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Speech requires the control of complex movements of orofacial structures to
produce dynamic variations in the vocal tract transfer function. The nature of the
underlying motor control processes has traditionally been investigated by
employing measures of articulatory movements, including movement amplitude,
velocity, and duration, at selected points in time. An alternative approach, first
used in the study of limb motion, is to examine the entire movement trajectory
over time. A new approach to speech movement trajectory analysis was intro-
duced in earlier work from this laboratory. In this method, trajectories from
multiple movement sequences are time- and amplitude-normalized, and the STI
(spatiotemporal index) is computed to capture the degree of convergence of a set
of trajectories onto a single, underlying movement template. This research note
describes the rationale for this analysis and provides a detailed description of the
signal processing involved. Alternative interpolation procedures for time-
normalization of kinematic data are also considered.
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Awidely used strategy for gaining insights into the control of move-
ment is to search for invariance in movement trajectories. This
approach has been used in the study of many different move-

ment production systems, from octopus tentacle movements to human
arm and speech movements (Atkeson & Hollerbach, 1985; Flash &
Hogan, 1985; Gutfreund et al., 1996; Ostry, Cooke, & Munhall, 1987;
Smith, Goffman, Zelaznik, Ying, & McGillem, 1995). When kinematic
invariance is sought, two related aspects of movement trajectories are
often assessed: (1) the degree to which a set of trajectories shows stereo-
typic features (e.g., a bell-shaped velocity profile), and (2) how variable
a set of trajectories is in relation to this standard pattern.

The majority of studies of speech kinematic output have employed
measures at single time points (e.g., Ackermann, Hertrich, & Scharf,
1995; Kent & Moll, 1975; Kuehn & Moll, 1976; Zimmermann 1980a,
1980b) to search for invariant aspects of motor output. In these stud-
ies, rather than considering the movement trajectory as a whole, spe-
cific points are selected to characterize temporal and spatial aspects of
motion. In a smaller number of studies, movement trajectories for single
speech movements were analyzed to determine if there is a common
pattern in the velocity profile (Adams, Weismer, & Kent, 1993; Ostry et
al., 1987; Shaiman, Adams, & Kimelman, 1997). Thus earlier work fo-
cused on single points in time to represent fundamental kinematic
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parameters of movement (e.g., displacement, peak ve-
locity, and duration), and a few investigations attempted
to determine if the bell-shaped velocity profile, preva-
lent in many limb movements, also characterized single
speech movements. In 1995, we introduced an analysis
that employed the entire lower lip movement trajectory
for a six-syllable phrase (Smith et al., 1995). After lin-
early amplitude- and time-normalizing each multicom-
ponent movement trajectory, an average trajectory for
the set of trials within one condition was computed. Stan-
dard deviations of the set were computed as a function
of normalized time. The average trajectory reveals as-
pects of the underlying pattern of movement, whereas
the cumulative sum of the standard deviations (the spa-
tiotemporal index, STI) indicates the degree to which
the set of trajectories converges on a single underlying
template, or the stability of the movement sequences.

Since publication of that initial work, we have used
these analytic techniques to examine a number of is-
sues in speech motor control, including changes in pat-
terning and stability related to (a) alteration of a single
phoneme (Goffman & Smith, 1999), (b) maturation over
the childhood years (Smith & Goffman, 1998; Goffman
& Smith, 1999) and aging (Wohlert & Smith, 1998), (c)
increased linguistic processing demands (Maner, Smith,
& Grayson, in press), and (d) stuttering (Kleinow &
Smith, in press). We have found the technique of linear
normalization followed by computation of a composite
index of spatiotemporal stability to be useful in captur-
ing aspects of speech movement control that were not
accessible with analytic techniques employed in earlier
studies of speech motor control processes. The STI is
proposed not as a replacement for traditional measures
but as an additional analysis that provides, in a single
value, information about the performer’s composite out-
put. The index is composite in that it reflects variability
attributable to spatial and temporal aspects of control;
it is also composite in the sense that variability over the
entire movement trajectory is integrated into a single
value.

This analysis is novel in some respects—for example,
in that it may incorporate the waveform for an entire
sentence—and it involves signal processing procedures
that have not been standard in the speech production
literature. Thus, the purpose of the present note is to
summarize the rationale for speech movement trajec-
tory analysis and to describe in more detail the meth-
ods used to compute the spatiotemporal index.

Rationale for Speech Movement
Trajectory Analysis

The study of motor control processes has a rich heri-
tage dating back to the pioneering work of Sherrington

(1906). Thus, in the study of speech motor control, theo-
retical frameworks and analytic techniques can be bor-
rowed and modified from investigations of many other
kinds of movement systems. Other movement produc-
tion systems, however, usually have an obvious unit of
analysis—for example, the step or chewing cycle or a
single aimed movement to a target. Speech, as the mo-
tor behavior conveying language, involves multiple lin-
guistic units operating in parallel, and the appropriate
unit for analysis has been a focus of debate since the
earliest studies of speech production. Putative units have
varied in size, from the feature to the syllable to the
phrase (MacNeilage, 1970; Smith, 1992). From a motor
control point of view it seems reasonable to define the
analytic “window” in reference to movement units, and
a single movement might be selected for analysis. How-
ever, it is well known that, because of effects of
coarticulation, parameters of a single movement are af-
fected by multiple components (e.g., segments, stress)
of the utterance. There is no one-to-one correspondence
between linguistic units and movements. Thus the size
of the analytic window in speech kinematic analysis is
not necessarily dictated by a dominant concept of “the
unit” of behavior, and logically the size of the window,
from single to multiple movements, depends on the spe-
cific experimental question being addressed.

Work from our laboratory has centered in recent
years on the study of the development of normal speech
in children and on the factors that lead to speech pro-
duction disorders, such as stuttering. In the develop-
ment of normal speech production skills and in the emer-
gence of stuttering, it is hypothesized that different
factors operating at many different levels affect speech
motor processes. These factors range from linguistic
variables, such as phonological encoding (e.g., Yaruss &
Conture, 1996) or syntactic processing (i.e., Ratner,
1997), to emotional or autonomic variables (e.g., Smith
& Kelly, 1997; Weber & Smith, 1990). Given all of these
considerations, we were motivated to develop an analy-
sis of speech kinematic output that could be used to ex-
amine the impact of variables operating over different
processing levels and time scales, from single movements
to movement sequences for an entire utterance.

Another issue, which led us to seek a more global
or composite measure of overall performance, is that
results of studies using measures at single points in
time were often conflicting. Although statistical differ-
ences might be found for one measure, they might not
be found for another. For example, in a simple, open-
close lip movement sequence for a syllable such as bob,
three standard measurements could be made (duration,
peak velocity, and peak displacement) for both the open-
ing and closing movements. Although such analyses are
very useful in specifying spatial and temporal aspects
of movement, we often get mixed results within and
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between studies. Adams et al. (1993) provided a detailed
review of the mixed results of studies using such mea-
sures to determine the effects of speaking rate changes
on articulatory movements. For example, velocity of ar-
ticulatory movements has been found to increase, de-
crease, or remain unchanged when speaking rate is in-
creased. It is difficult to characterize performance as a
whole on the basis of such results.

Therefore our goal was to develop a dependent vari-
able that (a) is not tied to assumptions about specific
underlying units, (b) provides a composite score that
combines spatial and temporal aspects of performance,
(c) can be used to probe the effects of more global vari-
ables (e.g., rate change or emotional arousal) as well as
local variables (e.g., changing a single phoneme in an
utterance), and (d) is amenable to application in data
collected from young children.

Complementing this research on speech production,
a review of work on limb motor control reveals a long
tradition of spatial path (trajectory) analysis (Bullock
& Grossberg, 1988; Georgopoulos, Kalaska, & Massey,
1981; Paulignan, MacKenzie, Marteniuk, & Jeannerod,
1991). Following the method of Georgopoulos et al.
(1981), Paulignan et al. (1991) computed spatial paths
of the wrist, thumb, and index finger motions during
reaching and grasping cylindrical objects. Amplitude
(non-normalized) variability of spatial paths was com-
puted as a function of normalized time, and the cumu-
lative sum of these standard deviations was used as a
composite index of path variation. This type of analysis
is attractive, because both the pattern of movement and
its variability over time are revealed. Also this analysis
could be applied to single speech movements or to a se-
quence of movements. Thus, this analysis met the crite-
ria of not being tied to assumptions about specific units
and was capable of being applied to movement trajecto-
ries with varying numbers of subcomponents. To date
we have used this type of analysis (after some modifica-
tions, see below) on two-movement speech sequences
(close-open lip movements perturbed by changing a
single phoneme; Goffman & Smith, 1999) and on the
multicomponent trajectories for a six-syllable utterance
perturbed by rate change (Smith et al., 1995) or varying
levels of utterance length and complexity (Maner, Smith,
& Grayson, in press).

An additional step we took in the initial paper (Smith
et al., 1995) was to incorporate a pattern-recognition
procedure to determine whether a single, linearly scal-
able template was used across habitual, fast, and slow
rate conditions. Clearly the results demonstrated that
this was not the case. Although trajectories within a con-
dition converged onto a single template, trajectories from
the three rate conditions were sorted by the pattern-
recognition algorithm with a high degree of accuracy.

To our knowledge, this type of pattern-recognition analy-
sis (Fukunaga, 1990) had not been used in earlier speech
kinematic studies. Like the STI analysis the pattern-
recognition procedures can be used on trajectories with
variable numbers of movement components.

In summary, following a long tradition in limb mo-
tor control research, we developed a movement trajec-
tory analysis that could be applied to single- or mul-
tiple-component speech movement trajectories. As we
describe in detail below, we elected to not only time-
normalize the trajectories but to amplitude-normalize
them as well. With this process, we could determine the
degree to which a basic, scalable movement template
was being used across trials. The rationale for ampli-
tude-normalization of movement trajectories is often ex-
plained by a handwriting example. Imagine a person is
asked to write the word dog on a chalkboard and with
pen on paper. The two handwriting trajectories would
certainly have different durations and sizes, but time-
and amplitude-normalization would reveal whether the
two trajectories converged on a single, underlying pat-
tern or template. Thus, implementation of this process
would allow us to test how well, within a single condi-
tion, a set of trajectories converged onto a linearly scal-
able template. The STI represents the degree of fit. A
perfect, linearly scalable pattern generator would pro-
duce a set of trajectories with an STI of zero (Smith et
al., 1995). If the set of trajectories does not converge as
well, the STI is high. In our work to date, the STI has
proven to be reliable across studies and a useful com-
posite index of motor performance.

Linear vs. Nonlinear Scaling
An issue that must be considered in designing a

movement-trajectory analysis is whether linear or non-
linear scaling techniques should be used. The STI in-
volves linear scaling of the displacement waveforms. In
linear scaling all parts of the waveform are stretched or
compressed by the same factor. In nonlinear scaling a
warping function is defined that maps the data accord-
ing to user-defined criteria. Nonlinear techniques are
extremely powerful. A warping function could be cre-
ated that would force any group of trajectories to con-
verge onto a single template. Thus, the user has to de-
fine boundary conditions or rules for the warping
function, and these are usually related to assumptions
about what features of the signal are important.

Speech involves nonlinearities, and speech-recogni-
tion research on the acoustic signal routinely employs
nonlinear algorithms—for example, to define the best
exemplars of sound categories (Rabiner & Juang, 1993).
Thus, early in our work we considered using nonlinear
warping functions. We decided that, as a first step, we
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would determine if classical, linear scaling procedures
used in limb motor control worked to answer our ex-
perimental questions. We intended to use linear scaling
only within conditions, because pilot work indicated that,
if the target rate or prosody (e.g., stress) of the utter-
ance is changed, the trajectories would contain nonlin-
ear alterations across conditions. Also, we reasoned that
the results would clearly indicate if linear methods were
inadequate. For example, if after linear time-normal-
ization, the waveforms did not tend to converge, the stan-
dard-deviation function would be extremely noisy. The
cumulative sum of these, the STI, would be meaning-
less, and group and condition effects would be inconsis-
tent. In fact, the movement trajectories do tend to con-
verge, and reliable group and condition effects have been
found. Such results imply that, when the target utter-
ance is unchanged, repeated productions of the utter-
ance are characterized by linearly scalable waveforms.
The degree to which they do not scale linearly, repre-
sented by the STI, tells us something meaningful about
the composite performance of the speaker. The experi-
mental questions driving research in our laboratory (e.g.,
how syntactic complexity and/or the length of the utter-
ance affect speech motor stability) seem to be well served
by this simple, linear analysis.

Lucero et al. (1997) describe a nonlinear method for
scaling speech movement waveforms. They employed the
same utterance used by Smith et al. (1995) and com-
pared the linear time-normalization technique to the
nonlinear method. They concluded that the nonlinear
warping function is better for preserving important land-
marks on the waveforms, so that the resulting average
of a set of trajectories (they used acceleration rather than
displacement trajectories) is a truer representation of
the underlying pattern of behavior. Visual inspection of
the acceleration records they include suggests that this
is true, and their technique of nonlinear time normal-
ization seems very promising. However, Lucero et al.’s
only stated goal is to find a technique that produces the
best average of a set of acceleration records—one that
preserves timing and amplitude of peaks. It is not clear
why the acceleration peaks are assumed to be the most
significant features of speech movement dynamics, as
the authors do not address the theoretical or experimen-
tal advantage of preserving peaks in the acceleration-
time functions. Ultimately nonlinear scaling, because
rules for the scaling algorithm must be created, requires
the experimenter to decide which features of the signal
are most significant or are hypothesized to be most
closely constrained by the operation of underlying units.
This is an important experimental question, one that
returns us to the issue of what units are operating in
speech production.

The choice of linear versus nonlinear scaling tech-
niques ultimately must be decided on the basis of the

experimental question. We explicitly did not wish to
design our analysis to optimize the preservation of land-
marks assumed to be most fundamentally related to
underlying units, because we were aligned theoretically
to the position that particular units do not have “pre-
ferred” status. Thus we opted to try simple, linear tech-
niques so that we did not have to decide which were the
most significant aspects of the displacement trajectory.
Thus in Smith et al. (1995), following linear time-nor-
malization, we averaged the set of waveforms for an
utterance spoken at each of three different rates. These
average templates were then assumed to represent the
pattern of behavior for that condition and were used to
sort the input waveforms into rate categories. The worst
performance of the pattern-recognition procedures was
96% accuracy in sorting. Thus it seems that this linear
method of representing the pattern of the set of displace-
ment trajectories was very successful. In summary, both
linear and nonlinear methods of normalizing sets of tra-
jectories hold promise for speech-production research.
Each experimenter must decide which methods best suit
his or her experimental questions.

Methodological Issues in
Movement-Trajectory Analysis
Extraction of Records for Analysis

A general goal of the STI and other movement-tra-
jectory analyses is to search for convergence of a set of
trajectories onto a common template. Thus a set of tra-
jectories for each experimental condition is required. In
the STI procedure the standard deviation is computed
as a function of normalized time for the multiple trials
in each condition. Initially, we used 15 but later found
that 10 trials per condition produced similar results and
reduced the time required for data collection. Minimiz-
ing data collection time is important, because much of
our work involves testing young children.

After collection, the kinematic signal streams are
imported into an analysis program (Matlab, Mathworks,
1994). Before further analysis the displacement records
are digitally low-pass filtered to remove noise. Then,
using standard kinematic analysis procedures, veloc-
ity is computed using the three-point difference method
(Wood, 1982). As the next step, the trajectories must be
selected to enter into the STI and/or pattern-recogni-
tion analysis. Start and end points must be reliably se-
lected for the movement trajectory for each trial. The
number of movement components in the trajectories
depends upon the question under investigation. For ex-
ample, the effects of changing a single phoneme in an
utterance were examined by extracting close-open move-
ment sequences for lip movement into and out of a con-
sonant (Goffman & Smith, 1999). Following standard
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procedures, movement onsets and offsets were identi-
fied as the point at which the velocity signal changed
sign (e.g., onset of closing movement is the point at
which velocity becomes positive). In other experiments,
effects of rate change and subject’s age on the stability
of movements for a phrase were determined by extract-
ing lip movement for the entire utterance, from the
points of peak velocity of the first and last movements
for the phrase (Smith et al., 1995; Smith & Goffman,
1998).

To implement these procedures, displacement and
velocity signals are simultaneously displayed within a
Matlab program. The experimenter then selects the
approximate location of the velocity event by visual in-
spection (e.g., a peak or a zero-crossing). Within a pre-
determined window of points (e.g., 21 points), an algo-
rithm is then employed that precisely selects the desired
point. The latter algorithm is important, as it signifi-
cantly reduces error in end-point selection.

In summary, standard kinematic landmarks are
reliably selected to extract the record that is to be used
for the STI computation. One advantage of this analy-
sis is that there is only one assumption involved: that
records containing the same number of movements are
reliably extracted for each experimental condition. Be-
yond this step, there are no assumptions about which
points in the signals are more significant than others,
and the entire trajectory for each trial is entered into
the analysis.

Amplitude- and Time-Normalization
At this point, there is a set of movement trajecto-

ries (generally 10 or 15) for each condition (this analy-
sis could be applied to displacement-time or any higher
derivative-time function). To determine the degree to
which the set of waveforms converges onto a single tem-
plate, the set of waveforms is linearly amplitude- and
time-normalized. Linear amplitude normalization is
trivial; it is simply the computation of the z score (cal-
culate the mean and standard deviation of each dis-
placement record, then subtract the mean and divide
by the SD).

The resulting amplitude-normalized trajectories for
a given condition vary in the number of points they con-
tain because of variation in the overall duration of each
trial. For example, a set of displacement signals extracted
according to the procedures outlined above for the phrase
“buy bobby a puppy” produced at habitual rate by a nor-
mal adult speaker could range from 240 to 270 points
(with a sample rate of 250 samples/s). The next step in
the trajectory analysis is linear time-normalization. As
in earlier studies, the motivation for this step is to de-
termine if, after variation attributable to overall dura-
tion is removed, the set of trajectories converge onto a

single pattern (e.g., see Figure 5 of Gutfreund et
al.,1996). In this step each waveform is mapped onto a
constant number of points. In the limb motion litera-
ture, this procedure traditionally has been computa-
tionally trivial. Each trajectory for multiple trials of a
single movement is simply time-normalized by taking
100 time “slices” (Georgopoulos et al., 1981; Paulignan
et al.,1991). This results in a set of trajectories that are
each 100 points in length (usually depicted as 0–100%
in relative time). This procedure works well for simple,
single-movement data records of the limb studies. This
procedure would not work well for records with mul-
tiple movements, as information about movement com-
ponents and shape potentially would be lost. Also note
that records cannot simply be cut to the length of the
shortest record in the set, as this process would result
in the loss of movement components for the longer
records.

Therefore, a more sophisticated method was re-
quired to map variable-length records onto a constant
number of points. This process—interpolation—is a
standard procedure in signal processing, and it may be
accomplished through a variety of means (Conte & de
Boor, 1980; Proakis & Manolakis, 1995). We elected to
use trigonometric interpolation. In this method a dis-
crete Fourier transform is computed to obtain the
weighting coefficients for a polynomial function that is
then used to map the data onto a constant number of
points (we have used 1,000 points, but for trajectories
with fewer components, fewer points would be ad-
equate). In the Appendix, the details of the trigonomet-
ric procedure and a comparison of its performance with
that of other standard techniques for interpolation, in-
cluding the cubic spline (e.g., Lucero et al. 1997), are
included. As illustrated in the Appendix, the trigono-
metric interpolation procedure of Smith et al. (1995)
results in no significant loss of signal information. For
readers not interested in the level of detail reported in
the Appendix, the following summary presents the sa-
lient points.

Any interpolation process produces some level of
error; however, on modeled data, the mean square er-
ror with the interpolation techniques we compared
(trigonometric, spline, and resampling) was extremely
small—less than 0.4% for all three (see Table B, Ap-
pendix). We preferred the trigonometric method, be-
cause mathematically it is simpler and in many ways
more elegant. Instead of using piece-wise polynomials,
the basis functions for trigonometric interpolation are
continuous (Conte & de Boor, 1980; Lanczos, 1956). The
cubic spline (de Boor, 1978), in which a separate poly-
nomial function is computed between each pair of adja-
cent points in the record, is computationally slower. We
would recommend that the experimenter beginning to
implement this type of analysis for speech kinematic
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data use the spline interpolation, because, as outlined
below, for many users, the spline may be simplest to
implement. Both methods produce negligible error and
are standard Matlab functions (interpft [an end-point
correction is needed, see Appendix] and interp1, which
implements a spline method).

The trigonometric interpolation process uses a Fou-
rier transform. The Fourier analysis is completed, not
to filter the data, but to obtain weighting coefficients
for the interpolation function. Concern has been ex-
pressed (Lucero et al., 1997, Footnote 1) that, for the
slow condition of normal adult speakers in Smith et al.
(1995), the trigonometric interpolation with coefficients
derived from 10 harmonics excessively filters the data
and results in the loss of signal information. This is not
the case. As the analysis in the Appendix indicates, even
for the slowest speaker in that study (slow condition
records ranged from 2.2 to 2.4 s), 98–99% of the signal

energy was contained in the first 10 harmonics. Longer
displacement records do require more coefficients to
represent 99% of the signal energy. In a later study
(Smith et al., in progress), with adults who stutter speak-
ing at a slow rate, records greater than 4 s in length
were obtained. In such cases we have found that coeffi-
cients from 40 harmonics are needed in the trigonomet-
ric interpolation to represent all of the energy in the
signal (see Table A-1, Appendix). As a rule, the practice
we have used seems reasonable: Employ enough coeffi-
cients in the interpolation function to represent 99% of
the energy in the signal.

The conclusion we draw from this discussion and
the analysis included as an Appendix is that the trigo-
nometric and spline interpolations are functionally
equivalent for linear time-normalization of kinematic
waveforms such as those we have studied. For a
straightforward confirmation of this point, Figure 1

Figure 1. Comparison of trigonometric and spline methods for time normalization in the STI analysis. Amplitude normalization is the same
for both. Top plot: original displacement waveforms for 10 repetitions of “buy Bobby a puppy.” Left middle plot: time normalization with the
trigonometric procedure. Right middle plot: time normalization with the spline procedure. Bottom plots: standard deviation as a function of
relative time for the data normalized with each procedure.
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compares the results of the STI analysis using spline
and trigonometric interpolation. The trigonometric
method requires the end-point correction procedure (see
Appendix) and an understanding of how many coeffi-
cients are necessary to capture all the information in
signals of varying length. Therefore, the burden on the
user is greater. The spline interpolation is accomplished
with a single line of Matlab code, and although it is
computationally more burdensome, the burden is borne
by the computer rather than the user.

Calculation and Interpretation
of the STI

At this point in the analysis, there is a set of wave-
forms (usually 10 or 15), each composed of 1,000 points,
for each condition. As a simple first step in assessing
how well the waveforms converge after normalization,
the set of normalized records can be compared visually
to the original data (e.g., compare the upper and middle
panels of Figure 1). Some degree of convergence is al-
most always apparent. To quantify this degree of con-
vergence, the standard deviation of the 10 or 15 points
at 2% intervals in relative time is calculated (every 20th
point for a 1,000-point normalized time base). The deci-
sion to use 2% rather than 1% intervals was arbitrary.
We decided that 50 SD values were adequate, but 100
could be used. The STI, which is the sum of these 50
SDs, is also therefore an arbitrary number. If we used
1% intervals, STI values would approximately double.

The precise value of the STI is also utterance spe-
cific, and direct comparisons across utterances cannot
be made. For example, within a subject, STI values for
trajectories containing only two movements are lower
than those containing more movement components. The
standard deviation tends to be higher when velocity of
movement is high; thus if there are more intervals of
high velocity movement in the record, the STI will tend
to be higher. The STI also depends on the degree of con-
straint of movements of the specific articulator under
study. In pilot work we have found that STIs are intrin-
sically higher for lip motion when the utterance does
not contain segments with labial targets. For example,
within a subject the STI computed for lip motion for “I
like that tiny cat” will be higher than that for “buy Bobby
a puppy” or “mommy bakes pot pies.”

The STI across studies has been remarkably reli-
able for a single utterance (“buy Bobby a puppy”) spo-
ken at habitual rate and loudness by normal young
adults. Over a period of 5 years, we have tested five small
groups (8–10 subjects) of young adults and have found
ranges of 12.4–14.2 for the mean STI and 2.3–2.7 for
the SD. In a study now in progress, we have tested 30
young adults on this utterance and have found a mean

STI of 12.7 and SD = 3.1.1 We do not know of another
kinematic speech measure that is equally reliable.

The value of the STI analysis, therefore, lies in pro-
viding a simple, composite score that can be used to com-
pare stability and patterning across subject groups and
within subjects across conditions. Returning to the goals
that initially motivated this analysis, it seems that the
STI approach has been successful in many ways, but
there are, of course, limitations. The STI has been used
to study trajectories of single fleshpoints over time. In
work in progress, we have applied the analysis to
interarticulator variables, such as lip aperture (upper
lip–lower lip signal) and relative phase angle data (up-
per lip phase relative to lower lip phase). Preliminary
data suggest that the normalization method is also use-
ful for capturing aspects of interarticulator coordination
over time. In conclusion, recently introduced methods
(including linear and nonlinear approaches) for normal-
izing trajectories of single-effector movements or
interarticulator phase trajectories seem to hold great
promise for research in which speech movement output
is analyzed for clues concerning the underlying neural
control processes.
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1In relation to the issue of reliability across groups of normal speakers,
we are sometimes asked if we carefully instruct participants on how to
speak and if we exclude large numbers of volunteers. Just as with most
speech measures, if subjects do not produce the target phrase (e.g., they
change loudness, rate, or other aspects of the utterance across trials
when not instructed to do so), the STI will be affected. Potential
participants, however, are rarely excluded for this reason. We do not
give any instructions on how to speak other than a scaling procedure
(e.g.,”speak twice as fast as your normal rate”) for rate or loudness
changes. As an example, in a recent study of young adults, a total of 34
volunteers were recruited, and 4 were excluded from the study. Three
did not pass the language-screening tool. One was excluded because she
could not reliably produce the longer sentences in the protocol. It was
not necessary to exclude anyone because he or she produced unin-
structed changes in prosodic characteristics of the utterances. Another
potentially important experimental variable affecting reliability is the
order of sentence production. In most studies we have asked partici-
pants to produce the sentences in blocks of approximately 5 to 10
repetitions, and we collect the data in 20- to 30-s trials. In one study
with seven sentence stimuli, utterances were produced in a semirandom
order, so that kinematic data from only one utterance were collected per
trial. We found that the STI for the standard utterance we have used
(“buy bobby a puppy” at normal rate and loudness) from that study (X =
13.6, SD = 2.4 ) was not different from the values produced when the
repetitions are blocked together. Thus the random stimulus presenta-
tion, although preferable in terms of active language processing
demands of the task, did not apparently make a difference in the
stability of motor execution for normal adult speakers.
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The goal of linear time normalization is to transform an n-
point representation of a continuous-time function f(t) into an
m-point representation of the same function, with minimal
error. If the underlying function f(t) is known, this process is
trivial and can be accomplished with a direct scaling of the
time axis:

f1(t) = f(nt/m),
where

n = the number of points in the original sampled
representation
m = the number of points in the transformed
representation
f = the original known function
f1 = the linearly time-normalized function
If f(t) is unknown, however, it must be estimated from the

n-point sampled representation and then the above formula
used to generate an equivalent m-point representation. This
process is known as interpolation and may be accomplished by
a variety of methods, including polynomial interpolation,
piecewise polynomial interpolation (e.g., splines), trigonometric
interpolation, and resampling techniques, among many others.

The primary goal of interpolation is to minimize error,
defined at each point x as the difference between the original
function at f(x) and the interpolating function, which we will
denote p(x). Again, without knowledge of the original function,
the error cannot be calculated directly. However, if we can
make some assumptions about this function (for example by
assuming a bound on the second or third derivative in
piecewise polynomial approximation), we can bound the error
using a technique such as a Taylor Expansion of the interpolat-
ing function. Error is affected by a number of factors—
primarily the complexity of the function used for interpolation,
the length of the time axis under any single interpolating
function, and the spacing of the time axis points. (Spacing the
interpolating points as Chebyshev points rather than linearly
spaced points, for example, can be shown to minimize the
error of an n-degree polynomial interpolant.) We will examine
several predominant interpolation methods and compare their
advantages and disadvantages. It should be noted than any of
the methods used here, when implemented properly, will result
in extremely small error—typically less than 1% distortion.

Piecewise Polynomial Interpolation
Interpolation using piecewise polynomials is perhaps the

most popular interpolation method. It consists of estimating a
separate polynomial interpolating function between adjacent
points on the time axis. Each polynomial is determined by a

least-squared error minimization combined with constraints on
end-point continuity of the polynomials and frequently first and
second derivative continuity as well. Because all polynomial
representations are mathematically equivalent (de Boor, 1978),
the polynomial basis used may be chosen as desired. Splines,
more specifically cubic B-splines, are often the representation
of choice because of certain mathematical advantages of the
coefficient structure. The error of this approach is determined
by the square of the point spacing and the extrema of the third
derivative of the underlying function, if known. Splines are a
very precise method, but they have a high degree of complex-
ity and they are computationally time consuming.

Resampling
Resampling is a technique used primarily by dedicated

signal processing systems, which are designed to handle the
filtering needs of this method. To resample a sampled signal (in
our case the n-point representation of the function) by a
rational factor I/D, where I and D are integers, requires the
following steps:
a. Upsample the signal by the factor I.
b. Filter—to remove the high frequency aliasing from

step (a).
c. Downsample the signal by the factor D.

The error of this technique, when considered from an
interpolation perspective, is related to the filter in step (b). It is
also assumed that the original signal has been prefiltered by
an appropriate band-pass filter. This assumption ensures
perfect reconstruction if the filter in (b) is ideal. Usually a
polyphase filter is employed, where the number of subfilters is
at least the upsampling factor I. Because of the filter complexity,
this method would normally not be recommended (see Proakis
& Manolakis, 1995) for high integers I and D. In the case of
the kinematic data in our research, for example, to linearly
time-normalize a 239-point sample to 1,000 points would
produce I = 1,000, D = 239, requiring a minimum of 1,000
subfilters for good performance. The method is primarily
designed for continuous resampling as opposed to resampling
of small sections of data, such as those extracted in kinematic
analysis.

Trigonometric Interpolation
Trigonometric interpolation is another common technique

for performing time normalization (Lanczos, 1956). It has been
used for many years in the signal processing community
because of its simplicity when compared with such techniques
as piecewise polynomial approximation. Another advantage of

Zimmermann, G. N. (1980a). Articulatory dynamics of
fluent utterances of stutterers and nonstutterers. Journal
of Speech and Hearing Research, 23, 95–107.

Zimmermann, G. N. (1980b). Articulatory behaviors
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trigonometric interpolation is that the interpolating function is a
well-behaved analytic expression upon which further math-
ematical analysis, such as integration and differentiation, can
be performed. In this method, the original function f(t) is
represented using trigonometric basis functions rather than
polynomials. The N-point representation of the original signal
is decomposed into complex sinusoidal coefficients using the
Discrete Fourier Transform (DFT).

These coefficients may then be used to reconstruct the
signal along any time axis desired. In both trigonometric and
resampling methods, any error will be concentrated around
points of discontinuity and derivative discontinuity, because of
Gibbs’s phenomena (Lanczos, 1956). For a finite section of a
band-pass filtered waveform, the only points of this nature are
the end-points (see the following section for minimizing end-
point error). Further, in trigonometric interpolation, if the
number of coefficients is reduced, the speed of interpolation is
increased proportionately, at the expense of some slight
increase in error.  Note that when using a DFT in this manner,
the goal is interpolation, not analysis of the frequency content
of the signal, which is much better accomplished using a more
accurate estimator of a signal’s power spectral density, such as
the Welch or Blackman-Tukey methods (Rabiner & Gold, 1975).

The trigonometric technique explained here is the method
we chose for performing linear time-normalization (Smith et al.,
1995), in a large part because of its simplicity. We used only the
first few coefficients, because more than 99.9 % of signal and
window energy was contained therein. We also added an
additional technique to minimize the error as described below.

It can be shown that an N-point DFT is equivalent to
calculating the discrete-time Fourier series of an infinite
periodic signal with period N (formed by replicating the
original N-point signal). The number of coefficients required
for adequate representation of the signal is related not only to
the energy contained at various frequencies of the original
signal, but also to the size and placement of the N-point
window and any possible discontinuities (and to a lesser extent,
derivative discontinuities) between the signal at its left and right
end-points. To improve performance, the endpoints may be
forced to match by removing a linear trend (i.e., by subtracting
a line going through the first and last points) from the original
signal before interpolation and re-adding it after interpolation.
This is effectively the addition of two additional coefficients
representing linear rather than trigonometric components.

To demonstrate the impact of the number of coefficients

Figure A-1. Plot of the known function generated to estimate
interpolation error.

employed in trigonometric interpolation, in Table A-1 we have
evaluated examples of actual kinematic data using increasing
numbers of coefficients. The additional error attributable to
limiting the coefficients (excluding interpolation error, which is
discussed in the next section) is seen as lost signal energy and
may be quantified by showing the percentage of total signal
energy contained in the coefficients used. The number of total
coefficients required to obtain 99% of the signal energy is
greater for longer data record lengths. Results (Table A-1) show
that relatively few coefficients are needed to reconstruct the
signal without significant loss of energy.

Example
To see how similarly the various techniques for linear

interpolation perform, we have constructed a simple example,
in this case using a known function, so error can be accurately
determined. The function is plotted in Figure A-1; it is
(1+0.5*sin(2*pi.*x./280)).*sin(2*pi.*x./80).

This 271-point function was interpolated to 1,000 points
in length with each method. The interpolations were done using
the Matlab functions interpft, interp1, and resample. Interpft
was modified to use a fixed number of coefficients and to
include the detrending step described above to control end-
point distortion. As shown in Table A-2, the spline approach
has the least error of the group, but the maximum mean square
error for all of these methods (.4%) is negligible and unlikely to
have significant impact on calculations such as the STI (see
Figure 1 in the main text).

Table A-2. Mean Square Error (MSE) after interpolation of a
known function using the various methods (271 point record
interpolated to 1,000 points).

Method MSE

Cubic Spline 1 × 10–13

Resampling 3.7 × 10–3

Trigonometric (10 coeff.) 4.0 × 10–3

Trigonometric (40 coeff.) 3.2 × 10–3

Table A-1. The number of coefficients needed to represent 99% of
the energy in the signal increases with the length of the record.

Duration of input waveforms

Number of
(with sample rate = 256)

coefficients 0.26 s 1.04 s 2.33 s 4.81 s

3 .999 .111 .209 .172
5 — .933 .907 .639

10 — .999 .987 .972
20 — — .999 .997
40 — — — .999
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