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Abstract—We study the uniform approximation

of the sigmoid cut function by smooth sigmoid

functions such as the logistic and the Gompertz

functions. The limiting case of the interval-valued

step function is discussed using Hausdorff metric.

Various expressions for the error estimates of the

corresponding uniform and Hausdorff approxima-

tions are obtained. Numerical examples are pre-

sented using CAS MATHEMATICA.
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I. INTRODUCTION

In this paper we discuss some computational,

modelling and approximation issues related to

several classes of sigmoid functions. Sigmoid

functions find numerous applications in various

fields related to life sciences, chemistry, physics,

artificial intelligence, etc. In fields such as signal

processing, pattern recognition, machine learning,

artificial neural networks, sigmoid functions are

also known as “activation” and “squashing” func-

tions. In this work we concentrate on several

practically important classes of sigmoid functions.

Two of them are the cut (or ramp) functions and

the step functions. Cut functions are continuous

but they are not smooth (differentiable) at the two

endpoints of the interval where they increase. Step

functions can be viewed as limiting case of cut

functions; they are not continuous but they are

Hausdorff continuous (H-continuous) [4], [43]. In

some applications smooth sigmoid functions are

preferred, some authors even require smoothness

in the definition of sigmoid functions. Two famil-

iar classes of smooth sigmoid functions are the

logistic and the Gompertz functions. There are

situations when one needs to pass from nonsmooth

sigmoid functions (e. g. cut functions) to smooth

sigmoid functions, and vice versa. Such a neces-

sity rises the issue of approximating nonsmooth

sigmoid functions by smooth sigmoid functions.

One can encounter similar approximation prob-

lems when looking for appropriate models for

fitting time course measurement data coming e. g.

from cellular growth experiments. Depending on

the general view of the data one can decide to use
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initially a cut function in order to obtain rough

initial values for certain parameters, such as the

maximum growth rate. Then one can use a more

sophisticate model (logistic or Gompertz) to obtain

a better fit to the measurement data. The presented

results may be used to indicate to what extend and

in what sense a model can be improved by another

one and how the two models can be compared.

Section 2 contains preliminary definitions and

motivations. In Section 3 we study the uniform and

Hausdorff approximation of the cut functions by

logistic functions. Curiously, the uniform distance

between a cut function and the logistic function of

best uniform approximation is an absolute constant

not depending on the slope of the functions, a

result observed in [18]. By contrast, it turns out

that the Hausdorff distance (H-distance) depends

on the slope and tends to zero when increasing the

slope. Showing that the family of logistic functions

cannot approximate the cut function arbitrary well,

we then consider the limiting case when the cut

function tends to the step function (in Hausdorff

sense). In this way we obtain an extension of a

previous result on the Hausdorff approximation

of the step function by logistic functions [4]. In

Section 4 we discuss the approximation of the

cut function by a family of squashing functions

induced by the logistic function. It has been shown

in [18] that the latter family approximates uni-

formly the cut function arbitrary well. We propose

a new estimate for the H-distance between the

cut function and its best approximating squashing

function. Our estimate is then extended to cover

the limiting case of the step function. In Section 5

the approximation of the cut function by Gompertz

functions is considered using similar techniques

as in the previous sections. The application of the

logistic and Gompertz functions in life sciences

is briefly discussed. Numerical examples are pre-

sented throughout the paper using the computer

algebra system MATHEMATICA.

II. PRELIMINARIES

Sigmoid functions. In this work we consider

sigmoid functions of a single variable defined on

the real line, that is functions s of the form

s : R −→ R. Sigmoid functions can be defined

as bounded monotone non-decreasing functions on

R. One usually makes use of normalized sigmoid

functions defined as monotone non-decreasing

functions s(t), t ∈ R, such that lim s(t)t→−∞ = 0
and lim s(t)t→∞ = 1. In the fields of neural

networks and machine learning sigmoid-like func-

tions of many variables are used, familiar under the

name activation functions. (In some applications

the sigmoid functions are normalised so that the

lower asymptote is assumed −1: lim s(t)t→−∞ =
−1.)

Cut (ramp) functions. Let ∆ = [γ − δ, γ + δ] be

an interval on the real line R with centre γ ∈ R

and radius δ ∈ R. A cut function (on ∆) is defined

as follows:

Definition 1. The cut function cγ,δ on ∆ is defined

for t ∈ R by

cγ,δ(t) =



















0, if t < ∆,

t− γ + δ

2δ
, if t ∈ ∆,

1, if ∆ < t.

(1)

Note that the slope of function cγ,δ(t) on the

interval ∆ is 1/(2δ) (the slope is constant in the

whole interval ∆). Two special cases are of interest

for our discussion in the sequel.

Special case 1. For γ = 0 we obtain a cut

function on the interval ∆ = [−δ, δ]:

c0,δ(t) =



















0, if t < −δ,

t+ δ

2δ
, if −δ ≤ t ≤ δ,

1, if δ < t.

(2)

Special case 2. For γ = δ we obtain the cut

function on ∆ = [0, 2δ]:

cδ,δ(t) =



















0, if t < 0,

t

2δ
, if 0 ≤ t ≤ 2δ,

1, if 2δ < t.

(3)

Biomath 4 (2015), 15, http://dx.doi.org/10.11145/j.biomath.2015.. Page 2 of 12

http://dx.doi.org/10.11145/j.biomath.2015..


A. Iliev et al., On the Approximation of the Cut and Step Functions by Logistic ...

Step functions. The step function (with “jump” at

γ ∈ R) can be defined by

hγ(t) = cγ,0(t) =











0, if t < γ,

[0, 1], if t = γ,

1, if t > γ,

(4)

which is an interval-valued function (or just in-

terval function) [4], [43]. In the literature various

point values, such as 0, 1/2 or 1, are prescribed

to the step function (4) at the point γ; we prefer

the interval value [0, 1]. When the jump is at the

origin, that is γ = 0, then the step function is

known as the Heaviside step function; its “inter-

val” formulation is:

h0(t) = c0,0(t) =











0, if t < 0,

[0, 1], if t = 0,

1, if t > 0.

(5)

H-distance. The step function can be perceived

as a limiting case of the cut function. Namely,

for δ → 0, the cut function cδ,δ tends in “Haus-

dorff sense” to the step function. Here “Haus-

dorff sense” means Hausdorff distance, briefly

H-distance. The H-distance ρ(f, g) between two

interval functions f, g on Ω ⊆ R, is the distance

between their completed graphs F (f) and F (g)
considered as closed subsets of Ω× R [24], [41].

More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, (6)

sup
B∈F (g)

inf
A∈F (f)

||A−B||},

wherein ||.|| is any norm in R
2, e. g. the maximum

norm ||(t, x)|| = max |t|, |x|.

To prove that (3) tends to (5) let h be the H-

distance between the step function (5) and the

cut function (3) using the maximum norm, that

is a square (box) unit ball. By definition (6) h
is the side of the smallest unit square, centered

at the point (0, 1) touching the graph of the cut

function. Hence we have 1 − cδ,δ(h) = h, that is

1− h/(2δ) = h, implying

h =
2δ

1 + 2δ
= 2δ +O(δ2).

For the sake of simplicity throughout the pa-

per we shall work with some of the special cut

functions (2), (3), instead of the more general

(arbitrary shifted) cut function (1); these special

choices will not lead to any loss of generality

concerning the results obtained. Moreover, for all

sigmoid functions considered in the sequel we

shall define a “basic” sigmoid function such that

any member of the corresponding class is obtained

by replacing the argument t by t − γ, that is by

shifting the basic function by some γ ∈ R.

Logistic and Gompertz functions: applications

to life-sciences. In this work we focus on two

familiar smooth sigmoid functions, namely the

Gompertz function and the Verhulst logistic func-

tion. Both their inventors, B. Gompertz and P.-

F. Verhulst, have been motivated by the famous

demographic studies of Thomas Malthus.

The Gompertz function was introduced by

Benjamin Gompertz [22] for the study of de-

mographic phenomena, more specifically human

aging [38], [39], [47]. Gompertz functions find

numerous applications in biology, ecology and

medicine. A. K. Laird successfully used the Gom-

pertz curve to fit data of growth of tumors [32];

tumors are cellular populations growing in a con-

fined space where the availability of nutrients is

limited [1], [2], [15], [19].

A number of experimental scientists apply

Gompertz models in bacterial cell growth, more

specifically in food control [10], [31], [42], [48],

[49], [50]. Gompertz models prove to be useful in

animal and agro-sciences as well [8], [21], [27],

[48]. The Gompertz model has been applied in

modelling aggregation processes [25], [26]; it is a

subject of numerous theoretical modelling studies

as well [6], [7], [9], [20], [37], [40].

The logistic function was introduced by Pierre

François Verhulst [44]–[46], who applied it to

human population dynamics. Verhulst derived his

logistic equation to describe the mechanism of

the self-limiting growth of a biological population.

The equation was rediscovered in 1911 by A.

G. McKendrick [35] for the bacterial growth in
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broth and was tested using nonlinear parameter

estimation. The logistic function finds applications

in an wide range of fields, including biology, ecol-

ogy, population dynamics, chemistry, demography,

economics, geoscience, mathematical psychology,

probability, sociology, political science, financial

mathematics, statistics, fuzzy set theory, to name

a few [12], [13], [11], [14], [18].

Logistic functions are often used in artificial

neural networks [5], [16], [17], [23]. Any neural

net element computes a linear combination of its

input signals, and applies a logistic function to the

result; often called “activation” function. Another

application of logistic curve is in medicine, where

the logistic differential equation is used to model

the growth of tumors. This application can be

considered an extension of the above-mentioned

use in the framework of ecology. In (bio)chemistry

the concentration of reactants and products in

autocatalytic reactions follow the logistic function.

Other smooth sigmoid functions. The integral

(antiderivative) of any smooth, positive, “bump-

shaped” or “bell-shaped” function will be sig-

moidal. A famous example is the error function,

which is the integral (also called the cumulative

distribution function) of the Gaussian normal dis-

tribution. The logistic function is also used as a

base for the derivation of other sigmoid functions,

a notable example is the generalized logistic func-

tion, also known as Richards curve [37]. Another

example is the Dombi-Gera-squashing function

introduced and studied in [18] obtained as an

antiderivative (indefinite integral) of the difference

of two shifted logistic functions.

In what follows we shall be interested in the

approximation of the cut function by smooth sig-

moid functions, more specifically the Gompertz,

the logistic and the Dombi-Gera-squashing func-

tion. We shall focus first on the Verhulst logistic

function.

III. APPROXIMATION OF THE CUT FUNCTION

BY LOGISTIC FUNCTIONS

Definition 2. Define the logistic (Verhulst) func-

tion v on R as [44]–[46]

vγ,k(t) =
1

1 + e−4k(t−γ)
. (7)

Note that the logistic function (7) has an inflec-

tion at its “centre” (γ, 1/2) and its slope at γ is

equal to k.

Proposition 1. [18] The function vγ,k(t) defined

by (7) with k = 1/(2δ): i) is the logistic func-

tion of best uniform one-sided approximation to

function cγ,δ(t) in the interval [γ,∞) (as well as

in the interval (−∞, γ]); ii) approximates the cut

function cγ,δ(t) in uniform metric with an error

ρ = ρ(c, v) =
1

1 + e2
= 0.11920292.... (8)

Proof. Consider functions (1) and (7) with same

centres γ = δ, that is functions cδ,δ and vδ,k. In

addition chose c and v to have same slopes at their

coinciding centres, that is assume k = 1/(2δ), cf.

Figure 1. Then, noticing that the largest uniform

distance between the cut and logistic functions is

achieved at the endpoints of the underlying interval

[0, 2δ], we have:

ρ = vδ,k(0)− cδ,δ =
1

1 + e4kδ
=

1

1 + e2
. (9)

This completes the proof of the proposition.

We note that the uniform distance (9) is an

absolute constant that does not depend on the

width of the underlying interval ∆, resp. on the

slope k. The next proposition shows that this is

not the case whenever H-distance is used.

Proposition 2. The function v(t) = v0,k(t) with

k = 1/(2δ) is the logistic function of best Haus-

dorff one-sided approximation to function c(t) =
c0,k(t) in the interval [0,∞) (resp. in the interval

(−∞, 0]). The function v(t), approximates func-

tion c(t) in H-distance with an error h = h(c, v)
that satisfies the relation:

ln
1− h

h
= 2 + 4kh. (10)
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Fig. 1. The cut and logistic functions for γ = δ = 1,

k = 1/2.

Proof. Using δ = 1/(2k) we can write δ+ h =
(1 + 2hk)/(2k), resp.:

v(−δ − h) =
1

1 + e2(1+2hk)
.

The H-distance h using square unit ball (with a

side h) satisfies the relation v(−δ − h) = h,

which implies (10). This completes the proof of

the proposition.

Relation (10) shows that the H-distance h de-

pends on the slope k, h = h(k). The next result

gives additional information on this dependence.

Proposition 3. For the H-distance h(k) the fol-

lowing holds for k > 5:

1

4k + 1
< h(k) <

ln(4k + 1)

4k + 1
. (11)

Proof. We need to express h in terms of k, using

(10). Let us examine the function

f(h) = 2 + 4hk − ln(1− h)− ln
1

h
.

From

f ′(h) = 4k +
1

1− h
+

1

h
> 0

we conclude that function f is strictly monotone

increasing. Consider the function

g(h) = 2 + h(1 + 4k)− ln
1

h
.

Then g(h)− f(h) = h+ ln(1−h) = O(h2) using

the Taylor expansion ln(1 − h) = −h + O(h2).
Hence g(h) approximates f(h) with h → 0 as

O(h2). In addition g′(h) = 1 + 4k + 1/h > 0,

hence function g is monotone increasing. Further,

for k ≥ 5

g

(

1

1 + 4k

)

= 3− ln(1 + 4k) < 0,

g

(

ln(4k + 1)

4k + 1

)

= 2 + ln ln(1 + 4k) > 0.

This completes the proof of the proposition.

Relation (11) implies that when the slope k of

functions c and v tends to infinity, the h-distance

h(c, v) between the two functions tends to zero

(differently to the uniform distance ρ(c, v) which

remains constant).

The following proposition gives more precise

upper and lower bounds for h(k). For brevity

denote K = 4k + 1.

Proposition 4. For the H-distance h the following

inequalities hold for k ≥ 5:

lnK

K
−

2 + ln lnK

K
(

1 + 1
lnK

) < h(k) < (12)

lnK

K
+

2 + ln lnK

K
(

ln lnK
1−lnK − 1

) ,K = 4k + 1.

Proof. Evidently, the second derivative of g(h) =
2 + h(1 + 4k) − ln(1/h), namely g′′(h) =
− 1

h2 < 0, has a constant sign on [ 1K , lnK
K ]. The

straight line, defined by the points
(

1
K , g( 1

K )
)

and
(

lnK
K , g( lnK

K )
)

, and the tangent to g at the point
(

lnK
K , g( lnK

K )
)

cross the abscissa at the points

lnK

K
+

2 + ln lnK

K
(

ln lnK
1−lnK − 1

) ,
lnK

K
−

2 + ln lnK

K
(

1 + 1
lnK

) ,

respectively. This completes the proof of the

Proposition.

Propositions 2, 3 and 4 extend similar results

from [4] stating that the Heaviside interval-valued

step function is approximated arbitrary well by
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logistic functions in Hausdorff metric. The Haus-

dorff approximation of the Heaviside step function

by sigmoid functions is discussed from various

computational and modelling aspects in [28], [29],

[30].

IV. APPROXIMATION OF THE CUT FUNCTION

BY A SQUASHING FUNCTION

The results obtained in Section 3 state that

the cut function cannot be approximated arbitrary

well by the family of logistic functions. This

result justifies the discussion of other families

of smooth sigmoid functions having better ap-

proximating properties. Such are the squashing

functions proposed in [18] further denoted DG-

squashing functions.

Definition 3. The DG-squashing function s∆ on

the interval ∆ = [γ − δ, γ + δ] is defined by

s
(β)
∆ (t) = s

(β)
γ,δ (t) =

1

2δ
ln

(

1 + eβ(t−γ+δ)

1 + eβ(t−γ−δ)

)

1

β

.

(13)

Note that the squashing function (13) has an

inflection at its “centre” γ and its slope at γ is

equal to (2δ)−1.

The squashing function (13) with centre γ = δ:

s
(β)
δ,δ (t) =

1

2δ
ln

(

1 + eβt

1 + eβ(t−2δ)

)

1

β

, (14)

is the function of best uniform approximation to

the cut function (3). Indeed, functions cδ,δ and s
(β)
γ,δ

have same centre γ = δ and equal slopes 1/(2δ)
at their coinciding centres. As in the case with

the logistic function, one observes that the uniform

distance ρ = ρ(c, s) between the cut and squashing

function is achieved at the endpoints of the interval

∆, more specifically at the origin. Denoting the

width of the interval ∆ by w = 2δ we obtain

ρ = s
(β)
δ,δ (0) =

1

w
ln(

2

1 + eβ(−w)
)1/β < (15)

ln 2

w

1

β
= const

1

β
.

The estimate (15) has been found by Dombi

and Gera [18]. This result shows that any cut

Fig. 2. The functions F (d) and G(d).

function c∆ can be approximated arbitrary well by

squashing functions s
(β)
∆ from the class (13). The

approximation becomes better with the increase of

the value of the parameter β. Thus β affects the

quality of the approximation; as we shall see below

the practically interesting values of β are integers

greater than 4.

In what follows we aim at an analogous result

using Hausdorff distance. Let us fix again the

centres of the cut and squashing functions to be

γ = δ so that the form of the cut function is cδ,δ,

namely (3), whereas the form of the squashing

function is s
(β)
δ,δ as given by (14). Both functions

cδ,δ and s
(β)
δ,δ have equal slopes 1/w, w = 2δ, at

their centres δ.

Denoting the square-based H-distance between

cδ,δ and s
(β)
δ,δ by d = d(w;β), w = 2δ, we have

the relation

s
(β)
δ,δ (w + d) =

1

w
ln

(

1 + eβ(w+d)

1 + eβd

)

1

β

= 1− d

or

ln
1 + eβ(w+d)

1 + eβd
= βw(1− d). (16)

The following proposition gives an upper bound

for d = d(w;β) as implicitly defined by (16):

Proposition 5. For the distance d the following

holds for β ≥ 5:

d < ln 2
ln(4βw + 1)

4wβ + 1
. (17)
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Proof. We examine the function:

F (d) = −βw(1−d)+ln(1+eβ(w+d))+ln
1

1 + eβd
.

From F ′(d) > 0 we conclude that function

F (d) is strictly monotone increasing. We define

the function

G(d) = −βw + ln(1 + eβw)+

dβ

(

w +
eβw

1 + eβw

)

+ ln
1

1 + eβd
.

We examine G(d)− F (d):

G(d)− F (d) =

ln(1 + eβw) +
eβwβd

1 + eβw
− ln(1 + eβ(w+d)).

From Taylor expansion

ln(1+eβ(w+d)) = ln(1+eβw)+
eβwβd

1 + eβw
+O(d2)

we see that function G(d) approximates F (d) with

d → 0 as O(d2) (cf. Fig. 2).

In addition G(0) < 0 and G
(

ln 2 ln(4βw+1)
4wβ+1

)

>

0 for β ≥ 5. This completes the proof of the

proposition.

Some computational examples using relation

(16) and (17) for various β and w are presented

in Table 1.

w β d(w;β) from(16) d(w;β) from(17)
1 30 0.016040 0.027472
5 10 0.012639 0.018288
6 100 0.001068 0.002247
14 5 0.009564 0.013908
50 100 0.000137 0.000343
500 1000 1.38× 10−6 5.02× 10−6

1000 5000 1.3× 10−7 5.8× 10−7

TABLE I

BOUNDS FOR d(w;β) COMPUTED BY (16) AND (17),

RESPECTIVELY

The numerical results are plotted in Fig. 3 (for

the case β = 5, w = 3; d = 0.0398921) and Fig.

4 (for the case β = 10, w = 4; d = 0.0154697).

Fig. 3. Functions cδ,δ and s
(β)
δ,δ for β = 5, w = 3; d ≤ 0.4.

Fig. 4. Functions cδ,δ and s
(β)
δ,δ for β = 10, w = 4; d ≤

0.016.

V. APPROXIMATION OF THE STEP FUNCTION

BY THE GOMPERTZ FUNCTION

In this section we study the Hausdorff approxi-

mation of the step function by the Gompertz func-

tion and obtain precise upper and lower bounds

for the Hausdorff distance. Numerical examples,

illustrating our results are given.

Definition 4. The Gompertz function σα,β(t) is

defined for α, β > 0 by [22]:

σα,β(t) = e−αe−βt
. (18)

Special case 3. For α∗ = ln 2 = 0.69314718... we

obtain the special Gompertz function:

σα∗,β(t) = e−α∗e−βt
, (19)

such that σα∗,β(0) = 1/2.
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Fig. 5. The Gompertz function with α = ln 2 and β = 5;

H-distance d = 0.212765.

We study the Hausdorff approximation of the

Heaviside step function c0 = h0(t) by Gompertz

functions of the form (18) and find an expression

for the error of the best approximation.

The H-distance d = d(α∗, β) between the

Heaviside step function h0(t) and the Gompertz

function (19) satisfies the relation

σα∗,β(d) = e−α∗e−βd
= 1− d,

or

ln(1− d) + α∗e−βd = 0. (20)

The following theorem gives upper and lower

bounds for d(α∗, β). For brevity we denote α = α∗

in Theorem 1 and its proof.

Theorem 1. The Hausdorff distance d = d(α, β)
between the step function h0 and the Gompertz

function (19) can be expressed in terms of the

parameter β for any real β ≥ 2 as follows:

2α− 1

1 + αβ
< d <

ln(1 + αβ)

1 + αβ
. (21)

Proof. We need to express d in terms of α and β,

using (20). Let us examine the function F (d) =
ln(1− d) + αe−βd. From

F ′(d) = −
1

1− d
− αβe−βd < 0

we conclude that the function F is strictly mono-

tone decreasing. Consider function G(d) = α −
(1 + αβ)d. From Taylor expansion

α− (1 + αβ)d− ln(1− d)− αe−βd = O(d2)

we obtain G(d)−F (d) = α− (1+αβ)d− ln(1−
d) − αe−βd = O(d2). Hence G(d) approximates

F (d) with d → 0 as O(d2). In addition G′(d) =
−(1 + αβ) < 0. Further, for β ≥ 2,

G

(

2α− 1

1 + αβ

)

= 1− α > 0,

G

(

ln(1 + αβ)

1 + αβ

)

= α− ln(1 + αβ) < 0.

This completes the proof of the theorem.

Some computational examples using relation

(20) are presented in Table 2.

β d(α∗, β)
2 0.310825
5 0.212765
10 0.147136
50 0.0514763
100 0.0309364
500 0.00873829
1000 0.00494117

TABLE II

BOUNDS FOR d(α∗, β) COMPUTED BY (20) FOR VARIOUS

β .

The calculation of the value of the H-distance

between the Gompertz sigmoid function and the

Heaviside step function is given in Appendix 1.

The numerical results are plotted in Fig. 5

(for the case α∗ = ln 2, β = 5, H-distance

d = 0.212765) and Fig. 6 (for the case α∗ = ln 2,

β = 20, H-distance d = 0.0962215).

Remark 1. For some comparisons of the Gom-

pertz and logistic equation from both practical and

theoretical perspective, see [6], [8], [40]. As can

be seen from Figure 6 the graph of the Gompertz

function is “skewed”, it is not symmetric with

respect to the inflection point. In biology, the

Gompertz function is commonly used to model

growth process where the period of increasing

growth is shorter than the period in which growth

decreases [8], [33].
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Fig. 6. The logistic (dotted line) and the Gompertz function

(dense line) with same point and same rate (at that point).

Remark 2. For k > 0, β > 0 consider the

differential equation

y′ = ke−βty,
k

β
= α. (22)

We have

dy

dt
= ke−βty;

dy

y
= ke−βtdt

ln y = −
k

β
e−βt = −αe−βt; y = e−αe−βt

.

We see that the solution of differential equation

(22) is the Gompertz function σα,β(t) (18) [6]).

As shown in [28], equation (22) can be interpreted

as y′ = ksy, wherein s = s(t) is the nutrient

substrate used for the growth of the population;

one see that s is a decay exponential function in

the Gompertz model (a similar interpretation can

be found in [21]), [40]). For other interpretations

see [6]), [8], [20].

VI. CONCLUSION

In this paper we discuss several computational,

modelling and approximation issues related to two

familiar classes of sigmoid functions—the logis-

tic (Verhulst) and the Gompertz functions. Both

classes find numerous applications in various fields

of life sciences, ecology, medicine, artificial neural

networks, fuzzy set theory, etc.

bigskip

We study the uniform and Hausdorff approxima-

tion of the cut functions by logistic functions. We

demonstrate that the best uniform approximation

between a cut function and the respective logistic

function is an absolute constant not depending on

the (largest) slope k. On the other side we show

that the Hausdorff distance (H-distance) depends

on the slope k and tends to zero with k → ∞. We

also discuss the limiting case when the cut function

tends to the Heaviside step function in Hausdorff

sense, thereby extending a related previous result

[4].

The approximation of the cut function by a

family of squashing functions induced by the lo-

gistic function is also discussed. We propose a new

estimate for the H-distance between a cut function

and its best approximating squashing function.

Our estimate extends a known result stating that

the cut function can be approximated arbitrary

well by squashing functions [18]. Our estimate

is also extended to cover the limiting case of the

Heaviside step function.

Finally we study the approximation of the cut

and step functions by the family of Gompertz func-

tions. New estimates for the H-distance between a

cut function and its best approximating Gompertz

function are obtained.
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APPENDIX

The Module “Computation of the distance d and visualization of the cut function c∆ and squashing

function s
(β)
∆ ” in CAS MATHEMATICA.
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Fig. 7. Module in programming environment MATHEMATICA.

Fig. 8. The test provided on our control example.
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