map (a = 1.2, b = 0.2).
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Fig. 6.2. Approximations of probability measures with support on the two components of the
2-cycle (a = 1.2, b = 0.2).

By Lemma ??

u0 =
1

2
(v0 + v1) and u1 =

1

2
(v0 − v1)

are approximations of probability measures µ0 and µ1 which have support on X0 and
X1 respectively. These are shown in Figure ??.
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Remark 6.1 In the computation the box-covering was obtained by the continuation
algorithm described in [?]. The boxes were of size 1/210 in each coordinate direction
and the continuation was restricted to the square Q = [−2, 2]2 ⊂ R

2. This way we
have produced a covering of the closure of the one-dimensional unstable manifold of
the hyperbolic fixed point in the first quadrant by 2525 boxes.

Next we set a = 1.272. For this parameter value the 2-cycle has disappeared,
but in simulations the cycling behavior can still be observed for most iterates. Cor-
respondingly we find that λ1 = −0.9944 is an eigenvalue of the approximation of the
Frobenius-Perron operator. Using the same notation as before we show in Figures ??
and ?? the approximations of the eigenmeasures. In this case the box-covering has
3101 elements. Note that the supports of u0 and u1 have a nonempty intersection.
This fact is illustrated in Figure ?? where we have marked all boxes on which u0 > 10
and u1 > 10 by black circles.
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Fig. 6.3. Eigenvectors of the approximation of the Frobenius-Perron operator for the Hénon
map (a = 1.272, b = 0.2).
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Fig. 6.4. Approximations of probability measures which correspond to the two components of
the almost 2-cycle (a = 1.272, b = 0.2).
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Fig. 6.5. Approximation of a subset which is in the supports of both probability measures
corresponding to the almost 2-cycle.

A Period Six Cycle. As the second example we slightly modify a mapping from
[?] and consider the dynamical system f : C → C,

f(z) = e−
2πi
3

(

(|z|2 + α)z +
1

2
z̄2
)

,

for the parameter value α = −1.7. For the computation of the box-covering we
have used the subdivision algorithm described in [?]. Starting with the square Q =
[−1.5, 1.5]2 we have subdivided Q seven times by bisection in each coordinate direction
which leads to a box-covering by 3606 boxes. In Figure ?? we show the approximation
of the invariant measure, that is, the eigenvector v0 corresponding to the eigenvalue
λ0 = 1 of the discretized Frobenius-Perron operator. In this case this operator ad-
ditionally has the eigenvalues ωk

6 , k = 1, . . . , 5, and hence we may use Lemma ?? to
compute approximations v0, . . . , v5 of the probability measures with support on the
cyclic components X0, . . . , X5. These supports are shown in Figure ??.

Now we vary the parameter and set α = −1.8. For this value of α the strict
cyclic behavior disappears and there is an almost 6-cycle. In Figure ?? we show the
“essential” supports of the approximations v0, . . . , v5 of the six almost cyclic compo-
nents. More precisely we show all boxes Bℓ for which (vi)ℓ > 0.1, i = 0, . . . , 5 (by
(vi)ℓ we denote the ℓ-th component of the vector vi). In Figure ?? we demonstrate
that the intersection of these supports is nonempty. We have shown all boxes Bℓ for
which there are at least two indices i, j ∈ {0, . . . , 5}, i 6= j, such that (vi)ℓ > 0.1 and
(vj)ℓ > 0.1.

In the following table we list the corresponding eigenvalues together with their
absolute value.

j λj |λj |

0 1 1
1,5 0.4918± 0.8534i 0.985
2,4 −0.4880± 0.8437i 0.9747
3 −0.9709 0.9709

Finally we remark that for this parameter value the subdivision algorithm leads to a
covering by 4364 boxes.

Two Almost Invariant Sets in the Chua Circuit. Finally we present a
system of three first order ordinary differential equations in which two almost invariant
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Fig. 6.6. Approximation of the invariant measure for α = −1.7.

sets can be identified numerically. The system which we are considering is the Chua
circuit,

ẋ = α

(

y −m0x−
1

3
m1x

3

)

ẏ = x− y + z

ż = −βy,

where we have chosen the parameter values α = 18, β = 33,m0 = −0.2 andm1 = 0.01.
A detailed discussion of the dynamical behavior of this system can be found in [?], see
also [?]. We consider the time-0.1 map and – using the continuation method described
in [?] – cover the unstable manifold of the origin by 10372 boxes. In addition to
the eigenvalue one the discretized Frobenius-Perron operator does also possess the
eigenvalue λ1 = 0.9272. We may conclude from this result that there are two almost
invariant sets. Indeed, a numerical approximation of the corresponding regions in
phase space leads to the result shown in Figure ??. A detailed numerical study of
this particular example can be found in [?].
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Fig. 6.7. Approximation of the cyclic components X0, . . . , X5 for α = −1.7.
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Fig. 6.9. Illustration of the existence of two almost invariant sets in the Chua circuit. (a)
Boxes corresponding to components of the approximating densities with value bigger than 10−4; (b)
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superposition of the two almost invariant sets.
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