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Abstract. This paper deals with the artificial compressibility approximation method

adapted to the incompressible Navier Stokes Fourier system. Two different types of

approximations will be analyzed: one for the full Navier Stokes Fourier system (or the

so-called Rayleigh-Benard equations) where viscous heating effects are considered and

the other for when the dissipative function S : ∇u is omitted. The convergence of the

approximating sequences is achieved by exploiting the dispersive properties of the wave

equation structure of the pressure of the approximating system.

1. Introduction. This paper is concerned with the incompressible Navier-Stokes

equations in R
3. As is well known, an incompressible fluid is subject to the constraint

div u = 0. (1.1)

The motion of the fluid is described by the following equation representing the conser-

vation of momentum:

∂tu+ (u · ∇)u− μΔu = ∇p, (1.2)

where (x, t) ∈ R
3 × [0, T ], u ∈ R

3 denotes the velocity vector field, p ∈ R is the pressure

of the fluid, and μ is the kinematic viscosity. If we want to consider the fluctuation of the

temperature, the equations (1.1) and (1.2) are supplemented by the following equation:

∂tθ + u · ∇θ = κΔθ + S : ∇u, (1.3)

where

S = μ(∇u+∇ut), (1.4)

θ ∈ R is the temperature and κ is the heat conductivity. In order to simplify the

presentation and since it will not affect our analysis, from now on we will take the

physical constants to be μ = 1 and κ = 1. The equations (1.1)-(1.3) together with the

initial conditions

u(x, 0) = u0(x), θ(x, 0) = θ0(x) (1.5)
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are called the Navier-Stokes-Fourier system or often go under the name of Rayleigh-

Benard equations (see [20]). The existence of a global in time weak solution for the

equations (1.1)-(1.4) is still an open problem even in the class of Leray weak solutions

for the Navier-Stokes equation. One major difficulty is due to the dissipative term

S : ∇u = (∇u+∇ut)2. (1.6)

The reason is that from the a priori estimate it is only available that S : ∇u is bounded

in L1((0, T )×R
3), and so this term is only weakly lower semicontinuous in ∇u. Moreover

part of the “kinetic energy” disappears as a positive measure concentrated at a certain

point of the domain. Consequently we expect (1.3) not to hold in the weak sense, but

rather to be replaced by an inequality

∂tθ + u · ∇θ +Δθ ≥ S : ∇u, (1.7)

related clearly to the local (kinetic) energy inequality

∂t

(

1

2
|u|2

)

+ div u

((

1

2
|u|2 + p

)

u

)

− div(Su) + S : ∇u ≤ 0. (1.8)

The aim of this paper is to approximate the system given by the equations (1.1), (1.2),

(1.7) and the initial conditions (1.5). As is well known, a stumbling block in approx-

imating the incompressible Navier-Stokes equations is the incompressibility constraint,

which has high computational costs. In order to overcome these difficulties, Chorin [2, 3],

Temam [30, 31] and Oskolkov [22] introduced in the case of a bounded domain the so-

called artificial compressibility approximation method. In these papers they overcome

the aforementioned difficulty by replacing the constraint (1.1) by the linearized continu-

ity equation around a constant state. So the equations (1.1) and (1.2) are approximated

by the system

⎧

⎨

⎩

∂tu
ε +∇pε = μΔuε − (uε · ∇) uε − 1

2
(div uε)uε

ε∂tp
ε + div uε = 0,

(1.9)

where the term

−1

2
(div uε)uε

is added as a correction in order to avoid an increase of energy along the motion. The

paper of Temam [30, 31] and his book [32] discuss the convergence of these approximations

on bounded domains by using the classical Sobolev compactness embedding theorems

and recover the compactness in time via the classical Lions [19] method of fractional

derivatives. In [7] the authors deal with the same approximation in the whole space R
3.

In this case they cannot make use of the classical compactness theorems, therefore they

exploit the underlying wave equation structure and recover the necessary compactness

by means of dispersive type estimates. Here we will use a similar approach adapted to

the Navier-Stokes-Fourier equations (1.1)-(1.3). Our approximating system will be the
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following one:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂tu
ε +∇pε = Δuε − (uε · ∇)uε − 1

2
(div uε)uε

ε∂tp
ε + div uε = 0

∂tθ
ε + div(Puεθε) = Δθε + S

ε : ∇uε,

(1.10)

where (x, t) ∈ R
3 × [0, T ], uε = uε(x, t) ∈ R

3, θε = θε(x, t) ∈ R, pε = pε(x, t) ∈ R,

S
ε = ∇uε + (∇uε)t and P is the Leray projector on the space of divergence free vector

fields (see Section A.1 in the Appendix). The system (1.10) is endowed with the following

initial conditions:

uε(x, 0) = uε
0(x), θε(x, 0) = θε0(x), pε(x, 0) = pε0(x). (1.11)

We want to point out that the Navier-Stokes-Fourier system requires only two initial

conditions, one for the velocity u and one for the temperature θ. Hence our approximation

will be consistent if the initial datum on the pressure can be eliminated by an “initial

layer” phenomenon. Taking into account the fact that in order to get a priori estimates

we will need finite initial energy, we require the initial data to satisfy the following

conditions:

uε
0 ∈ L2(R3), θε0 ∈ L1(R3),

√
εpε0 ∈ L2(R3). (1.12)

We will be able to prove the following theorem.

Theorem 1.1. Let (uε, θε, pε) be a sequence of weak solutions in R
3 of the system (1.10),

and assume that the initial data satisfy (1.12). Then:

(i) There exists u ∈ L∞([0, T ];L2(R3)) ∩ L2([0, T ]; Ḣ1(R3)) such that

uε ⇀ u weakly in L2([0, T ]; Ḣ1(R3)).

(ii) The gradient component Quε of the vector field uε satisfies

Quε −→ 0 strongly in L2([0, T ];Lp(R3)), for any p ∈ [4, 6).

(iii) The divergence free component Puε of the vector field uε satisfies

Puε −→ Pu = u strongly in L2([0, T ];L2
loc(R

3)),

and u = Pu will satisfy the following equation in D′([0, T ]× R
3):

P (∂tu−∇u+ (u · ∇)u) = 0.

(iv) The sequence {pε} will converge in the sense of distribution to

p = Δ−1 div ((u · ∇)u) = Δ−1tr((Du)2).

(v) There exists θ ∈ C([0, T ];L1(R3)) ∩ L1([0, T ];Lq(R3)), q ∈ [1, 3), such that

∫ T

0

∫

R3

θ∂tϕ+ θu · ∇ϕ+ θΔϕdxdt ≤
∫ T

0

∫

R3

(S : ∇u)ϕdxdt,

for any ϕ ∈ D([0, T ]× R
3).
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Let us point out that from (iii) we get that in the limit the equation (1.2) is satisfied in

the sense of distribution. Moreover the inequality (1.7) is satisfied in its weak formulation

represented by the integral inequality in (v). We want to remark that a similar approach is

also followed by Feireisl in [10] in the context of variational solutions for the compressible

Navier-Stokes equations.

Sometimes in mathematical models the dissipative function S : ∇u representing the

irreversible transfer of mechanical energy into heat is neglected, so that the equation

(1.3) takes the simpler form

∂tθ + u · ∇θ = Δθ. (1.13)

For the system (1.1), (1.2) and (1.13) it is possible to extend the fundamental theorem

of Leray [18]; the following result holds.

Theorem 1.2. There exists at least one weak solution (u, θ) of the Navier-Stokes-Fourier

system (1.1), (1.2) and (1.13), namely the pair (u, θ) which satisfies
∫ T

0

∫

Rd

(

μ∇u · ∇ϕ− uiuj∂iϕj − u · ∂ϕ
∂t

)

dxdt =

∫

Rd

u0 · ϕdx

and
∫ T

0

∫

Rd

(

κ∇θ · ∇ϕ− θu · ∇ϕ− θ · ∂ϕ
∂t

)

dxdt =

∫

Rd

θ0 · ϕdx

for all ϕ ∈ C∞
0 (Rd × [0, T ]) such that divϕ = 0 and

div u = 0 in D′(Rd × [0, T ]).

Moreover the following energy inequality holds:

1

2

∫

Rd

(|u(x, t)|2 + |θ(x, t)|2)dx+

∫ t

0

∫

Rd

(μ|∇u(x, s)|2 + κ|∇θ(x, s)|2)dxds

≤1

2

∫

Rd

(|u0|2 + |θ0|2)dx, for all t ≥ 0. (1.14)

Sometimes one also refers to such solutions as Leray weak solutions, although Leray

himself didn’t study thermal effects. In this case we can approximate the equations (1.1),

(1.2) and (1.13) by the system
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂tu
ε +∇pε = μΔuε − (uε · ∇) uε − 1

2
(div uε)uε

ε∂tp
ε + div uε = 0

∂tθ
ε + uε · ∇θε = κΔθε − 1

2
(div uε)θε,

(1.15)

endowed with initial data (1.11). Since in the limit we have to deal with weak solutions

that satisfy (1.14) it is reasonable to require the finite energy constraint to be satisfied

by the approximating sequences (uε, θε, pε). So we can deduce a natural behaviour to be

imposed on the initial data (uε
0, θ

ε
0, p

ε
0), namely

uε
0 = uε(·, 0) −→ u0 = u(·, 0) strongly in L2(R3)

θε0 = uε(·, 0) −→ θ0 = θ(·, 0) strongly in L2(R3)√
εpε0 =

√
εpε(·, 0) −→ 0 strongly in L2(R3)

⎫

⎬

⎭

(1.16)
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Let us remark that the convergence of
√
εpε0 to 0 is necessary to avoid the presence of

concentrations of energy in the limit. Notice, as before, that the term 1
2 (div u

ε)θε in the

third equation of the system (1.15) is added as a correction term. In this case, since

we don’t have to deal with the lack of estimates for the term S
ε : ∇uε, we are able to

recover strong convergence for the sequence θε. In particular, we can prove the following

theorem.

Theorem 1.3. Let (uε, θε, pε) be a sequence of weak solutions in R
3 of the system (1.15),

and assume that the initial data satisfy (1.16). Then:

(i) There exists u ∈ L∞([0, T ];L2(R3)) ∩ L2([0, T ]; Ḣ1(R3)) such that

uε ⇀ u weakly in L2([0, T ]; Ḣ1(R3)).

(ii) The gradient component Quε of the vector field uε satisfies

Quε −→ 0 strongly in L2([0, T ];Lp(R3)), for any p ∈ [4, 6).

(iii) The divergence free component Puε of the vector field uε satisfies

Puε −→ Pu = u strongly in L2([0, T ];L2
loc(R

3)).

(iv) There exists θ ∈ L∞([0, T ];L2(R3)) ∩ L2([0, T ]; Ḣ1(R3)) such that

θε −→ θ strongly in L2([0, T ];L2
loc(R

3)),

∇θε ⇀ ∇θ weakly in L2([0, T ]× R
3).

(v) The sequence {pε} will converge in the sense of distribution to

p = Δ−1 div ((u · ∇)u) = Δ−1tr((Du)2).

(vi) u = Pu and θ are weak solutions to the incompressible Navier-Stokes-Fourier

system, and the following energy inequality holds for all t ∈ [0, T ]:

1

2

∫

R3

(|u(x, t)|2 + |θ(x, t)|2)dx+

∫ t

0

∫

R3

(|∇u(x, s)|2 + |∇θ(x, s)|2)dxds

≤ 1

2

∫

R3

(|u0(x)|2 + |θ0(x)|2)dx.

This paper is organized as follows. In Section 2 we recover all the a priori estimates

for uε and pε and get the strong convergence for uε by analyzing the associated Hodge

decomposition. The important idea here is to regard each of the systems (1.10) and (1.15)

as a semilinear wave type equation for the pressure function, and the dispersive estimates

will then be carried out by using certain classical Lp-type estimates due to Strichartz

[13, 15, 29]. In particular our wave equation structure has some similarities with that

exploited in various ways in the papers of Desjardin, Grenier, Lions and Masmoudi [5]

and Desjardin and Grenier [4]. In Sections 3 and 4 we prove Theorems 1.1 and 1.3

respectively. Finally in the Appendix we recall the mathematical tools and notation that

we use throughout the paper.
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2. Estimates and convergence for the velocity vector field and the pressure.

In this section we wish to recover all the a priori estimates, independent of ε, that are

necessary to obtain convergence of the velocity uε and of the pressure pε. As we will see,

we will achieve this goal in two steps. First of all, we derive estimates that are naturally

related to the first two equations of the systems (1.10) and (1.15). Then, in order to

obtain compactness of the approximating sequences, we will go deeper by exploiting the

hyperbolic nature of the system, namely the underlying wave equation structure for the

pressure.

2.1. A priori estimates.

2.1.1. Energy estimates. The next result concerns an energy type estimate for the

equations (1.10)1,2 and (1.15)1,2.

Theorem 2.1. Let us consider the solution (uε, θε, pε) of the Cauchy problem for the

system (1.10) (respectively, (1.15)). Assume that the hypotheses (1.12) (respectively,

(1.16)) hold; then one has

E(t) +

∫ t

0

∫

R3

|∇uε(x, s)|2dxds = E(0), (2.1)

where we set

E(t) =

∫

R3

(

1

2
|uε(x, t)|2 + ε

2
|pε(x, t)|2

)

dx. (2.2)

Proof. We multiply, as usual, the first equation of the system (1.10) (resp. (1.15)) by

uε and the second by pε; then we sum up and integrate by parts in space and time, and

hence get (2.1). �

Corollary 2.2. Let us consider the solution (uε, θε, pε) of the Cauchy problem for the

system (1.10) (resp. (1.15)). Let us assume that the hypotheses (1.12) (resp. (1.16))

hold; then it follows that

√
εpε is bounded in L∞([0, T ];L2(R3)), (2.3)

εpεt is relatively compact in H−1([0, T ]× R
3), (2.4)

∇uε is bounded in L2([0, T ]× R
3), (2.5)

uε is bounded in L∞([0, T ];L2(R3)) ∩ L2([0, T ];L6(R3)), (2.6)

(uε ·∇)uε is bounded in L2([0, T ];L1(R3))∩L1([0, T ];L3/2(R3)), (2.7)

(div uε)uε is bounded in L2([0, T ];L1(R3))∩L1([0, T ];L3/2(R3)). (2.8)

Proof. Assertions (2.3), (2.4) and (2.5) follow from (2.1), while (2.6) follows from

(2.1) and Sobolev’s embedding theorems. Finally (2.7) and (2.8) come from (2.5) and

(2.6). �

2.1.2. Pressure wave equation. Since from the previous estimates we get only weak

convergence of the approximating sequences, here we will recover more delicate estimates

for the pressure sequence, which, as we will see later, combined with the estimates of the

previous section will ensure strong convergence for the velocity. As in the paper [7] we
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observe that pε satisfies a wave equation. In fact, upon differentiating with respect to

time the equation (1.10)2 (resp. (1.15)2) and using (1.10)1 (resp. (1.15)1) we have

ε∂ttp
ε −Δpε +Δdiv uε − div

(

(uε · ∇)uε +
1

2
(div uε)uε

)

= 0,

which is the so-called acoustic pressure wave. As we know, its fast oscillations may cause

a lack of strong convergence. Here we will overcome this difficulty by investigating the

dispersive nature of the pressure wave equation. Now, by rescaling the time variable to

τ =
t√
ε

and consequently the velocity, temperature and pressure as

ũ(x, τ ) = uε(x,
√
ετ ), θ̃(x, τ ) = θε(x,

√
ετ ), p̃(x, τ ) = pε(x,

√
ετ ), (2.9)

we get that p̃ satisfies the wave equation

∂ττ p̃−Δp̃+Δdiv ũ− div

(

(ũ · ∇) ũ+
1

2
(div ũ)ũ

)

= 0. (2.10)

This structure allows us to use on p̃ the Strichartz estimates (A.4) and (A.6). Now the

analysis for p̃ will follow the same line of argument as in [7]. So we split p̃ as p̃ = p̃1 + p̃2
where p̃1 and p̃2 solve the following wave equations:

{

∂ττ p̃1 −Δp̃1 = −Δdiv ũ = F1

p̃1(x, 0) = ∂τ p̃1(x, 0) = 0,
(2.11)

⎧

⎨

⎩

∂ττ p̃2 −Δp̃2 = div

(

(ũ · ∇) ũ+
1

2
(div ũ)ũ

)

= F2

p̃2(x, 0) = p̃(x, 0), ∂τ p̃2(x, 0) = ∂τ p̃(x, 0).

(2.12)

Therefore we are able to prove the following theorem.

Theorem 2.3. Let us consider the solution (uε, θε, pε) of the Cauchy problem for the

system (1.10) (resp. (1.15)). Assume that the hypotheses (1.12) (resp. (1.16)) hold.

Then we have the following estimate:

ε3/8‖pε‖L4
tW

−2,4
x

+ ε7/8‖∂tpε‖L4
tW

−3,4
x

�
√
ε‖pε0‖L2

x
+ ‖ div uε

0‖H−1
x

+
√
T‖ div uε‖L2

tL
2
x
+ ‖ (uε · ∇) uε +

1

2
(div uε)uε‖

L1
tL

3/2
x

. (2.13)

Proof. Since p̃1 and p̃2 are solutions of the wave equations (2.11) and (2.12), we can

apply the Strichartz estimates (A.5) and (A.6), with (x, τ ) ∈ R
3×(0, T/

√
ε). By applying

the Strichartz estimate (A.6) to w = Δ−1p̃1 we get

‖p̃1‖L4
τW

−2,4
x

+ ‖∂τ p̃1‖L4
τW

−3,4
x

�

√
T

ε1/4
‖ div ũ‖L2

τL
2
x
. (2.14)
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In the same way, by using the estimate (A.5) on w = Δ−1/2p̃2 we obtain

‖p̃2‖L4
τW

−1,4
x

+ ‖∂τ p̃2‖L4
τW

−2,4
x

� ‖p̃(x, 0)‖
H

−1/2
x

+ ‖∂τ p̃(x, 0)‖H−3/2
x

+ ‖ (ũ · ∇) ũ+
1

2
(div ũ)ũ‖

L1
τL

3/2
x .

(2.15)

Now by using (2.14) and (2.15) it follows that p̃ satisfies

‖p̃‖L4
τW

−2,4
x

+ ‖∂τ p̃‖L4
τW

−3,4
x

≤ ‖p̃1‖L4
τW

−2,4
x

+ ‖p̃2‖L4
τW

−1,4
x

(2.16)

+ ‖∂τ p̃1‖L4
τW

−3,4
x

+ ‖∂τ p̃2‖L4
τW

−2,4
x

� ‖p̃(x, 0)‖
H

−1/2
x

+ ‖∂τ p̃(x, 0)‖H−3/2
x

+ ‖(ũ · ∇)ũ+
1

2
(div ũ)ũ‖

L1
τL

3/2
x

+

√
T

ε1/4
‖ div ũ‖L2

τL
2
x
. (2.17)

Finally, since

‖p̃‖Lr((0,T/
√
ε);Lq(R3)) = ε−1/2r‖pε‖Lr([0,T ];Lq(R3))

we end up with (2.13). �

2.2. Strong convergence. In this section we will prove the strong convergence of the

velocity vector field. This convergence will be obtained by studying separately the be-

haviour of the gradient part Quε and of the incompressible component Puε of the velocity

vector field. But, before going on, we will just state some easy consequences of the esti-

mates of the previous section.

Proposition 2.4. Let us consider the solution (uε, θε, pε) of the Cauchy problem for

the system (1.10) (resp. (1.15)). Assume that the hypotheses (1.12) (resp. (1.16)) hold.

Then, as ε ↓ 0, one has

εpε −→ 0 strongly in L∞([0, T ];L2(R3)) ∩ L4([0, T ];W−2,4(R3)), (2.18)

div uε −→ 0 strongly in W−1,∞([0, T ];L2(R3)) ∩ L4([0, T ];W−3,4(R3)). (2.19)

Proof. Statements (2.18) and (2.19) follow from the estimates (2.3) and (2.13) and

the second equation of the system (1.10) (resp. (1.15)). �

2.2.1. Strong convergence of Quε. Now, we wish to show that the gradient part of the

velocity field Quε goes strongly to 0 as ε ↓ 0. As we will see in the next proposition, this

is a consequence of the estimate (2.13) and Lemma A.1.

Proposition 2.5. Let us consider the solution (uε, θε, pε) of the Cauchy problem for the

system (1.2). Assume that the hypotheses (1.16) hold. Then as ε ↓ 0,

Quε −→ 0 strongly in L2([0, T ];Lp(R3)) for any p ∈ [4, 6). (2.20)

Proof. In order to prove Proposition 2.5 we split Quε as follows:

‖Quε‖L2
tL

p
x
≤ ‖Quε −Quε ∗ jα‖L2

tL
p
x
+ ‖Quε ∗ jα‖L2

tL
p
x
= J1 + J2,
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where jα is the smoothing kernel defined in Lemma A.1. Now we estimate separately J1
and J2. For J1, by using (A.2) we get

J1 ≤ α1−3( 1
2
− 1

p )

(

∫ T

0

‖∇Quε(t)‖2L2
x
dt

)1/2

≤ α1−3( 1
2
− 1

p )‖∇uε‖L2
tL

2
x
. (2.21)

Hence from the identity Quε = −ε1/8∇Δ−1ε7/8∂tp and the inequality (A.3) we get that

J2 satisfies the estimate

J2 ≤ ε1/8α−2−3( 1
4
− 1

p )T 1/4‖ε7/8∂tp‖L4
tW

−3,4
x

. (2.22)

Therefore, adding (2.21) and (2.22) and using (2.5) and (2.13), we conclude that for any

p ∈ [4, 6),

‖Quε‖L2
tL

p
x
≤ Cα1−3( 1

2
− 1

p ) + CT ε
1/8α−2−3( 1

4
− 1

p ). (2.23)

Finally we choose α in terms of ε so that the two terms on the right hand side of the

previous inequality have the same order, namely

α = ε1/18. (2.24)

Therefore we obtain

‖Quε‖L2
tL

p
x
≤ CT ε

6−p
36p for any p ∈ [4, 6).

�

2.2.2. Strong convergence of Puε. To prove the strong convergence of the sequence

Puε we will use Theorem A.2. So we will need to prove the equicontinuity in time of

Puε.

Lemma 2.6. Let us consider the solution (uε, θε, pε) of the Cauchy problem for the system

(1.10) (resp. (1.15)). Assume that the hypotheses (1.12) (resp. (1.16)) hold. Then for

all h ∈ (0, 1), we have

‖Puε(t+ h)− Puε(t)‖L2([0,T ]×R3) ≤ CTh
1/5. (2.25)

Proof. Let us set zε = uε(t+ h)− uε(t); then we have

‖Puε(t+ h)− Puε(t)‖2L2([0,T ]×R3) =

∫ T

0

∫

R3

dtdx(Pzε) · (Pzε − Pzε ∗ jα)

+

∫ T

0

∫

R3

dtdx(Pzε) · (Pzε ∗ jα) = I1 + I2. (2.26)

By using (A.2) we can estimate I1 in the following way:

I1 � αT 1/2‖uε‖L∞

t L2
x
‖∇uε‖L2

t,x
. (2.27)

Let us reformulate Pzε in integral form by using the equation (1.10)1 (resp. (1.15)1);

hence

I2 ≤
∣

∣

∣

∣

∣

∫ T

0

dt

∫

R3

dx

∫ t+h

t

ds(Δuε − (uε · ∇) uε − 1

2
uε(div uε)(s, x)) · (Pzε ∗ jα)(t, x)

∣

∣

∣

∣

∣

. (2.28)
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Then, upon integrating by parts and using (A.3) with s = 0, p = ∞ and q = 2, we

deduce that

I2 ≤ h‖∇uε‖2L2
t,x

+ Cα−3/2T 1/2h‖uε‖L∞

t L2
x
‖ (uε · ∇)uε − 1

2
(div uε)uε‖L2

tL
1
x
. (2.29)

Adding I1 and I2 and taking into account (2.5), (2.6), (2.7) and (2.8), we have

‖Puε(t+ h)− Puε(t)‖2L2([0,T ]×R3) ≤ C(αT 1/2 + hα−3/2T 1/2 + h), (2.30)

and by choosing α = h2/5, we end up with (2.25). �

Theorem 2.7. Let us consider the solution (uε, θε, pε) of the Cauchy problem for the

system (1.10) (resp. (1.15)). Assume that the hypotheses (1.12) (resp. (1.16)) hold.

Then as ε ↓ 0,

Puε −→ Pu strongly in L2(0, T ;L2
loc(R

3)). (2.31)

Proof. By using Lemma 2.6, Theorem A.2 and Proposition 2.5 we get (2.31). �

3. The full Navier-Stokes-Fourier system. In this section we are going to prove

Theorem 1.1. In the previous section we have collected a priori estimates on the velocity

field uε and on the pressure pε. Here we will start by collecting some estimates on θε.

3.1. Estimates on the temperature θε. From the a priori estimates we know that Sε :

∇uε ∈ L1
t,x, so obviously, from heat equation considerations we cannot expect better

integrability for θε than θε ∈ L∞
t L1

x. If we look at the equation (1.10)3 we see that it

fits in with the theory of renormalized solutions of parabolic equations (see Section A.3

in the Appendix). By using Theorem A.3 we are able to prove the following result.

Theorem 3.1. Let (uε, θε, pε) be a weak solution of the system (1.10), and assume that

the hypotheses (1.12) hold; then

θε ∈ C([0, T ] : L1(R3)) ∩ L1([0, T ];Lq(R3)), q ∈ [1, 3], (3.1)

∇θε ∈ Lr(R3 × (0, T )), r ∈
[

1,
4

3

]

. (3.2)

Proof. The proof follows from applying Theorem A.3 to the equation (1.10)3 and

the variable f = θε. By the estimates (2.6) we get that θε fulfills, uniformly in ε, the

requirements of Theorem A.3, and so we end up with (3.1) and (3.2). �

3.2. Proof of Theorem 1.1.

(i) This follows from the estimate (2.6).

(ii) This is a consequence of Proposition 2.5.

(iii) By taking into account the decomposition uε = Puε + Quε, from Theorem 2.7

and Proposition 2.5 we have that

Puε −→ u strongly in L2([0, T ];L2
loc(R

3)),

and so we can pass to the limit in the equation (1.10)1.

(iv) Let us apply the Leray projector Q to the equation (1.10)1; then it follows that

∇pε = ΔQuε −Q

(

div(uε ⊗ uε) +
3

2
uε divQuε

)

. (3.3)
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Now by choosing a test function ϕ ∈ D((0, T ) × R
3) and taking into account

(2.5), (2.20), and (2.31), we get, as ε ↓ 0,

〈uε divQuε, Qϕ〉 ≤ ‖Quε‖L2
tL

4
x
‖∇uε‖L2

tL
2
x
‖Qϕ‖L∞

t L4
x

+ ‖Quε‖L2
tL

4
x
‖uε‖L∞

t L2
x
‖∇Qϕ‖L2

tL
4
x
→ 0, (3.4)

〈div(uε ⊗ uε), Qϕ〉 = 〈div(Puε ⊗ Puε), Qϕ〉+ 〈div(Quε ⊗Quε), Qϕ〉
+ 〈div(Puε ⊗Quε), Qϕ〉+ 〈div(Quε ⊗Quε), Qϕ〉
→ 〈div(Pu⊗ Pu), Qϕ〉 = 〈Q div((Pu · ∇)Pu), ϕ〉. (3.5)

So as ε ↓ 0 one has

〈∇pε, ϕ〉 −→ 〈∇Δ−1 div((u · ∇)u), ϕ〉. (3.6)

(v) The last thing to do now is to pass to the limit in the third equation of the system

(1.10). By using the weak formulation and the weak lower semicontinuity of the

weak limit we end up with the following integral inequality:

∫ T

0

∫

R3

θ∂tϕ+ θu · ∇ϕ+ θΔϕdxdt ≤
∫ T

0

∫

R3

S : ∇uϕdxdt,

for any ϕ ∈ D([0, T ]× R
3), where S = ∇u+∇ut.

4. Simplified Navier-Stokes-Fourier system. In this section we are going to con-

sider the approximating system (1.15). In this model the temperature field is just ad-

vected by the velocity field uε and diffuses according to Fourier’s law. This entails

stronger bounds on θε; in particular we will get the strong convergence of the sequence

θε.

4.1. A priori bounds and strong convergence for θε.

Proposition 4.1. Let us consider the solution (uε, θε, pε) of the Cauchy problem for the

system (1.15). Let us assume that the hypotheses (1.16) hold; then it follows that

∇θε is bounded in L2([0, T ]× R
3), (4.1)

θε is bounded in L∞([0, T ];L2(R3)) ∩ L2([0, T ];L6(R3)), (4.2)

uε∇θε is bounded in L2([0, T ];L1(R3))∩L1([0, T ];L3/2(R3)), (4.3)

(div uε)θε is bounded in L2([0, T ];L1(R3))∩L1([0, T ];L3/2(R3)). (4.4)

Proof. By multiplying the third equation of the system (1.15) we get the equality

1

2

∫

R3

|θε(x, t)|2dx+

∫ t

0

∫

R3

(|∇θε(x, s)|2)dxds = 1

2

∫

R3

|θε0|2dx. (4.5)

Assertion (4.1) follows from (4.5), while (4.2) follows from (4.5) and Sobolev’s embedding

theorems. Finally (4.3) and (4.4) come from (2.5) and (4.1). �

With the previous a priori estimates we are able to prove the following theorem.
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Theorem 4.2. Let us consider the solution (uε, θε, pε) of the Cauchy problem for the

system (1.2). Assume that the hypotheses (1.16) hold. Then as ε ↓ 0,

∇θε ⇀ ∇θ weakly in L2((0, T )× R
3), (4.6)

θε −→ θ strongly in L2(0, T ;L2
loc(R

3)). (4.7)

Proof. Statement (4.6) is an immediate consequence of (4.1). In order to prove the

strong convergence (4.7) we need to use Theorem A.2 provided we are able to show that

θε is equicontinuous in time, namely that the following inequality holds:

‖θε(t+ h)− θε(t)‖L2([0,T ]×R3) ≤ CTh
1/5. (4.8)

First of all, to simplify the notation, let us set wε = θε(t+ h)− θε(t); then we have

‖θε(t+ h)− θε(t)‖2L2([0,T ]×R3) =

∫ T

0

∫

R3

dtdxwε · (wε − wε ∗ jα)

+

∫ T

0

∫

R3

dtdxwε · (wε ∗ jα) = I1 + I2. (4.9)

By using (A.2) we can estimate I1 in the following way:

I1 ≤ ‖wε‖L∞

t L2
x

∫ T

0

‖wε(t)− (wε ∗ jα)(t)‖L2
x
dt

� αT 1/2‖θε‖L∞

t L2
x
‖∇θε‖L2

t,x
. (4.10)

Let us reformulate wε in integral form by using the equation (1.15)2; hence

I2 ≤
∣

∣

∣

∣

∣

∫ T

0

dt

∫

R3

dx

∫ t+h

t

ds(Δθε − uε · ∇θε − 1

2
θε(div uε)(s, x) · (wε ∗ jα)(t, x)

∣

∣

∣

∣

∣

. (4.11)

Then, integrating by parts and using (A.3) with s = 0, p = ∞ and q = 2, we deduce that

I2 ≤ h‖∇θε‖2L2
t,x

+ Cα−3/2T 1/2‖θε‖L∞

t L2
x

(

h

∫ t+h

t

‖uε · ∇θε − 1

2
(div uε)θε‖2L1

x
ds

)1/2

≤ h‖∇θε‖2L2
t,x
+ Cα−3/2T 1/2h‖uε‖L∞

t L2
x
‖uε ·∇θε− 1

2
(div uε)θε‖L2

tL
1
x
. (4.12)

Adding I1 and I2 and taking into account (2.5), (4.1), (4.3) and (4.4), we have

‖θε(t+ h)− θε(t)‖2L2([0,T ]×R3) ≤ C(αT 1/2 + hα−3/2T 1/2 + h), (4.13)

and by choosing α = h2/5, we end up with (4.8). �

4.2. Proof of Theorem 1.3.

Proof. The proofs of (i), (ii), (iii) and (v) of Theorem 1.3 are exactly as the proofs

of (i), (ii), (iii) and (iv) of Theorem 1.1. The convergence statements in (iv) are

established in Theorem 4.2. Finally, to pass to the limit in system (1.15) the convergence

of the nonlinear term uε · ∇θε deserves a little discussion. By using again for uε the

associated Hodge decomposition, namely uε = Puε + Quε, and by taking into account
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(2.20), (2.31), (4.6) and (4.7) one can prove that, for any p ∈ [4, 6),

Quε · ∇θε −→ 0 strongly in L1([0, T ];L
2p

p+2 (R3)), (4.14)

Puε · ∇θε −→ u · ∇θ strongly in L1([0, T ]× R
3). (4.15)

Now we can pass to the limit inside the system (1.15) and get that u and θ satisfy the

following equations in D′([0, T ]× R
3):

P (∂tu−Δu+ (u · ∇)u) = 0, (4.16)

∂tθ −Δθ + u · ∇θ = 0. (4.17)

Finally we prove the energy inequality. By using the weak lower semicontinuity of the

weak limits, assuming the hypotheses (1.16) and denoting by χ the weak limit of
√
εpε,

we have
∫

R3

1

2

(

|χ(x, t)|2 + |u(x, t)|2 + |θ(x, t)|2
)

dx

+

∫ t

0

∫

R3

(

|∇u(x, s)|2 + |∇θ(x, s)|2
)

dxds

≤ lim inf
ε→0

(

1

2

∫

R3

(ε|pε(x, t)|2 + |uε(x, t)|2 + |θε(x, t)|2)dx
)

+ lim inf
ε→0

(
∫ t

0

∫

R3

(|∇uε(x, s)|2 + |∇θε(x, s)|2)dxds
)

= lim inf
ε→0

∫

R3

1

2

(

ε|pε0(x)|2 + |uε
0(x)|2 + |θε0(x)|2

)

dx

=

∫

R3

1

2
(|u0(x)|2 + |θ0(x)|2)dx. (4.18)

In this way we have proved (vi). �

Appendix A. Preliminaries and notation. For the convenience of the reader we

establish some notation and recall some basic facts that will be useful in the main part

of the paper.

A.1. Notation and technical tools. We will denote by D(Rd × R+) the space of test

function C∞
0 (Rd ×R+), by D′(Rd ×R+) the space of Schwartz distributions and by 〈·, ·〉

the duality bracket between D′ and D. Moreover W k,p(Rd) = (I − Δ)−
k
2 Lp(Rd) and

Hk(Rd) = W k,2(Rd) denote the nonhomogeneous Sobolev spaces for any 1 ≤ p ≤ ∞
and k ∈ R, while Ẇ k,p(Rd) = (−Δ)−

k
2 Lp(Rd) and Ḣk(Rd) = W k,2(Rd) denote the

homogeneous Sobolev spaces. The expressions Lp
tL

q
x and Lp

tW
k,q
x will stand for the

spaces Lp([0, T ];Lq(Rd)) and Lp([0, T ];W k,q(Rd)) respectively.

The operators Q and P denote the Leray projectors on the space of gradient vector fields

and on the space of divergence-free vector fields, respectively. Hence, in the sense of

distribution, one has

Q = ∇Δ−1 div, P = I −Q. (A.1)

Let us remark that Q and P can be expressed in terms of Riesz multipliers, therefore

they are bounded linear operators on every W k,p (1 < p < ∞) space (see [28]).
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Next we recall here two technical tools. The first one is related to interpolation the-

ory and Young type inequalities and is useful for getting Lp type estimates by means of

estimates in W−k,p space. Specifically the following lemma holds.

Lemma A.1. Let us consider a smoothing kernel j ∈ C∞
0 (Rd) such that j ≥ 0 and

∫

Rd jdx = 1, and define the Friedrichs mollifiers as

jα(x) = α−dj
(x

α

)

.

Then for any f ∈ Ḣ1(Rd), one has

‖f − f ∗ jα‖Lp(Rd) ≤ Cpα
1−σ‖∇f‖L2(Rd), (A.2)

where

p ∈ [2,∞) if d = 2, p ∈ [2, 6] if d = 3 and σ = d

(

1

2
− 1

p

)

.

Moreover the following Young type inequality holds:

‖f ∗ jα‖Lp(Rd) ≤ Cα−s−d( 1
q−

1
p )‖f‖W−s,q(Rd), (A.3)

for any p, q ∈ [1,∞] with q ≤ p, s ≥ 0, and α ∈ (0, 1).

The second result concerns how to get compactness in Lp spaces (see [25]).

Theorem A.2. Let F ⊂ Lp([0, T ];B), with 1 ≤ p < ∞ and B a Banach space. Then F
is relatively compact in Lp([0, T ];B) for 1 ≤ p < ∞ or in C([0, T ];B) for p = ∞ if and

only if

(i)

{
∫ t2

t1

f(t)dt, f ∈ B

}

is relatively compact in B for 0 < t1 < t2 < T ,

(ii) lim
h→0

‖f(t+ h)− f(t)‖Lp([0,T−h];B) = 0 uniformly for any f ∈ F .

A.2. Strichartz type estimates for wave equations. Let us recall that if w is a (weak)

solution of the wave equation
⎧

⎨

⎩

(

−∂2

∂t +Δ
)

w(t, x) = F (t, x)

w(0, ·) = f, ∂tw(0, ·) = g,

in the space [0, T ] × R
d for some data f, g, F and time 0 < T < ∞, then w satisfies the

following Strichartz estimates (see [13], [15]):

‖w‖Lq
tL

r
x
+ ‖∂tw‖Lq

tW
−1,r
x

� ‖f‖Ḣγ
x
+ ‖g‖Ḣγ−1

x
+ ‖F‖

Lq̃′

t Lr̃′
x
, (A.4)

where (q, r) and (q̃, r̃) are wave admissible pairs, i.e. they satisfy

2

q
≤ (d− 1)

(

1

2
− 1

r

)

,
2

q̃
≤ (d− 1)

(

1

2
− 1

r̃

)

,

and moreover the following conditions hold:

1

q
+

d

r
=

d

2
− γ =

1

q̃′
+

d

r̃′
− 2.
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We shall use (A.4) in the case of d = 3 and (q̃′, r̃′) = (1, 3/2), so that one has γ = 1/2

and (q, r) = (4, 4); in particular, the following estimate holds:

‖w‖L4
t,x

+ ‖∂tw‖L4
tW

−1,4
x

� ‖f‖
Ḣ

1/2
x

+ ‖g‖
Ḣ

−1/2
x

+ ‖F‖
L1

tL
3/2
x

. (A.5)

Besides the Strichartz estimate (A.4) or (A.5) in the case of d = 3 (see [27]), there exists a

non-standard estimate which follows from an earlier linear Strichartz [29] estimate. This

inequality can also be deduced from the bilinear estimates of Klainerman and Machedon

[16] or Foschi and Klainerman [11], namely

‖w‖L4
t,x

+ ‖∂tw‖L4
tW

−1,4
x

� ‖f‖
Ḣ

1/2
x

+ ‖g‖
Ḣ

1/2
x

+ ‖F‖L1
tL

2
x
. (A.6)

A.3. Renormalized solutions for parabolic equations. Let us consider a parabolic equa-

tion of the type

∂tf + u · ∇f −Δf = F in Ω× (0, T ), (A.7)

f(x, 0) = f0(x) in Ω, (A.8)

∂f

∂n
= 0 on ∂Ω× (0, T ), (A.9)

where f0 ∈ L1(Ω), F ∈ L1(Ω× (0, T )) and Ω is a bounded smooth open domain in R
N .

Furthermore assume that

u ∈ L2(Ω× (0, T )),

div u = 0 in D′(Ω× (0, T )),

u · n on ∂Ω× (0, T ).

⎫

⎬

⎭

(A.10)

Without loss of generality we can also assume F ≥ 0. If we want to solve the problem

(A.7)-(A.9) simply by using distribution theory, we would need to define the product uf

(taking into account that u∇f = div(uf), since div u = 0). Since we only assume that

u ∈ L2(Ω× (0, T )) we would need to know that f ∈ L2(Ω× (0, T )). Unfortunately since

F ∈ L1 we cannot expect to have f ∈ L2(Ω × (0, T )). For this reason it is necessary

to use the notion of renormalized solutions introduced by R. J. DiPerna and P.-L. Lions

[6] in the context of Focker-Planck-Boltzmann equations and by D. Blanchard and F.

Murat [1] for parabolic equations (see also P.-L. Lions [20]). So following P.-L. Lions

[20], Appendix E, we recall the following theorem.

Theorem A.3. Assume that f is a solution of (A.7)-(A.9) and that (A.10) is satisfied;

then:

(R1) f ∈ C([0, T ];L1(Ω)) ∩ L1([0, T ];Lq(Ω)) for all q ∈
[

1, N
N−2

)

.

(R2) TR(f) ∈ L2([0, T ];H1(Ω)) for all r ∈ (0,∞)

and limR→+∞
1
R

∫

Ω
dx

∫ T

0
dt|∇TR(f)|2 = 0,

where TR(f)(t) = max(min(t, R),−R) for t ∈ R, R ∈ (0,+∞).

(R3) ∇F ∈ Lr(Ω× (0, T )) for all r ∈
[

1, N+1
N

)

.
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(R4) For all β ∈ C∞
0 (Ω) and for all ϕ ∈ C1(Ω× [0, T ]),

d

dt

∫

Ω

β(f(x, t))ϕ(x, t)dx

+

∫

Ω

β(f)

(

−∂ϕ

∂t
− u · ∇ϕ

)

∇β(f) · ∇ϕ+ β′′(f)|∇f |2ϕ− β′(f)Fϕdx = 0

in D′(0, T ),

β(f) ∈ C([0, T ];L1(Ω)), β(f)|t=0 = β(f0) a.e. in Ω.

If f satisfies (R1)-(R4) we say that f is a renormalized solution of (A.7)-(A.9).

Remark A.4. The same result as in Theorem A.3 holds when Ω = R
N or, in the

periodic case, when the Neumann boundary conditions are replaced by Dirichlet bound-

ary conditions; it holds also for more general conditions on u and div u such as those in

(A.10).
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pas fractionnaires. I, Arch. Rational Mech. Anal. 32 (1969), 135–153. MR0237973 (38:6250)

[31] R. Témam, Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des
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