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Abstract

Measurement-Based Probabilistic Timing Analysis (MBPTA) has been shown to be an industrially viable method to

estimate the Worst-Case Execution Time (WCET) of real-time programs running on processors including several

high-performance features. MBPTA requires hardware/software support so that program’s execution time, and so its

WCET, has a probabilistic behaviour and can be modelled with probabilistic and statistic methods. MBPTA also

requires that those events with high impact on execution time are properly captured in the (R) runs made at analysis

time. Thus, a representativeness argument is needed to provide evidence that those events have been captured.

This paper addresses the MBPTA representativeness problems caused by set-associative caches and presents a novel

representativeness validation method (ReVS) for cache placement. Building on cache simulation, ReVS explores the

probability and impact (miss count) of those cache placements that can occur during operation. ReVS determines the

number of runs R′, which can be higher than R, such that those cache placements with the highest impact are

effectively observed in the analysis runs, and hence, MBPTA can be reliably applied to estimate the WCET.
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1 Introduction
The validation and verification (V&V) process for crit-

ical real-time systems requires collecting sufficient evi-

dence that critical functions will execute correctly and

timely. In this context, the term sufficient evidence relates

to the corresponding functional safety standard and the

integrity level of the task analysed. Timing V&V, the

focus of this paper, comprises estimating the Worst-Case

Execution Time (WCET) of tasks with appropriate meth-

ods and tools and providing evidence that they can be

scheduled into their allocated time budgets. In industrial

environments, several factors determine the WCET anal-

ysis tool/technique to use. First, achieving enough confi-

dence in WCET estimates according to the relevant safety

standards (e.g. ARP4761 in the avionics domain [1] and

ISO26262 in the automotive domain [2]). Second, obtain-

ing WCET estimates as tight as possible so tasks can

be successfully scheduled while minimising the amount

of hardware resources required. And third, keeping the
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overheads incurred to apply the timing analysis technique

as low as possible to keep the competitive edge.

The increasing complexity of the software and hard-

ware used in critical real-time systems affects all three

factors and challenges state-of-the-art methods and prac-

tices for WCET estimation. In this paper, we focus on

Measurement-Based Timing Analysis (MBTA), the most

used technique across domains such as automotive, rail-

way, space and avionics [3]; and that is applied to the high-

est criticality software, e.g. DAL-A software in avionics

[4]. MBTA usually captures the high watermark execu-

tion time and adds to it an engineering margin to account

for the unknown. The reliability of this margin depends

on user’s ability to create test scenarios representative of

those that can occur during system operation. This, in

turn, builds on user’s experience and control of those ele-

ments impacting application’s execution time. The latter is

challenged by the presence of complex hardware/software

with massive interactions among components with non-

obvious impact on timing, ultimately decreasing the con-

fidence on MBTA’s derived WCET estimates.
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Measurement-Based Probabilistic Timing Analysis

(MBPTA) [5] is a probabilistic variant of MBTA that aims

at keeping MBTA’s low cost/benefit ratio while increas-

ing guarantees on WCET estimates in the presence of

complex hardware. To that end, MBPTA combines prob-

abilistic/statistical timing analysis and two techniques to

control jitter: the randomisation of the timing behaviour

of some (hardware and software) resources and forcing

some resources to work in their worst latency. MBPTA

derives probabilistic WCET (pWCET) estimates, a dis-

tribution that expresses the maximum probability with

which one instance of the program can exceed a given

execution time bound.

MBPTA deploys Extreme Value Theory [6, 7] (EVT)

to build a pWCET distribution (curve) based on a sam-

ple with a limited number of observations (runs), e.g.

R = 1000, collected during the analysis phase. MBPTA

requires that some sources of execution time varia-

tion (jitter) are randomised [8] (e.g. cache placement)

so that, if enough runs are performed, the impact of

their jitter in execution time is captured. This principle

emanates from probabilistic and statistics theory, where

a random variable can be modelled based on a sample

of observations with increasing confidence and accu-

racy as the size of the sample grows. For MBPTA, the

platform designed together with the measurement col-

lection method makes the worst-case timing behaviour

of the task under analysis be described by a random

variable.

Determining the number of runs required by MBPTA

(R) is challenged by the use of random placement

in caches. Set-associative (and direct-mapped) Time-

Randomised Caches (TRC) [9] deploy random placement,

which makes each address to be mapped to a random

and independent set across program runs. Therefore,

each run results in random cache (set) placement. The

execution time of those runs in which the number of

addresses (randomly) mapped to a cache set exceeds its

associativity (W ) can be significantly higher than when

this is not the case [10]. This fact becomes an issue for

MBPTA when those cache placements of interest occur

with a sufficiently high probability to be deemed as rel-

evant by the corresponding safety standard (e.g. above

10−9), but sufficiently low not to be observed in the

measurements at analysis time (e.g. below 10−3) [10–12].

In these cases, MBPTA could not capture the impact

of this event on the program’s execution time. Thus,

evidence that those cache placements of interest are

sufficiently represented in the measurements passed as

input to EVT is needed to have enough confidence in

MBPTA results.

So far, only the Heart of Gold (HoG) [10] method and its

extensions [13, 14] have been proposed to tackle this prob-

lem. However, those solutions only work for programs for

which the impact on execution time of mapping any sub-

set, bigger than W, of program addresses to a given set is

the same. This is in general only the case when program’s

addresses are accessed mostly in a round-robin fashion.

However, this is not the general case since access patterns

can be arbitrarily complex and irregular.

Contribution. We present Representativeness Valida-

tion by Simulation (ReVS), a method valid for arbitrary

cache access patterns to assess whether pWCET estimates

obtained with MBPTA—for a given number of runs—are

reliable. Otherwise, ReVS provides means to determine

the number of extra runs needed.

In particular, we make the following contributions:

1. We present a method based on cache simulations to

explore the space of cache random placements and

determine those ones leading to the highest execution

times at different exceedance probability thresholds.

In particular, we identify their probability of occur-

rence and their impact in terms of miss count for

instruction and data caches. By applying MBPTA on

the R miss counts collected from the program by

means of simulation, we derive a probabilistic Worst-

Case Miss Count (pWCMC) distribution—an upper-

bound of the miss count distribution of the program

under analysis1.

2. If the pWCMC distribution does not upperbound

the worst cache-placement scenarios, ReVS increases

the number of runs iteratively until a value R′ so

that the pWCMC distribution successfully upper-

bounds those scenarios. At that point, the execution

time observations with R′ runs can be used to derive

a pWCET estimate that reliably upperbounds the

impact of the worst cache-placement scenarios.

3. ReVS determines R′ based on the analysis of the most

accessed addresses in the program, whose number is

limited based on the affordable computational cost. In

order to understand the impact of dismissing the least

frequently accessed addresses, we provide a qualita-

tive analysis together with a quantitative assessment

by comparing the results of ReVS for different num-

ber of addresses considered.

4. We evaluate ReVS using the Embedded Micropro-

cessor Benchmark Consortium (EEMBC) automotive

suite [15]. Our results show that, differently to the

default application of MBPTA, ReVS allows increas-

ing confidence up to a given user-defined threshold

(e.g. 10−9) by increasing the number of runs whenever

needed.

Overall, ReVS allows controlling the confidence level

of pWCET estimates in the presence of caches. Deploy-

ing ReVS is of prominent importance since MBPTA
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has already been successfully assessed in the context of

some industrial case studies [16] and time-randomised

cache (TRC) has been already prototyped into field-

programmable gate arrays (FPGAs) [17].

2 Input data representativeness under MBPTA
MBPTA delivers a pWCET distribution function that

describes the highest probability (e.g. 10−15) at which

one instance of a program may exceed the corresponding

execution time bound. This is better understood with

the example in Fig. 1. Figure 1a shows the probabil-

ity distribution function (PDF) of the execution times

collected from R = 1000 runs of a synthetic program

running on a MBPTA-compliant platform [8]. The corre-

sponding cumulative distribution function (CDF) and the

complementary CDF (1-CDF) are depicted in Fig. 1b in

logarithmic scale. With R observations (execution time

measurements), one could accurately estimate the

pWCET at an exceedance probability of 1/R at most.

Since much smaller probabilities are needed in the con-

text of critical real-time systems, EVT is used to estimate

the function that describes the rightmost tail of the

execution time distribution. Figure 1c shows the result

of applying EVT to estimate the pWCET distribution

in our example. The dashed line corresponds to the

1-CDF for the 1000 measurements collected, whereas the

continuous line corresponds to the pWCET distribution.

MBPTA requires that execution conditions for tests

performed at analysis time lead to execution times that

match or upperbound those during system operation [8].

To that end, a reliable MBPTA application requires a

representativeness step [10]. Such step is intended to pro-

vide evidence that analysis time observations capture the

impact of the events that can arise during operation and

have a significant impact on execution time and so, on the

pWCET. These events are called events of interest, which

we refer to as cache placements of interest for the case

of the cache. To reach this goal, MBPTA-compliant plat-

forms either (i) randomise the timing behaviour of certain

hardware resources (e.g. caches [9]) so that each potential

behaviour occurs with a probability or (ii) make resources

to work on their worst latency during the analysis phase

[8]. Both techniques, randomisation and upperbounding,

are applied so that the execution time distribution during

analysis upperbounds the one during operation. In build-

ing its representativeness argument, MBPTA considers

two probabilities, as shown in Fig. 1d.

Pcff. For random events, MBPTA defines representa-

tiveness as the requirement by which the impact of any

relevant event affecting execution time is properly upper-

bounded at analysis time. Relevant events are those occur-

ring with a probability above a cutoff probability (e.g.

Pcff = 10−9). Such cutoff probability relates to what

the corresponding functional safety standard describes

as reasonable or unreasonable risk. Based on the hazard

analysis and risk assessment of the particular function-

ality implemented by the task, one can determine an

appropriate probability threshold (Pcff). For instance, if

Pcff = 10−9 and a given event occurs with 0.9 probabil-

ity, the probability of not observing it in ten trials would

be 10−10 and hence irrelevant in this context. In other

words, the risk of missing this event with ten trials is not

unreasonable.

Pobs. Relevant events, whose probability is above Pcff,

need to be accounted for pWCET estimation. This

requires that their effect is captured in the measurements

collected at analysis time (see Fig. 1d). However, given

a number of runs R carried out at analysis, only events

with a relatively high probability can be observed in the

measurement runs. Pobs, as presented in Fig. 1d, deter-

mines the lowest probability of occurrence of an event

such that the probability of not observing it in the anal-

ysis time measurements is below the cutoff probability,

Pcff. Pobs is a function of the probability of occurrence

per run of the event, Pevent, and the number of runs R

(observations) collected by MBPTA at analysis time. For

instance, for a cutoff probability of 10−9 and R = 1000

runs, we can guarantee that, if Pevent ≥ 0.021, the event

will not be observed with a probability smaller than 10−9,

that is 10−9 ≥ (1 − 0.021)1000. It also follows that, with a

Fig. 1 Synthetic program PDF, CDF, 1-CDF and pWCET curve. a Probability distribution fuction (PDF). b CDF and 1-CDF (logarithmic scale).

c Example of pWCET curve. d Probability ranges of interest
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higher number of runs, events with lower probability can

be captured.

Overall, the range of probabilities in which relevant

events are unlikely to be observed (for R = 1000)

is Pevent ∈ [10−9, 0.021]. Authors in [10] identified that

random cache placement events can be in that range

and, hence, can affect the representativeness of MBPTA

pWCET estimates.

2.1 Cache-related representativeness challenges

TRC implement random placement with a hardwaremod-

ule that maps addresses to set randomly and indepen-

dently. The module hashes the address being accessed

with a random number to compute the (random) set

where the address is placed [9]. The random num-

ber remains constant during the program execution

so that an address is placed in the same set dur-

ing the whole execution, but it is (randomly) changed

across executions so that the particular set where an

address is placed is also random and independent of

the placement for the other addresses across execu-

tions. Thus, the probability of any two addresses to be

placed in the same set is 1/S where S is the number of

cache sets.

HoG [10] tackles representativeness issues of cache-

related events for TRC, which were also identified

in [11, 12]. HoG identifies the cache-related events of

interest affecting execution time and determines their

probability to occur. In particular, authors in HoG [10]

notice that the number of addresses competing for a set is

the critical parameter affecting execution time noticeably:

whenever up to W addresses are mapped into the same

set, those lines end up fitting in the cache set regardless

of their access pattern. This occurs because, after some

random evictions, each address can be stored in a differ-

ent cache line in the set, thus not causing further misses.

Conversely, if more thanW cache line addresses compete

for the cache set space, then, they do not fit and evic-

tions will occur often. This scenario is the cache placement

of interest.

However, HoG relies on the assumption that the impact

of all addresses in execution time is homogeneous, which

happens, for instance, in access sequences in which

addresses are accessed in a round-robin fashion. HoG has

been improved to provide precise probabilities rather than

approximations [13]; further, some initial works also con-

sider software time-randomised caches rather than only

hardware time-randomised ones [14]. Still, those works

build upon the same assumption as HoG: the impact of all

addresses in execution time is homogeneous.

We make the observation that having more than W

addresses mapped to the same set is a necessary con-

dition to trigger a cache placement of interest, but it is

not sufficient. Whether such a cache placement causes

an abrupt increase of the execution time depends on the

access pattern for those addresses.

HoG, as well as our proposal, ReVS, operates at cache

line address granularity since cache lines are allocated and

evicted atomically, so different addresses belonging to the

same cache line address are regarded as the same address

for the application of ReVS. In the rest of the paper, we use

“address” and “cache line address” interchangeably to refer

to cache line address.

2.2 Problem statement

We introduce the problem addressed by ReVS with two

illustrative examples. For simplifying the discussion, in

this section, we focus on direct-mapped caches; though

in the rest of the paper, our focus are set-associative

caches. In the first example, the number of misses gen-

erated when a subset of addresses is mapped to a set is

the same regardless of the particular addresses chosen, as

assumed by HoG. In the second example, different con-

flicting addresses (i.e. addresses mapped to the same set)

produce different miss counts, as addressed by ReVS. We

resort to the notation defined in Table 1.

Let Q1 = {ABABABABAB} be a sequence of mem-

ory accesses, whose unique (cache line) addresses are

@(Q1) = {A,B} with U = |@(Q1)| = 2. Such a sequence

may happen whenA and B are accessed inside a loop body.

For an S-set direct-mapped cache, the probability that A

and B are randomly mapped to the same set is given by

Pevent = S ×
(

1
S

)U
, so 1/S in this case. The probabil-

ity that in the R measurement runs taken at analysis—in

each of which a new random set is given to A and B—

there is no run in which both are mapped to the same set,

P(sA = sB) = Pevent, is given by Pevent(R) = (1 − Pevent)
R.

For R = 1000, a typical value used for MBPTA, the two

rows corresponding to |@(Q1)| = 2 in Fig. 2 show Pevent
and Pevent(R) for different values of S representative of

typical L1 and L2 caches in real-time systems. Conflic-

tive cache-mapping scenarios are those where Pevent ∈

[ 10−9, 0.021] (for R = 1, 000), so that the event can occur

with a non-negligible probability during operation, and

Table 1 Basic notation

S Number of sets in cache

W Number of ways in cache

cls Size in bytes of a cache line

@A or A Address assigned to a memory object

Qi Sequence of accesses to cache

@(Qi) Unique (non-repeated) addresses inQi

|@(Qi)| Number of addresses inQi

aCi One combination of addresses from @(Qi)

|aCi| Address count in (i.e. cardinality of) aCi
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Fig. 2 Pevent and Pevent(R) as a function of S. (Pobs = 0.021)

there is a non-negligible probability of missing this event

in the measurements taken at analysis time. We observe

that the larger the cache is, the lower the probability of

A and B to conflict in the same set (Pevent), with MBPTA

likely missing the impact of this event when S ≥ 64

(grey cells).

Let Q2 = (ABABABABABCD) be another sequence

with @(Q2) = {A,B,C,D} and U = 4. Q2 may occur

when A and B are accessed in a loop and C and D after

the loop. HoG [10] assumes that all addresses have the

same impact, so it will determine Pevent as the probabil-

ity of any two addresses (i.e. AB, AC, AD, BC, BD and

CD) to be mapped in the same set, plus the probability of

three addresses to be mapped in the same set (i.e. ABC,

ABD, BCD), plus the probability of the four addresses to

be mapped in the same set (i.e. ABCD). This will lead to

the values in the two rows corresponding to |@(Q2)| = 4

in Fig. 2. However, the true cache placement of inter-

est occurs only when A and B are mapped in the same

set (AB, ABC, ABD, ABCD). In that case, all accesses are

misses and otherwise there will be exactly four misses

(cold misses for the four different addresses accessed).

Hence, in this case, HoG fails to determine Pevent for Q2.

As a result, for instance, for S = 256 HoG determines that

the probability of the cache placement of interest is 0.023,

which is not in the range of interest since it is higher than

Pobs (0.021). In reality, it is 4 × 10−3, which falls in the

range of interest: [10−9, 0.021]. In this scenario, more runs

are required to provide enough confidence in capturing

the event of interest in the measurements, but HoG fails

to identify this situation.

Overall, providing evidence that those cache mappings

where at least W + 1 addresses compete for the same

cache set have been observed with a sufficiently high

probability increases evidence on whether cache jitter

is captured with MBPTA. This requires being aware of

the actual access pattern of the program under analysis

so that only those cache placements producing a high

impact on execution time are considered. If the probabil-

ity of missing any such cache placement is too high, the

number of runs needed at analysis needs to be increased

so that confidence on observing those placements is

high enough.

3 ReVS: a high-level description
The Representativeness Validation by Simulation (ReVS)

method identifies the (conflictive) sets of (cache line)

addresses, aCi, with high impact on execution time when

they are randomly mapped to the same cache set. ReVS

also tightly upperbounds the probability of occurrence of

those scenarios and assesses whether the pWCET distri-

bution derived with MBPTA upperbounds their impact.

The validation is performed in the miss count domain

rather than in the execution time domain, and it is applied

for each cache memory individually (i.e. instruction and

data caches). ReVS relies on miss counts correlating with

execution time. While this is usually the case since cache

misses have been shown to be one of the major contrib-

utors to programs’ execution time, we perform a quanti-

tative assessment for our reference processor architecture

(Section 6).Whenever this is not the case, then, the impact

of cachemisses can be disregarded since jitter due to other

resources is much larger, and therefore, ReVS would not

be needed. In that case, the default number of runs R

would suffice for a reliable application of MBPTA since,

as pointed out in [10]; so far, only cache placement events

have been shown to challenge MBPTA reliability. Still, as

long as cache misses are one of the main sources of jitter,

the use of ReVS is mandatory for a reliable application of

MBPTA.

3.1 ReVSmain steps

ReVS includes the following steps:

1. Due to the computational cost of ReVS, only the U
most accessed (cache line) addresses are kept in the

address trace (from which ReVS considers all poten-

tial combinations). Part of our future work consists of

considering, in a first step, all (cache line) addresses,

and quickly discarding those combinations that can-

not be the most conflictive ones, i.e. those that if

mapped to the same set cause a low impact on execu-

tion time. This will allow considering arbitrarily large

and complex programs.

2. For each combination of addresses regarded

as conflictive—and also for each group of

combinations—ReVS (i) determines its probability
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and (ii) performs cache simulations in which conflic-

tive addresses are mapped to the same cache set. The

probability (obtained analytically) and miss count

information (obtained through simulation) allow

ReVS identifying those conflictive aCi leading to con-

flictive cache placements that must be upperbounded.

ReVS uses a light-weight cache simulator for TRC to

estimate the number of misses when a given aCi is

mapped in the same cache set, where |aCi| > W .

3. ReVS also performs cache simulations in which all

addresses are randomly mapped and applies MBPTA

with a default number of runs R. ReVS generates a

probabilistic worst-case miss-count (pWCMC) with

these miss measurements. By validating whether the

pWCMC distribution obtained upperbounds all con-

flictive cache set mappings (i.e. miss count and prob-

ability pairs), ReVS determines whether the number

of runs R used by MBPTA suffices. If this is not the

case, more runs are performed until the validation

step is passed with R′ ≥ R runs.Whenever it is passed,

the number of runs R′ is the minimum number of

execution time measurements that MBPTA needs to

use.

3.2 ReVS process

ReVS process is illustrated in Fig. 3. The solid curve rep-

resents the pWCMC estimate generated from the miss

counts obtained from R runs, and the black stars and black

crosses represent the miss counts obtained for all aCi—

and their combinations—whose probability of occurrence

is above Pcff. Their grey counterparts are those below

Pcff, which is discarded by ReVS since their probability of

occurrence is deemed as irrelevant. Stars are those aCi

(and their combinations) whose miss counts are upper-

bounded by the pWCMC, while the miss counts of the aCi

marked with crosses are not. In this case, ReVS requires

increasing the number of runs, from R to R′, such that the

impact of those aCi is properly upperbounded. As shown,

Fig. 3 Illustrative application of ReVS

the resulting pWCMC curve with R′ runs upperbounds

the impact of all aCi. Therefore, the pWCET estimate

obtained with R′ runs upperbounds the timing impact of

all cache placements of interest with sufficient confidence.

3.3 An illustrative example

Let us assume a loop that contains the following sequence

of accesses Q1 = {ABCDECDECDECDEFG}, so that it

repeats. In this scenario, there are 35 different aCi with

cardinality 3, {ABC,ABD,ABE, . . .}. Figure 4 shows the

impact when the addresses in each aCi (shown in the

x-axis) are forced to be mapped in the same set (in a

direct-mapped cache) and the rest are mapped randomly.

We observe that aCi = {C,D,E} generates the highest

impact. The second step occurs when two addresses of

< (C, D, E) > and any other addresses are mapped into

the same set (e.g. aCj = {C,D, F}). The lowest step in

terms of impact occurs when only one or none of the three

most repeated addresses is in the address combination

(e.g. aCk = {C, F ,G}). Intuitively, what ReVS needs to cap-

ture is the probability and impact of each step. ReVS will

consider incrementally only one aCi, e.g. {C,D,E}, then

combinations of aCi, for instance, the case where {C,D,E}

or {A,C,D} occur, then {C,D,E}, {A,C,D} or {D,E,G},

and so on and so forth, thus always considering the worst

set of combinations and obtaining the corresponding <

probability, impact > pairs. Each of these pairs will be

compared against the pWCMC distribution as illustrated

in Fig. 3. This step will be repeated for all cardinalities

|aCi| in the range [W + 1,U].

4 ReVS detailed steps
In this section, we describe in detail ReVS’ main applica-

tion steps.

4.1 Generating combinations of conflictive addresses

LetQi be the sequence of accesses under analysis. In the-

ory, all aCi such that |aCi| > W need to be properly

upperbounded. The number of those address combina-

tions is computed as shown in Eq. 1, with U = |@(Qi)|.

Note that the generated aCi has cardinalities in the range

[W + 1,U].

N
Qi
aCi =

U
∑

k=W+1

(

U

k

)

(1)

Ideally, we would like to consider all addresses in the

program under analysis, U, i.e. the number of unique

addresses in Qi. However, computation costs to generate

all combinations and simulate them in the cache conflict

simulator may limit the actual number of addresses that

can be considered to be up toU ′, whereU ′ < U . This may
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Fig. 4 Impact (miss count) of different aCi

have an effect on the minimum number of runs R′ pro-

vided by ReVS. How the address count U ′ impacts R′, and

so the confidence of the pWCET estimates, is discussed in

detail later in Section 5.

4.2 aCi Impact and probability

Probability. The probability of a given combination of

addresses aCi to be mapped in the same set is shown in

Eq. 2. The probability of one address to be mapped in a

specific set is 1/S, and so the probability of mapping |aCi|

addresses in a specific set is (1/S)|aCi|. Since there are S

sets in cache, this probability needs to be multiplied by S.

probsame−set(aCi) = S × (1/S)|aCi| (2)

Impact. The impact is obtained by performing a Monte-

Carlo experiment where each observation is a cache sim-

ulation. In each simulation, all the addresses in aCi are

forced to be mapped to exactly one random set. The other

addresses in Qi are mapped randomly. The number of

observations (M) needs to be sufficiently high so that the

impact of the random mapping of addresses not in aCi is

captured. The impact, i.e. miss count in our case, that is

produced for the aCi is the average miss count under all

M mappings2. In our experiments, we assumeM = 1000,

which provides a confidence interval of ±2% with 99%

confidence. The inputs for the cache conflict simulator

include (i) the sequence of cache lines accessed; (ii) aCi,

whose addresses are mapped to the same (random) set,

while the rest of the addresses inQi aremapped randomly;

and (iii) the cache configuration. While this paper relies

on random placement as well as random replacement,

the latter—although convenient—it is not strictly needed.

Instead, other replacement policies could be used (e.g.

LRU or pseudo-LRU). This could change the impact of the

different address combinations. However, ReVS would be

applied exactly in the same way. Studying the impact on R′

and the pWCET estimates of other replacement policies is

beyond the scope of this work.

4.3 Combined aCi impact and probability

If two combinations of addresses, aCi and aCj, lead to

the same miss count impact, the probability of that miss

count impact is the union of the probabilities of both

combinations of addresses, since when any of the two

combinations are mapped to the same set, they lead to

that miss count. Hence, in addition to considering each

combination of addresses (aCi) in isolation, it is also

needed to determine the joint probability of several aCi.

For instance, let us consider an example where aCi and

aCj have the same impact and |aCi| = |aCj|. Their indi-

vidual probabilities are P(aCi) = P(aCj) = S ×
(

1
S

)|aCi|
,

but the probability of having exactly one of them is P(aCi∪

aCj) = P(aCi)+P(aCj)−P(aCi∩aCj), whereas the impact

will be the same. In general, determining the impact and

probability of joint scenarios is challenging.

Probability. Determining the total probability for the

union of any arbitrary number of aCi is overly complex in

practice because we should be able to compute the inter-

sections of each pair of aCi, each group of three, four,

and so on and so forth. Note that, P(aCi) and P(aCj) are

not mutually exclusive in general because addresses may

repeat across sets, thus leading to arbitrary intersections

for each group. We address this issue by upperbounding

such union of probabilities as their addition. Note that this

choice may lead to an increased risk of not passing the val-

idation step because miss count and probability pairs will

be more likely to be above the pWCMC. This, however,

may imply collecting more runs than needed but will not

lead to false step passes.

In very extreme cases, some < impact, prob > pairs

could be set with such a high probability that the pWCMC

never upperbounds them, thus leading to a failure to pass

ReVS. However, false step passes cannot occur. Note also

that pairs are never disregarded even if they reach Pobs
(0.021). However, in practice, we would need extremely

tiny caches and large address counts to reach Pobs.

Impact. The impact of having any two aCi or aCj is

obtained as the average of their impacts, since either of

them can occur individually with the same probability.
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Note that individual probabilities for all of them have

already been considered and the case of having aCi and

aCj simultaneously in the same set is captured when

analysing those aCh with larger cardinality such that

|aCh| = |aCi ∪ aCj|.

For each cardinality in the range [W + 1,U], we analyse

the combined impact of those aCi with higher individ-

ual impact. Conceptually, this can be implemented sort-

ing the different aCi from the highest to lowest impact,

and selecting those two combinations with the highest

impact, then the three with the highest impact and so

on and so forth. For instance, if we have the following

four combinations aC1 = {A,B,C}, aC2 = {C,D,E},

aC3 = {F ,G,H} and aC4 = {A,D, J} for K = 3, with

their respective < impact, prob > pairs < 100, 0.0001 >,

< 70, 0.0001 >, < 90, 0.0001 > and < 80, 0.0001 >,

we would sort them and obtain: aC1, aC3, aC4, aC2. aC1

in isolation has already been considered as an individ-

ual combination. We now consider groups of two, three

and four combinations. The group of two combinations

includes aC1 and aC3. Its < impact, prob > pair would be

< 95, 0.0002 >, thus reflecting the average impact and

the added probabilities. The group of three combinations

includes aC1, aC3 and aC4 and would be represented with

the pair < 90, 0.0003 >. The group with four combina-

tions includes all of them and is represented with the pair

< 85, 0.0004 >. Note that there is no way to select groups

of two, three or four combinations with the highest aver-

age impact than the ones chosen, and their probabilities

would be exactly the same since all combinations with

the same number of addresses have identical probabilities.

This step delivers a list of pairs (< impact, prob >) that

must be upperbounded by the pWCMC curve.

4.4 Validation against pWCMC

The final step consists in collecting the miss counts for R

runs without enforcing any specific placement, so that all

addresses are mapped randomly. Then, MBPTA is applied

to obtain the pWCMC curve. Those R runs can be per-

formed, for instance, in the same simulator where the

< impact, prob > pairs have been obtained. Finally, those

pairs are compared against the pWCMC curve.

4.4.1 Outcomes of the validation

Different scenarios may arise for the set of

< impact, prob > pairs when assessing them against the

pWCMC.

• Step passed. If all pairs < impact, prob > are upper-

bounded by the pWCMC curve, or the curve falls

within their confidence interval; then, it can be argued

that R runs account for all relevant cache place-

ments. Similarly to any statistical approach, there is

some chance that the actual impact of a particu-

lar cache placement is larger than estimated simply

because it is above the confidence interval estimated.

In this case, we make the following considerations:

(1) Safety functional standards accept confidence lev-

els of 99% even for the highest safety integrity levels.

For instance, the verification of hardware design in

terms of single-point fault metric in the context of

ISO26262 in the automotive domain sets the cover-

age threshold at 99% for the highest Automotive Safety

Integrity Level (ASIL D) [2] in clause 8.4.5. (2) The

probability of being above is very low (< 1% due to

the 99% confidence). Due to the Gaussian distribu-

tion produced by the Monte-Carlo experiments, the

probability could only be above with decreasing prob-

abilities. Therefore, the actual impact is very unlikely

to be above and, if it was, it should be naturally very

close to the confidence interval estimated. Therefore,

the evidence obtained with this process is in line with

industrial practice since pWCMC reliability is proven

to be probabilistically high.
• Step failed. If the pWCMC is below the confidence

interval for at least one pair, ReVS asks for more runs.

However, there is a risk of having a false positive

despite the number of runs already suffices to upper-

bound all pairs. For instance, the Monte-Carlo exper-

iment may produce, by chance, a particular cache

placement with very high impact but that occurs with

very low probability. Such placement, if observed, may

shift the confidence interval towards higher impact

values, thus making the pWCMC to be below the con-

fidence interval for this pair. In this case, the cost of the

false positive relates to asking the end user for more

execution time measurements of his program, but it

does not decrease the reliability of the method.

4.4.2 Determining the number of runs

ReVS starts an iterative process by setting the value of R′

to the number of runs required byMBPTA [5] (R). If more

runs are required (i.e. pWCMC does not upperbound all

pairs), we increase the number of runs by �R = 10. As the

number of runs R′ increases, we also increase �R accord-

ingly for efficiency. That is, we make �R = 100 when

R′ > 1000 runs, �R = 1000 for R′ > 10, 000 runs, and so

on and so forth. Whenever a value of R′ is found such that

the pWCMC curve upperbounds all pairs, then we explore

the interval in steps of �R = 10 to provide a precise

answer, although this last step is not strictly needed.

Whenever several caches are analysed, the number of

runs to be performed is the maximum R′ across all caches

obtained with ReVS. In our case, we have instruction

and data cache so, R′ = max(R′
dcache,R

′
icache). As miss

counts in the instruction and data caches are independent

events, it is sufficient to observe their set of worst address
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placements separately (those leading to high miss counts).

EVT is in charge of predicting the impact and probabil-

ity of the different bad address placements for data and

instructions to occur simultaneously. Note that using the

maximum R′ across all caches may be pessimistic due to

several reasons and a lower value for R′ could suffice:

• It could be the case that, for instance, R′
icache < R′

dcache
and IL1 placements observed with R′

icache runs lead to

higher pWCET estimates than those DL1 placements

observed with R′
dcache runs. In that case, R′ = R′

icache
would suffice. However, building such a proof is com-

plex so we resort to using the maximum R′ across all

caches for reliability of the method.
• The pWCET value will be chosen at a specific prob-

ability threshold (e.g. at 10−12 per run). Therefore, it

may be completely irrelevant that the pWCET value

at higher probabilities (e.g. at 10−6 per run) is not a

true upperbound as long as all relevant events are con-

veniently upperbounded with the pWCET selected.

For instance, the pWCET at 10−6 could be 100,000

cycles with R < R′ runs, whereas execution times of

101,000 cycles could occur at this probability. How-

ever, if the pWCET selected at 10−12 with R runs is

150,000 cycles and the highest execution time that can

occur at that probability is 145,000 cycles; then, the

pWCET estimate is reliable despite using only R runs.

5 Reliability considerations of ReVS
The computational cost of ReVS prevents us to apply it to

all program addresses. We limit our application of ReVS

to the U = 15 most accessed cache lines (which represent

15× 8 = 120 addresses), which results in a computational

cost of around 1.5 h per cache and per benchmark (for the

suite used in this work) on a regular laptop. For the bench-

marks used in this work (see further details in Section 6),

those cache line addresses account for 67% of all the mem-

ory accesses. In Figs. 5 and 6, we show, for instructions

and data respectively, the percentage of the total pro-

gram’s accesses (assuming 32-byte cache lines), covered

by the most accessed cache line addresses. We observe

the variable behaviour across benchmarks, especially with

respect to instruction access coverage. For some bench-

marks, the 15 most accessed addresses are sufficient to

achieve very high coverage (e.g. canrdr, with > 95%

instruction and > 75% data accesses covered), while for

others, we observe much lower coverage (e.g. aifftr

and aiifft, with < 20% instruction accesses covered).

Using higher number of addresses (e.g. U = 20)

increases the computational cost of ReVS exponentially

due to the exponential increase in the number of address

combinations to explore. For instance, we have deter-

mined analytically and empirically that this cost would

Fig. 5 Instruction accesses coverage

increase by 30× when moving from U = 15 to U =

20. Thus, increasing U would only be affordable decreas-

ing the number of cache simulations per combination

(e.g. from 1000 down to 100), which would lead to much

wider confidence intervals for the < impact, prob > pairs.

This would challenge the usefulness of ReVS since too

wide intervals would make almost any pWCMC to fall

within the interval, thus failing to identify those cases

where the number of runs is too low to capture relevant

placements.

While part of our current work is to reduce the compu-

tational requirements of ReVS, in this section, we provide

an analysis of the potential impact on confidence of dis-

missing some addresses.

5.1 Impact of address choice

As a rule of thumb, the most accessed addresses are the

ones able to create a higher miss variability with different

cache placements and hence higher execution time vari-

ability. This is typically the case since the most accessed

Fig. 6 Data accesses coverage
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addresses are the ones with the highest potential to create

miss count variations, thus affecting representativeness.

This relates to instruction addresses accessed in loops and

data accesses with reuse distances long enough not to be

mapped into registers. In both cases, this leads to reuse

distances often aboveW, so that some random placements

maymake each of those addresses causemuch highermiss

counts than usual. However, there are some known, as well

as some potential, exceptions that we review next.

Exception 1. Due to the particular access patterns

of the program, the most accessed addresses might

have very high hit rates even if placed in the same

set as other addresses simply because their reuse

distance is pretty short. For instance, in a cache

with W = 4, a program whose access pattern is

{ABACADAEAFAGABACADAEAFAG} would lead to

very high hit probabilities for A despite the particu-

lar cache placement. However, addresses B, C, D, E,

F and G are much more sensitive to the particular

cache placement since they may lead to high miss rates

if five or more addresses are placed in the same set.

Hence, although in general higher access counts relate to

higher miss counts and so higher sensitivity to the par-

ticular cache placement, this cannot be proven true in

all cases.

Exception 2. In some cases, the addresses considered

may be as relevant as some of the addresses dismissed.

This is, for instance, the case of instruction addresses in

a loop. Let us assume a loop whose code spans to 20

cache lines. By using U = 15, 5 of those 20 addresses

will be ignored. In this case, all address combinations

with a given address count (e.g. five addresses) have the

same impact. However, the number of combinations pro-

duced with 15 addresses is lower than the one that would

be obtained with 20 addresses. Hence, the correspond-

ing pair < impact, prob > with U = 15 will have a

lower probability than the one obtained with U = 20.

As a result, for a given R, the resulting pWCMC may be

deemed as not reliable for U = 20 (thus requesting more

runs), whereas it may be deemed as reliable with U = 15

(thus not requesting more runs).

5.2 Impact on R′

Using a limited number of unique addressesmay affect the

final number of runs R′ requested to the user. If R′ with

U = 15, referred to as R′
15, is equal or higher than R′

all,

where all stands for all addresses in the program, then our

method may be requesting some extra runs above those

strictly needed. This increases the burden on the user side

but delivers confidence levels equal or higher than the

desired ones.

Conversely, it can be the case that R′
15 < R′

all. In this

case, some risk exists that those R′
15 runs do not capture

all relevant cache placements with sufficient confidence.

Still, even in that case, the pWCET is not necessarily

optimistic. Other cache placements or other sources of

execution time variability may make MBPTA produced

a reliable pWCET curve even if the particular event in

the example has not been observed in the measurements

collected during the analysis phase, which could occur

with a probability higher than required (e.g. 10−6 instead

of 10−9).

In order to understand the impact on R′ of different val-

ues of U, in Section 6.4, we perform an analysis of ReVS

comparing U = 15 and U = 10. This allows us to under-

stand what we lose by discarding the 5 least accessed

addresses out of the 15 most accessed ones.

6 Experimental results
We model an in-order processor with a memory hier-

archy comprising first level 4KB 2-way set-associative

32B/line data (DL1) and instruction (IL1) caches andmain

memory. Both set-associative caches implement random

placement and replacement [9]. The latency of an instruc-

tion depends on whether the access hits or misses in the

instruction cache: a hit has 1-cycle latency and a miss

has 100-cycle latency. The memory operations access the

data cache so they can last 1 or 100 cycles depending

on whether they miss or not. The remaining operations

have a fixed execution latency (e.g. integer additions take

1 cycle).

We evaluate several EEMBC Autobench 1.1 benchmark

suites, representative of some safety-related real-time

automotive applications [15]. The average number of lines

of code (LoC) for these benchmarks is around 6500. A

popular benchmark suite used in academia in this domain,

Mälardalen benchmarks [18], has instead only 350 LoC

per benchmark. Therefore, due to the higher complexity

of EEMBC and their industrial nature, we have used them

for the evaluation of this work. We consider the U = 15

most accessed addresses for instructions and data for each

benchmark that covers on average 67% of the accesses

across all benchmarks. Average reuse distances and their

standard deviation are shown in Table 2 for the full traces

(U = ∞) and those with U = 15. As shown, there is

a wide variety of different behaviour across benchmarks,

especially for the DL1, thus stressing the ability of ReVS

to determine the number of runs R′ needed. In order to

analyse the impact of dismissing some addresses, we also

consider U = 10 and compare it against U = 15. In all

cases, we start by applying MBPTA with the number of

runs R regarded as sufficient by the MBPTA technique for

each program [5]. Then, we apply our approach, ReVS, for

the instruction and data caches and obtain the number of

runs required to pass the validation step R′.



Milutinovic et al. EURASIP Journal on Embedded Systems  (2017) 2017:28 Page 11 of 16

Table 2 Average and standard deviation for the reuse distances

in EEMBC benchmarks

Reuse distance

U = ∞ U = 15

IL1 DL1 IL1 DL1

μ σ μ σ μ σ μ σ

a2time 7.97 28.94 2.53 8.20 0.57 1.75 1.26 2.45

aifftr 3.16 9.05 7.92 71.45 0.34 0.99 0.52 0.77

aifirf 0.81 3.52 2.02 9.24 0.55 1.16 0.74 1.22

aiifft 3.27 9.29 7.93 73.55 0.34 0.93 0.51 0.75

basefp 0.37 2.21 2.81 38.22 0.30 0.71 0.35 0.61

bitmnp 9.55 27.49 1.92 4.51 0.56 1.52 1.24 0.85

canrdr 0.62 1.77 1.79 11.73 0.58 1.18 0.41 0.72

idctrn 0.96 3.78 2.07 14.38 0.29 0.77 0.46 0.72

6.1 Correlating execution time andmiss counts

ReVS is required whenmiss counts impact execution time.

While this is generally the case since misses in cache

lead to slow off-chip accesses, we perform a quantitative

assessment of this fact. We first illustrate such correlation

visually for some benchmarks. Then, we evaluate quan-

titatively such correlation for the whole set of EEMBC

automotive benchmarks. For that purpose, we use an

FPGA implementation of an in-order processor imple-

menting random placement and replacement caches [17].

Executions on this processor take much longer than the

ones on our simple simulator, whose accuracy has been

assessed against the FPGA implementation. However, as

shown next, these results prove that modelling execution

timemostly with cache behaviour is an extremely accurate

proxy. Both, the cache simulator and the FPGA, imple-

ment write-back write-allocate policies in DL1. However,

the FPGA includes a write buffer for dirty lines evicted,

whereas the simulator does not.

Qualitative assessment. First, we perform R = 1000

runs for each benchmark collecting both their execution

times and their total number of cache misses (DL1 and

IL1 misses). In order to correlate the variation of both

metrics, we normalise them: for each benchmark, we sub-

tract the minimum execution time (miss count) from the

execution time (miss count) observed in each experiment.

This differential is normalised to the differential between

the minimum and maximum values observed. Formally,

normalised misses for a given execution i, referred to as

NormMissi, are obtained as follows, where Missi stands

for the number of misses measured in execution i:

NormMissi =
Missi −

(

MINR
j=0Missj

)

(

MAXR
j=0Missj

)

−

(

MINR
j=0Missj

)

(3)

Likewise, we compute NormETi:

NormETi =
ETi −

(

MINR
j=0ETj

)

(

MAXR
j=0ETj

)

−

(

MINR
j=0ETj

) (4)

where ETi is the execution time measured in execution i.

NormMiss and NormET for a2time and bitmnp

benchmarks are shown in Fig. 7. As shown, both met-

rics overlap almost completely. Only some discrepancies

are observed for a2time due to the effects of the store

buffer. However, the average deviation of one metric w.r.t.

the other is 0.4 and 1.5% for a2time and bitmnp,

respectively.

Quantitative correlation. In order to assess the correla-

tion between miss counts and execution times quantita-

tively, we have used two different correlation methods to

obtain correlation coefficients [19]: the Pearson product-

moment correlation coefficient and Spearman’s rank

correlation coefficient. The Pearson product-moment

correlation coefficient measures the linear dependence

between two variables. Spearman’s rank correlation coef-

ficient measures the statistical dependence between two

variables by assessing to what extent those variables

can be modelled using a monotonic function. Both

Fig. 7 NormMiss and NormET for a2time and bitmnp sorted by NormMiss
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methods deliver as output a value in the range [−1, 1],

where 1 indicates total positive correlation, 0 no corre-

lation and −1 total negative correlation. In our case, we

expect values close to 1, meaning that there is a linear

positive correlation between execution times and miss

counts. For both methods, we use a 5% significance level

(a typical value for this type of tests [20]).

As shown in Table 3, all benchmarks obtain very high

values for these tests, so miss counts and execution times

are highly correlated and such correlation is highly linear

(high values for Pearson’s test). We have further analysed

benchmarks with the lowest values and have realised that

they experience very low execution time and miss count

variations. Thus, other sources of jitter, like those intro-

duced by the store buffer, have a relatively higher impact

than for other benchmarks.

6.2 ReVS results: illustrative examples

To illustrate how ReVS works, we present results for one

EEMBC Automotive benchmark passing the validation

step with R runs (bitmnp) and for one requiring extra

runs (aifirf). For the purpose of this experiment, we

perform ten million runs to compute the actual distribu-

tion of misses, referred to as ECCDF (Empirical Comple-

mentary CDF). A larger number of runs was not collected

due to the cost to run those many simulations. Note that

performing that number of runs is not required for ReVS

application; we just perform them for illustrative purposes

in this section.

ReVS passed. Figure 8a shows the result of applying

ReVS for the instruction accesses of bitmnp. The curves

on the left show the < impact, prob > pairs derived with

ReVS for each cardinality |aCi| ∈ [W + 1,U]. It can be

observed that all < impact, prob > pairs are below the

pWCMC curve, thus meaning that the number of runs

R suffices for a reliable application of MBPTA for this

benchmark. This is corroborated in Fig. 8b, where the

ECCDF is reliably upperbounded by the pWCET estimate

derived with MBPTA with R runs.

Table 3 The Pearson and Spearman correlation coefficients for

NormMiss and NormET

Pearson Spearman

a2time 0.997 0.933

aifftr 0.918 0.911

aifirf 0.960 0.956

aiifft 0.923 0.913

basefp 0.999 0.998

bitmnp 0.998 0.998

canrdr 0.974 0.973

idctrn 0.950 0.951

ReVS failed. In the case of aifirf, our method detects

that the number of runs obtained with MBPTA R =

4400 is not enough to provide a reliable pWCET esti-

mate. In Fig. 8c, we observe that the pWCMC curve does

not upperbound the < impact, prob > pairs generated by

ReVS. As a result in the timing domain, the pWCET

estimate derived with R runs does not upperbound the

execution time of the program. ReVS requires the num-

ber of runs to be increased to R′ = 21, 390. If MBPTA

is applied in the timing domain with R′ runs, the result-

ing pWCET estimate is reliable as we can observe in

Fig. 8d.

In general, applying MBPTA with R runs instead of R′

delivers reliable pWCET estimates. We have corroborated

this fact empirically with all the benchmarks and through

a number of experiments with different configurations in

other works. However, if ReVS is not used, there may

be some probability of obtaining an unreliable pWCET

upperbound. Still, whether this occurs or not relates to

the confidence level obtained with R runs instead of R′ as

explained later.

6.3 ReVS results: EEMBC automotive

Table 4 summarises the number of runs required by

MBPTA (R) and ReVS in the miss domain for both DL1

and IL1 for all benchmarks. For the sake of completeness,

we also compare ReVS against different flavours of HoG:

its original [10] and improved versions [13], considering

the full address trace or onlyU = 15 cache line addresses.

The number of runs required by ReVS is the maximum

across DL1 and IL1. That is, R′ = max(R′
IL1,R

′
DL1). By

comparing R′ and R, we can assess whether the number

of runs required by MBPTA in the execution time domain

could lead to lower confidence levels than desired, which

occurs when R < R′ for MBPTA.

We observe that this is the case for all the bench-

marks in Table 4 for MBPTA. Regarding HoG, we realise

that, for the full address trace, the number of cache line

addresses for either data or code is no less than 35 across

benchmarks. Regardless of whether we use the original or

improved version of HoG, the number of runs required

as determined by those methods is upperbounded by the

number delivered by MBPTA. If we restrict the traces to

U = 15, the same conclusion holds since, for instance,

the improved version of HoG makes MBPTA start with

209 runs, which is always upperbounded by the minimum

number of runs required by MBPTA (300).

Note that these results are not independent of the actual

cache setup. For instance, if we used a 4-way 32-set cache

instead of a 2-way 64-set cache, then HoG improved

would request at least 10,955 runs for U = 15, which

may not be upperbounded by the minimum number of

runs required by MBPTA (300). We can conclude that the

number of runs needed to achieve the level of confidence
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Fig. 8 ReVS applied to the instruction accesses of bitmnp and aifirf. The analysis is performed for combinations of addresses with increasing

cardinality, |aCi| ∈ [W + 1,U] and pWCET estimates obtained with R and R′ runs. a pWCMC for bitmnp. b pWCET for bitmnp. c pWCMC for

aifirf. d pWCET for aifirf

desired is highly sensitive to the actual access patterns.

Therefore, ReVS is needed in the general case.

On the other hand, this does not mean that results

obtained with less than R′ runs are unreliable, but the

confidence level had on them is lower than the target

confidence level. ReVS keeps the likelihood of missing

relevant cache placement scenarios of interest below

10−9, as discussed in Section 2. Instead, if we only use

the number of runs, R, determined by MBPTA (HoG),

the likelihood of missing those scenarios becomes higher

(see the corresponding likelihood columns). This

decreases the confidence on the results below the levels

defined in the corresponding safety standards. Still, it

is often the case that relevant scenarios are observed and,

whenever they are not, their effect may be superseded

by other processor effects. Although this may result in

pWCET estimates truly upperbounding program’s exe-

cution time, the lack of evidence on this challenges the

development of arguments for certification. Regarding

execution time cost, HoG method executes in around

100 ms per cache and benchmark on average (in com-

parison to 1.5 h for ReVS method). This is expected since

HoG neglects access patterns and can model the program

as the number of unique addresses. Instead, ReVS is a

pattern-aware method that tradeoffs computational cost

for accuracy.

6.4 Assessing ReVS reliability

We assess the impact on reliability of analysing a limited

number of addresses by comparing the results in terms of

R′ of applying ReVS consideringU = 10 (R′
10) andU = 15

(R′
15). Results for R

′
15 are shown in Table 4, whereas results

for R′
10 are shown in Table 5.

The first observation is that either R′
10 is higher than R′

15
or, if lower, close to it. In particular, 5 out of 8 benchmarks

meet the condition R′
10 ≥ R′

15. Therefore, the confidence

level obtained is equal or higher than the desired one, but

the number of runs requested to the user may increase.

For instance, the most extreme cases are those of aifftr

and aiifft, where the end user is requested to increase

the number of runs by 3× and 5×, respectively, w.r.t. the

case where U = 15, as well as the case of canrdr, where

MBPTA required 10,000,000 runs3. In those cases where

R′
10 < R′

15, the difference is between 0.5 and 13.8%. This

makes that the confidence level of the pWCET estimates

obtained with R′
10 is slightly lower than desired. In this

case, the chance of missing relevant events grows to the

range [1.1 × 10−9, 1.7 × 10−8]. While this is not desir-

able, still, the likelihood of these unwanted scenarios can

be deemed as extremely low.

If we analyse the results in more detail, we realise that

R′
10 is higher or only slightly lower than R′

15 for the IL1.

This relates to the scenarios described in Section 5 for

Table 4 Results for all EEMBC benchmarks

ReVS MBPTA / HoG / HoG(U = 15)

R′
IL1 R′

DL1 R′ likelihood (R′) R likelihood (R)

a2time 58,360 540 58,360 10−9 2650 0.390

aifftr 6840 5500 6840 10−9 2200 0.001

aifirf 21,390 11,530 21,390 10−9 4400 0.014

aiifft 8920 8770 8920 10−9 1900 0.011

basefp 82,080 20,010 82,080 10−9 300 0.927

bitmnp 4640 3510 4640 10−9 850 0.007

canrdr 18,610 7950 18,610 10−9 350 0.677

idctrn 65,770 47,700 65,770 10−9 3650 0.317
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Table 5 Results for all EEMBC benchmarks [U = 10]

ReVS

R′
IL1 R′

DL1 R′ likelihood (R′)

a2time 78,930 1520 78,930 < 10−9

aifftr 14,230 19,600 19,600 < 10−9

aifirf 25,890 5400 25,890 < 10−9

aiifft 18,030 46,230 46,230 < 10−9

basefp 72,900 1700 72,900 1.0 × 10−8

bitmnp 3670 4000 4000 1.7 × 10−8

canrdr 17,750 10,000,000 10,000,000 < 10−9

idctrn 65,460 58,860 65,460 1.1 × 10−9

the IL1: the number of addresses accessed in a round-

robin manner inside the main loop may be higher than U.

By using a low value for U, the probability of producing

cache placements of interest is lower in the Monte-Carlo

experiment and thus, more runs are needed to produce

those placements so that the pWCMC curve upperbounds

all < impact, prob > pairs. However, when increasing U,

the true probability of the relevant placements is higher

than assumed by ReVS with low U values. However, a

larger U value also increases the chances of randomly

placing enough conflictive addresses in the same set and

thus triggering cache placements of interest, which leads

to pWCMC curves upperbounding all < impact, prob >

pairs. Hence, fewer runs are needed to guarantee that

those placements are conveniently observed.

Runs needed for the DL1 grow in all cases but for two

notable exceptions: aifirf and basefp. This decrease

in R′
DL1 with U = 10 w.r.t. U = 15 has no effect on the

confidence level achieved since it is masked by the fact

that R′
IL1 is typically higher than R′

DL1. However, this is not

necessarily always the case and thus, discarding some DL1

addresses might potentially affect the confidence level

achieved for the pWCET estimates. For instance, if we

compute the probability of missing relevant placements

only with R′
DL1, then likelihood for R

′
10 would be 6.1×10−5

and 0.17 for aifirf and basefp, respectively.

In summary, using the most accessed addresses of pro-

gram typically allows achieving the desired confidence

level for the pWCET estimates. However, ReVS reliabil-

ity might be affected in some specific scenarios due to

the effects of those addresses dismissed due to the com-

putational cost of the method. Hence, part of our future

work consists of extending ReVS to be able to analyse all

programs addresses within acceptable computation time

bounds.

7 Related work
Literature onWCET estimation is abundant [3]. Recently,

MBPTA has emerged as an alternative to obtain WCET

estimates with high confidence and to apply industrial

practice for complex software running on top of complex

hardware [5, 16, 21–23]. However, MBPTA may lead to

pWCET estimates with lower confidence than desired on

top of caches implementing random placement in some

particular scenarios [10–12]. Some solutions exist for sce-

narios where all accessed addresses have the same impact

in terms of execution time [10]. However, access patterns

of programsmay be arbitrary, since addresses are accessed

with different frequencies and with arbitrary interleav-

ing. In this paper, we tackle this issue by proposing—as

an extension of the conference paper in [24]—a valida-

tion step, ReVS, able to test whether the confidence had

on the WCET estimates obtained with MBPTA is suffi-

ciently high. If it is not, ReVS increases the number of runs

needed until the validation step is passed.

So far, in the real-time domain, EVT has been applied

only to execution times [5, 23], whereas in other

domains EVT has been applied to measure flow floods,

stock min/max values, etc. In this respect, this paper

makes the contribution of extending the use of EVT to

other metrics in the real-time domain, in particular to

miss counts.

An initial comparison between MBPTA and static tim-

ing analysis, which is out of the scope of this paper, has

been already performed [25]. Results show that MBPTA

provides competitive results with respect to those pro-

vided by static timing analysis techniques.

8 Conclusions
MBPTA uses EVT to estimate the pWCET of programs.

Some events affecting execution time significantly may

occur with a probability sufficiently low so that they may

not be observed during the analysis phase. This leads to

some risk of not observing all relevant events affecting

execution time during analysis runs. Therefore, the confi-

dence had in the pWCET estimates obtained is lower than

desired. While this challenge has already been addressed

for programs with homogeneously accessed addresses,

access patterns are arbitrary in the general case.

In this paper, we introduce a validation step forMBPTA,

needed to attain the desired confidence in pWCET esti-

mates for arbitrary memory access patterns. Our method,

ReVS, identifies the worst miss counts and their proba-

bilities of occurrence and, by means of controlled cache

simulations, tests whether the number of measurement

runs used for pWCET estimation is high enough to cap-

ture all cache placements of interest. Our results illustrate

the effectiveness of our method to attain the desired

confidence level in the pWCET estimates obtained.

Our future work will focus on reducing the computa-

tional cost of ReVS, generalising it towards more com-

plex architectures such as multi-level cache hierarchies,

considering other random placement policies such as

random modulo or software randomisation, and dealing
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with the considerations related to multi-path programs.

We foresee reducing the computational cost by using

analytical methods to dismiss combinations that can-

not produce high miss count variations (e.g. addresses

hardly interleave) and creating buckets of addresses whose

behaviour is almost identical, so that combinations includ-

ing one of them need to be explored once rather than

exploring each one of them. Work on cache hierar-

chies, placement policies and multi-path programs will

build on the probabilistic nature of cache placement

to derive the number of runs R′ needed to capture

relevant events.

Endnotes
1We also provide evidence that execution time andmiss

counts strongly correlate on the commercial processor

prototyped on FPGA used for evaluation purposes.
2The expected value of a random variable is the average

value obtained after infinite repetitions of the experi-

ment. In the case of a finite sample, the expected value is

approximated with the average of the observed values.
3 In fact, due to the difficulties to search for the pre-

cise value in our toolchain for big samples, we could only

determine that the pWCMC was not upperbounded with

1,000,000 runs, but it was with 10,000,000 runs.
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