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ON THE ARCHIMEDEAN CHARACTERIZATION OF

PARABOLAS

Dong-Soo Kim and Young Ho Kim

Abstract. Archimedes knew that the area between a parabola and any
chord AB on the parabola is four thirds of the area of triangle ∆ABP

where P is the point on the parabola at which the tangent is parallel to
AB. We consider whether this property (and similar ones) characterizes
parabolas. We present five conditions which are necessary and sufficient
for a strictly convex curve in the plane to be a parabola.

1. Introduction

A parabola is the set of points in the plane which are equidistant from a
point F called the focus and a line l called the directrix. Archimedes found
some interesting area properties of parabolas.

Consider the region bounded by a parabola and a chord AB. Let P be the
point on the parabola where the tangent is parallel to the chord AB. The line
through P parallel to the axis of the parabola meets chord AB at a point V .

Then, he showed that the area of the parabolic region is a|PV |3/2 for some
constant a, which depends only on the parabola.

Furthermore, he proved that the area of the parabolic region is 4/3 times
the area of triangle △ABP whose base is the chord and whose third vertex is
P . For the proofs of Archimedes, see Chapter 7 of [8].

In this paper, we consider whether this property (and similar ones) charac-
terizes parabolas. As a result, we present five conditions which are necessary
and sufficient for a strictly convex curve in the plane to be a parabola.

Usually, a curve X in the plane R
2 is called convex if it bounds a convex

domain in the plane R
2.
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Hereafter, we will say that a convex curveX in the plane R2 is strictly convex

if the curve is smooth (that is, C2) and is of positive curvature κ with respect
to the unit normal N pointing to the convex side. Hence, in this case we have
κ(s) = 〈X ′′(s), N(X(s))〉 > 0, where X(s) is an arclength parametrization of
X .

For a smooth function f : I → R defined on an open interval, we will also say
that f is strictly convex if the graph of f has positive curvature κ with respect
to the upward unit normal N . This condition is equivalent to the positivity of
f ′′(x) on I.

First of all, we prove the following characterization of parabolas:

Theorem 1. Let X be the graph of a strictly convex function f : I → R in the

plane R2. Then f is a quadratic polynomial if and only if X satisfies Condition:

(A) For a point P on X and a chord AB of X parallel to the tangent of X at

P , let V denote the point where the line through P parallel to the y-axis meets

AB. Then the area of the region bounded by the curve and AB is a|PV |3/2,
where a is a positive constant which depends only on the curve X.

Second, we prove:

Theorem 2. Let X be the graph of a strictly convex function f : I → R in the

plane R2. Then f is a quadratic polynomial if and only if X satisfies Condition:

(B) For a sufficiently small k > 0, let Xk denote the graph of y = f(x) + k.
For any point V on Xk, let the tangent at V meet the curve X at A and B.

Then the region S bounded by X and the chord AB has constant area (say,
φ(k)) independent of the choice of V .

Since |PV | = k, Theorem 1 is a special case of Theorem 2 for φ(k) = ak3/2,
where a is a constant.

Now, for an arbitrary strictly convex curve X in the plane R
2 which is not

necessarily the graph of a function, we consider the following condition:

(C) For a point P on X and a chord AB of X parallel to the tangent of X at
P , the area of the region bounded by the curve and AB is 4/3 times the area
of triangle △ABP .

Then, we prove the following characterization of parabolas, which is the
main theorem of this article.

Theorem 3. Let X be a strictly convex curve in the plane R
2. Then X is a

parabola if and only if it satisfies Condition (C).

In order to prove Theorems 1, 2 and 3, first of all, in Section 2 we establish
a new geometric meaning of curvature κ of a plane convex curve X at a point
P ∈ M with κ(P ) > 0 (Lemma 6). For the curvature function κ of a plane
curve, we refer to [3].

As applications of Theorem 3, we may prove some generalizations of Theo-
rems 1 and 3 as follows.
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Corollary 4. Let X be a strictly convex curve in the plane R
2. Then X is a

parabola if and only if it satisfies Condition:

(D) For a point P on X and a chord AB of X parallel to the tangent of X at

P , the area of the region bounded by the curve and AB is a(P )| △ ABP |b(P ),

where a(P ) and b(P ) are some functions of P and | △ ABP | denotes the area

of the triangle △ABP .

Finally, for the graph X of a strictly convex function f : I → R in the plane
R

2, we consider the following Condition:

(E) For a point P on X and a chord AB of X parallel to the tangent of X
at P , let V denote the point where the line through P parallel to the y-axis
meets AB. Then the area of the region bounded by the curve and AB is

a(P )|PV |b(P )
, where a(P ) and b(P ) are some functions of P .

Then we prove:

Corollary 5. Let X be the graph of a strictly convex function f : I → R in the

plane R
2. Then X satisfies Condition (E) if and only if X is a parabola, which

is given by either a quadratic polynomial f or a function f in (3.26) according
as the function a(P ) is constant or not.

It follows from Corollary 5 that Theorem 1 is a corollary of Theorem 3.
To prove Corollaries 4 and 5, first of all, we show that b(P ) must be 1

in Corollary 4 (respectively, 3/2 in Corollary 5). Then we can show that X
satisfies Condition (C). Hence, it follows from Theorem 3 that Corollaries 4
and 5 hold.

Among the graphs of functions, Á. Bényi et al. proved some characteri-
zations of parabolas ([1, 2]) and B. Richmond and T. Richmond established a
dozen characterizations of parabolas using elementary techniques ([7]). In their
papers, parabola means the graph of a quadratic polynomial in one variable.

For an example, consider a function f(x) = b{(1− cx)−
√
1− 2cx} in (3.26)

with b, c > 0 defined on I = (−∞, 1
2c ). Then, the function f is strictly convex

and its graph X satisfies Condition (C) (but neither (A) nor (B)). Note that X
is not the graph of a quadratic polynomial, but an open part of the parabola
given in (3.27).

Throughout this article, all curves are smooth (that is, C3) and connected,
unless otherwise mentioned.

2. Preliminaries and Theorems 1 and 2

Suppose that X is a strictly convex curve in the plane R
2 with the unit

normal N pointing to the convex side. For a fixed point P ∈ X , and for a
sufficiently small h > 0, consider the line l passing through P + hN(P ) which
is parallel to the tangent of X at P . Let’s denote by A and B the points where
the line l intersects the curve X .
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We denote by SP (h) (respectively, RP (h)) the area of the region bounded
by the curve X and chord AB (respectively, of the rectangle with a side AB
and another one on the tangent of X at P with height h > 0). We also denote
by LP (h) the length |AB| of the chord AB. Then we have RP (h) = hLP (h) =
2| △ABP |, where | △ABP | denotes the area of the triangle △ABP .

We may adopt a coordinate system (x, y) of R2 in such a way that P is taken
to be the origin (0, 0) and the x-axis is the tangent line ofX at P . Furthermore,
we may assume that X is locally the graph of a non-negative strictly convex
function f : R → R.

For a sufficiently small h > 0, we have

(2.1)

SP (h) =

∫

f(x)<h

{h− f(x)}dx,

RP (h) = hLP (h) = h

∫

f(x)<h

1dx.

The integration is taken on the interval IP (h) = {x ∈ R | f(x) < h}.
On the other hand, we also have

SP (h) =

∫ h

y=0

LP (y)dy.

This shows that

(2.2) S′
P (h) = LP (h), and thus RP (h) = hS′

P (h).

First of all, we prove the following lemma, which acts a key role in this
article.

Lemma 6. Suppose that X is a strictly convex curve in the plane R
2 with the

unit normal N pointing to the convex side. Then we have

(2.3) lim
h→0

1√
h
LP (h) =

2
√
2

√

κ(P )
,

where κ(P ) is the curvature of X at P with respect to the unit normal N .

Proof. As above, we may adopt a coordinate system (x, y) of R2 in such a way
that P is taken to be the origin (0, 0) and X is locally the graph of a non-
negative strictly convex function f : R → R with f(0) = f ′(0) = 0. Then N is
the upward unit normal.

The Taylor’s formula of f(x) is given by

(2.4) f(x) = ax2 + f3(x),

where a = f ′′(0)/2, and f3(x) is an O(|x|3) function. Since κ(P ) = f ′′(0) > 0,
we see that a is positive.
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Now, we let x =
√
hξ. Then, together with (2.1), (2.4) gives

(2.5)

1√
h
LP (h) =

1√
h

∫

f(x)<h

1dx

=

∫

aξ2+g3(
√
hξ)<1

1dξ,

where g3(
√
hξ) = f3(

√
hξ)/h. Since f3 is an O(|x|3) function, we have

(2.6) |g3(
√
hξ)| ≤ C

√
h|ξ|3,

where C is a constant. As h → 0, it follows from (2.5) and (2.6) that

(2.7)

lim
h→0

1√
h
LP (h) =

∫

aξ2<1

1dξ

=
2√
a
.

Since κ(P ) = 2a, this completes the proof of Lemma 6. �

Remark. From Lemma 6, we get a new geometric meaning of curvature κ(P )
of a plane convex curve X at a point P ∈ X with κ(P ) > 0. That is, we obtain

κ(P ) = lim
h→0

8h

LP (h)2
.

Now, we give a proof of Theorem 1.
Let X be the graph of a strictly convex function f : I → R, where I is an

open interval. Then N is given by the upward unit normal. For a fixed point
P = (x, f(x)) on X and a small number h > 0, consider the line l passing
through the point P + hN(P ) which is parallel to the tangent to X at P .

Then the hypothesis shows that SP (h) = a|PV |3/2 for small h > 0, where a is
a constant depending only on X . Note that |PV | = h sec θ, where f ′(x) = tan θ
is the slope of the tangent line at P . Hence we have:

(2.8)
SP (h) = a(sec θ)3/2h3/2

= aW (x)3/2h3/2,

where W (x) =
√

1 + f ′(x)2. Thus (2.2) yields

(2.9) LP (h) =
3

2
aW (x)3/2h1/2.

Therefore it follows from Lemma 6 that

(2.10) κ(P ) =
32

9a2W (x)3
.

Since the curvature κ(P ) of X at P = (x, f(x)) is given by

(2.11) κ(P ) =
f ′′(x)

W (x)3
,
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we see that f ′′(x) is a constant. Hence f(x) is a quadratic polynomial. This
completes the proof of the if part of Theorem 1.

By a straightforward calculation, it is trivial to prove the only if part of
Theorem 1. This completes the proof of Theorem 1.

Second, we give a proof of Theorem 2.
Let X be the graph of a strictly convex function f : I → R, where I is an

open interval. Then N is given by the upward unit normal. We fix a point
P (x, f(x)) on X . For a sufficiently small h > 0, consider the line l passing
through P + hN(P ) which is parallel to the tangent of X at P . Let’s denote
by A and B the points where the line l intersects the curve X .

Then the chord AB is tangent to Xk at V (x, f(x) + k), where k = hW and

W (x) =
√

1 + f ′(x)2. The hypothesis shows that SP (h) = φ(k). It follows
from (2.2) that

(2.12)
LP (h) = S′

P (h) = W (x)φ′(hW ),

RP (h) = hLP (h) = hW (x)φ′(hW ).

Hence we have

(2.13)
LP (h)√

h
=

φ′(k)√
k

W (x)3/2.

For a fixed point P (x, f(x)) on X , it follows from k = hW (x) that h → 0 is
equivalent to k → 0. Thus, Lemma 6 implies that

(2.14) lim
k→0

φ′(k)√
k

= W (x)−3/2 lim
h→0

1√
h
LP (h) =

2
√
2

√

κ(P )
W (x)−3/2.

If we denote by α the limit of the left hand side of (2.14), which is independent
of P , then we have

(2.15) κ(P ) =
8

α2W (x)3
.

Similarly to the proof of Theorem 1, we see that f(x) is a quadratic poly-
nomial. This completes the proof of the if part of Theorem 2.

For a proof of the only if part of Theorem 2, see Example 1.2 in [6, p. 6].
This completes the proof of Theorem 2.

3. Main theorem

In this section, we prove Theorem 3, which is the main theorem of this
article.

Let X denote a strictly convex curve in the plane R
2 with the unit normal

N pointing to the convex side. Suppose that X satisfies Condition (C). Then,
for P ∈ X and a sufficiently small h > 0 we have

(3.1) SP (h) =
2

3
RP (h).
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By differentiating (3.1) with respect to h, it follows from (2.2) that

(3.2) LP (h) = 2hL′
P (h).

Therefore, we get

(3.3) LP (h) = c(P )
√
h,

where c = c(P ) is a constant depending on P . Furthermore, Lemma 6 implies
that

(3.4) c(P ) =
2
√
2

√

κ(P )
.

In order to prove Theorem 3, first, we fix an arbitrary point A on X .
As before, we take a coordinate system (x, y) of R2: A is taken to be the

origin (0, 0) and x-axis is the tangent line of X at A. Furthermore, we may
regard X to be locally the graph of a non-negative strictly convex function
f : R → R with f(0) = f ′(0) = 0 and f ′′(0) > 0.

For any point B(x, f(x)) with x 6= 0, we denote by P the point on X
such that the chord AB is parallel to the tangent of X at P . Then we have
P = (g(x), f(g(x))), for a function g : R \ {0} → R which satisfies |g(x)| < |x|
and

(3.5) xf ′(g(x)) = f(x).

Since g(x) tends to 0 as x → 0, we may assume that g(0) = 0.

We prove the following lemma, which plays a crucial role in the proof of
Theorem 3.

Lemma 7. f(x) and g(x) satisfy

(3.6) x3f ′′(g(x)) = 8{f(x)g(x)− xf(g(x))},

(3.7) xf(x) =
4

3
{f(x)g(x) − xf(g(x))} + 2

∫ x

0

f(t)dt.

Proof. Consider the triangle △ABC, where C denotes the point (x, 0). Then
we have |AC|2 + |BC|2 = |AB|2. Note that by definition, |AB|2 = LP (h)

2,
where h denotes the distance from P to the chord AB. This shows that

(3.8) x2 + f(x)2 = LP (h)
2.

The distance h from P to the chord AB is given by

(3.9) h =
ǫ{f(x)g(x)− xf(g(x))}

√

x2 + f(x)2
,

where ǫ = 1 for x > 0 and ǫ = −1 for x < 0.

Since the curvature κ(P ) of X at P is given by

(3.10) κ(P ) =
f ′′(g(x))

(
√

1 + f ′(g(x))2)3
,



2110 DONG-SOO KIM AND YOUNG HO KIM

it follows from (3.3), (3.4) and (3.5) that

(3.11) Lp(h)
2 =

8h

κ(P )
=

8(x2 + f(x)2)

f ′′(g(x))x3
{f(x)g(x)− xf(g(x))}.

Together with (3.8), this implies that (3.6) holds.

In order to prove (3.7), we consider the area of triangle △ABC. Then we
have

(3.12)
ǫ

2
xf(x) = SP (h) + ǫ

∫ x

0

f(t)dt,

where ǫ = 1 for x > 0 and ǫ = −1 for x < 0. By assumption, we have
SP (h) = (4/3)| △ABP |. Hence we get

(3.13) SP (h) =
2ǫ

3
{f(x)g(x) − xf(g(x))}.

Together with (3.12), this implies that (3.7) holds. �

Next, with the help of Lemma 7, we show that in a neighborhood of an
arbitrary point A ∈ X , the curve X is a parabola.

By differentiating (3.7) with respect to x, it follows from (3.5) that

(3.14) f(g(x)) = g(x)f ′(x) − 3

4
{xf ′(x) − f(x)}.

Differentiating (3.5) with respect to x, and using again (3.5), we get

(3.15) f ′′(g(x)) =
xf ′(x) − f(x)

x2g′(x)
.

On the other hand, together with (3.14), (3.6) shows that

(3.16) f ′′(g(x)) =
xf ′(x) − f(x)

x3
{6x− 8g(x)}.

It follows from (3.15) and (3.16) that

(3.17) {xf ′(x)− f(x)}{8g(x)g′(x) − 6xg′(x) + x} = 0.

Since f(x) is strictly convex, we obtain

(3.18) 8g(x)g′(x)− 6xg′(x) + x = 0.

If we let y = g(x), then (3.18) becomes xdx + (8y − 6x)dy = 0. By putting
y = vx, we get a separable differential equation, and hence we can solve (3.18).
Since g(0) = 0, we see that g(x) = x/2, x/4 or

(3.19) g(x) =
1

4c
(cx+ 1−

√
1− 2cx),

where c is a nonzero constant.
By differentiating (3.14) with respect to x, it follows from (3.5) that

(3.20) {xg(x)− 3

4
x2}f ′′(x) + xg′(x)f ′(x) − g′(x)f(x) = 0.
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If g(x) = x/2, then (3.20) shows that

(3.21) x2f ′′(x)− 2xf ′(x) + 2f(x) = 0,

of which general solutions are given by ax2 + bx for some a, b ∈ R. Since
f(0) = f ′(0) = 0, it follows from (3.21) that f(x) = ax2 for some positive
constant a. Thus, in a neighborhood of A, the curve X is a parabola.

If g(x) = x/4, then (3.20) yields that

(3.22) 2x2f ′′(x) − xf ′(x) + f(x) = 0.

For some a, b ∈ R, the general solutions of (3.22) are given by

(3.23) f(x) = ax+ b
√

|x|.
This contradicts to f ′(0) = 0.

If g(x) = 1
4c (cx+ 1−

√
1− 2cx), it follows from (3.20) that

(3.24) (1− 2cx){
√
1− 2cx− (1− cx)}f ′′(x) + c2xf ′(x) − c2f(x) = 0.

The general solutions of (3.24) are given by

(3.25) f(x) = ax+ b(1−
√
1− 2cx),

where a, b ∈ R. Since f(x) satisfies f(0) = f ′(0) = 0 and f ′′(0) > 0, (3.25)
shows that

(3.26) f(x) = b{(1− cx)−
√
1− 2cx},

where b is a positive constant. Hence, in a neighborhood of A, the curve X is
given by

(3.27) b2c2x2 + 2bcxy + y2 − 2by = 0.

It follows from the classification theorem of quadratic polynomials in x and
y that the curve defined by (3.27) is a parabola.

Summarizing the above discussions, we see that the curve X is locally a
parabola.

Finally, we show that the curve X is a parabola as follows.
First, consider two parabolas Φ1 and Φ2 in the plane R

2. For each i = 1, 2,
let’s denote by φi a connected open arc of the parabola Φi.

Suppose that the two arcs φ1 and φ2 share a common subarc φ. We fix a
point A on the subarc φ. As before, we take a coordinate system (x, y) of R2:
A is taken to be the origin (0, 0), x-axis is the tangent line of φ at A and φ lies
in the upper half plane. Then for each i = 1, 2, the parabolic arc φi is locally
the graph of fi which is either of the form fi(x) = aix

2 with ai > 0 or of the
form in (3.26) with b = bi > 0, c = ci 6= 0. That is, the parabola Φi is of the
form y = aix

2 with ai > 0 or of the form in (3.27) with b = bi > 0, c = ci 6= 0.
Since f1 is equal to f2 around x = 0, f1 and f2 have the same derivatives

at the origin. Hence, we immediately see that Φ1 = Φ2 because f ′′
i (0) =

2ai, f
′′′
i (0) = 0 or f ′′

i (0) = bic
2
i , f

′′′
i (0) = 3bic

3
i in each case for i = 1, 2.
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Next, let’s fix a point A on the curve X . Then an open arc of X containing
A is a parabolic arc φ0 of a parabola Φ0. For an arbitrary point B on the
curve X , the compactness of the closed arc AB of X shows that there exist
consecutive points A = P0, P1, . . . , Pn = B on X and open arcs φ0, φ1, . . . , φn

of X such that 1) for each i = 0, 1, . . . , n, Pi lies on φi, 2) each φi is a parabolic
arc, 3) {φi} covers the closed arc AB of X .

Since φi and φi+1 share a common subarc for each i = 0, 1, . . . , n − 1, a
successive use of the above argument shows that every φi is an arc of the
parabola Φ0, and hence B ∈ Φ0. Therefore we see that X is the parabola Φ0.

This completes the proof of the if part of Theorem 3.
For a proof of the only if part of Theorem 3, see Chapter 7 of [8], which is

originally due to Archimedes. This completes the proof of Theorem 3.

4. Corollaries and remarks

In this section, first of all, we prove Corollaries 4 and 5.
First, suppose that a strictly convex curve X in the plane R

2 satisfies Con-
dition (D) with b(P ) = 1. Then we have

(4.1) SP (h) =
a(P )

2
hLP (h).

By differentiating (4.1) with respect to h, it follows from (2.2) that

(4.2) (2− a(P ))LP (h) = a(P )hL′
P (h).

Solving (4.2), we get

(4.3) LP (h) = c(P )hd(P ),

where c = c(P ) is a constant depending on P and d(P ) = (2− a(P ))/a(P ).
It follows from (4.3) and Lemma 6 that d(P ) = 1/2, and hence, a(P ) = 4/3.

Thus, the curve X satisfies Condition (C).
Now, suppose that X satisfies Condition (D) with b(P ) 6= 1. Then we have

(4.4) SP (h) = a(P )2−b(P ){hLP (h)}b(P ),

which shows that b(P ) > 0. By differentiating (4.4) with respect to h, it follows
from (2.2) that

(4.5) L′
P (h) + h−1LP (h) = c(P )h−b(P )LP (h)

2−b(P ),

where c(P ) = 2b(P )a(P )−1b(P )−1. Solving the Bernoulli equation (4.5), we get

(4.6) {hLP (h)}b(P )−1 = c(P )(b(P )− 1) lnh+ d(P ),

where d(P ) is a constant depending on P .
In case b(P ) > 1, by letting h → 0, (4.6) leads to a contradiction. In

case b(P ) ∈ (0, 1), multiplying the both sides of (4.6) by hα(P ) with α(P ) =
(1 − b(P ))/2 > 0, and then by letting h → 0, we get a contradiction. This
shows that b(P ) must be 1.
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Together with the above discussion on the case b(P ) = 1, Theorem 3 com-
pletes the proof of Corollary 4.

Next, we prove Corollary 5.
Suppose that the graph X of a strictly convex function f : I → R in the

plane R
2 satisfies Condition (E). Then for a fixed point P (x, f(x)) on X and

for h > 0, we have

(4.7) SP (h) = a(P )|PV |b(P )
.

Since |PV | = hW (x) with W (x) =
√

1 + f ′(x)2, by differentiating (4.7) with
respect to h, we get

(4.8) LP (h) = a(P )b(P )W (x)b(P )hb(P )−1.

Hence, it follows from Lemma 6 that b(P ) = 3/2. This shows that

(4.9) SP (h) = a(P )W (x)3/2h3/2 and LP (h) =
3

2
a(P )W (x)3/2

√
h.

Thus we get

(4.10) ∆ABP =
1

2
hLP (h) =

3

4
a(P )W (x)3/2h3/2 =

3

4
SP (h),

which shows that X satisfies Condition (C). Therefore, it follows from the
proof of Theorem 3 that X is a parabola, which is given by either a quadratic
polynomial f or a function f in (3.26).

Conversely, if f is a quadratic polynomial, Theorem 1 shows that the graph
X of f satisfies Condition (E) with a constant a(P ) and b(P ) = 3/2. If f is a
function in (3.26), it is straightforward to show that the graph X of f satisfies
Condition (E) with a nonconstant function a(P ) and b(P ) = 3/2.

This completes the proof of Corollary 5.

Together with (3.1)-(3.4) and Theorem 3, the same argument as in the proof
of Corollary 5 shows:

Corollary 8. Let X denote a strictly convex curve in the plane R
2. Then, the

following are equivalent.

1) X satisfies Condition (C).
2) SP (h) = a(P )h3/2, where a(P ) is a function of P ∈ X.

3) SP (h) = a(P )hb(P ), where a(P ) and b(P ) are some functions of P ∈ X.

4) X is a parabola.

Remark 9. It follows from our proofs that Theorem 3 holds even if a strictly
convex (hence, C3) curve X satisfies Condition (C) for sufficiently small h > 0
at every point P ∈ X .

Finally, we give an example of a convex curve which satisfies Condition (C)
for sufficiently small h > 0 at every point P ∈ X , but it is not a parabola.
Note that the example is not C2, and hence it is not strictly convex either.
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Example 10. Consider the graph X of a function f : R → R which is given
by

(4.11) f(x) =

{

9x2, if x < 0,
9
4x

2, if x ≥ 0.

Then, the function f is not C2 at the origin, and hence the curve X is not
strictly convex. It is straightforward to show that if P is the origin, then for
all h > 0 we have

(4.12) LP (h) =
√
h, and SP (h) =

2

3
RP (h).

Hence X satisfies Condition (C) at the origin for all h > 0. If P ∈ X is not the
origin, then there exists a positive number ε(P ) such that for every positive
number h with h < ε(P ), X satisfies Condition (C).

Thus, X satisfies Condition (C) for sufficiently small h > 0 at every point
P ∈ X . But it is not a parabola.

Remark 11. In [4] and [5], the authors proved the higher dimensional versions
of Theorems 1 and 2, respectively.
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