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Abstract In isogeometric analysis (IGA), the functions

used to describe the CAD geometry (such as NURBS) are

also employed, in an isoparametric fashion, for the approxi-

mation of the unknown fields, leading to an exact geometry

representation. Since the introduction of IGA, it has been

shown that the high regularity properties of the employed

functions lead in many cases to superior accuracy per degree

of freedom with respect to standard FEM. However, as in

Lagrangian elements, NURBS-based formulations can be

negatively affected by the appearance of non-physical phe-

nomena that “lock” the solution when constrained problems

are considered. In order to alleviate such locking behaviors,

the Assumed Natural Strain (ANS) method proposed for

Lagrangian formulations is extended to NURBS-based ele-

ments in the present work, within the context of solid-shell

formulations. The performance of the proposed methodol-

ogy is assessed by means of a set of numerical examples.

The results allow to conclude that the employment of the

ANS method to quadratic NURBS-based elements success-

fully alleviates non-physical phenomena such as shear and

membrane locking, significantly improving the element per-

formance.
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1 Introduction

Low order, Lagrangian-based, finite elements are often

affected by spurious strains or stresses which lead to an

overestimation of the stiffness matrix. As a consequence, an

underestimation of the nodal variables appears, this behavior

being referred to as locking. Through the years, several strate-

gies were devised in order to eliminate (or at least alleviate)

the occurrence of locking phenomena.

Among such techniques one can mention mixed pressure-

displacement formulations [1–4], reduced and selective

reduced integration [5–12], B̄ [13] and F̄ methods [14,15] and

Enhanced Assumed Strain (EAS) methods [16–28]. Another

methodology developed to eliminate transverse shear locking

in Lagrangian finite elements is known as the Assumed Nat-

ural Strain (ANS) approach. This technique was firstly imple-

mented by Hughes and Tezduyar [29] for Mindlin plates and,

later on, for shell elements by Dvorkin and Bathe [30]. The

ANS method consists in interpolating the strain field at a set

of points, known as tying points, whose strain terms will

replace, in a weighted manner, the standard strain values

coming from the quadrature points. This technique has been

widely applied for the improvement of Lagrangian-based ele-

ments [7,31–35].

In the last years, significant research effort has been

employed in the development of the so-called solid-shell

class of elements. The main goal of these elements is to

combine the advantages of both solid and shell elements.

This type of formulation is particularly attractive because

only displacement degrees-of-freedom are used in its kine-

matic description, allowing to automatically account for 3D

constitutive relations (e.g., plasticity) and obtain, as a conse-

quence, a correct prediction of thickness changes in shell-like

structures. Solid-shell elements also present strong advan-

tages in numerical simulations involving double-sided con-
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tact, due, again, to the correct modelling of the stress and

strain fields through the thickness direction. In addition, due

to the absence of rotational degrees-of-freedom, the coupling

with other solid elements in the mesh is straightforward and,

most importantly, there is no need to elaborate update proce-

dures in nonlinear geometric formulations.

Nevertheless, this class of elements is also affected by

locking pathologies when considering incompressible mate-

rials, high length-to-thickness ratios and/or when modeling

curved structures. Relevant finite element solid-shell formu-

lations are described in [25,26,31,34,36–38], and references

therein.

The concept of isogeometric analysis (IGA) was intro-

duced in the pioneer work of Hughes et al. [39]. In IGA, the

functions used to describe the CAD geometry (such as Non-

Uniform Rational B-Splines—NURBS) are also employed,

in an isoparametric fashion, for the approximation of the

unknown fields, leading to an exact geometry representation.

Since the introduction of IGA, it has been shown that the

high regularity properties of the employed functions lead

in many cases to superior accuracy per degree of freedom

with respect to standard FEM (see, e.g., [40–42]). However,

it is well-known that NURBS-based element formulations

are not free from locking pathologies. This can be seen,

for instance, in the work of Echter and Bischoff [43] where

the performance of classical finite elements with NURBS

based elements was compared. In this work, convergence

rates were analyzed, as well as the appearance of transverse

shear and membrane locking. The authors concluded that the

higher order continuity of the NURBS basis can significantly

improve the quality of the numerical results. Nevertheless,

the authors also state that the use of linear, quadratic or cubic

basis functions can still lead to results that are not locking-

free.

Therefore, the alleviation of pathologies such as volumet-

ric, shear or membrane locking in NURBS-based elements

is still an open issue. Elguedj et al. [44] employed the B̄

and F̄ projection methods to avoid volumetric locking in

small and large deformation elasticity and plasticity prob-

lems in high-order solid NURBS elements. This projection

methodology consists in splitting the volumetric and devia-

toric components of the strain displacement/deformation gra-

dient matrix, calculating then a new volumetric counterpart

in a projected space of one order lower than the displace-

ment space. Due to the higher inter-element continuity in

the IGA formulation, this projection must be performed at

the patch level. Numerical results show that the methodol-

ogy is able to obtain good convergence rates and numerical

solutions. It was also shown that the F̄ method can alleviate

shear locking for quadratic and higher-order basis functions.

Taylor [45] proposed a formulation based on a three-field

variational structure for the analysis of near incompressible

solids in the large deformation regime. It is shown that the

formulation where displacements, mean stress and volume

variables are independently approximated may be used to

efficiently solve this kind of problems. Cardoso and Csar de

S [46] combined the enhanced assumed strain (EAS) method

with isogeometric analysis to alleviate volumetric locking in

2D elastic problems. The choice of the EAS parameter was

motivated by a subspace analysis of the incompressible defor-

mation subspace [23]. However, this formulation requires a

stabilization term to prevent spurious solutions arising when

higher-order NURBS polynomials are employed.

Focusing specifically in the alleviation of shear locking,

Echter and Bischoff [43] have extended the Discrete Shear

Gap (DSG) method to NURBS-based beam elements. Beiro

da Veiga et al. [47] implemented an isogeometric collocation

method for straight planar Timoshenko beams, based on a

mixed formulation scheme and leading to a shear locking-

free formulation, which has been extended to spatial rods by

Auricchio et al. [48]. Bouclier et al. [49] investigated the use

of selective reduced integration and the B̄ strain projection

methods as means of alleviating shear and membrane locking

in planar curved beams. More recently, the same authors [50]

employed this methodology to alleviate locking pathologies

in 2D solid elements for the analysis of both thick and thin

beams. In addition, a simple extension to 3D NURBS based

solid-shell elements was also presented. That work highlights

the fact that reduced integration may be used to alleviate

locking for solid-shell elements only in the quadratic case.

In the scope of plate/shell elements, Echter and et al.

[51] have proposed a hierarchic family of isogeometric shell

formulations. Although being based on a non-mixed con-

cept, these methods are able to remove transverse shear and

curvature thickness locking. Membrane locking is, in this

case, alleviated by means of the DSG method or, alterna-

tively, by a hybrid-mixed formulation based on a two-field

Hellinger-Reissner variational principle (displacements and

stress fields). To alleviate shear locking in Reissner-Mindlin

plate elements, Thai et al. [52] have implemented a stabi-

lization technique that consists in modifying the shear terms

of the constitutive matrix. Hosseini et al. [53] proposed a

solid-like shell element, a class of shell elements character-

ized by possessing only displacement degrees of freedom,

but shell kinematics. In order to obtain a complete 3D repre-

sentation of the shell, the authors employ NURBS/T-Splines

basis functions to parametrize the mid-surface and linear

Lagrange shape functions in the thickness direction. Ben-

son et al. [54] proposed a quadratic rotation-free isogeomet-

ric shell formulation with a 2 × 2 reduced integration. The

authors reported a significant reduction in the computational

costs. In a later work, Benson et al. [55] also proposed an iso-

geometric quadratic blended shell formulation. The authors

concluded that the use of uniformly reduced integration in

isogeometric shell elements leads to a computationally effi-

cient formulation.
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Following the pursuit of locking-free isogeometric for-

mulations, but based on an entirely distinct and innovative

approach, in the present work the authors extend the ANS

method to alleviate locking pathologies in NURBS-based

solid-shell elements.

This study is organized in the following way: in Sect. 2 the

basic principles behind isogeometric analysis are presented,

followed by the description of the proposed ANS method in

the scope of IGA in Sect. 3 and in Sect. 4 a set of numerical

examples are presented in order to asses the performance of

the proposed formulation. Finally, in Sect. 5 the main con-

clusions of the current study are presented.

2 NURBS for isogeometric analysis

In this section a brief introduction to B-Splines and NURBS is

given. The interested reader is referred to [56] and references

therein for further details.

2.1 B-Splines

Consider the representation of a B-Spline curve given by

C(ξ) =

n
∑

i=1

Ni,p(ξ)Bi (1)

where Bi , with i = 1, 2, ..., n, are the control points and Ni,p

are piecewise polynomial functions, known as B-Splines

basis functions of order p. Piecewise linear interpolations

of the control points leads to the so-called control polygon.

Let Ξ =
[

ξ1, ξ2, ..., ξn+p+1

]

be a non-decreasing sequ-

ence of real numbers, known as a knot vector, where ξi is

the ith knot. The interval defined by two subsequent knots is

known as a knot span. The knot vector divides the parameter

space into knot spans or elements. A given knot is said to

have multiplicity m if it is repeated m times inside the knot

vector. Also, a knot vector is considered to be open if the first

and last knots have multiplicity m = p + 1.In an open knot

vector, the basis functions are interpolatory at the ends of

the parametric space. A knot vector is considered as uniform

if the knots are equally spaced and non-uniform otherwise.

More details on the B-Spline parameterization can be found

in [56].

2.2 Basis functions

Using the Cox-de Boor recursion formula, the ith B-Spline

basis function can be defined as

Ni,0(ξ) =

{

1 if ξi ≤ ξ < ξi+1

0 otherwise
, (2)

for polynomial order zero, and

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi

Ni,p−1(ξ)

+
ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (3)

otherwise (i.e. for p ≥ 1). The convention 0
0

= 0 is adopter

herein [56].

2.3 B-Splines surface and volume

A tensor product B-Spline surface can be defined as

S (ξ, η) =

n
∑

i=1

m
∑

j=1

Ni,p (ξ) M j,q (η) Bi, j , (4)

where Bi, j is now the control net. In the previous equation,

Ni,p (ξ) and M j,q (η) are the univariate B-Spline basis func-

tions of order p and q, corresponding to the knot vectors

Ξ =
[

ξ1, ξ2, ..., ξn+p+1

]

and H =
[

η1, η2, ..., ηm+q+1

]

,

respectively.

In an analogous way, one can define a tensor product B-

Spline volume. Given a control lattice Bi, j,k and knot vectors

Ξ =
[

ξ1, ξ2, ..., ξn+p+1

]

, H =
[

η1, η2, ..., ηm+q+1

]

and

Z =
[

ζ1, ζ2, ..., ζk+r+1

]

, a B-Spline volume (solid) can be

expressed as

V (ξ, η, ζ ) =

n
∑

i=1

m
∑

j=1

l
∑

k=1

Ni,p (ξ) M j,q (η) Lk,r (ζ ) Bi, j,k .

(5)

2.4 Refinement

B-Spline basis can be enriched without changing the studied

geometry and its parametrization. In computer aided design

(CAD), the refinement can be performed by knot insertion

and degree elevation. These two methods are closely related

to h- and p-refinement in the traditional finite element analy-

sis (FEA) [40]. However, the use of B-Spline basis allows for

a new type of refinement known as k-refinement. For a more

in-depth explanation of the different refinement techniques,

the reader is referred to the work of Cottrell et al. [42]. Effi-

cient algorithms for the knot insertion and order elevation

procedures, among many others, can be found in Piegl and

Tiller [56].

2.5 Non-uniform rational B-Splines

Despite being a powerful tool, B-Spline are not able to

represent some geometries, such as circles and ellipsoids.

However, this problem can be circumvented by employing a

generalized form of B-Splines known as Non-Uniform Ratio-

nal B-Splines (NURBS). NURBS provide a precise math-
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ematical form capable of representing common analytical

shapes such as lines, planes, conic curves, free-form curves,

quadric and sculptured surfaces that are used in computer

graphics and CAD [57].

A generic NURBS curve of order p can be defined as

C (ξ) =

n
∑

i=1

R
p
i (ξ) Bi (6)

where R
p
i (ξ) are the rational basis functions. These functions

are defined as

R
p
i (ξ) =

Ni,p (ξ)wi

W (ξ)
=

Ni,p (ξ)wi
∑n

j=1 N j,p (ξ)w j

, (7)

where Ni,p (ξ) is the ith basis function of order p and wi are

the weights. The choice of appropriate values of the weights

wi allows for a proper representation of different types of

curves, such as circular arcs. In an analogous way, it is pos-

sible to define the NURBS basis functions for surfaces and

volumes as

R
p,q
i, j (ξ, η) =

Ni,p (ξ) M j,q (ξ)wi, j
∑n

î=1

∑m

ĵ=1
N

î,p
(ξ) M

ĵ,q
(η)w

î, ĵ

(8)

and

R
p,q,r
i, j,k (ξ, η, ζ )

=
Ni,p (ξ) M j,q (ξ) Lk,r (ξ)wi, j,k

∑n

î=1

∑m

ĵ=1

∑l

k̂=1
N

î,p
(ξ) M

ĵ,q
(η) M

k̂,r
(ζ )w

î, ĵ,k̂

,

(9)

respectively.

The structure of IGA and FEM codes is very similar. Aside

from the data input and results output, the major change is in

the computation of the basis functions and derivatives, which

will replace the classical finite element shape functions. A

detailed procedure on how to employ B-Splines and NURBS

basis functions in the context of Isogeometric Analysis, and

its relation with FEM, can be found in the book by Cottrell

et al. [40].

3 Assumed Natural Strain method for isogeometric

analysis

In the small strain regime, the strain at each integration point,

in the covariant frame, can be expressed as

εc
i j (ξ, η, ζ ) =

1

2

(

∂u

∂ξi

g j +
∂u

∂η j

gi

)

, (10)

where ξ1 = ξ , ξ2 = η and ξ3 = ζ are the natural element

coordinate system. The covariant base vectors are given as

gi = ∂xxx
∂ξi

. Equation (10) can be also expressed in matrix form

as

εεεc (ξ, η, ζ ) = Bc (ξ, η, ζ ) µ̂, (11)

in which Bc (ξ, η, ζ ) is the standard compatible strain-

displacement matrix in the covariant frame computed at each

integration point, while µ̂ corresponds to the vector of dis-

placement degrees-of-freedoms at the control points (control

variables).

The key idea behind the ANS method consists of select-

ing a set of tying points that will replace the standard inte-

gration points for the calculation of the strain components.

In standard Lagrange elements, after calculating the strain-

displacement matrix at the tying points, a set of interpola-

tion functions are used to associate the tying points with the

integration point. This procedure leads to assumed covari-

ant strain components. In the NURBS-based ANS formu-

lation presented herein, the classic interpolation functions

are replaced by a projection matrix. To alleviate locking

effects and avoid numerical instabilities in the formulation,

the choice of the tying points is of extreme importance.

With the intent of more clearly exposing the proposed

methodology, a quadratic NURBS element will be taken as

an example. Following the original work of Bucalem and

Bathe [58] for Lagrangian basis functions, the selection of the

tying points for the second-order element is given in Fig. 1. To

define the ANS strain displacement matrix in the context of

IGA, a set of local bivariate basis functions must be created.

Consider the example with four second-order elements

as presented in Fig. 2. In this figure, the integration points

Fig. 1 Representation of the tying points for the integration of εξξ and εξζ (left), εηη and εηζ (center) and εξη (right)
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Fig. 2 Global and local spaces for the quadratic NURBS element

(circles) and the tying points (triangles) for the interpolation

of εξξ and εξζ strain components in the top left element are

represented. The univariate basis functions coming from the

knot vectors that define the mesh are depicted as the global

space. For each element, it is also possible to define two

local knot vectors that will be used to define the local space.

These new knot vectors are open and contain only one non-

zero knot span. It is important to note that the basis functions

along the ξ direction is of one order lower than the one along

the η direction, due to the fact that a lower number of tying

points is considered in the latter.

Following the work of Bucalem and Bathe [58], the choice

of the tying points is closely related to the order of the

quadrature employed in the finite element formulation. In the

current work, following classical 3D solid Lagrangian for-

mulations, we define full integration when (p + 1), (q + 1)

and (r + 1) quadrature points are used in a finite element

for the ξ , η and ζ -directions, respectively: For the εξξ and

εξζ components, the points from a one-order lower Gaussian

quadrature are employed in the ξ -direction, while the points

corresponding to full Gaussian integration are employed in

the η-direction. An analogous reasoning is performed for the

εηη and εηζ components of the strain-displacement operator.

For the in-plane component εξη, the points from a one-order

lower Gaussian integration scheme are considered. By apply-

ing the same reasoning, the presented methodology can be

easily extended to higher-order basis functions.

The assumed strain field can then be expressed as

εεεAN S (ξ, η, ζ ) = NT (ξ, η) ε̄εεc
(

ξ̂ , η̂, ζ
)

, (12)

where N arises from the tensor product of the local basis func-

tions calculated at each conventional integration point. In the

previous equation, ε̄εεc
(

ξ̂ , η̂, ζ
)

is the compatible strain field

calculated in the local space, while ξ̂ , η̂, and ζ are the tying

point coordinates. Using the notation presented in Fig. 2, the

vector N can be expressed as

N (ξ, η) =

[

N̄ k
3,2 M̄k

2,1 N̄ k
2,2 M̄k

2,1 N̄ k
1,2 M̄k

2,1 N̄ k
3,2 M̄k

1,1

N̄ k
2,2 M̄k

1,1 N̄ k
1,2 M̄k

1,1

]T

, (13)

where N̄ k
i,2 and M̄k

j,1 are the local univariate NURBS basis

functions calculated at the current integration point k. It

is then possible to project the local compatible strain field

ε̄εεc
(

ξ̂ , η̂, ζ
)

onto the global space, leading now to a global

compatible strain field εεεc
(

ξ̂ , η̂, ζ
)

, by performing the fol-

lowing operation

εεεc
(

ξ̂ , η̂, ζ
)

= M
(

ξ̂ , η̂
)

ε̄εεc
(

ξ̂ , η̂, ζ
)

, (14)

where M
(

ξ̂ , η̂
)

is a projection matrix, with number of rows

and columns equal to the number of tying points, obtained

from the tensor product of the local basis function calculated

at each tying point. The projection matrix for the tying point

set given in Fig. 2 is, for example, expressed as

M
(

ξ̂ , η̂
)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

N̄ 1
3,2 M̄1

2,1 N̄ 1
2,2 M̄1

2,1 N̄ 1
1,2 M̄1

2,1 N̄ 1
3,2 M̄1

1,1 N̄ 1
2,2 M̄1

1,1 N̄ 1
1,2 M̄1

1,1

N̄ 2
3,2 M̄2

2,1 N̄ 2
2,2 M̄2

2,1 N̄ 2
1,2 M̄2

2,1 N̄ 2
3,2 M̄2

1,1 N̄ 2
2,2 M̄2

1,1 N̄ 2
1,2 M̄2

1,1

N̄ 3
3,2 M̄3

2,1 N̄ 3
2,2 M̄3

2,1 N̄ 3
1,2 M̄3

2,1 N̄ 3
3,2 M̄3

1,1 N̄ 3
2,2 M̄3

1,1 N̄ 3
1,2 M̄3

1,1

N̄ 4
3,2 M̄4

2,1 N̄ 4
2,2 M̄4

2,1 N̄ 4
1,2 M̄4

2,1 N̄ 4
3,2 M̄4

1,1 N̄ 4
2,2 M̄4

1,1 N̄ 4
1,2 M̄4

1,1

N̄ 5
3,2 M̄5

2,1 N̄ 5
2,2 M̄5

2,1 N̄ 5
1,2 M̄5

2,1 N̄ 5
3,2 M̄5

1,1 N̄ 5
2,2 M̄5

1,1 N̄ 5
1,2 M̄5

1,1

N̄ 6
3,2 M̄6

2,1 N̄ 6
2,2 M̄6

2,1 N̄ 6
1,2 M̄6

2,1 N̄ 6
3,2 M̄6

1,1 N̄ 6
2,2 M̄6

1,1 N̄ 6
1,2 M̄6

1,1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(15)

where N̄ t
i,p and M̄ t

j,q are the local univariate NURBS basis

functions calculated at the tying point t . In the work of

Bucalem and Bathe [58], the local basis functions N̄ and

M̄ are chosen as Lagrange polynomials such that they are

interpolatory at the corresponding tying point and zero at the

other tying points. In that case, the projection matrix M
(

ξ̂ , η̂
)

would simply be the identity matrix. Since Bzier functions

are not interpolatory, the same approach cannot be applied

in the present work.

Combining Eqs. (12) and (14) leads to the final form of

the ANS

εεεAN S (ξ, η, ζ )=NT (ξ, η) M−1
(

ξ̂ , η̂
)

εεεc
(

ξ̂ , η̂, ζ
)

, (16)

which yields the following expression for BAN S

BAN S (ξ, η, ζ ) = NT (ξ, η) M−1
(

ξ̂ , η̂
)

Bc
(

ξ̂ , η̂, ζ
)

,

(17)

to be properly inserted in place of Bc for the strain definition

in the variational formulation.

The interpolation based on the tying points, for the

NURBS-based formulation, is independent of the element-
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Table 1 General algorithm for

the Enhanced Assumed Strain

method in NURBS-based

formulations

based (natural) ζ coordinate. This is typical for shell for-

mulations, and is adopted in the present work for trivariate

NURBS constructions, leading to a so-called solid-shell con-

cept, whose counterpart in FEM can be seen, for instance,

in references [25,34]. The algorithmic procedure to cal-

culate the ANS strain-displacement matrix can be seen in

Table 1.

Since linear NURBS elements yield the same results as

linear Lagrange elements, the lowest order element that can

take advantage of NURBS basis functions is the quadratic

element, which will be the focus of the present study. Never-

theless, the extension to higher-order solid-shell elements is

straightforward. This is an advantage of the present locking-

alleviation methodology when compared to B̄ and EAS for-

mulations.

Finally, it is also worth mentioning that the procedure to

implement the ANS method in NURBS-based formulations

presented herein is entirely performed at the element level.

As a consequence, this strategy would allow for an easier

implementation within available commercial finite element

codes, in combination with a Bézier extraction approach, as

proposed by Borden et al. [59]

4 Numerical examples

In this section, several numerical examples are presented in

order to assess the performance of the proposed methodol-

ogy. All tests are performed in the linear elastic range, and

standard Gaussian quadrature is employed. In the follow-

ing, we focus in particular on the performance of a quadratic

NURBS solid-shell finite element based on the presented

ANS formulation, which is referred to as H2ANS. In all

numerical examples, the proposed formulation is compared

with quadratic and cubic NURBS-based solid and Kirchhoff-

Love shell elements. Whenever possible, other NURBS-

based shell results available in the literature are also pre-

sented, for comparison purposes. In this section, we adopt

the following nomenclature for the different employed for-

mulations:

– Hn: Solid NURBS element of degree n with compatible

strains;

– KLn: Kirchhoff-Love shell element of degree n, as pro-

posed by Kiendl et al. [60];

– 3p-HS: Quadratic 3-parameter Kirchhoff-Love shell ele-

ment with Hybrid Stress modification of membrane part,

as proposed by Echter et al. [51];

– 3p-DSG: Quadratic 3-parameter Kirchhoff-Love shell ele-

ment with Discrete Strain Gap modification of membrane

part, as proposed by Echter et al. [51];

– 5p-stand(-DSG): Quadratic 5-parameter Reissner–Mindlin

shell element with Discrete Shear Gap modification of

membrane part, as proposed by Echter et al. [51];

– 5p-hier(-HS): Quadratic 5-parameter Reissner–Mindlin

shell element with hierarchic difference vector and with

Hybrid Stress modification of membrane part, as proposed

by Echter et al. [51].

In particular, the proposed numerical experiments consist

of the study of a straight and a curved cantilever beam,

as well as of the solution of the well-known “shell obsta-

cle course”, proposed by Belytschko et al. [61] as a set

of benchmarks for the assessment of shell analysis proce-

dures.
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Fig. 3 Scheme of the straight beam problem

4.1 Straight cantilever beam

In this first example, a straight beam clamped at one end is

subjected to a vertical load F at its free end, as it can be seen

in Fig. 3. From Bernoulli beam theory, the strain energy U

is given as

U =
2F2L3

Ewt3
, (18)

where E is the Young’s modulus, while L , w, and t are the

beam length, width, and thickness, respectively. By express-

ing the results in terms of the strain energy, it is possible to

assess the accuracy of the stress and strain fields present in

the structure.

In a first case, the convergence of the formulations is ana-

lyzed for a beam of L = 100.0 and w = t = 1.0. The

material properties are taken as E = 1000.0 and ν = 0.0

(ν classically being the Poisson’s ratio). The problem is dis-

cretized with only one element along the width and thickness

directions. The results for the normalized strain energy versus

the number of elements along the length direction are pre-

sented in Fig. 4. It can be seen that the proposed H2ANS for-

mulation is able to obtain the reference solution, even when

considering a very coarse mesh. The results are superior to

those attained by quadratic solid and Kirchhoff-Love shell

elements. The results for cubic formulations are not reported

due to the fact a cubic polynomial interpolation is in this case

enough to reproduce the exact solution.

In the second case, a mesh of eight elements is consid-

ered, and the problem is studied for different beam thickness

values. As the beam becomes thinner, transverse shear lock-

ing effects will be triggered, making this example a valuable

tool for evaluating the capability of a given formulation to

alleviate this kind of locking.

The results for the normalized strain energy versus slen-

derness are presented in Fig. 5. The proposed formulation

is able to obtain good results for both thick and thin beams,

demonstrating a very low sensitivity to shear locking effects.

As expected, as the thickness of the beam decreases, the

results for the standard quadratic NURBS solid element tend

to deteriorate. It can also be seen that the KL2 formulation

is free from shear locking. We moreover highlight that when

higher slenderness ratios are considered, the stiffness matri-

ces resulting from the solid elements become ill-conditioned,

leading to difficulties when solving the global system of equa-

tions. This situation is not detected when shell elements are

instead used.

4.2 Curved cantilever beam

In this example, a curved beam, consisting of a quarter of

a circle, is clamped at one end and subjected to a transver-

sal load at the free end. Due to the curvature of the beam,

membrane locking will be the predominant phenomena [51].

In addition, when solid (or solid-shell) elements are used to

model the curved profile, curvature thickness (trapezoidal)

locking may also be present. The structure, depicted in Fig.

6, has a radius R = 10.0 and a width w = 1.0. A Young’s

modulus of 1000.0 and a Poisson’s ratio of 0.0 are consid-

ered. The load is given as a function of the thickness t , as

F = 0.1t3. From Bernoulli beam theory the radial displace-

ment can be computed to be 0.942 [51]. The problem is dis-

Fig. 4 Normalized strain

energy versus mesh density for

the straight cantilever beam

problem with a constant

slenderness of 100.0
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Fig. 5 Normalized strain

energy versus beam slenderness

for the straight cantilever beam

problem for a eight NURBS

element mesh

F/2 F/2

R

t

w

Fig. 6 Scheme of the curved cantilever beam problem

cretized using ten NURBS elements, with only one element

through the thickness and width directions.

The results for the radial displacement as the beam slen-

derness R/t is increased are presented in Fig. 7. It can be seen

that, although the proposed formulation is not locking free,

it is able to significantly improve the behavior of the stan-

dard quadratic NURBS solid element. The performance of

H2ANS is also superior to the quadratic Kirchhoff-Love shell

element. In fact, H2 and KL2 formulations suffer from lock-

ing, even when considering a moderately thin shell. Cubic

elements present a better overall performance, although not

being completely locking-free.

In Fig. 8, the proposed formulation is also compared with

the shell formulations presented in [51]. The results obtained

by H2ANS are very close to those attained by the 5p-stand-

DSG shell element. Echter et al. [51] justify the deteriora-

tion of the results obtained by the 5p-stand-DSG element

through shear locking effects. However, as seen in the pre-

vious example, since the presently proposed formulation is

free from shear locking, the authors believe that the decrease

of the H2ANS performance as the slenderness of the beam

increases may be related to curvature thickness locking. As

observed in [51], the 3p-DSG and 3p-HS formulations are

instead completely locking-free.

4.3 Shell obstacle course I—Scordelis–Lo roof

In this example, introduced by Scordelis and Lo [62], a cylin-

drical shell supported by rigid diaphragms in the curved

edges is subjected to a volume force (self-weight). The geom-

etry of the problem is presented in Fig. 9 and the dimensions

of the structure are: radius R = 25.0, length L = 50.0,

thickness t = 0.25. The magnitude of the volume force

is given as ρg = 360, where ρ is the specific mass and

g is the gravity acceleration constant. The elastic proper-

ties are given by E = 4.32 × 108 and ν = 0.0. Due

to symmetry conditions, only a quarter of the structure is

modeled.

The vertical displacement of the midpoint of the free edge

(point D in the figure) is numerically computed and com-

pared with the reference solution of 0.3024, and the results

are presented in Fig. 10. The proposed H2ANS formulation

is able to obtain good results and a very fast convergence,

significantly improving the behavior of the conventional for-

mulation (H2 element). In fact, it can be seen that the results

from H2ANS are similar to those obtained by cubic solid and

Kirchhoff-Love shell elements.
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Fig. 7 Displacement versus

slenderness for the curved

cantilever beam problem (1)

Fig. 8 Displacement versus

slenderness for the curved

cantilever beam problem (2)

R

40
0

L/2

D

SymmetrySymmetry

Rigid 

Diaphragm

Fig. 9 Schematic representation of the Scordelis–Lo roof problem

(1/4 of the whole structure is shown)

4.4 Shell obstacle course II—full hemispherical shell

The full hemispherical shell represented schematically in Fig.

11 is another well-known benchmark to assess the perfor-

mance of shell elements. In this problem, a hemisphere of

radius R = 10.0 and thickness t = 0.04 is subjected to a pair

of opposite concentrated loads applied at antipodal points of

the equator. The equator edge is considered to be free. Due to

symmetry conditions, only one quarter of the structure needs

to be modeled, as seen in the figure. The magnitude of the

load is F = 1.0 and the material parameters are given as

E = 6.825 × 107 and ν = 0.3. The reference radial dis-

placement at point A is u = 0.0924.

In Fig. 12, the results for the radial displacement at point

A versus the number of control points per side is pre-

sented. Once again, the proposed H2ANS formulation is

able to obtain good results and convergence, being superior

to quadratic solid and Kirchhoff-Love shell elements, and

comparable to those with higher order interpolations.

4.5 Shell obstacle course III—pinched cylinder

As a last example, the pinched cylinder with end diaphragms

subjected to a pair of concentrated loads is presented. The

cylinder has radius R = 300.0, length L = 600.0, thickness

t = 3.0. A schematic representation can be seen in Fig. 13.

The concentrated loads have a magnitude of 1.0. The material

properties are given as E = 3.0 × 106 and ν = 0.3. Due to

symmetry, only one eight of the structure is modeled. The
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Fig. 10 Displacement of the

midpoint of the free edge for the

Scordelis–Lo roof

Fig. 11 Full hemispherical shell problem setup (1/4 of the whole struc-

ture is shown)

Fig. 13 Schematic representation of the pinched cylinder problem

(1/8 of the whole structure is shown)

Fig. 12 Radial displacement of

point A for the full

hemispherical shell problem
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Fig. 14 Radial displacement

for the pinched cylinder

problem

reference solution for the radial displacement at the loaded

point is given as u = 1.8248 × 10−5.

The results for the different formulations are presented in

Fig. 14. The H2ANS formulation gives again better results

than those obtained with quadratic elements, even if, in this

case, not as good as those obtained with cubic elements.

It is important to remark that, in all considered cases, the

proposed H2ANS solid-shell formulation results in strongly

enhancing the performance of a standard H2 quadratic ele-

ment, alleviating the presence of locking and leading to

results similar to those attained by a cubic element, at a sig-

nificantly lower computational cost.

5 Conclusions

In the current work, an extension of the ANS method is for the

first time proposed for solid-shell NURBS-based elements

in order to alleviate locking effects. The methodology is

based on a projection using a set of local basis functions. The

numerical results for the proposed formulation show that it

can efficiently alleviate locking pathologies such as shear and

membrane locking. In fact, in most of the presented numer-

ical examples, the proposed quadratic formulation is able to

attain results and convergence rates similar to those obtained

with cubic solid and Kirchhoff-Love shell elements, show-

ing in any case clearly superior performance with respect to

standard quadratic solid and shell formulations. Moreover, its

significantly lower computational cost with respect to cubic

solid formulations makes it an interesting and cost-effective

tool for the analysis of shell-like structures, in particular when

3D nonlinear constitutive relations (e.g., plasticity) have to

be included or when double-sided contact has to be taken into

account. Another advantage of the proposed procedure is the

fact that it is entirely performed at the element level, rather

than at the patch level, making it easier to be implemented

within available commercial finite element codes. Moreover,

it is to be remarked that, although the present formulation

is here implemented for quadratic solid-shell NURBS ele-

ment, its extension to higher order approximations is straight-

forward, for both solid-shell and shell elements. Finally, a

similar procedure could be easily implemented within the

framework of finite strains; the extension of the presented

formulation to nonlinear (both from the kinematical and the

constitutive point of view) solid-shell models will be the sub-

ject of future research.
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