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Abstract— Using the Nakagami probability density function 
(PDF) to model multipath fading and the Gamma PDF to model 
shadowing, in a wireless channel, has led to a closed–form 
expression for the composite fading PDF, known as the 
generalized-K PDF (also called Gamma-Gamma PDF). However, 
further derivations have shown that the cumulative distribution 
function (CDF) and the characteristic function of the generalized-
K PDF contain special functions that are involved to handle. In 
this paper, an approximation of the generalized-K PDF by the 
familiar Gamma PDF is introduced. The parameters of the 
approximating Gamma PDF are computed using the moment 
matching method. The accuracy of this approximation in the 
lower and upper tail regions is enhanced by adjusting the 
parameters of the approximating Gamma distribution in each 
region. The CDF and the complementary CDF plots show that 
this approximation is sufficiently accurate for both integer and 
non-integer practical values of the multipath fading and 
shadowing parameters. The region-wise approximation obtained 
by the adjusted moment matching method is used to well-
approximate the PDF of the sum of identically and independent 
generalized-K random variables. Applications of the obtained 
results arise in distributed antenna systems (DASs), cooperative 
relay networks, radar, and sonar systems.  

Keywords; Composite fading, generalized-K distribution; 
Gamma distribution; moment matching; lower and upper tails; 
distributed antenna systems; relay networks. 

I. INTRODUCTION  
    In wireless channels, the phenomena of multipath fading and 
shadowing take place simultaneously leading to composite 
fading. The small-scale multipath fading is usually modeled 
using Rayleigh, Rician, or Nakagami distributions. The latter 
one is general enough to encompass the Rayleigh distribution 
as a special case and to well-approximate the Rician 
distribution. Large-scale (shadow) fading is usually modeled 
using the lognormal distribution [1]. However, the lognormal-
based composite fading models do not lead to closed form 
expressions of the received signal power probability density 
function (PDF) which hampers further analytical derivations. 
As an alternative, it has been proposed to use the Gamma 
distribution to model the average power random variations due 
to shadowing [2, 3] and it was shown using experimental data 
that it models shadow fading as close as the lognormal 

distribution [3]. Assuming that the multipath fading and 
shadowing are independent and using the fact that the square of 
a Nakagami random variable (RV) is Gamma distributed, a 
closed-form expression for the composite fading PDF was 
developed in the form of a Gamma-Gamma (generalized-K) 
PDF. However, further derivations using that PDF have shown 
to be computationally involved or analytically difficult due to 
the involvement of special functions. In this paper, an adjusted 
form of the first-two moment matching method is introduced to 
approximate the generalized-K composite fading PDF by a 
simple Gamma PDF. The introduced approximation can be 
tight in the upper and lower tail regions for various integer and 
non-integer values of the multipath fading and shadowing 
parameters. The introduced approximation provides a 
simplifying model for the composite fading in wireless 
communication systems, scattering in radar and, reverberation 
in sonar.           

II. COMPOSITE FADING MODEL 
    The envelope of the received signal, due to multipath fading, 
can be modeled by the versatile Nakagami distribution. 
Subsequently, the PDF of the received power γ, conditioned on 
the average power Ω, is a Gamma PDF of the form: 
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where ( )⋅Γ  is the Gamma function and mm is the Nakagami 
multipath fading parameter. The variation of the average 
power, due to shadowing, is usually modeled by the lognormal 
distribution, however, in this paper, the Gamma distribution, 
which has shown a good fit to experimental data [3, 4] and can 
approximate the lognormal distribution, is used [5-7]: 
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    In (2), the parameter ms is the shadowing parameter and Ω0 
is a measure of the average power [6]. The PDFs ranging from 



lognormal to Gaussian can be generated by varying the 
shadowing parameter ms [5]. Similar to the multipath fading 
parameter mm, the severity of shadowing is inversely 
proportional to ms so that small values of ms indicate severe 
shadowing conditions. In [3, 6], using the moment matching 
method between the PDF in (2) and the lognormal PDF, it was 

shown that ( ) 1
1

2686.8/ −
=

se
ms σ

where σs denotes the standard 

deviation of the corresponding lognormal PDF.  

    The PDF of the received signal power due to both multipath 
fading and shadowing, can be obtained as [1] 
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Inserting (1) and (2) in (3) yields [5, 7] 
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where ( )⋅− ms mmK  is the modified Bessel function of the second 

kind and order ( )ms mm −  and 
0
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appeared first in [8] to model target and clutter scattering in 
radar and is named later as the generalized-K1 model or the 
McDaniel model in sonar literature, respectively ([5] and 
references therein). The cumulative distribution function 
(CDF) of the generalized-K RV can be obtained using (4) as 
[7]      
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where ( )⋅⋅⋅⋅ ,,,qp F  is the generalized hyper-geometric function 
[10]. 

    The moment generating function of the PDF in (4) can be 
derived as [7]                                  

  ( ) ⎟⎟⎠

⎞
⎜⎜⎝

⎛
⎟⎟⎠

⎞
⎜⎜⎝

⎛−⎟⎟⎠

⎞
⎜⎜⎝

⎛=Φ −−−

−+

s
bW

s
b

s
bs

msms

ms

mmmm

mm

48
exp

4

2

2
,

2
1

22
1

2

,             (6) 

where ( )zW λμ ,  is the Whittaker function [10].  

    However, as pointed in [11], the computation of the CDF 
expression in (5) is not straightforward and requires the use of 
approximations and asymptotic expansions or the use of the 
numerical inversion of the characteristic function. Moreover, 
further derivations using the characteristic function approach, 

                                                           
1 It should be highlighted here that in literature, the notion “generalized-K” 

was used to denote another similar distribution [9]. 

such as the PDF of the sum of N Generalized-K RVs, are quite 
involved even for the independent identically distributed (i.i.d.) 
case due the Whittaker function term [12].  

III. THE ADJUSTED MOMENT MATCHING METHOD 
    An alternative simplifying approach is to consider 
approximating the PDF in (4) by a more tractable PDF. We 
propose using the Gamma distribution due to the following 
reasons: (i) Gamma distribution is a Type III Pearson 
distribution that is widely used in fitting a statistical model for 
positive RVs by matching the first and second moments [13], 
and (ii) since the PDF in (4) is a product of two Gamma PDFs 
and one of the Gamma PDFs will dominate for large values of 
mm or ms [5].  

    The nth moment of the generalized-K distribution can be 
derived as [7] 
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    Now, using the expression in (7), the first and second 
moments of the generalized-K distribution can be obtained as   
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    Matching these two moments to the first and second 
moments of the Gamma distribution results in          
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where θ and k denote the scale and shape parameters of the 
approximating Gamma distribution, respectively. The value 

of
( )

sm

sm
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K

1)1( ++
= , ranges from almost unity (when mm 

and ms are large) to infinity (when mm or ms goes to zero). For 
Ks→1, the corresponding approximating Gamma PDF, has a 
very small scale parameter (θ) and an infinite shape parameter 
(k) so that both the approximated and the approximating PDFs 
will approach a Dirac delta function (non-faded channel) even 
for equal values of mm and ms. For smaller values of mm and ms, 
the CDFs corresponding to both of the PDFs (for Ω0=1, in here 
and all over this paper) are shown in Fig. 1; it is observed that 
the approximation improves as the values of mm and ms 
increase.  

    However, this approximation results in poor fitting in the 
lower and upper tail regions as compared to the original CDF 



as shown in Fig.s 2-4. To overcome this inaccuracy, the 
generalized-K PDF can be approximated region-wise by 
introducing the following adjustment   
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where the adjustment parameter ε is chosen so that PDF (CDF) 
of the approximating Gamma distribution becomes as close as 
desired to the PDF (CDF) of the generalized-K distribution in a 
certain region of interest. Moreover, since the relevant 
practical range of Ks is from almost unity (for non-faded 
channels) to 9 (for severe multipath fading and shadowing 
conditions where mm=0.5 and ms=0.5), the relevant range of the 
adjustment parameter ε becomes 8≤≤−∞ ε . It can easily be 

shown that
smsm

s mmmm
K 1111 ++=− which corresponds to 

the amount of fading as derived in [5]. 

    To limit the lower limit of ε, we start from the observation 
that for the upper tail region, the approximating Gamma 
distribution resulting from “un-adjusted” moment-matching 
has a more rapidly decaying upper tail than the approximated 
PDF; Hence for a better approximation, the scale parameter, θ, 
has to be increased (negative ε) and consequently the shape 
parameter, k, has to be decreased or, vice-versa. Numerical 
results have shown that a practical range of ε, for mm=0.5 and 
ms=0.5, can be limited to 5.54 ≤≤− ε . Furthermore, the range 
of ε decreases as the values of mm and ms increase. For mm=4 
and ms=2, the practical range is 35.05.0 ≤≤− ε . The CDFs 
corresponding to the approximated and the approximating 
PDFs are shown in Fig.s 2-4 for Ω0=1 and various values of mm 
and ms. For the upper tail, the complementary CDF (CCDF), 
namely the region corresponding to ( ) 1.0≤≥ xXP , is used to 
obtain more illustrative results. The results show that a broader 
range of the adjustment parameter is needed as the parameter 
Ks increases indicating that the upper and lower tails are 
approximated by different Gamma PDFs. In general, the value 
of ε can be varied according to the level of accuracy needed. 

IV. ON THE APPROXIMATION OF THE PDF OF THE SUM OF 
INDEPENDENT GENERALIZEK-K RVS 

    The results obtained in Section III can also be used to 
approximate the PDF of the sum of independent generalized-K 
RVs since the lower and upper tails of the PDF of the sum of 
independent RVs are due to the convolution of the lower and 
upper tails of the corresponding individual PDFs, respectively. 
So, the PDF of the sum of N i.i.d. generalized-K RVs can be 
approximated by the PDF of the sum of the approximating N 
i.i.d. Gamma RVs. The PDF of the sum of N i.i.d. Gamma RVs 
is another Gamma RV that is given as: 
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    The obtained PDFs, for mm=2, ms=4 and ε=0.2, are shown in 
Fig. 5 and the plots of the CDFs corresponding to N=1, 2, 3 and 
6 for mm=2 and ms=4 are shown in Fig. 6. These plots show 
that an adjustment of ε=0.2 results an approximation that 
improves from N=1 to N=6 where the approximating and the 
approximated CDFs are almost identical for N=6. Clearly, 
larger values of ε will result in a more accurate approximation 
for N=1, 2, and 3. The plots in Fig.s 7 and 8 indicate that the 
PDF of sum of i.i.d. generalized-K RVs, for N=6, can be 
approximated by the PDF of the sum of the corresponding 
Gamma RVs whose parameters are obtained by “un-adjusted” 
moment matching. However, in general, “un-adjusted” moment 
matching does not necessarily lead, for large N, to a well-
approximating Gamma PDF, over all regions of the CDF, since 
results for small mm and ms have shown that the CCDF of the 
sum of the generalized-K RVs decays faster than the CCDF of 
the sum of the approximating Gamma RVs, as shown in Fig. 8.  
This is due to keeping the same value of θ as N increases where 
it should have got smaller. For the non-identically distributed 
case, the existing results in literature on the distribution of the 
sum of independent non-identically distributed Gamma RVs 
can be used [14].     

    Remark 1: An alternative approach is to approximate the 
sum of independent generalized-K RVs by a single Gamma RV 
in a single step. Matching the first and second moments of the 
sum of independent generalized-K RVs and the approximating 
Gamma distribution results in  
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For the i.i.d. case, (14-a) and (14-b) simplify to 
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    So, if “adjusted” two-moment matching is to be used here, 
then we get the same scale and shape parameters as in (13). 
Note that (14-a) and (14-b) allow approximating the sum of 
non-identical independent generalized-K RVs. 

    Remark 2: Interestingly, it was found by plotting the 
corresponding CDFs, that the PDF of the sum of N i.i.d. 
generalized-K RV can be closely approximated by the PDF of a 
generalized-K RV whose parameters are mmsum Nmm = and 

sssum Nmm = respectively. However, further manipulations of 
the generalized-K PDF are numerically involved, as explained 
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Figure 1.  The plot of the CDFs corresponding to the generalized-K and the 
approximating Gamma PDFs for different values of mm and ms using “un-
adjusted” moment matching.

in section II, and such an approximation is not as beneficial as 
the approximation using the Gamma distribution.               

V. APPLICATIONS 
    The introduced region-wise approximation of the PDF of the 
generalized-K distribution using the familiar Gamma 
distribution can be utilized in performance analysis of different 
communication schemes over composite fading channels. Here 
are some examples:   

A. Outage Probability  
    The outage probability is simply the CDF of γ and can be 
computed using the CDF of the approximating Gamma 
distribution. In [15], an expression of the outage probability, 
for N=1, alternative to the one given in [7] was developed but it 
is valid only for integer values of mm>1. The approximation 
introduced here applies for both integer and non-integer values 
of mm and ms.    

B. Outage Capacity in SIMO Systems  
    The outage capacity in SIMO (single-input multiple-output) 
systems is the probability that the instantaneous mutual 
information does not exceed a target rate R 
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    Using the result in Section IV on the sum of N independent 
generalized-K RVs, the outage capacity can be computed for 
different values of mm, ms, and input signal-to-noise ratios 
(SNRs). The expression in (16) can be expressed as  
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    The plot of the probability of outage probability versus the 
target rate R given in Fig. 9 shows sufficient accuracy, using 
ε=0.2, for practical values of the probability of outage. 

VI. CONCLUSIONS 
    In this paper, we propose to approximate the generalized-K 
distribution by a simple Gamma distribution through the use of 
the moment matching method. This approximation is enhanced 
by introducing an adjustment for the parameters of the 
approximating Gamma PDF computed by moment matching. 
The obtained results show that the introduced adjustment 
results in Gamma PDFs that closely approximate the lower and 
upper tail regions of the generalized-K distribution. This 
sufficiently accurate approximation using the tractable Gamma 
distribution can significantly simplify the performance analysis 
over composite fading channels for different measures (Bit 
Error Rate (BER), outage capacity, etc.). An extension of this 
simplifying approximation will consider the case of the sum of 
correlated generalized-K RVs. Also, more systematic 
approaches to determine the values of the adjustment parameter 
that will minimize, in a certain region of interest, the difference 
between the approximated and the approximating PDFs will be 
further investigated.  
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Figure 3. The plot of the lower and upper tails of the CDFs of the generalized-
K and the approximating Gamma PDFs for mm=1, ms=1 (σs=7.4 dB) and  
ε= [-2, 0, 1.7].
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Figure 2. The plot of the lower and upper tails of the CDFs corresponding to 
the generalized-K and the approximating Gamma PDFs for mm =0.5,  ms=0.5
(σs=9.3 dB), and ε= [-4, 0, 5.5]. 
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Figure 4. The plot of the lower and upper tails of the CDFs corresponding to 
the generalized-K and the approximating Gamma PDFs for mm=4, ms=2
(σs=5.6 dB), and ε= [-.0.5, 0, 0.35]. 
 

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

P
ro

ba
bi

lit
y 

de
ns

ity
 f

un
ct

io
n

 

 

Excat

Approx, ε=0.2

N=1

N=6

N=2

N=3

Figure 5. The plot of  the PDFs  of the sum of generalized-K RVs and the sum 
of the approximating Gamma RVs for mm=2,  ms=4 (σs=4.2 dB) and ε=0.2. 
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Figure 6. The plot of the lower tail of the CDFs of the sum of generalized-K
RVs and the sum of the approximating Gamma RVs for mm=2,  ms=4 (σs=4.2 
dB) and ε=0.2.  
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Figure 7. The plot of the lower tail of the CDFs of the sum of generalized-K 
RVs and the sum of the approximating Gamma RVs for mm=2, ms=4,  (σs=4.2 
dB) and ε=0.0. 
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Figure 8. The plot of the upper tail of the CDFs of the sum of generalized-K
RVs and the sum of the approximating Gamma RVs  for different values of Ks

and ε=0.0. 

0 1 2 3 4 5 6 7 8 9 10
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

R (b/s/Hz)

Lo
g(

P
ou

t)

 

 
Exact

Approx, ε=0.2

N=1 N=6

 
Figure 9. The plot of the log of the probability of outage for the sum of 
generalized-K RVs and the sum of the approximating Gamma RVs for mm=2, 
ms=4 (σs=4.2 dB), ε=0.2, and SNR=10 dB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


