On the associated graded ring of a local Cohen-Macaulay ring

By

Judith D. SALLY*

(Communicated by Prof. Nagata Feb. 21, 1976)

It seldom happens that properties of a local ring (R, m) are carried over to its associated graded ring G(R). Here we investigate when the property of being Cohen-Macaulay is transferred from R to G(R).

First, we set up some notation. (R, m) denotes a local Cohen-Macaulay ring of dimension d>0 and multiplicity e(R). G(R) denotes its associated graded ring. $G(R) = R/m \oplus m/m^2 \oplus m^2/m^3 \oplus \cdots$. We denote the embedding dimension of R, that is the number of generators in a minimal basis of m, by v(m).

It is true that $d \leq v(\mathbf{m}) \leq e(R) + d - 1$. The first inequality is the Krull principal ideal theorem and the second inequality is a result of Abhyankar [A]. We investigate whether G(R) is Cohen-Macaulay in terms of $v(\mathbf{m})$. If $v(\mathbf{m}) = d$, R is regular and G(R) is also regular. The fact that G(R) is Cohen-Macaulay if $v(\mathbf{m}) = d + 1$ is also well known (see, for example, [B-S]) but for the convenience of the reader we sketch a proof here. We may assume that R is a complete Cohen-Macaulay local ring and thus a homomorphic image of a d + 1 dimensional complete regular local ring S. The kernel C must be a height 1 unmixed, hence principal, ideal of S. Say C = fS. Then G(R) = G(S)/fG(S), where \overline{f} is the initial form of f in G(S). Since G(S) is a polynomial ring over a field, G(R) is Cohen-Macaulay.

We will show that if $v(\mathbf{m}) = e(R) + d - 1$ then G(R) is Cohen-Macaulay and that this is the only other case where G(R) is Cohen-Macaulay for all such (R, \mathbf{m}) .

Theorem 1. Assume that R/m is an infinite field. Then there exist elements x_1, x_2, \dots, x_d in m such that $m^2 = (x_1, x_2, \dots, x_d)m$ if and only if v(m) = e(R) + d - 1.

Proof. By the results of Northcott and Rees [N-R] on minimal reductions of an ideal, there exist elements x_1, x_2, \dots, x_d in m with $m^n = xm^{n+1}$ for some positive integer n, where $\mathbf{x} = (x_1, x_2, \dots, x_d)$. Tensor the exact sequence

^{*} The author was partially supported by NSF GP 29815

 $0 \rightarrow m \rightarrow R \rightarrow R/m \rightarrow 0$

by R/x to obtain the exact sequence:

 $0 \rightarrow \operatorname{Tor}_{1^{R}}(R/m, R/x) \rightarrow m/xm \rightarrow R/x \rightarrow R/m \rightarrow 0.$

Let $\lambda_R(A)$ denote length of the *R*-module *A*. We have that $\lambda_{R/m} (\operatorname{Tor}_1^R(R/m, R/x)) = d$ because x is a regular sequence. By the properties of minimal reductions, $e(R) = \lambda_{R/x}(R/x)$. Hence, $\lambda_{R/m}(m/xm) = e(R) + d - 1$. From this it follows immediately that $v(m) \leq e(R) + d - 1$, and that v(m) = e(R) + d - 1 if and only if $m^2 = xm$.

Theorem 2. If v(m) = e(R) + d - 1, then G(R) is Cohen-Macaulay.

Proof. We may assume that R/m is an infinite field. By Theorem 1, there exist elements x_1, x_2, \dots, x_d in **m** such that $m^2 = xm$. We prove by induction on d, that $\overline{x}_1, \overline{x}_2, \dots, \overline{x}_d$, the images of x_1, x_2, \dots, x_d in G(R), form a regular sequence. By [H-R], [M-R] this is sufficient to prove that G(R) is Cohen-Macaulay. If d=1, we have $m^2=x_1m$. \overline{x}_1 is not a zero divisor for $x_1 y \in m^{t+1} = x_1 m^t$, for any t > 1, implies that $y \in m^t$ because x_1 is not a zero divisor in R. Assume that d>1. We first check that \overline{x}_1 is not a zero divisor in G(R). If $x_1 y \in m^{t+1} = (x_1, \dots, x_d)^t m$, where t > 1, we must show that $y \in m^t$ = $(x_1, \dots, x_d)^{t-1}m$. $x_1y = g(x_1, \dots, x_d)x_1 + f(x_2, \dots, x_d)$, where $g(x_1, \dots, x_d)$ is a homogeneous polynomial of degree t-1 in x_1, \dots, x_d with coefficients in **m** and $f(x_2, \dots, x_d)$ is a homogeneous polynomial of degree t in x_2, \dots, x_d with coefficients in **m**. Hence $hx_1 = f(x_2, \dots, x_d)$ with $h = y - g(x_1, \dots, x_d)$. Since x_1 , \dots, x_d is a regular sequence in R, the associated graded ring of R with respect to the ideal $\mathbf{x} = (x_1, \dots, x_d)$ is a polynomial ring in d variables over R/\mathbf{x} . Hence $h \in (x_1, \dots, x_d)^t$ and $y \in (x_1, \dots, x_d)^{t-1} m$. Pass to the Cohen-Macaulay ring R/t x_1R . $e(R/x_1R) = e(R)$, dim $R/x_1R = d-1$ and $v(m/x_1R) = v(m)-1$. The induction hypothesis applies to R/x_1R so that $\overline{x}_2, \dots, \overline{x}_d$ form a regular sequence in $G(R/x_1R) = G(R)/\overline{x_1}G(R)$. Hence $\overline{x_1}, \overline{x_2}, \dots, \overline{x_d}$ is a regular sequence in G(R).

Remark. The case d=1 is also proved in [D].

Corollary 3. If $e(R) \leq 3$, then G(R) is Cohen-Macaulay.

To show that $v(\mathbf{m}) = d$, d+1 and e(R) + d-1 are the only cases where G(R) is Cohen-Macaulay for all local Cohen-Macaulay rings R, we construct a 1-dimensional local Cohen-Macaulay ring (R, \mathbf{m}) with $v(\mathbf{m}) = d+2=e(R) + d-2$ and with G(R) not Cohen-Macaulay. M. Hochster showed me that if k is a field, then $k[[t^5, t^8, t^{27}]]$ is an axample of a 1-dimensional complete local domain R with G(R) not Cohen-Macaulay. The following examples show that such a domain can be constructed for any multiplicity $e(R) \ge 4$. Let k be a field. Let e be any integer ≥ 4 . The conductor of the numerical semigroup generated by e and e+1 is (e-1)e. Let $R = k[[t^e, t^{e+1}, t^{(e-1)e-1}]]$. Then $\mathbf{m} = (t^e, t^{e+1}, t^{(e-1)e-1})$ and $v(\mathbf{m}) = 3$. Now $t^{(e-1)e-1}\mathbf{m} \subseteq \mathbf{m}^3$; for $t^{(e-1)e-1}t^e = (t^{e+1})^{e-1}$, $t^{(e-1)e-1}t^{e+1} = t^{e^2}$ and $(t^{(e-1)e-1})^2 = (t^e)^{e-1}(t^{e+1})^{e-2}$. Thus the maximal homogeneous ideal of G(R) belongs to 0 in G(R). In particular, if e=4, then $R = k[[t^4, t^5]$.

 t^{11}] has $v(\mathbf{m}) = 3 = d + 2 = e(R) + d - 2$ and G(R) is not Cohen-Macaulay.

DEPARTMENT OF MATHEMATICS NORTHWESTERN UNIVERSITY EVANSTON, ILLINOIS 60201 U.S.A.

References

- [A] S. S. Abhyankar, Local rings of high embedding dimension, Amer. J. Math. 89 (1967), 1073-1077.
- [B-S] M. Boratynski and J. Swiecicka, The Hilbert-Samuel function of a Cohen-Macaulay ring, preprint.
- [D] E. D. Davis, On the geometric interpretation of seminormality, preprint.
- [H-R] M. Hochster and L. J. Ratliff, Jr., Five theorems on Macaulay rings, Pac. J. of Math. 44 (1973), 147-172.
- [M-R] J. Matijevic and P. Roberts, A conjecture of Nagata on graded Cohen-Macaulay rings, J. Math. Kyoto Univ. 14 (1974), 125-128.
- [N-R] D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Camb. Phil. Soc. 50 (1954), 145-158.