
On the Associative Nijenhuis Relation

Kurusch Ebrahimi-Fard ∗

Institut Henri Poincaré
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Abstract

We give the construction of a free commutative unital associative Nijenhuis al-
gebra on a commutative unital associative algebra based on an augmented modified
quasi-shuffle product.
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1 Introduction

The associative analog of the Nijenhuis relation [6] may be regarded as the homogeneous version
of the Rota-Baxter relation [31, 29, 28, 30, 3, 4, 7, 9]. Some of its algebraic aspects especially
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02215, USA.

the electronic journal of combinatorics 11 (2004), #R38 1



with regard to the notion of quantum bihamiltonian systems were investigated by Cariñena et
al. in [6]. The Lie algebraic version of the associative Nijenhuis relation is investigated in [12, 13]
in the context of the classical Yang-Baxter equation, which is closely related to the Lie algebraic
version of the Rota-Baxter relation (see especially [5]). Likewise in [18] the deformations of Lie
brackets defined by Nijenhuis operators and in [17] the connections to the (modified) classical
Yang-Baxter relation are studied. In Kreimer’s work [19, 20] the connection of the Rota-Baxter
relation to the Riemann-Hilbert problem in the realm of perturbative Quantum Field Theory is
reviewed.

The algebraic properties of the associative notion of the Nijenhuis relation, respectively Ni-
jenhuis algebras, provide interesting insights into associative analogs of Lie algebraic structures.
Also, both the Rota-Baxter and the associative Nijenhuis relation are of interest with respect to
the Hopf algebraic formulation of the theory of renormalization in perturbative Quantum Field
Theory and especially to aspects of integrable systems.

After defining a commutative unital associative Nijenhuis algebra we use an augmented
modified quasi-shuffle product to give explicitly the construction of the free commutative unital
associative Nijenhuis algebra generated by a commutative unital associative K-algebra. We
follow thereby closely the inspiring work of Guo et al. [14, 15]. The main aspect of this
construction of the free object is the use of a “homogenized” notion of Hoffman’s quasi-shuffle
product [16] giving an associative, unital, and commutative composition. This natural ansatz
relies on the close resemblance between the Rota-Baxter and the associative Nijenhuis relation.
The free construction of the former is essentially given by a modified quasi-shuffle product, called
mixable shuffle in [14].

Let us remark here that in recent papers [9, 1, 2] it was shown that non-commutative1 Rota-
Baxter algebras always give Loday-type algebras, i.e. dendriform di- and trialgebra structures
[22, 23, 24].

Also, we would like to point the reader to recent interesting work, which appeared after this
article was prepared. In [10, 21], the associative Nijenhuis identity and its related shuffle relation
were linked to Loday-type structures in a detailed manner, giving rise to new structures in this
realm.

The paper is organized as follows. In Section 2 we give the definition of a commutative,
unital and associative Nijenhuis K-algebra and the associative Nijenhuis relation. We introduce
the notion of Nijenhuis homomorphism and free Nijenhuis algebra. In Section 3 we define the
modified and augmented modified quasi-shuffle product and establish their properties. In Sec-
tion 4 the augmented modified quasi-shuffle product algebra is identified as the free commutative
associative unital Nijenhuis algebra, thereby giving an explicit construction of the latter. This
section closes with a remark concerning the connection to Loday-type algebras.

Throughout this paper, we will consider K to be a commutative field of characteristic zero.
The term K-algebra always means if not stated otherwise associative commutative unital K-
algebra.

1not necessarily commutative
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2 The associative Nijenhuis Relation

Definition 2.1. A Nijenhuis K-algebra is a pair (A,N), where A is a K-algebra and N : A → A

is a linear operator satisfying the associative Nijenhuis relation:

N(x)N(y) + N2(xy) = N
(
N(x)y + xN(y)

)
, x, y ∈ A. (1)

The map N : A → A might be called associative Nijenhuis operator or just Nijenhuis map
for short.

Remark 2.2. (i) In this setting “associative” refers to the relation (1) to distinguish it clearly
from its well-known Lie algebraic version [6, 12, 13, 18, 17]:

[N(x),N(y)] + N2([x, y]) = N
(
[N(x), y] + [x,N(y)]

)
. (2)

(ii) A Nijenhuis map on a K-algebra A gives also a Nijenhuis map for the associated Lie algebra
(A, [ , ]), where [ , ] is the commutator.
(iii) With N : A → A being a Nijenhuis operator, also the operator N̂ := idA − N satisfies
relation (1).

Equation (1) may be interpreted as the homogeneous version of the standard form of the
Rota-Baxter relation of weight λ ∈ K [9]:

R(x)R(y) + λR(xy) = R
(
R(x)y + xR(y)

)
. (3)

With respect to the Rota-Baxter relation, a simple transformation R → λ−1R gives the so called
standard form of (3), i.e., weight λ = 1. The homogeneity of relation (1) destroys this freedom
to renormalize the operator N , so as to allow for either sign in front of the second term on the
left-hand side of (1) for instance.

Let us give two examples of operators fulfilling the associative Nijenhuis relation.

Example 2.3. (i) Left or right multiplication Lab := ab, Rab := ba, a, b ∈ A both satisfy rela-
tion (1).
(ii) Another class of associative Nijenhuis operators comes from idempotent Rota-Baxter oper-
ators. Let (A, R) be a Rota-Baxter algebra with R being an idempotent (R2 = R) Rota-Baxter
operator satisfying relation (3) for λ = 1. The operator R̂ := idA − R being idempotent, too,
also satisfies equation (3) (for λ = 1). Define the following operator:

Nτ := R̂ − τR = idA − (τ + 1)R, τ ∈ K. (4)

The map Nτ is an associative Nijenhuis operator. The case τ = 1 relates to the interesting
modified Rota-Baxter relation:

N1(x)N1(y) + xy = N1

(
N1(x)y + xN1(y)

)
(5)

One finds similar examples and further algebraic aspects related to equation (1) in [6].
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2.1 Nijenhuis Homomorphism and the Universal Property

We introduce now the notion of a Nijenhuis and Rota-Baxter algebra homomorphism.

Definition 2.4. We call an algebra homomorphism φ : A1 → A2 between Nijenhuis (respectively
Rota-Baxter) K-algebras A1, A2 a Nijenhuis (resp. Rota-Baxter) homomorphism if and only if
φ intertwines with the Nijenhuis (resp. Rota-Baxter) operators N1, N2 (resp. R1, R2):

φ ◦ X1 = X2 ◦ φ, Xi = Ni (resp. Ri), i = 1, 2. (6)

Definition 2.5. A Nijenhuis (respectively Rota-Baxter) K-algebra F (A) generated by a K-
algebra A together with an associative algebra homomorphism jA : A → F (A) is called a free
Nijenhuis (resp. Rota-Baxter of weight λ ∈ K) K-algebra if the following universal property
is satisfied: for any associative Nijenhuis (resp. Rota-Baxter) K-algebra X and K-algebra ho-
momorphism φ : A → X there exists a unique Nijenhuis (resp. Rota-Baxter) homomorphism
φ̃ : F (A) → X such that the diagram:

A

jA

��

φ

""D
DD

DD
DD

DD

F (A)
φ̃

// X

commutes.

In the next section we introduce Hoffman’s quasi-shuffle product and an augmented respec-
tively augmented modified version of it to give the construction of the free Nijenhuis algebra.

3 Modified Quasi-Shuffle Product

Let A be a K-algebra. We denote the product on A by [ab] ∈ A, a, b ∈ A and the algebra unit
by e ∈ A, [ea] = a, a ∈ A.

Consider the tensor module of A:

T(A) :=
⊕
n≥0

A⊗n
, (7)

where A⊗0
= K. We denote generators a1 ⊗ · · · ⊗ an by concatenation i.e., words a1 . . . an.

Generally we use capitals U ∈ A⊗n
, n > 1 for words and lower case letters a ∈ A for letters.

The natural grading on T(A) is defined by the length l of words, such that l(UV ) := l(U)+l(V ) =
n + m, for U ∈ A⊗n

and V ∈ A⊗m
, n, m ≥ 0 i.e., for the empty word denoted by 1 ∈ K = A⊗0

we have l(1) = 0. We denote the associative commutative quasi-shuffle product [16] on T(A) by:

aU ∗ bV := a(U ∗ bV ) + b(aU ∗ V ) − λ[ab](U ∗ V ) (8)

λ ∈ K being an arbitrary parameter. The “merged” term [ab] ∈ A gives a letter. The empty
word 1 ∈ T(A) gives the product unit, i.e. 1 ∗ U := U ∗ 1 := U , U ∈ T(A).
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Remark 3.1. (1) If λ = 0 we get the ordinary shuffle product of two words U := u1 · · · un, V =
v1 · · · vm ∈ T(A) [16], denoted in general by:

U ttV := u1(u2 · · · un ttv1 · · · vm) + v1(u1 · · · un ttv2 · · · vm). (9)

The shuffle sum in (9) consists of
(
m+n

m

)
words.

(2) With λ ∈ K it is obvious that the quasi-shuffle product ∗ is not grade preserving with
respect to the length l of words, due to the last term on the right-hand side of (8).

Let us mention here, that Hoffman assumes the algebra A to be equipped with a grading degA

which is preserved by the product [ ] ∈ A i.e., degA([ab]) = degA(a) + degA(b). This grading is
extended to T(A) by identifying the degree of a word a1 . . . an with the sum of the degrees of the
letters a1, · · · , an. The above ∗-product then becomes grade preserving with respect to this second
grading on T(A). We refer the reader to [16] and [11] for details, related to Hopf algebraic
aspects related to the quasi-shuffle product construction.
Here we will work exclusively with the natural grading l given by the length of words.

We define now the following two linear operators on T(A):

Definition 3.2. Let B+
a , B− : T(A) → T(A), a ∈ A be the linear operators with:

B+
a (a1 . . . an) := aa1 . . . an (10)

B−(a1 . . . an) := a2 . . . an. (11)

Proposition 3.3. Denote the set of idempotent elements in A by I := {x ∈ A | [xx] = x}. The
linear operator B+

x on (T(A), ∗) satisfies the Rota-Baxter relation (3) of weight λ ∈ K when
x ∈ I.

Proof. This follows by construction of the quasi-shuffle product i.e., relation (8).

Remark 3.4. For λ = 0 i.e., the ordinary shuffle relation, B+
x is a Rota-Baxter map of zero

weight for general x ∈ A.

The augmented quasi-shuffle product on the augmented tensor module:

T̄(A) :=
⊕
n>0

A⊗n
(12)

is defined in the following way:
aU � bV := [ab](U ∗ V ) (13)

whereby the unit of this product is given by the algebra unit e ∈ A, e � U = U � e = U ,
U ∈ T̄(A). The associativity and commutativity of � for arbitrary λ ∈ K follows from the
associativity and commutativity of the quasi-shuffle product and the product [ ] in A.

Remark 3.5. The operator B+
x on (T̄(A),�) is Rota-Baxter of weight λ ∈ K only if x is the

unit e ∈ A.

Definition 3.6. We define now a modified quasi-shuffle product on T(A) using the algebra unit
e ∈ A:

aU ~ bV := a(U ~ bV ) + b(aU ~ V ) − λ e [ab](U ~ V ). (14)

For the empty word we have 1 ~ U = U ~ 1 := U , U ∈ T(A).
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Remark 3.7. Commutativity of ~ on T(A) follows from commutativity of the product [ ] in A.

Lemma 3.8. The bilinear product ~ on T(A) defined above is associative if and only if λ = 1
in (14).

Proof. We prove the associativity property for this product by induction on the length of words.
The linearity allows us to reduce the proof to generators in T(A). Choose a, b, c ∈ T(A),
l(a) = l(b) = l(c) = 1:

a ~ (b ~ c) = a ~
(
bc + cb − λe[bc]

)
= abc + b

(
ac + ca − λe[ac]

) − λe[ab]c
+acb + c

(
ab + ba − λe[ab]

) − λe[ac]b
−λ

(
ae[bc] + e(a[bc] + [bc]a − λe[a[bc]])

)
+ λ2(e[ae][bc])

= abc + bac + bca + acb + cab + cba

−λ
(
be[ac] + e[ab]c + ce[ab] + e[ac]b + ae[bc] + ea[bc] + e[bc]a

)
+λ2

(
ee[a[bc]] + ea[bc]

)
(a ~ b) ~ c = (ab + ba − λe[ab]) ~ c

= a
(
bc + cb − λe[bc]

)
+ cab − λe[ac]b

+b
(
ac + ca − λe[ac]

)
+ cba − λe[bc]a

−λ
(
e([ab]c + c[ab] − λe[[ab]c]) + ce[ab]

)
+ λ2(e[ec][ab])

= abc + acb + cab + bac + bca + cba

−λ
(
ae[bc] + e[ac]b + be[ac] + e[bc]a + e[ab]c + ec[ab] + ce[ab]

)
+λ2

(
ee[[ab]c] + ec[ab]

)

We see already here that this product is associative if and only if λ = 1, eliminating the two
unwanted terms in the λ2-part, i.e. ec[ab] and ea[bc]! Now we assume that associativity is true
for l(U) + l(V ) + l(W ) = k − 1 > 3 and choose aX, bY, cZ ∈ T(A), l(aX) + l(bY ) + l(cZ) = k
(we now use λ = 1):

aX ~ (bY ~ cZ) = aX ~
(
b(Y ~ cZ) + c(bY ~ Z) − e[bc](Y ~ Z)

)
= aX ~ b(Y ~ cZ) + aX ~ c(bY ~ Z) − aX ~ e[bc](Y ~ Z)
= a

(
X ~ b(Y ~ cZ)

)
+ b

(
aX ~ (Y ~ cZ)

) − e[ab]
(
X ~ (Y ~ cZ)

)
+a

(
X ~ c(bY ~ Z)

)
+ c

(
aX ~ (bY ~ Z)

) − e[ac]
(
X ~ (bY ~ Z)

)
−a

(
X ~ e[bc](Y ~ Z)

)
+ e

(
aX ~ [bc](Y ~ Z)

)
+ e[ae]

(
X ~ [bc](Y ~ Z)

)
= a

(
(X ~ bY ) ~ cZ

)
+ b

(
(aX ~ Y ) ~ cZ

) − c
(
(aX ~ bY ) ~ Z

)
+ee[[ab]c]

(
(X ~ Y ) ~ Z

) − e[ac]
(
(X ~ bY ) ~ Z

)
−e[bc]

(
(aX ~ Y ) ~ Z

) − e[ab]
(
(X ~ Y ) ~ cZ

)
= (aX ~ bY ) ~ cZ

The modified quasi-shuffle is homogeneous with respect to the length of the words in contrast
to the ordinary quasi-shuffle product (8). Anticipating the result in the next section we mention
here that this fact reflects the homogeneity difference between the Rota-Baxter relation (3) and
the associative Nijenhuis relation (1).
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Lemma 3.9. For the algebra (T(A),~), the operator B+
e satisfies the associative Nijenhuis

relation only if x is the unit e ∈ A:

B+
e (X) ~ B+

e (Y ) = B+
e (X ~ B+

e (Y )) + B+
e (B+

e (X) ~ Y ) − B+
e B+

e (X ~ Y ). (15)

Proof. Again, this result follows from the construction of the modified quasi-shuffle product.

Proposition 3.10. Let the augmented modified quasi-shuffle product on the augmented tensor
module T̄(A) be defined as follows for a, b ∈ A and U, V ∈ T̄(A):

aU � bV := [ab](U ~ V ). (16)

Then � is associative and commutative, and we have e� V = V � e = V , for V ∈ T̄(A) and the
unit e ∈ A.

In the following section we will show that the triple (T̄(A),�, B+
e ) defines a Nijenhuis algebra;

moreover, we will see that it fulfills the universal property.

4 Free Associative Nijenhuis Algebra

We will use the augmented modified quasi-shuffle product � to give the construction of the free
Nijenhuis K-algebra. The existence of such an object follows from general arguments in the
theory of universal algebras [30, 8] since the category of Nijenhuis K-algebras, defined through
the identity (1) forms a variety (in the sense of universal algebras, see especially section 6 of [30]
for a concise summary of the main ideas).

The following construction of the free associative Nijenhuis algebra (T̄(A),�) was inspired
by the mixable shuffle product of Guo et al. [14].

Let us remark here that the construction of the free Rota-Baxter algebra (of weight λ 6= 0)
uses the augmented quasi-shuffle product �, defined in (13) and works analogously to what
follows.

The quasi-shuffle product ∗ essentially embodies the structure of the Rota-Baxter relation
(3). The case of weight λ = 0 gives the “trivial” Rota-Baxter algebra, i.e. relation (3) without
the second term on the left-hand side. This construction was essentially given in [14] using
a non-recursive notion of a so called mixable shuffle product. However the formulation using
Hoffman’s quasi-shuffle product [16] is new. For a detailed account of the link between the
mixable and quasi-shuffle product, also addressing Hopf algebraic aspects, we refer the reader
to the results in the recent work [11].

The essential point (for both constructions of the free objects) lies in the (augmented) quasi-
shuffle product (or mixable shuffle in [14]) and its “merging” of letters λ[ab], a, b ∈ A in the
∗-product on the right-hand side of (13), whereby λ ∈ K is arbitrary. It represents the second
term on the left-hand side of (3). The modified quasi-shuffle product ~ (and hence the augmented
modified quasi-shuffle product �) reflects relation (1): in particular, the third term on the right-
hand side of (14) is related to the second term on the left-hand side of the associative Nijenhuis
relation (1). It has to be underlined that the associativity of � relies on the choice λ = 1 in
equation (14). This is due to the fact [6] that the following bilinear map on a K-algebra A, N
being an arbitrary K-linear map:

µN (a, b) := N(a)b + aN(b) − N(ab) (17)
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gives an associative product if and only if the following map, called µ-Nijenhuis torsion in [6]:

Tµ,N (a, b) := N(µN (a, b)) − N(a)N(b) (18)

is a 2-Hochschild cocycle. Of course this holds if N is a Nijenhuis operator, since relation (1)
implies that the right-hand side of (18) is zero.
In the sequel we will prove the following theorem.

Theorem 4.1. For a commutative, associative, unital K-algebra A, (T̄(A),�, B+
e ) is the free

(associative) Nijenhuis algebra generated by A.

Proof. The proof of the above Theorem (4.1) will be divided into three parts. In the following
Proposition (4.2), we show that (T̄(A),�, B+

e ) is a Nijenhuis algebra i.e., the operator B+
e

satisfies the associative Nijenhuis relation.

Proposition 4.2. T̄(A) together with the augmented modified quasi-shuffle product � and the
linear map B+

e is an associative Nijenhuis algebra.

Proof.

B+
e (U) � B+

e (V ) + (B+
e )2(U � V ) = eU � eV + ee(U � V )

= [ee](U ~ V ) + ee
(
[u1v1](B−(U) ~ B−(V ))

)
= e

(
u1(B−(U) ~ V ) + v1(U ~ B−(V ))
−e[u1v1](B−(U) ~ B−(V ))

)
+ee[u1v1]

(
B−(U) ~ B−(V )

)
= B+

e

(
U � B+

e (V ) + B+
e (U) � V

)

For the triple (T̄(A),�, B+
e ) to be the free Nijenhuis algebra over A we have to show that

the universal property is satisfied. Let U be an arbitrary Nijenhuis K-algebra with Nijenhuis
operator N and φ : A → U an K-algebra homomorphism.

We have to extend the K-algebra map φ to a Nijenhuis homomorphism (6) φ̃ : T̄(A) → U

using the following important fact:

Lemma 4.3. Every generator a1 . . . an ∈ T̄(A) can be written using the modified augmented
quasi-shuffle product:

a1 . . . an = a1 � B+
e

(
a2 � B+

e (a3 � B+
e (. . . B+

e

(
an−1 � B+

e (an)
)
. . . ))

)
. (19)

Since the extension φ̃ is supposed to be a Nijenhuis algebra homomorphism we have the
unique possible extension:

φ̃(a1 . . . an) := φ(a1)N
(
φ(a2)N(. . . N

(
φ(an−1)N(φ(an))

)
. . . )

)
. (20)

Defining the map Nw : U → U, w ∈ U, by Nw(x) := N(wx), x ∈ U, we can write (20) in
terms of iterated compositions (cf. §4 of [14]):

φ̃(a1 . . . an) = φ(a1)
{ ◦n

i=2 Nφ(ai)(1U)
}
. (21)

To complete the proof of Theorem (4.1) it remains to show the following:
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Proposition 4.4. φ̃ is a Nijenhuis homomorphism.

Proof. By construction φ̃ is a well defined K-linear map. The Nijenhuis property (6) follows as
in [17, p.140]:

φ̃(B+
e (a1 . . . an)) = φ̃(ea1 . . . an)

(20)
= ◦n

i=1Nφ(ai)(1U)
= N

(
φ(a1) ◦n

i=2 Nφ(ai)(1U)
)

= N
(
φ̃(a1 . . . an)

)
. (22)

Finally we would like to show that φ̃ is a K-algebra homomorphism, i.e. preserves multiplication.
This we proof by induction on the length of words, l(U)+ l(V ) = m+n = k. For k = 2 we have,
a, b ∈ T̄(A):

φ̃(a � b) = φ̃([ab])
(20)
= φ([ab])
= φ(a)φ(b) = φ̃(a)φ̃(b).

Let U := u1 . . . un ∈ A⊗n
, V := v1 . . . vm ∈ A⊗m

, with m + n > 2:

φ̃(U � V ) = φ̃
(
[u1v1] {B−(U) ~ B−(V )} )

= φ̃
(
[u1v1] {B+

e (B−(U)) � B−(V ) + B−(U) � B+
e (B−(V ))

−B+
e (B−(U) � B−(V )) })

(20)
= φ(u1)φ(v1) N

(
φ̃{ B+

e (B−(U)) � B−(V )
+B−(U) � B+

e (B−(V )) − B+
e (B−(U) � B−(V )) } )

= φ(u1)φ(v1) N
(

φ̃(B+
e (B−(U))) φ̃(B−(V ))

+φ̃(B−(U)) φ̃(B+
e (B−(V ))) − N{φ̃(B−(U)) φ̃(B−(V ))} )

= φ(u1)φ(v1) N
{

N
(
φ̃(B−(U))

)
φ̃(B−(V ))

+φ̃(B−(U)) N
(
φ̃(B−(V ))

) − N
(
φ̃(B−(U)) φ̃(B−(V )

) }
(#)
= φ(u1)φ(v1) N{φ̃(B−(U))} N{φ̃(B−(V ))}
= φ(u1)N{φ̃(B−(U))} φ(v1) N{φ̃(B−(V )}
= φ̃(U) φ̃(V )

In the third line we used the Nijenhuis property (22). Apparently by going from line (#)
to the next we see that the use of the augmented modified quasi-shuffle product in the above
construction of the free Nijenhuis algebra is limited to the commutative case.

This finishes the proof of Theorem (4.1), showing that (T̄(A),�, B+
e ) is the free Nijenhuis

algebra generated by A.
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Remark 4.5. (1) The above construction may also be used to give the free Nijenhuis algebra
on a set S by working with the polynomial algebra K[S].

(2) Using the augmented quasi-shuffle product �, the proof of the universal property for the
triple (T̄(A),�, λ,B+

e ) goes analogously, giving the free Rota-Baxter K-algebra of weight λ ∈ K

over A.

As we already mentioned above, the algebras (T(A), ∗, λ,B+
e ) and (T(A),~, B+

e ) define a
Rota-Baxter algebra and a Nijenhuis algebra, respectively.

4.1 Dendriform Di- and Trialgebra Structures

We mentioned in the beginning the relation between Rota-Baxter algebras and Loday-type
algebras [9, 1, 2], i.e. dendriform di- and trialgebra structures (see [22, 23] for definitions and
further details).

In this final part we would like to relate the above given construction of the free Rota-Baxter
algebra, i.e. the augmented quasi-shuffle products to these Loday-type structures.

Let us remark again, that recently in [10] and especially in [21] further results with respect
to both the associative Nijenhuis and Rota-Baxter algebras were established.

A dendriform dialgebra (respectively trialgebra) is a K-vector space V equipped with two
(resp. three) binary bilinear operations � and ≺ (resp. �, ≺, and •), satisfying a certain set of
axioms [22, 23], such that for x, y ∈ V the binary composition

x ∗ y := x � y + x ≺ y

(resp. x ∗ y := x � y + x ≺ y + x • y) gives an associative product, making (V, ∗) an associative,
but not necessarily commutative K-algebra. The operations � and ≺ (resp. �, ≺, and •) “split”
the associative product ∗ [24].

Rota-Baxter algebras (A, R) (resp. associative Nijenhuis algebras), not necessarily commu-
tative, naturally fit into this picture, as they allow to define another product on the vector space
underlying the Rota-Baxter algebra A:

x ∗ y := xR(y) + R(x)y − ab

(resp. x ∗ y := xN(y) + N(x)y − N(xy), see (17)), which is associative. It was shown in [1, 9]
that this splitting defines dendrifrom di- and trialgebra structures on Rota-Baxter algebras. In
[21] and later in [10] this notion was extended to associative Nijenhuis algebras.

In [26] Ronco defined a dendriform dialgebra structure on the tensor coalgebra T̄(V ) over a
vector space V in connection to the ordinary shuffle product (9). The two compositions ≺, �
are defined using the fact that the shuffle sum (9) of two words X = x1 . . . xn Z = z1 . . . zm may
be characterized by words either beginning with x1 or z1:

X ≺ Z := x1(B−(X) ttZ)
X � Z := z1(X ttB−(Z)).

In the context of T̄(A) over the K-algebra A we see how this relates to the augmented quasi-
shuffle product �, with λ = 0 in the ∗-product on the right-hand side of equation (13), and
therefore to the Rota-Baxter map B+

e of weight 0:

X ≺ Z := X � B+
e (Z)

X � Z := B+
e (X) � Z, (23)
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which gives the dendriform dialgebra structure related to the Rota-Baxter relation of weight
zero found by Aguiar [1]. Assuming λ 6= 0, and using instead both Rota-Baxter maps i.e., B+

e

and λidT̄(A) − B+
e =: B̂+

e , we have on the free Rota-Baxter algebra (T̄(A),�) over A [9]:

Corollary 4.6. Let T̄(A) be equipped with the augmented quasi-shuffle product �. The two
compositions

X ≺ Z := X � B+
e (Z) X � Z := −B̂+

e (X) � Z, X,Z ∈ T̄(A)

defined in terms of the Rota-Baxter maps B+
e and λidT̄(A) − B+

e =: B̂+
e satisfy the dendriform

dialgebra relations.

Loday and Ronco related in [23] the dendriform trialgebra structure to Hoffman’s quasi-
shuffle product ∗. Here we see how this relates to the augmented quasi-shuffle product � for
weight λ = 1 in the ∗-product on the right-hand side of equation (13):

X ≺ Z := x1(B−(X) ∗ Z) = X � B+
e (Z) (24)

X � Z := z1(X ∗ B−(Z)) = B+
e (X) � Z (25)

X • Z := [x1z1]
(
B−(X) ∗ B−(Z)

)
= X � Z. (26)

This of course extends to general weight λ ∈ K i.e., the free Rota-Baxter algebra (T̄(A),�) of
weight λ 6= 0, and reduces to the case (23) for λ = 0.

Let us make here an observation with respect to the work [26] of Ronco. From the previous
results it follows that Rota-Baxter algebras always give dendriform algebra structures. We used
in the definition of the extension of an algebra homomorphism to a Rota-Baxter homomorphism
the fact, analogous to (19), that the elements in T̄(A) may be written using the Rota-Baxter
map B+

e (� instead of �):

a1 . . . an = a1 � B+
e

(
a2 � B+

e (a3 � B+
e (. . . B+

e

(
an−1 � B+

e (an)
)
. . . ))

)
= B+

e

(
. . . B+

e

(
B+

e

(
B+

e (an) � an−1

)
� an−2

)
� an−3 . . .

)
� a1.

With respect to the dendriform (trialgebra) structures this may be written using either of
the compositions ≺, � and introducing the “identity” maps ω≺,� on T̄(A) (ai ∈ A being letters):

ω≺(a1 . . . an) := a1 ≺ (
a2 ≺ (a3 ≺ (· · · ≺ (

an−1 ≺ an

)
. . . ))

)
(27)

=
(
(. . . ((an � an−1) � an−2) � · · · ) � a2

) � a1 (28)
=: ω�(an . . . a1) (29)

These maps are of importance with respect to the primitive elements and brace-algebras [26, 27]
in a dendriform Hopf algebra. The connection to Loday’s recent work [24] has to be clarified
in a future work concerning this link and the algebraic properties of the augmented modified
quasi-shuffle product.
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temp. Mathematicians, Birkhäuser Boston, Boston, MA, 1995, 481–503.

[31] G.-C. Rota, Ten mathematics problems I will never solve, Mitt. Dtsch. Math.-Ver.,
no. 2, 1998, 45–52.

the electronic journal of combinatorics 11 (2004), #R38 13


