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Summary. This paper provides an analysis of a fractional-step projection
method to compute incompressible viscous flows by means of finite element
approximations. The analysis is based on the idea that the appropriate func-
tional setting for projection methods mustaccommodate two different spaces
for representing the velocity fields calculated respectively in the viscous and
the incompressible half steps of the method. Such a theoretical distinction
leads to a finite element projection method with a Poisson equation for the
incremental pressure unknown and to a very practical implementation of the
method with only the intermediate velocity appearing in the numerical algo-
rithm. Error estimates in finite time are given. An extension of the method
to a problem with unconventional boundary conditions is also considered to
illustrate the flexibility of the proposed method.
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1. Introduction

The fractional-step projection method of Chorin [10,11] and Temam [28]
(see also Temam [27] and Quartapelle [24]) is the most frequently employed
technique for the numerical solution of the primitive variable Navier—Stokes
equations. This method is based on a rather peculiar time-discretization of
the equations governing viscous incompressible flows, in which the vis-
cosity and the incompressibility of the fluid are dealt within two separate
steps. The reader is referred to Rannacher [26] for a thorough analysis of the
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208 J.-L. Guermond, L. Quartapelle

convergence in time of the original Chorin—Temam algorithm (i.e. the non-
incremental form); it is also shown in [26] that the projection algorithm can
be interpreted as a pressure stabilization technique. In practice, the projec-
tion method is combined with any kind of spatial discretization technique,
viz., finite differences (see e.g. Bell et al. [4]), finite elements (Donea et al.
[13], Gresho and Chan [15]), or spectral approximations (Ku et al. [22]).
The aim of the present paper to provide a framework and an error analysis
for such fully discretized schemes.

An important, although almost never analyzed, feature of fractional-step
projection methods is the structural difference existing between the equa-
tions of the viscous step and those of the incompressible phase of the calcula-
tion. In fact the first half-step constitutes an elliptic boundary value problem
for an intermediate velocity unknown accounting for the viscous diffusion
and convection mechanisms, whereas the second half-step represents an es-
sentially inviscid problem that determines the end-of-step divergence-free
velocity field together with a suitable approximation of the pressure dis-
tribution. In particular, boundary conditions of a different kind have to be
imposed on the velocity fields that are calculated in each of the two half-
steps.

In spite of that, most (if not all) actual implementations of the projec-
tion method assume implicitly one and the same discrete representation for
the two aforementioned velocity fields. But a single discretization cannot
achieve the best approximation of the velocity for both the viscous and
the inviscid phase of the method simultaneously. For instance, finite differ-
ence schemes based on staggered grids, such as the MAC computational
molecule, are appropriate for representing the coupled equations of the in-
viscid projection step but are not the most convenient for discretizing the
vector elliptic equation of the viscous step. Conversely, finite element dis-
cretizations using a continuous representation of the velocity by means of
piecewise linear or multilinear polynomial interpolations are well suited for
dealing with the viscous diffusion step but require a continuity degree higher
than that required by the equations of the inviscid step.

A functional analytic setting that properly accounts for the different char-
acter of the equations of the two half-steps has been proposed recently by
the first author [16,17]. The aim of this work is to provide a detailed analysis
of projection methods that exploit the different mathematical structure of
the equations for the two half-steps, as well as its consequences at the level
of the spatially discretized equations. Insufficient consideration of this dif-
ference lies at the origin of the difficulties that the practical implementation
of fractional-step projection methods is still encountering at present.

The content of the paper is organized as follows. In Sect. 2 the unsteady
Navier—Stokes problem supplemented with Dirichlet boundary condition
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Unsteady Navier—Stokes equations 209

for velocity is first formulated in differential form. A variational statement
of the problem is given and the abstract setting required for its spatial ap-
proximation by finite elements is finally introduced.

Section 3 describes an incremental version of the fractional-step time
discretization of the Navier—Stokes equations and introduces the additional
tools needed to have an abstract formulation of the spatially discrete equa-
tions of the two steps. Two possible numerical realizations of the equations
enforcing incompressibility (the projection step) are considered, one regard-
ing the projection step as a Darcy problem and the other as a Poisson problem
for the pressure.

Section 4 addresses the Navier—Stokes equations in the presence of un-
conventional boundary conditions, comprising the specification of tangential
components of vorticity and the imposition of boundary values of pressure.
The role played by the pressure boundary conditions in the viscous and the
incompressible steps is clearly indicated.

Section 5 details the error analysis of the proposed method for the case
of Dirichlet conditions for the velocity. The last section is devoted to some
concluding remarks.

2. The unsteady Navier—Stokes problem
2.1. Hypotheses and notations

Let 12 be an open connected bounded domain 6{#R< 3) with a smooth
boundaryo(?2. More specifically, the domain must be smooth enough so
that Cattabriga’s regularity estimates for the Stokes problem hold [9]; for
instance, say/? is of classC? or 2 is a two-dimensional convex polygon.
For more recent regularity estimates the reader is referred to Amrouche and
Girault [1].

Inthe sequell*P(2) denotes the real Sobolev spades, s < 00,0 <
p < oo, equipped with the norf || s , and semi-norn | ,,. The completion
with respect to thg - ||, , norm of the space of smooth functions compactly
supported inf2 is denoted by¥/;** (£2). The Hilbert space® *2(£2) (resp.
WP (£2)) is denoted by *(§2) (resp.H({2)), the related norm is denoted
by || - ||s, and the dual space @f3(2) is denoted by —*(12).

We consider the following time-dependent Navier—Stokes problem in
which homogeneous Dirichlet condition has been assumed for simplic-
ity. For a given body forcef (possibly dependent on time) and a given
divergence-free initial velocity field,, find a velocity fieldu and a pres-
sure fieldp (with regularities yet to be clearly defined) so that at 0,
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210 J.-L. Guermond, L. Quartapelle

u = ug, and at all subsequent times

o (F T =

V-u =0,
the velocity being subject to the homogeneous Dirichlet condition
(22) u|39 = 0.

Other types of boundary conditions are considered in Sect. 4.

2.2. The variational formulation

To formulate the unsteady Navier—Stokes problem in a variational form, we
introduce the following Hilbert spaces:

23) X=Hj(2)¢, M=L§0R)={qeL*R), [,q=0}
V={veX, V-v=0}

(24) H={vel?2)¢ V-v=0,v- njan = 0}

The importance off is emphasized by the following classical orthogonal
decomposition of.?(£2)?, the discrete counterpart of which will play a key
role in the projection technique to be presented in Sect. 3,

(2.5) L(2)" = Ho V(HY (2)).

To simplify the notations and express problem (2.1) in an variational
framework we define the linear continuous operator X — X' (resp.
bilinear forma : X? — R) so that for all(u,v) € X x X:

d

8Ui 81)2‘
2. A = = = —_— .
(26)  (Au,v) = a(u,v) = (Vu, W) Z:( 5. Br,)
We also introduce the operatBr: X — M anditstransposB™ : M —
X' (resp. linear formb : X x M — R) so that for alb € X andq € M,

(BU,q) = b(”?Q) - _<v 'U,Q)

The nonlinear term is taken into account through the bilinear operator
D : X% — X' (resp. trilinear formi : X3 — R) so that

YV (u,v,w) € X3,

(2.7) (D(u,v), w) = d(u,v,w) = ((u-V)v, w) + %(V u, v-w),

whereu - v denotes the Euclidean scalar product i Rote thatD (u, v)
coincides with the usugl-V)v form whenu is divergence free. By using the
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Unsteady Navier—Stokes equations 211

Holder inequality together with some Sobolev inequalities (cf. e.g. Brezis
[7]), we obtain the following bounds which will be used repeatedly hereafter:

(2.8) max(d(u, v, w),d(v,u,w)) < c([|ullo,co + ull13)[[v]lo,2

wl1,2-

We recall also that the Gagliardo—Nirenberg [7] interpolation inequalities
yield
1/2 1/2
(2.9) lellose + llulls < elluly’s ulys
For a givenf € W2°(0, c0; L2(£2)?) and a given initial velocity field
ug € V N H?(02)%, the variational formulation of (2.1) consists in finding
a pair(u, p)

u € L>®0,T; H)NL*(0,T;V), uwy € L2(0,T; H'), forallT > 0,
p € L*0,T; M), forallT >0,

so that

us + Au+ D(u,u) + BTp = f,
(2.10) { Bu =0,

u(0) = up.

In the following, we shall assume that (2.10) has a unique solution and that
this solution is as smooth as needed. Furthermore, we shall assume that the
data satisfy all the compatibility conditions required for a smooth solution

in time to exist.

2.3. The spatial discretization

Let 7;, be a regular, quasi-uniform triangulation 6f We introduceX},
and M}, a mixed finite element approximations &f and M based on the
triangulationT7y,. It is assumed hereafter that the following properties hold
(see e.g. Bernardi and Raugel [6], Girault and Raviart [14], or Quarteroni
and Valli [25] for other details):

Thereisl > 1 andc > 0 such that for all- (0 < r <)

inf {[lv—wnllo+hllv — w1} < ch™ o],

v €EXp
Yo e HH ()N X,
(2.11), f — <ch" 2<p<
inf [lv —vpllip < ch[Jv]lr+1p, < p < o0,
v EX}

Yo € WrHhP(Q)dn X,

There exists: > 0 such that for all- (0 < r < [) and for all¢ in
H"(2)N M,
2.12 inf — < ch"||qll,.
(2.12) nf lg — qullo < ch"|lqll
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212 J.-L. Guermond, L. Quartapelle

Thereis: > 0suchthatforall, in X, the following inverse inequalities
hold:

Cpyd_d
(2.13) [0nllnp < ™27 [ 0h] g,
0<m<n<l, 1<qg<p<ox.

We introduce the linear operatd#;, : X, — M) and its transpose
BE : My, — X, so that for every couplévy, q5,) in X5, x M, we have
(Bhon,qn) = b(vn,qn) and (vs, Bfqn) = b(vp,qn). We assume in the
sequel thaB, is surjective; that is to say, the mixed approximation satisfies
the Baluska—Brezzi condition, [3] [8]:

B
2.14) 350, it sup \Prom@n)
€M vy ex, |[vnll1llanllo

Let us also introduce the linear continuous operatgr: X, — X,
so that, for all(up, vy) € Xp x Xy, (Apup, vn) = a(up, vp). The discrete
advection operator is defined 0¥y, (up, vi), wy) = d(up, vy, wy). Note
that even ifuy, is not divergence free, the bilinear forituy, -, -) is skew-
symmetric:d(up, vp, wy) = —d(up, wp, vp); as a resultl(uy, vy, vy) = 0.
Finally, we introduce x, : X, — X the continuous injection ak, into
X, andi, its transpose.

In the functional framework defined above, the Galerkin spatial ap-
proximation of (2.10) based ofiX},, M},) is formulated as follows. Find
up, € HY(0,T; X};,) andpy, € L?(0,T; Mj,) so that:

upy + Anup + Dp(up,un) + Bipp =i, [,
(2.15) Bhup = 0,
Up|t=0 = UO,h-

whereuy j, is an approximation ofi in ker(B},). The discrete counter-
part of the body force is hereafter denoted fayfor simplicity. Problem
(2.15) is well posed and it is possible to show tfiat(¢), pn(t)) con-
verges in some appropriate sense to the solution of (2.10) (cf. Heywood
and Rannacher [21]). In the following we are interested in approximating
the time-dependent problem (2.15) by means of a projection technique for
t>ty>0.

3. The fractional-step projection algorithms

3.1. The discrete setting

The functional framework defined above is suitable for classical approxi-
mations of the Navier—Stokes problem as a system of coupled equations;
however, aiming at uncoupling the incompressibility constraint from the
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Unsteady Navier—Stokes equations 213

time evolution problem, we are led to introduce additional tools (see [16,
17] for other details). We defing, a finite dimensional subspacebt(£2)?

and endow;, with the norm ofZ?(£2); for the sake of simplicity we assume
that X;, C Y}, (in terms of vector space) and we denote pyhe continuous
injection of X}, into Y},; the transpose af, is the L? projection ofY}, onto

X},. Note thaty}, is an internal approximation di?(£2)?, for X, is an ap-
proximation of X and X is dense in.?(£2)?. Furthermore, we assume that
Y;, andM;, are compatible in the sense that eitligris conformal in

H™(2) = {v € LX), V-v € L), v-njpq = 0}

or My, is conformal inH!(2). For instance, we have the trivial choice
Y, = Xj, but we can also choosg, ¢ H{v(2); another interesting

choice isY;, ¢ L?(£2)¢ andM;, ¢ H'(£2) (see further below and [16,17]
for other details).

The analysis of the fractional-step equations in spatially discrete form
requires to introduce another discrete version of the divergence operator.
LetC}, : Y, — M}, be so that for every coupley,, gr) in Y, x My, either
(Chon,an) = —(V-vp, qn) it Y, € HEY(82) or (Chp, qn) = (vn, Vgn) if
M, C H'(£2). Of course this definition makes sense given the compatibility
we require betweel;, andM;},. The relation betweeR;, andC}, is brought
to light by

Proposition 3.1. C, is an extension B, andi; C;' = B['; in other words
we have the following commutative diagrams:

By, Bf
Xh My, X5 My,
in Ch, i cfF
Yh Yh

Proof. (a) Assumey;, C H§V(£2). For all (vy, q,) in X, x My, we have
(Crinvn,qn) = — (V- (invn),qn) = —(V - vn,qn) = (Bron,qn) since
X5, C Yy, thatis,Cripvn, = By, forall v, € X5,

(b) AssumeM;, C H'(£2). For all (v, q,) in X, x My, we have
(Chinvn, qn) = (invn, Van) = (vn, Van) = —(V-vp,qn) = (Bron, qn)
sinceX;, C Yy; thatis,Cyipv, = By, forall v, € X,.

(c) By taking the transpose 6f,i;, = Bj, we obtainil Cf = Bf. O

Recall thatBy, is assumed to be surjective; as a consequefiges
also surjective foiC}, is an extension oB;,. The null space of’;, play-
ing an important role in the sequel, we 9é; = ker C},. This definition
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214 J.-L. Guermond, L. Quartapelle

yields a discrete counterpart of the aforementioned orthogonal decomposi-
tion L2(2) = H © V(H'(£2)).

Corollary 3.2. The following orthogonal decomposition %f holds:
(3.1) Yi = Hy, & Cy (My).

3.2. The fractional-step projection scheme

For afixed finite tim&” > 0, introduce a partition of the time intervial, 7'):

th =k étfor0 < k < K wherest = T/ K. To avoid the technical difficulty

of the possible blow up of the estimates at the initial time induced by the
possible lack of regularity of the continuous solution, one may assume that
the time dependent Galerkin problem (2.15) is approximated in time by an
implicit (or semi-implicit, if the advection term is linearized) Euler scheme
of first order fromk = 1 to someky (1 < kg < K) so thatty = kg ot is
some fixed time independent &f. Denote by&’;0 andp Ako the approximate
solution attime stegf; given the smoothing propertles ofthe Navier-Stokes
equations it can be shown that

(3.2) llu(t*) — @llo < c(h™+ + 6t),
' u(tho) — u20||1 +lIp(tR) = 5o < e(h! + 6t).

For an exhaustive error analysis of this type of approximation the reader is

referred to Heywood and Rannacher [21]; see also Bernardi and Raugel [6].
We are now interested in defining a projection schemédot k& < K;

define two sequences of approximate velocifié € X;,} and{u} € V3,}

and one sequence of approximate press{w@% My} so that

ay =iy k K k
(3.3) hT + Apip T+ Dy (ag, aptt) = i = Byp
and
QH Zh“ff k41 k
(3.4) { T G ) =0
C’huh+1 =0

The sequenceguf } and{af} are initialized byu* = a}° = a;° and the

sequencdpl} is initialized bypto = .

RemarlB.1. The problem (3.3) is well posed since, given the skew-symmetry
of d, the linear operator,(-) + Dy(if, -) is X-elliptic. The problem
(3.4) is also well posed thanks to Corollary 3.2: indeed the co(zpﬂél,

StCX (ph™ — pk)) is the decomposmon of,af ™ in Hy, @ CF(My,); in
otherwordsu"”rl Py, (zhuh ) wherePy, isthe operator of orthogonal
projection Oth onto Hj,.
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Unsteady Navier—Stokes equations 215

Remark3.2. The original Chorin—Temam algorithm does not contajip};

in the right-hand side of (3.3) and contains only the unkngafil\iﬁl in (3.4);

in the sequel we refer to it as the nonincremental algorithm, whereas the
algorithm presented here is referred to as the incremental one. Most of what
is said in this paper applies also to the original nonincremental projection
algorithm. In short, both algorithms converge, but the incremental one has a
better rate of convergence than the nonincremental one in the natural norms
(see Guermond [16], [18], and Rannacher [26]).

In practice itis notvery convenientto solve the problem as presented here.
Actually, the projected velocity? can be eliminated from the algorithm as
follows (see Guermond and Quartapelle [19]). Replafeén (3.3) by its
definition which is given by (3.4) at the time st&j note that} C;' = BT,
as already mentioned. In (3.4)52“ is eliminated by applying’;, to the
first equation and by noting that;, is an extension of3;,. The algorithm
that should be implemented reads, fo¥ kg + 1,

k

(3.5) W b ARt 4 Dy (itk, @)

= A =By 2pf — i)
and
(3.6) CrCy (P! = pj) = B"?EH

For k = ko one step of the incremental algorithm in the original form
(3.3)-(3.4) is performed.

The description of the algorithm above is somewhat abstract; we now
show its practical implementation in two different contexts.

3.3. The projection step as a Darcy problem

To be more explicit, we show how the method should be implemented in the
particular situatiorY;, = X}. In such a case no distinction is needed between
the operator#;, andC},. For an example of practical implementation of this
framework, the reader is referred to Gresho and Chan [15].

The viscous step amounts to looking ﬁd};*l in X}, so that, for all
vy, € Xp,

(37)(&7 Uh) —+ a’<a2+17 Uh) + d(a27 aﬁ—’—l? Uh)

= (f*", o) + (9, V- vp).
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216 J.-L. Guermond, L. Quartapelle

The projection step consists in looking fmﬁ“ in Xy andpfﬁ1 in My, so

that

ykHL kL T
Von € X (Mg o) = (0 = #),V0n) =0,

Yan € My, (V-uf™, q,) =0.

(3.8)

Remark3.3. Note that in the projection step the velooiliyrl is sought in

X;. Asa result,uﬁ+1 satisfies the essential boundary conditions enforced
by X};. In some sense this may seem surprising, even paradoxical, for the
projection step should be the discrete counterpart of the continuous one,
in which the projected velocity belongs 1@, and therefore must satisfy
the boundary conditiom - nj5, = 0. Indeed, there is no contradiction
for, X being dense inH§"v(£2), any approximationX;, of X is also an
approximation off{v(2); that is, the projected velocity can be perfectly
approximated by elements af,. As a matter of facts, problem (3.8) can be
understood as a discrete approximation of a Darcy problem.

Remark3.4. It is shown in [17] that this approximation is optimal for finite
element spatial discretizations in the sense that the pressure operator associ-
ated with the projection step has an optimal condition number. This result is
likely to be no longer true when spectral approximations are used. Optimal-
ity can be recovered if (3.4) is reformulated with test functions satisfying

v - njpp = 0. This can be done by choosing as a subspace a1V (2)

and seeking:}*! in Y, which means to enforce only; ™' 5, = 0.

This technique is optimal for spectral approximations (see [2] for examples
of approximations of this kind), since for some cases of spectral approx-
imations it is possible to show that the pressure oper@jar; is better
conditioned tharB;, B . Indeed this approach constitutes a second possible
implementation. We just mention it and shall not dwell on this matter (see
[16,17] for other details). For finite element approximations the condition
numbers of both operators are equivalent. As a result, the considered imple-
mentation, withY;, = X, andC} = By, may be recommended for finite
element discretizations, one advantage of such an approach being that the
operators (and also the matricéd$) andC, involved in (3.3) and (3.4) are
identical.

In practice we do not manipulate operators but matrices; that is, we
choose particular bases &%, and M},. Each of these choices yields a con-
sistent mass matrix, and a matrix associated with the divergence operator,
say B,,. For a velocity fieldu;, in X, and a pressure fielg, in M, we
denote byl and P the vectors of the components@f andp,, in the bases
in question. In this context, the projection step described above yields the

Numerische Mathematik Electronic Edition
page 216 of Numer. Math. (1998) 80: 207—238



Unsteady Navier—Stokes equations 217

following linear system in terms of the pressure unknowns
Bhﬁk—H

ot
The matrix of the linear system associated with the pressure equation in-
volves the inverse of the mass matrix. In practice the presertﬁglolfnay
hamper the practicability of the present approach in some circumstances.
For instance, for finite element approximations the mass matrix is not diag-
onal, and the exact determination of the matrix of the pressure problem may
become computationally very expensive, especially when a large number
of unknowns is involved. In practice, a computationally convenient alterna-
tive approach consists in lumping the consistent mass matrix, by summing
all elements of each row and placing the result on the diagonal (diagonal
mass lumping), cf. Gresho and Chan [15, Part Il] or Quartapelle [24, pp.
191-201]. Though this technique may work, no stability result has yet been
proven.

Itis the purpose of the next section to show that the mass matrix obstacle
may be circumvented if the auxiliary spagg in which the velocity is
projected is chosen in an alternative different manner.

(3.9) B,Z, 'Bf (P* — PF) =

3.4. The projection step as a Poisson problem

We now chooself;, as an internal approximation df'(f2) (recall that
in the previous sections we only requirdd, C L?(£2)). We also choose
Y, = X + VMy; note that this definition makes sense fdf, being a
subspace off(£2), VM, is in L2(£2)%, Y}, is a subspace of?(£2)? as
required by the theory developed above.

In this alternative framework the viscous step amounts to looking for
artin X, so that, for ally, € X},

(ﬂ];L+1’ Uh) — (Ulﬁ, Uh)

5t
(3.10) = (f*,on) + (05, V- up).

Note that hereﬂfrl anduﬁ are approximated in different spaces. Further-

more, the projection step consists in findiefy™ in V3, andpf™ in Mj, so

that

+ a(ﬂi—l-l? Uh) + d(afu ﬂZ—Fl? Uh)

k1 k1
Uy,

(3.11)¢ 7on € Vs (h&vvh) + (V™ = ph),vn) =0,
vqh € Mp, (ul}CL+17VQh) =0.
At first glance this formulation seems strange, even awkwardYfois

not a classical space. Actually, the usefulnes¥jpfs emphasized by the
following,
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218 J.-L. Guermond, L. Quartapelle

Proposition 3.3. The projection step (3.11) is equivalent to the problem:
k+1

Look forp, ™ in Mj, so that

V- ak-i-l’
812) Vo€ My, (VO —ph), V) = D)
and set
(3.13) ub = G e (pitt — phy.

Proof. This is an easy consequence of Lemma 3.4 that follows.
Lemma 3.4. C}! is the restriction oV to M,

Proof. For all (vy,, g4) in Y, x Mp,, we have(Cl gy, vi) = (Van, vy); that
is to say(CLqn, — Vgn, v) = 0. But Vg, is in Y}, by definition andCf gy,
isinYy,; henceCll g, = Vig,. O

In this case, the projection step amounts to solving a discrete Poisson
problem for the pressure incremeft; ™ —p’;;), supplemented with ahomo-
geneous Neumann boundary conditiorogi This type of discrete problem
is very classical and the solution of the linear system associated with it has
been subject to an enormous amount of research. Accurate and fast solvers
for this problem are available.

Remark3.5. Note tha‘ruﬁJrl belongs toX; + VM, which is a subset of
L?(2)%. In general, the end-of-step veIochn;ZJrl is discontinuous at in-

ter element boundaries and thus its divergence has a meaning only as a
distribution. For instance, iP; finite elements are used for approximating

the pressure, the Laplacian of the pressure increrﬁ’é(;zb?rl — pﬁj) is a
H~'(2) measure, wheredg- ;™! is in L?(£2); hence, in this particular
case, the divergence mf,’j“ is a H~1(£2) measure! However, it can be
proved thauffl converges weakly ifi?(£2)? to some divergence free vec-

tor field as the mesh is refined (i.e. the approximation parametamds to

Zero).

Remark3.6. As already mentioned above, the end-of-step velocity can be
eliminated in practice. Hence the weird velocity spagds never used in
practice.

4. An extension with unconventional boundary conditions

4.1. Introduction

We want now to illustrate the ability of the fractional-step projection method
to accommodate unconventional boundary conditions. In particular we shall
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Unsteady Navier—Stokes equations 219

consider the imposition of derivative conditions on velocity and the enforce-
ment of prescribed boundary values on pressure. We consider the following
unsteady Navier—Stokes problem. For a given body fgi@nd a given
divergence-free initial velocity field,, find a velocity fieldu and a pres-
sure fieldp so that at = 0, © = wug, and at all subsequent times

(4.1)

%—V%%—(u-V)u%—Vp:f,
V-u =0,

the velocity and the pressure being subject to the following boundary con-
ditions:

Ujpn, =0;
(42) u'n‘afb:O) (OénXU-i—VXu) Xn|ag2:0;
u X njog, =0, Ploo; =0;

wheredf21, 0(2», 0f23 is a partition ofd(2. The functiona is defined on
02 and is assumed to be suitably smooth.

4.2. The variational formulation

To recast problem (4.1)—(4.2) in a variational form, we introduce the fol-
lowing Hilbert spaces:

43)X ={ve HI(Q)d, vao, =0, v-npo, =0, v X g, =0}

(4.4) M = L*(2)
(4.5) V={veX, V-v=0}
(4.6) H={veL*(2)% V-v=0, v npousn, =0}

Denote byHj ,,.(12) the space of scalar functions &' (£2) the trace of
which is zero ord{2;. The importance off andH&aQ3 (£2) is emphasized
by the orthogonal decomposition 6 (£2)%.

Proposition 4.1. L*(£2)* = H & V(H{ 50,(2)).

Proof. For all f in L*(£2)“, denote by the unique solution it ;. (£2)
of the following problem

Vg € Hyp0,(2), (V. V) = (f, V).

It is an easy matter to verify that= f — Vpisin H. O
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This decomposition (actually its discrete counterpart) is the one playing
a key role in the projection technique under the unconventional boundary
conditions (4.2). For the sake of simplicity, it is hereafter assumed that
meas(0(23) > 0 so that the pressure is uniquely defineddin If this
hypothesis is not satisfied, a unique pressure is selected by skfting
L3(£2) (see also the proof of Lemma 4.2).

To simplify the notations and put problem (4.1) in a variational frame-
work, we define the linear continuous operatdrisandA : X — X’ so
that for allv € X,

4.7) (A1u,v) = (V-u, V-v) + (Vxu, Vxv)
and
(4.8) (Au,v) = (Aju,v) + oo a(uxmn)-(vxn).

As in Sect. 2, we introduce the operaf®r. X — M sothatforalb € X
andqg € M,

(Bv,q) = =(V-v,q).
ConcerningB, we can prove

Lemma 4.2. B is surjective.

The demonstration of this result is quite classical when Dirichlet conditions
are enforced on velocity on the entire boundary, that is wkiea H} (£2)7.

The result is less known in the general case we are considering, hence we
reproduce a proof kindly suggested to the authors by Vivette Girault.

Proof. Assuming that there is a little pat¢hof 023 whered(2; is smooth,
forexample ifo (25 is a polyhedron, Lemma 4.2 can be proved constructively.
Let ¢ be given inM, fix a smooth non negative functignwith compact
support on® and defing; = cpn on O, wherec is a scalar constant chosen
such that/, g - n = [, ¢. Then extend; by zero to the whole boundary
90. As O is smooth,g € H'/2(912)%; besidesy x n = 0 on 923 and

g = 0 elsewhere. Lifty by a functionw in H'(£2)?; clearlyw € X. Set
qo = V-w — q; thengy € L3(£2) and, given the surjectivity of the mapping
V- HY}(2)* — L3(02) (cf. Girault-Raviart [14, p. 24]), there exists
wg € H&(Q)d such thatV - wg = ¢qo. Thusw — wy is the required function.
0

Concerning4:, we can prove

Lemma 4.3. Providedd{? is smooth enough angleas(92;) > 0, A; is
X-elliptic in the sense that there is> 0 so that for allv in X, (A;v,v) >
cllvll3-
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Proof. The demonstration of this result is not very well-known when bound-
ary conditions are mixed, so we give a proof (without claiming originality).
(i) First we prove thatd; is injective. If {2 is not simply connected, i.e.
(2 is p-connected, we definecuts X'y, ..., X, so that the cuts in question
are smooth manifolds of dimensieh— 1, X; N X; = 0 if ¢ # j, and
2 =0\ UY_, X is simply connected and smooth. Letbe in X and
assume thatl;u = 0, thenV- u = 0 andV xu = 0 in £2. Given the simple
connectedness @®, this means that is the gradient of a harmonic scalar
functiong. The boundary conditiom s, = 0 meansthatop/on)so, =0
and ¢pp, = constant. Given the hypothesiseas(0£;) > 0 and the
extension theorem of harmonic functions (cf. e.g. Dautray and Lions [12,
Chap. II, p. 308]) we infer that is a constant iif2; as a resulty is constant
almost everywhere ifi2. That is to say is zero almost everywhere if;
hence, the class representativeuoin X (in the sense of the Lebesgue
measure) is zero.
(i) Let v andv be some smooth functions . Irrespective of any
boundary condition assumed byandv, an integration by parts yields

(Vu, W) = (Aju,v) + {(qu)-vxn—(v-u)v-n—l—au-v .

09 on
Denote byly,(u, v) the boundary integral in the right-hand side. Provided
042 is smooth enough, given the boundary conditions enforced on the func-
tions of X (namelyw)po, = 0, w - njpn, = 0, w X nj5n, = 0) the surface
integral can be bounded (after some calculus) as follows

Toa(uv) <c [ fu-ul.
o5

For other details on the way of obtaining this inequality, the reader is referred
to Dautray and Lions [12, Chap. IX, p. 246]. From the Poiadaequality
and the inequality above, we infer the result

clulf < (Ava) +¢ [ Jul
892
(iii) Thanks to (i), (i) and the fact that the embeddingft/?(92) into
L?(042) is compact, Peetre-Tartar's Lemma yields the desired inequality
cllullf < (Avu,u).
HenceA; is ellipticonX. 0O
Remark4.1. The hypothesisieas(0f2;) > 0 plays a key role in the proof

of the injectivity of A; . For other details on this matter the reader is referred
to Girault and Raviart [14, p. 51-56].
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We now consider the following variational problem. Fgr €
W22°(0, 00; L2(£2)%) andug € V N H?(£2)4, find a pair(u, p)

u € L0, T; HYNL*(0,T; V), us € L*(0,T; H~ 1), forall T > 0,
p € L20,T; M), forallT >0,

and

ug + Au+ D(u,u) + BTp = f,
(4.9) { Bu =0,

u(0) = ug.

Remarlk4.2. The conditions on the trace, the normal trace and the tangential
trace of the velocity o (2, 925 and 023, respectively, are all essential
boundary conditions; they are enforced by the definition (4.3) of the Hilbert
spaceX . Note that these boundary conditions are understood in some weak
sense, the exact meaning of which is out of the scope of the present paper,
cf. e.g. Lions and Magenes [23]. The condition involving the tangential
components oV xu ond {2, is a natural boundary condition of Robin type.
The pressure boundary condition 6tV is natural as well. Actually, the
weak formulation enforces the natural boundary conditén: —p) 50, =

0.

Remark4.3. The reader can verify that the present variational formulation
could also enforce the natural boundary conditippg, = 0 and(an x
u+Vxu) xnjp, = 0. Actually, these conditions are not recommended for

it can be shown that, though, remains injective; is no longerX -elliptic
(Bernardi—Girault—-Sanchez-Palencia [5], and Guermond—Quartapelle [20]).
It seems important for this formulation to be stable that on every piece of
the boundary (at least one of) either the normal or the tangential component
of the velocity is prescribed.

Remarld.4. Note that the use of the bilinear fo(Wi-u, V-v)+(V xu, V xv)
is mandatory when the boundari@s?, and d(2;, where the prescribed
boundary conditions are different from a purely Dirichlet condition for the
velocity alone, are curved. On the contrary, the more common bilinear form
(Vu, Vv) can be used when Dirichlet conditions are specified or when the
boundaries) (2, and0f2; are flat and parallel to the Cartesian axes. Note
also that the coupling between the velocity components, generated by the
presence of mixed boundary conditions, appears in the definition of the test
functions of X

A complete analysis of (4.9) is out of the scope of the present paper;
we assume that the problem is well-posed and that the solution has the
required smoothness if the data are smooth enough. We dendfg bgpd
M, conformal approximations ok and M. In the following we consider
the abstract time-dependent problem (2.15) within the present functional
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framework, and we are interested in approximating this problem by means
of a projection algorithm fot > t;, > 0.

Remark4.5. Note that the conservative form of the nonlinear term de-
scribed above is frequently used in textbooks along with the hypothesis
meas(0(23) = 0. Without pretending the originality we point out the fact
that this form can also be used for channel flows with an “open” bound-
ary, provided the “open” boundary in question is located downstream, far
enough of any recirculatory zone, so that the conditignn s, > 0 is
guaranteed, since in this case we have

Proposition 4.4. Let u;, be in X;,. Provided eithermeas(9f23) = 0 or
up- njpo, = 0, for all vy, in X, the following inequality holds

(4.10) (Dn(up,vp),vn) > 0.

Proof. Let (uy, v, wy) € (X3,)3; by integration by parts we have

/Q[(uh'V)vh]‘wh:—/Q[(uh-V)wh}-vh—(V-uh,vh-wh)+/893uh-n (vh-wh).

This implies
1
(Dp(un,vn),vp) = 5/ up g |
092

which, given the hypotheses on eithgr n)5p, or (23, yields the desired
result. O

In practice, this treatment of the nonlinear term can guarantee some
“unconditional” stability to the numerical scheme (see [19] for numerical
tests).

4.3. The projection step as a Darcy problem

Theoretically it is not necessary to consider nonhomogeneous boundary
values of pressure aix23, for some smooth lifting of the pressure can be
invoked so that the new pressure satisfies a homogeneous boundary condi-
tion. This theoretical argument is perfectly correct; however, the practical
application of this principle may not be obvious, so we give some details.
We assume in this section and in the following that the pressure is prescribed
to satisfy a nonhomogeneous boundary conditio®&y, namely,

(4.11) plog, = b,

where the functiorP is defined only ord(2; and may depend on time in
general. The definition of the functional framework remains unchanged. The
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only thing that changes is the right-hand side of the momentum equation in
variational form (4.9), which should be replaced by

(4.12) (f,v) — Puv-n.
0823

As a consequence, the discrete problem (2.15) is modified only in the right-
hand side of the discrete momentum equation. Namely, the linear fprm
must be replaced by, : X;, — X}, so that, for all, € X}, (gn,vn) =
(f,vn)— f893 P vy-n. The projection algorithm as described above remains
unchanged provideﬁffrl isreplaced by,’j*l inthe viscous step (3.3), where
(g5 vn) = (51, 0n) = fog, PEHone .

If we chooseY;, = X, the viscous step consists of looking fz’dj“ in
X, so that, for ally;, € X,

ot
(4.13) = ("L o) + (pF, Vo) — PFL 4, .

ﬂkﬂ—uﬁ k+1 k ~k+1
<h,vh> a(@ o) + d(af, @ o)

Since no distinction needs to be made betw€grand By, the projection
step reads: find}™ in X, andp; ™! in Mj, so that

ot

uk-‘rl o ak-‘rl i .
vUh S Xh7 (hh7 Uh) - (ph+ - ph7 v ’Uh) = O?
VQh € th (v UZ+17 qh) =0.

(4.14)

Remarld.6. The discrete viscous step enforces weakly the nonhomogeneous
natural boundary conditioW - @} ™' 50, = |0, — P*HL.

Remark4.7. In the projection step no essential boundary condition on the
pressure is enforced; though in the weak sense the projection step naturally
enforces the (always) homogeneous boundary concﬁﬁ@ﬁl — pﬁ)‘ags =

0.

4.4, The projection step as a Poisson problem

We now choosé\{;, as an internal approximation (HI(Q); however, for
we want(C}, to be an extension aB;,, we are led to sed;, C H&BQS(Q)
where

(4.15) Hj90,(82) = {q € H'(), g0, = 0}.
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We also choos®;, = X, + VM. Inthis alternative framework the viscous
step amounts to looking fcfzﬁ+1 in X, so that, for ally, € X,

~k+1 k
" vp) — (up,v . ko~
(4.16) (G h)(;t Who 00) o G0, o) + (i, 7, on)

= (fk+17 /Uh) - (vp]}ia Uh)‘

Given the choicé), C Hj 5. (£2), we can prove that’! is the restriction
of V to My,; as a result, the projection step reads: Fj»ﬁjﬁl in M}, so that
Py o0, = PH and

v-artt,
(4.17) Vg, € Mj, <v<pi“pﬁ>,wh>=(fst%)’
and set

(4.18) uf T = v )

Remarlk4.8. The projection step amounts to solving a discrete Poisson prob-
lem supplemented with a homogeneous natural Neumann boundary condi-
tion ondf2, U 0f2, and an essential Dirichlet boundary conditiondiis.

5. The error analysis

We now turn our attention to the error analysis of the projection scheme but
we restrict ourselves to homogeneous Dirichlet conditions on the velocity.

Actually, all that is said below would apply also to the case of the uncon-

ventional boundary conditions discussed so far, provided we had at hand
regularity estimates and assuming thét) - njg, > 0, fort > 0.

5.1. Preliminaries

Before going through the details of the error analysis, we introduce some
technical tools.
For a Banach spadé’, we denote by.?(WW) the spacd.?(t", T; W).
We also denote by’ (1) the space (w0, ..., wk); wh € W ko < k <
K} equipped with the norm

K 1/p
lwllwavy = {8t Y Ikl |, forl<p<oo,
(5.1) Pl
- k
Jullqr =, mx, ot

We define interpolates af(¢) andp(t) that preserve the high approxi-
mation orderh!™! onu(t) in the L2(§2)4-norm without having to rely on
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duality arguments. For all, we define(wy,(t), q(t)) € X, x M as the
solution of the following discrete Stokes problem:

(Vwn(t), Vor) + (B qn(t),vn) = (Vu(t), Vo) = (p(t), V- vs),
Vvh S Xh,

(Brwp(t),ry) = —(V-u(t), m),
Vry € My,

(5.2)

Given theH?-regularity of the Stokes operator in regular domains together
with a classical duality argument, these interpolates can be shown to satisfy

Lemma 5.1. Providedu’) € LA (H!*1(2)nV),pY¥) € LA(HY ()N M)
for 1 < 8 < oo, there existg > 0 so that

1w — w12y

+h [Hu(j) - w}(z])”LB(Hl(Q)d) + [[pY) — Q}(L])HLﬁ(L?(Q))]
(5.3) < ch't {Hu(j)HLB(H“rl(Q)d) + Hp(j)HLB(Hl(Q))} :
Lemma 5.2. Providedu?) € L°(H?(2)*N X),pl¥) e LP(H ()N M),
for 1 < 8 < oo, then there exists > 0 such that

Hw}(zj)”Lﬂ(WOaOO(Q)dﬁWLi‘(_Q)d)

(5.4) < e (Il sy + 1PN o () -

Furthermore, the interpolat;éj) satisfies the following stability result:

Lemma 5.3. Providedp?) isin LA(H'(2)n M) andul?) € LP(H?(02)%N
Hi(2)4) for 1 < 8 < oo, we have

(5.5) 1K oz < e (P9 lzacr oy + 1890 s a2y ) -

Proof. (i) AssumeY;, C H{V(£2). Using an inverse inequality and the
approximation property oj(” ), we deduce

ICEa 3= (Cay”, CFq)
=—(V-(CLa), ¢
~(V- (L >> q@ —p)) — (V- (CF ), p)
<ch~ 1||chqh lollg = pD o + (CFq, VpD))
<elleFa o (1ulz + lpD11),
that is to say,
1CEa o < e(llul2 + IpD]|1).
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(ii) AssumeM;,, C H'(£2)

ICT e 13= (Ve CFa)

g 11 1CEa o

<
<c([[u® 1o + [p9111) [1CF g o-
This completes the proof of the lemmald

We shall use repeatedly a discrete version of the Gronwall inequality. For
the sake of completeness we recall the result but for the sake of shortness we
refer to Heywood and Rannacher [21, IV, p. 369] for a proof, or to Quarteroni
and Valli [25, p. 14] for a simplified version of it.

Lemma 5.4. Let §, go, an, by, ¢, and~,, be a sequence of non negative
numbers for integers > 0 so that

(5.6) an+0Y b <8> vja;+0Y ¢+ go
=0 =0 j=0

Assume that;6 < 1 for all j, and setr; = (1 — ;6)~L. Then, for all
n >0,

(5.7) an + 0 Z b; < exp (5 Z Uj’Yj) {5 Z ¢j + 9o
§=0

=0 j=0

5.2. Error bounds

For the sake of conciseness we set

er = wp(t) —uf, & =w,(t") —af, e = qu(t") —pj,

where (u(t), p(t)) is the solution of the continuous problem (2.10). For
simplicity we assume that the projection algorithm is initialized so that
lesllo < (6t + h*FY),
(5.8) 0]l < (6t + L) /5e1/2,
I e llo < c.
Underthis hypothesis and provided the solution of (2.10) is suclthatre
in L (HH 1 (02)1), uy € L°(H($2)4), andp, p; are InL>(H'(£2)), py €

L>°(L%(£2)) then the ability of the solution of (3.3)—(3.4) to approximate
that of (2.10) forky < k < K is given by

Numerische Mathematik Electronic Edition
page 227 of Numer. Math. (1998) 80: 207—238



228 J.-L. Guermond, L. Quartapelle

Theorem 5.5. Provideddt is small enough, the solution to the projection
scheme (3.3)—(3.4) satisfies:

(5.9) llu— wnllioo(r2@)ey + e — tinlljoo (r2(2)ey < c(h'T + 6t),
(5.10) [ = @i ||z g1 )0y < (B! + 6t).

Proof. (a) For conciseness we denaite = u(t*) andp* = p(t*), and for
any function of timeg(¢), we introduce the notatiofj¢*+! = pk+1 — ¢k,
Given the particular interpolatevy,, g;,) that we have chosen, the solution
to the Navier—Stokes problem (2.10) satisfies at tifite

Spwpt! k+1 | BT, k1
TS5t + Ahwh + Bh qp

(5.11) _ Z-;(h [FF+1 4 REHL — D(uh+1, k1Y),
Bhw}]ﬁ'l =0,

where we have set

tk+1

Re+1 — 5twi+1 okl okl k1l L (s — tk) d
=5 Up = Wy Uy 5t o S Wh,ss AS.

By subtracting the first equation of (3.3) from (5.11), we derive the equation
that controls the erra; ™

ghtl _ ;T ok
(5.12) et eyt By = i, [RM 4 R,
where we have set
RN = =DM oY) + Dy (g, apth,
and

Uh=ap = ph =05 + e
Furthermore, using the fact that ™ € X;, Bwit! = 0, andCy, is an
extension of;,, we obtain the system of equations that contrgis' and

k+1
€h
k+1 - ~k+1
e; T —ipe
(5.13) h—th— - O (5T = Wf) =0,
Chel}i—’_l =0.

(b) To obtain a bound oéﬁ“, we take the inner product of (5.12) by

20t é;j“. Using theX -ellipticity of A, (the ellipticity constant is hereafter
denoted byy) together with the classical relati@fa, a — b) = ||a||? +||a —
b||2 — ||b]|? we obtain:

Sk ~k . ~k
IERTHIZ + Nler™ —Tekli2 — llif ek + 2at]|ef )13
+20t(eF T Bk < 25t(REHT 4 RFAL &ty
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Using the classical inequaliBub < ~||a||* + ||b]|?/~ for all ¥ > 0 together
with the regularity ol andp, the first term in the right-hand side is bounded
from above as follows

204(RMHL, &5 h) <26t | R -y [|egt [l
<t]|E T + e ot | REFY2
<~ot| &3 + c,yét(hl"'l + 6t)2.
Inthe following,c, is a generic constant that depends on the generic constant
~ which can be chosen as small as needed.

Now, we control the residual involving the nonlinear terms. Note first
that we have

<R/r€l-iil7 ~;€l+1> d(5 uk+1 k+1’ ~k+1) +d( kE_ w;cL uk+1 ~;€l+1)

+d(wh, k+1 }li-‘rl k+1) —i—d(wh _u’fz?w/]i-i_l ~z+1)

k+1 _ ~k+1 zk+1
+d(uhv * hJr h+ )

We now give a bound from above for each term in the right-hand side.
k k+1 sk k k ~k
20t d(6,uMH, W et < et ot o [l T2 ey
< 0t ||ugl| oo (2 el oo a2y 125 I

< ¢, 03 + yot||er 2.

26t d(uF — wk, uF Tt ety
<cotlluf —wylo flu
I ~k
<t K (|[ull oo (griiny + 11Dl oo ey )1EF T 10

<, 0t h2UHD 4yst]ef T 3.

k ~k
k2 lleg ™

25+ d(w§7 wFtt — w}/i-‘rl7 ~;€l+1)
<cdt (wklhs + lwflloeo ) b = wi oz 1k
l ~
<Ot (flull oo iy + 1Pl oo 185 1.2

<, 0t h2HD yst]|ef T 3.

Using the inequality|e¥ ™ || < [|eFT! —iTeF|lo + ||ef]lo, we deduce

~k+1
o) 185 oz

~k+1 HU

20t d(ef, wit, et <eot|eflna (|

<cot({|ull oo 2y + ”PHLoo(Hl))Heh||1 lleg
K

<c,0t|é +1Ho + ot x|l

<cybtllepllf + eyotl|egt — ik ek 1§ + votllex 3.
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Given the skew-symmetry af, the last termi(af, ef ™, &i+) is zero.

After collecting all the bounds concerning the residuals, we obtain:

26t (RFF1 4 REHL ghtly
<cbtlleh|IF + e tllentt — iy ki3
G|k 2 + dyBt]| 52 + L ot(ot + hHT)2,

By combining the bounds obtained above, we infer

[ERHY2 4 (1 = cy0t)]|ef ! — i el )2
+(20 — 4y)dt& I + 200(e B o)
< |leklls + cyStllefills + votller]F + ¢, 5t(ot + b2,

Now we choosey = a/5 andét < 1/(2c,); the inequality above becomes

~k ~k - ~k ~k k
le +1||0+ eyt — dnenls + 04575H n T+ 20t(E T, Bryy)
(5.14) < lleklls + erdtller]ls + *5t||€h|\% + cabt(St + AT,

(c) To have some control arbt (e} B,?eg“), we take the inner prod-
uct of the first equation of (5.13) b;6t20,fzph and we obtain,

=20t(e,™, By wg) + 6|0y e S — llen™ — i S

=5t%(|Cr k3
k k
=0t?(|Ch (a7 + e[S,

that is to say, given the stability result of Lemma 5.3, we have

—26t(ey ", By i)+ 082 (|Cp en IS — ller ™ — ineg IS
<8t (1 +4t)[|Cy er |13

1
+edt® (3 8t) (el ey + Illoeion)
(5.15) <Ot (1 + 6t)||CE R |2 4 cot?.

(d) We obtain some control mi“ by taking the inner product of (5.13)
by 26t ef !

(5.16) leg, I + llek ™ — iney I — lle; ™15 = .
(e) After summing up (5.14) + (5.15) + (5.16) we obtain
le ™13 + St 1O e THIE + Serotlier T + sler ™ —iferl

< (1+c16t) (HehHo + 6t%||Cyy %Ho) + 26t||er|| + cadt (6t + hH1)2,
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where constants; andc, depend on the data of the problem. By taking the
sum fromk = kg to some integen < K we obtain

1 T nt1 ~k
lep ™5 + 6t Ch ey T 1E + adt Z [k
k=Fo

N ~k T k
+= 5t|\ ”“||1+ Z e+t — iy etlld
k ko
k T k a ~k l
< [lef° 13 + ot*(|Cy 115 + gétlleholﬁ + co(0t + R

n

+er6t > (llehllE + o2 [Cirefl13) -
k=ko

By our particular choice of the initial conditions and by using the discrete
Gronwall Lemma 5.4, the final result is

n+1
EADN 3 +adt Y- ebIE+ 3 185+ —iTel} < c(6t+H+1)2,
k=ko k=ko

Furthermore, since we have
u(t®) —uf = ek +u(t®) —wp (%), u(t®) —af = &f 4 u(t®) —wp (%),

we obtain the desired result by using the interpolation propertieg dflote
that the convergence result @p in thel>(L?(£2)%) norm is a consequence
of
~k .
nlo<lien™ = ifekllo + llefllo
§c(5t +hh. 0

€,

Remarks.1. Note that although the approximation erMéf“ng(Hl(Q)d)

is of orderO(t + h!1), the global error is spoiled by the interpolation error
in space which is of orde® (h').

In addition to the hypotheses of Theorem 5.5, we assume also that
uy € L®(H™H(2)), uyy € L°(H'(2)%), andpy € L™(H'(2)7),
pur € L®(L%(£2)). Furthermore we assume that the projection algorithm
is initialized so that

llef®lo < edt(dt + ht),
(5.18) [ero]|y < edt'/2(5t + hb),
|CFEekolg < (8t + hl).

Then, the ability of,u; ™ /5t to approximatewy, (¢*1) /dt is made explicit
by
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Lemma 5.6. Assumeit < c/(1 + | log(h~1)|)/2 in 2D or 6t < csh? in
3D; under the hypotheses above and;iis small enough, the solution to
the projection scheme (3.3)—(3.4) satisfies:

(5.19) ||5t€zHloo(L2(Q)d) + ||6téZ||l2(H1(_Q)d) < et (ot + hl).

Proof. (a) Firstwe control the first time stefef° ™, 5,efo ™ ands,ero ™.
We note that

e 5 + 2a0t]le T

< [lefol|3 — 20ttt BYwfo) + 20t (RR+! 4 REoft ghotty,
Using the assumed regularity ofandp for ¢t > ¢y, we have

20t(RYFL, &0 <alle 1§ + ¢ 017 | RFH I3
<'y||ek°+1||0 + ¢, 0t2 (8t + hiH1)2.

We now give bounds from above for the nonlinear terms.

20t d(3u" w0, &) <edt gt ut ] 125 o

<o, ot +y et 2.

25t d(uf* — wfe w0 ) <eotlut — w1 [l 0 o

<, 82 +AllE 5.

20t d(wh ,ukott _ waOH?él;’;U—H)

< et (Jlof oo + llwfl18) 1uko =l o 20+ o 5
e
20t d(efo, wiott, et

< etz (o oo + llef ) l1Ef o

Sk ~
< eI + eyt lle I}

< e, 582 (3t + hY)? et 3.
After collecting all the bounds involving the residuals, we obtain

200 (RH + R, &) < | T + g0t (3t + AP,
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As a result, we have
e I3 + 28t 1T
< ey’ llg — 26t(& ™, By
+5Y[1 &G + ¢y 0836t + ')
<—204(&"*, By 16,4 + e
57 HIS + et (0t + )’
<611 HIE + St NICH e 1§ + ¢ 087 (0t + h')?
<6y||erot2 + ¢, 013 (5t + hY).
We choosey = 1/12; as a result, we obtain the bound
e I3 + 2adt]|e T < est® (5t + 1)

That is to say

(5.20) [|6,ef0 o < edt(dt +hl),  [|5,E50 Ty < ot/ (ot + Rh).
Furthermore, from the projection step (5.13) we obtain
| ’“O“II <& lo,
IO (€™ = ) o < ek o/t

The first bound yields easily

(5.21) 16,650 o < ot (5t + hl).
The other bound yields
ICK (™ = e)llo < e llo/5t + 1O 6,052 lo
<c(8t + hl).

In other words, we have
(5.22) |CES,er0 o < (6t 4 h).

(b) Now we proceed as in the proof of Theorem 5.5. For kg + 1, the
equation that controls the errc‘intre"”rl

5télﬁ+1 — i 5t€h ~k+ T k+1 k+1
5t +A6 —I—thstlth ZXh[éR +5R1],

and the system of equations that contigtg andé,e" is found to be

(5.23)

k4l . o sktl
(5.24) 16l 5fh5teh +CR [0 =01 =0
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Given the assumed regularity efandp, we have
(5,RF, 5,h )

2
<8 IT + 6t (St lunell oo iy + B el o e )
< )| 6,82 + 582 (St + hHHH)2.

Furthermore, the nonlinear term is decomposed as follows

—(0,REL 625+

n.l.

= - <Dh(uha aytt) — Dy(ay ' af)
—D( k+1 k+1)+D(Uhvuh) 5t~k+1>

= d(af, &gt 6,8t + d(ey, ot st
+ (6w St ) + d(wy T 6, (T —wp ), it
+d(uFtt — w5, 1 d(s,ef, ar, 6,8k
(5twh’6ha5t€ )+d(5ttwarl whv5t~k+1)
0, ), w7 + (3 = w62

Every term is easy to bound from above except the first one and the sixth
one. For the sixth term we have

(5,2}, ik, 5,85)
d(@%ﬂﬁ‘i wliﬁﬂﬁ“)+d(5teh,wﬁ7f5te'£“)
< e1flef o2 (HatehnoOo ||6teh hl11,2 16,5+ lo,oo )
+ e ([l ) 16,2kl 18,25 1,2

~k ~k
< cic(h)l|egllo H5t€h||1 16,5 I + c2llderllo 16,5 1
l ~ ~k+1 ~k+1
< cre(h)(3t + RN 6l 1dieg Il + ealloeillo 6., 1,

wherec(h) denotes the constant appearing in the following classical inverse
inequality

c(1+ [log(h"H)2|¢pll12, In2D
ch™/2||¢p|12, in3D

Assumingst < c;/(1 + |log(h~1)|)*/? in 2D or 6t < ¢;h'/? in 3D and
choosinge; andh small enough we obtain

ke -k s <k & _
d(s,ey, uy, 6,611 < ”5 ||1Jr Héteh+1||1+c’7||5teh”g

— 10
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The first term of the nonlinear residual is bounded similarly. As a result, the
final bound on the nonlinear residual is

20¢(6, RIL', 6,8t
< 6t]|6,e5 1T + 7575”5ték+1||1 + ¢ l|6,85 115 + Ci/ét:s(& + h')2.
(c) By reasoning as in the proof of Theorem 5.5, we see that the final
bound is a consequence of (a) and (bl
Theorem 5.7. Under the hypotheses of Theorem 5.5 and Lemma 5.6, the
approximate pressure given by the projection scheme (3.3)—(3.4) satisfies:

(5.25) Ip(t*) = pfilliz(r20)) < (0t + R).

Proof. By summing (5.12) and} (5.13) we obtain

k+1

Ts
(5.26) BT k+1 Zh geth ' ~k+1 +ZX; [Rk-i-l Rﬁ-iil]

The inf-sup condition yields

k+1 ||5t6h+1H0 k+1 k+1 k+1
clley™ o £ ———— +callegT I + sup (R + R, vn).
ot on€X |lnlli=1

That is to say
+1H H(St +1||0
ot

Thefinal boundis a consequence of thisinequality and (5.17), (5.19) together
with the identity

cle + ol & 1+ esll@k]ln + ca(St + hY).

p(t") = ph = e + p(t") — gn(t*). D
As a direct consequence of this result we deduce

Theorem 5.8. Under the hypotheses of Theorem 5.5 and Lemma 5.6, the
approximate velocity and pressure given by the projection scheme (3.3)-
(3.4) satisfy:

(5:27) [[u(t*) — @kl g1 (2)a) + IP(*) = Pl lliso(r2(2)) < (8t + ).

Proof. We give a sketch of the proof. Taking the inner product of (5.26) by
26,6, we obtain

1
~k ~k ~ k ~k
IVERTHIG + IV 15 < IVERllG + otllen™ 115 + 5 11V8:&, I

+ &”5 k+1||0 <Rk+1 Rk+1 25 ~§+1>‘

n.l.

The residual terms are bounded from above as in the proof of Theorem
5.5. The convergence result on the velocity is a consequence of the discrete
Gronwall Lemma together with the results of Lemma 5.6 and Theorem 5.5.
The convergence result on the pressure follows easily from (5.28).
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6. Conclusions

Fractional-step projection techniques are simple to implement: in practice
they amount to solving at each time step a convection-diffusion problem and
either a Darcy or a Poisson problem. Appropriate functional settings must
accommodate two different spaces for representing the two velocity fields
calculated in the viscous and the incompressible half steps. In practice, the
projected velocity can be completely eliminated from the algorithm and the
intermediate velocity is the only one of interest.

These techniques are fast: the amount of computation is much lower
than that required by coupled techniques such as those that are based on the
Uzawa operator. Ifimplemented correctly, the projection techniques are very
robust—a very desirable feature for industrial applications (see Guermond
and Quartapelle [19]). They yield first order accuracy in time in the natural
norms. The possibility of second-order accurate projection schemes in the
presence of solid no-slip boundaries has not been considered in the present
work but second order accuracy in time is possible and proof of convergence
are reported in Guermond [18].

One argument often raised against fractional-step projection techniques
is that the homogeneous Neumann boundary condition imposed at the pro-
jection step is not “physical” and generally not satisfied by the “exact”
solution. On the one hand, this point is correct in the sense that the Neu-
mann boundary condition is responsible for a limitation on the accuracy
order in time (possibly second order on the velocity), but on the other hand
itis not completely relevant, for the projection techniques give convergence
on the pressure only in the?(§2) norm, hence inaccurate Neumann bound-
ary values for the pressure are theoretically admissible and should not be
a major concern. In short, users of projection techniques should recall that
these techniques are meaningful only in the variational sense (they are based
on a Hilbertian projection). Any attempt to formulate numerical approxima-
tions of projection techniques within strong frameworks (i.e. in some strong
sense) is very likely to fail and to compel the authors of such attempts to
claim that projection techniques suffer from “unphysical” boundary condi-
tions. Of course, if for some reason one desires to achieve at each time step
convergence on the pressure in a much stronger norm than tfhat o,
one certainly should not use projection techniques but should better try pre-
conditioned Uzawa techniques.
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