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It seldom happens that properties of a local ring (R, m) are carried over
to its associated graded ring G (R). Here we investigate when the property of
being Cohen-Macaulay is transferred from R to G (R).

First, we set up some notation. (R, m) denotes a local Cohen-Macaulay
ring of dimension d>>0 and multiplicity ¢(R). G(R) denotes its associated
graded ring. G(R) =R/m@®m/m*@ m?>/m*®---. We denote the embedding
dimension of R, that is the number of generators in a minimal basis of m,
by v(m).

It is true that d<v(m) <e(R)+d—1. The first inequality is the Krull
principal ideal theorem and the second inequality is a result of Abhyankar [A7].
We investigate whether G (R) is Cohen-Macaulay in terms of v (m). If v(m)
=d, R is regular and G (R) is also regular. The fact that G (R) is Cohen-Mac-
aulay if v(m) =d+1 is also well known (see, for example, [B-S7]) but for the
convenience of the reader we sketch a proof here. We may assume that R is
a complete Cohen-Macaulay local ring and thus a homomorphic image of a d +
1 dimensional complete regular local ring S. The kernel C must be a height
1 unmixed, hence principal, ideal of S. Say C=fS. Then G(R)=G(S)/
FG(S), where f is the initial form of f in G(S). Since G(S) is a polynomial
ring over a field, G (R) is CohenMacaulay.

We will show that if v(m) =e(R) +d—1 then G(R) is Cohen-Macaulay
and that this is the only other case where G (R) is Cohen-Macaulay for all such
(R, m).

Theorem 1. Assume that R/m is an infinite field. Then there exist
elements %1, Xs, -+, Xg in m Such that m*= (x,, xz, ---, x,)m if and only if
v(m) =e(R) +d—1.

Proof. By the results of Northcott and Rees [N-R] on minimal reduc-
tions of an ideal, there exist elements x,, x5, -+, X, in m with m*=xm"*! for
some positive integer #, where Xx= (x,, 2, -*, ;). Tensor the exact sequence
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0->m—>R—>R/m—0
by R/x to obtain the exact sequence:
0> Tor*(R/m,R/x)—>m/xm—>R/x—> R/m—0.

Let 2z (A) denote length of the R-module A. We have that Ag/,, (Tor;?(R/m,
R/x)) =d because X is a regular sequence. By the properties of minimal re-
ductions, e (R) =g/, (R/x). Hence, Ag/, (m/xm) =¢(R) +d —1. From this it
follows immediately that v(m) <e(R)+d—1, and that v(m) =¢(R) +d—1
if and only if m?=xm.

Theorem 2. Ifv(m)=e(R)+d—1, then G(R) is Cohen-Macaulay.

Proof. We may assume that R/m is an infinite field. By Theorem 1,
there exist elements %1, %3, -*+, ; in m such that m®=xm. We prove by in-
duction on d, that %, X3, -+, ¥, the images of xy, %3, -*+, %, in G(R), form a
regular sequence. By [H-R], [M-R] this is sufficient to prove that G(R) is
Cohen-Macaulay. If d=1, we have m?=x,m. %, is not a zero divisor for
xiyemtt=xym', for any £>1, implies that yEm' because x; is not a zero
divisor in R. Assume that d>>1. We first check that ¥; is not a zero divisor
in G(R). If x;yem**= (x4, -+-, X;)* m, where {>>1, we must show that y&em*
= (%1, %)M, X1y =0 (%1, ++, %) X1+ f (%2, -+, X5), where g (%, -+, %,) is
a homogeneous polynomial of degree t—1 in %y, -+, x; with coefficients in m
and f (%3, -, ¥,) is a homogeneous polynomial of degree ¢ in %, ---, x;, with
coefficients in m. Hence hx,= f (x3,--,%x,) with zA=y—g (xy,--,x,). Since x;,
-+, X4 is a regular sequence in R, the associated graded ring of R with respect
to the ideal x= (x4, -+, %,) is a polynomial ring in d variables over R/x. Hence
he (x4, -+, %5)t and yE (%4, -++, %5) "'m. Pass to the Cohen-Macaulay ring R/
x,R. e(R/xiR)=¢e(R), dimR/x,R=d—1 and v(m/x;R) =v(m)—1. The
induction hypothesis applies to R/x; R so that X5, -+, X, form a regular sequence
in G(R/x,R) =G (R) /%x,G(R). Hence ¥, X3, -**, X4 is a regular sequence in
G(R).

Remark. The case d=1 is also proved in [D].

Corollary 3. If e(R) <3, then G(R) is Cohen-Macaulay.

To show that v(m) =d,d+1 and e(R) +d—1 are the only cases where
G (R) is Cohen-Macaulay for all local Cohen-Macaulay rings R, we construct a
1-dimensional local Cohen-Macaulay ring (R, m) with v(m) =d+2=¢(R) +
d—2 and with G (R) not Cohen-Macaulay. M. Hochster showed me that if %
is a field, then E[[#°,¢8, #2*]] is an axample of a 1-dimensional complete local
domain R with G (R) not Cohen-Macaulay. The following examples show that
such a domain can be constructed for any multiplicity e (R) >4. Let %2 be a
field. Let e be any integer >4. The conductor of the numerical semigroup
generated by ¢ and e+1 is (¢e—1)e. Let R=FE[[#, t*', t¢ P ']]. Then m=
(t, te*, ¢ P and v(m)=3. Now t¢P'mcCm?®; for teVe-lfe= (ge71)e),
gl Detperl—ye? and ($C€-De-1)2= ()¢~ (¢**1)¢~2, Thus the maximal homogeneous

ideal of G (R) belongs to 0 in G(R). In particular, if e=4, then R=ZEF[[#*, 15,
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t1"]] has v(m) =3=d+2=e(R) +d—2 and G (R) is not Cohen-Macaulay.
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