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ON THE ASYMPTOTIC ACCURACY OF EFRON'S BOOTSTRAP1 

Stanford University 

In the non-lattice case it is shown that the bootstrap approximation of 
the distribution of the standardized sample mean is asymptotically more 
accurate than approximation by the limiting normal distribution. The exact 
convergence rate of the bootstrap approximation of the distributions of sample 
quantiles is obtained. A few other convergence rates regarding the bootstrap 
method are also studied. 

1. Introduction and main results. Recently, Efron (1979) introduced a very general 
resampling procedure, called the bootstrap, for estimating the distributions of statistics 
based on independent observations. The procedure is more widely applicable and perhaps 
has more sound theoretical basis than the popular Quenouille-Tukey jackknife. Efron 
considered a number of statistical problems and demonstrated the feasibility of the 
bootstrap method. The purpose of the present investigation is to examine the convergence 
of the bootstrap approximation in some basic estimation problems. 

A formal description of the bootstrap goes as follows. Let {XI, X2, . . ,X,) be a random 
sample of size n from a population with distribution F and let T(X1, . . a ,  X,; F) be the 
specified random variable of interest, possibly depending upon the unknown distribution 
F. Let F, denote the e.d.f. (empirical distribution function) of {XI, . X,), i.e., the a ,  

distribution that puts mass l /n  a t  each of the points X1, .,X,. The bootstrap method is 
to approximate the distribution of T(X1, . . .,X, ;F)under Fby that of T(Y1, . . a ,  Y,; F,) 
under F, where {Y1, . ., Y,) denotes a random sample of size n from F,. 

For the present asymptotic study, we have selected only very basic cases of T(X1, . . a ,  

X,; F ) ,  namely (X, - p), (X, - p)/a and ~ i ' ( t )  - F-'(t), where xn= n-' ~ Y = I  x , ,  p = 

EF(X),0 < a" VF(X), and F;'(t) and F-'(t) are the right-continuous versions of the 
inverses of F, and F respectively, a t  some fixed t E (0, 1). The attempt in this paper is to 
present more or less complete asymptotic results for these basic random variables. The 
author would like to mention here that the present paper and Bickel and Freedman (1980, 
1981), which also deals with asymptotics for the bootstrap, were prepared independently 
at  around the same period. 

The main findings of this work are contained in the two theorems stated in this section. 
The proofs are given in Sections 2 and 3. The statements are valid for almost all sample 
sequences, i.e., with probability one under F*".In what follows, 7, = n-'EY=1 Yi, s i  = 

n-' CrS1(X, - XJ2, G,(x) = #{Y, 5 r ;  1 5  i 5 n)/n, p:3 = EF(X- pI3, i 3  = n-'E?=l (x ,  -
xn)3,  and p = E F J  X -p 13. P and P*denote probabilities under Fand F,; E and E*denote 
expectations under F and F,, respectively. 11 11, has been used for sup,,^ I 1. 

Parts A and B of Theorem 1 study the uniform convergence to zero of the discrepancy 
between the actual distribution of n ' / 'x ,  -p) and the bootstrap approximation of it. Parts 
C, D and E concern the same convergence problem for the distribution of nl"(X, - p)/a. 
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In particular, suppose the underlying distribution is non-lattice. Then (1.5)together with 
the two term Edgeworth expansion for P(n'/2(Xn- p)/o 5 x )  implies that the bootstrap 
method has an edge over the approximation by the limiting normal distribution in the case 
of the standardized sample mean. The leading term of the Edgeworth expansion for sample 
means suggests that the difference in accuracies of the two approximations decreases with 
decreasing skewness of the underlying distribution and is non-existent for symmetric 
distributions. It follows from Part E of the theorem that the convergence in (1.5) is not 
valid in the lattice case. However, as suggested by (1.7),the effect of discreteness caused 
by rounding of data a t  higher decimal points should be negligible for moderate sample 
sizes. 

Theorem 2 establishes the consistency of the bootstrap approximation of the distribution 
of n'/2{F;'(t) - F- ' ( t ) )  and provides the exact rate a t  which the discrepancy converges to 
zero. The normal approximation for this distribution is better than the corresponding 
bootstrap approximation provided F'(F- ' ( t ) )is exactly known (see Reiss (1974)).However 
it is rare that F1(F- ' ( t ) )is known. In essence, the theorem says that in the case of quantiles, 
the bootstrap approximation is as good as the normal approximation, with F1(F- ' ( t ) )  
replaced by a sample estimate, such that the difference between F'(F- ' ( t ) )and the sample 
estimate is O(n-'/4(loglog n)'l2)a.s. 

We now state the theorems. 

THEOREM1. 
A. If EX2  < m, then 

(1.1) 1 1  P{n ' /2(R,- p )  5 X )  - P*{n1/2(Pn-R,) :X )  1 1 ,  + O a s .  

B. I f  EX4  < m, then 

lim sup,,, n'/2(loglog n)-'I21 1  P { ~ ' / ~ ( R ,p) 5- x )  

where V F ( ( X  - p ) 2 )  is the variance of (X - p)2  under F. 
C.  I f E I X I 3< 03, then 

lim sup,, po-3n'/211 P{n ' /2(Rn - p)/o 5 X )  

(1.3) 
- P*{n' /2(Pn-R,)/s ,  5 X )  1 1 ,  :2K as. ,  

where K is the universal appearing in the Berry-Esseen bound. 
D. If E I X 1 < w and F is non-lattice, then 

uniformly in x as .  where @(x)  and +(x )  are,the standard normal distribution function 
and density, respectively; therefore, in this case 

E. If E I XI < CQ and F is lattice with span h ,  

uniformly in x a s .  where g (  y)  = [y] - y + 1/2 for a l l y  E @. Also, in this case, 

(1.7) lim sup,, n'l21 1  P* {n ' /2 (Pn  -R,)/s ,  5 x )  
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THEOREM2. If F has  bounded second derivative in  a neighborhood o f  F- ' ( t )  and 
F1(F- ' ( t ) )> 0, then a s .  

l im sup,, n1/4(1~g - F- ' ( t ) )  5 X Ilog n)-'I2 1 1  P[n1/2{F,1(t) 
(1.8) 

- p*[nlr2{G;'(t)- F i l ( t ) )5 X ]  1 1 ,  = K~,F,  

a constant depending upon t and F only. 

2. Proof of theorem 1. In this section we give the proofs o f  all five parts o f  Theorem 
1, and towards the end some remarks concerning these conclusions. 

Part A. I f  E X 2  < w, s t  + a2> 0 a.s. Therefore, (1.1) follows i f  we show that 

(2.1) 1 1  P*{nl"'(?, -X,)/s, 5 x )  - @ ( x )1 1 ,  +0 a s .  

B y  the Lindberg-Feller CLT, (2.1) holds provided 

sz2 E C  ( X  - X,)21( I X - Xn I 2 E -* a s .n 1 / 2 ~ n ) 0 

for all E > 0. But,  since st  + a2 and X,  +p as. ,  this essentially amounts t o  showing that, 
for all E > 0, 

E X 2  < w impliesC;"=lP(X?r E i )< w, and hence { X ?  r E i) happens only for finitely many 
2s a s .  Thus ,  the lef t  hand side o f  (2.2) is in fact bounded a s .  

Another very interesting way o f  seeing (2.1) is as follows. B y  the  Berry-Esseen theorem, 
the  lef t  hand side o f  (2.1) does not exceed 

since, as a consequence o f  the  Marcinkiewicz-Zygrnund SLLN n-3/2C7-1 I Xi 1 "  -* 0 a s .  i f  
E X 2 < m .  

Part B. Writing s i  - a2 = E * ( Y  - p)" E ( X  - p)" (xn- p)2, and applying the  law 
o f  iterated logarithm, we see that, i f  E X 4  < w, then  

(2.3) l im ~ u ~ , , n ' / ~ ( l o ~  - a" = J 2 v F ( ( x  p)" a s .log n)-'"7Is;4 -

Due t o  the Berry-Esseen bound, 

1 1  P{nl/?(X, - p)  s x )  - (P(x /a)11,s K p a-3n-1/2 

and 

1 1  P* {n1l2(yn - X,) 5 x )  - (P (x / sn)1 1 ,  I Y - X,, 1 3 ,i K ~ ; ~ n - l / ~ E *  

Further, using the Taylor expansion and (2.3) it is found that 

a.s.1 1  @(x/s,)- (P ( x / u )- x(s,' - a-')+ ( x / u )  1 1 ,  = O(n-' log log n) 

In view o f  the  above bounds, (1.2) follows from the equality 

l im ~up, , ,n ' /~( lo~  log n)-'I21 1  x(s;' - a-')$ ( x / o )  1 1 ,  = r.h.s. o f  (1.2), 

which is clearly so because o f  (2.3) and the  identity 

Part C. This  part is an immediate consequence o f  the Berry-Esseen theorem. W e  
approximate both the  probabilities appearing in (1.3) b y  the standard normal distribution 
and collect the error bounds provided by  the Berry-Esseen theorem. 
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Par t  D. Let us write + (t) for ' ~ ( e ' ~ ~ )  Appealing to Esseen's and + * (t) for E *  (elLY). 
lemma (see Feller, 1970, Lemma 2, page 538), we have 

for all a > 0, where b is an absolute constant. For technical reasons, the above integral is 
broken into two parts, one over I t I 5 8 n'12 and the other over the remaining region, where 
8 E (0, a )  is to be chosen sufficiently small. 

To exploit the non-lattice nature of F for estimating the integral over 8 nl" 5 I t 1 5 
anlr2, we show that, for any fixed a > 0, 

To this end, let us note that if E I XI < m, then 

Further, by an elementary exponential inequality, it follows that for all I t I 5 a and E > 0, 

where X > 0 does not depend upon t. This bound, along with (2.5) and the Bonferroni 
inequality leads to (2.4). Clearly, (2.4) and the fact that $ (t) Z 1for all t Z 0 imply together 
that the integral over the region 8 n1I2 5 I t 1 5 a n l" ' ecays  exponentially fast a s .  for all 
O < S < a .  

To bound the integral over I t I 5 8 n'l2, we expand +*(t) up to three terms and estimate 
the remainder. To do that, we write exp(itY) as cos(tY) + i sin(tY), and expand both 
terms by Taylor's expansion separately and take the expectation. It turns out that, if we 
write 

(2.6) +*(t)= 1 s i t72  + (~t) '~fi :~/6- + t3r(t)/6 

and E I X" I < m, then 

(2.7) lim,,, lim sup,+,(a.s.) s u p l t ~ ~ ,r(t) I =I 0 

If I t /& I 5 8 and 8 is sufficiently small, one can show by using (2.7) and the expansion 
log(1 + x) = C;"=l(-l)'t'xL/i (valid for I x I < 1) that I r l(t) I 5 {P/n + I t l"/n"'2)2 for all large 
n a s .  where 

Thus, 

This expression is approximated by using the bound I ex - 1- x I 5 I x I2ex1/2, valid for all 
complex numbers. Combining all these bounds together we have 

for all large n a s .  provided I t/& I 5 6 > 0 for 8 sufficiently small. The desired result (1.4) 
is concluded from this last bound and (2.7) as a can be chosen arbitrarily large and 6 
arbitrarily small. 
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Part  E. From the Borel-Cantelli lemma it follows that if F is lattice with span h, then 
so is Fn for all large n a s .  So, for asymptotic purposes, we can and we do assume that Fn 
is lattice with span h. In the lattice case the proof given for Part D breaks down in the 
region S n'l2:I t 1 :a n1l2. To arrive at  (1.6),we first establish that 

where A ( x )  = P*{n' /2(Xn x )  @ ( x )- {ji3(1- x 2 ) / ( 6  S ; ~ ' / ~ ) ) + ( X ) ,  - Y n ) / s ,  - Un is the 
uniform distribution over [ - h / 2 ~ , n ' / ~ ,h / 2 ~ , n ' / ~ ]and * stands for the convolution operator. 
For (2.8) we essentially have to show that, for all 0 < 8 < a < 

which is equivalent to 

Both the functions +* ( t / sn)as well as sin(t h / 2  s,) have period 277 sn/h; hence (2.8)follows 
if we have, fdr some 0 < E < 277 o /h ,  

As seen from (2.6)and (2.7),for all t in  a neighborhood of 0 , I +*(t/s,) I 5e-@l4eventually 
with probability one. Also, for any 0 < E < 77 u /h ,  I +*(t /sn)I is bounded away from 1 over 
t E [ E ,  277 sn /h  - E ]  for all large n as. ,  in view of (2.4).These facts lead to (2.8). 

Let us now derive (1.6) from (2.8).Since, a s .  

(2.8) is the same as 

(2.9) P* {n'l2( x n ) / s n- X )* Un = (3 ( x )+ (p3 ( 1  - x 2 ) / ( 6  ~ ~ n ' / ~ ) ) +  yn- -= ( x )+ o(n-'/') a s .  

The distribution of n1l2(yn- x n ) / s , is lattice with span h / ~ , n ' / ~and 0 is one of the points 
with positive mass. Consequently, the expansion given in Part D holds uniformly a t  all 
points of the form (2j + l ) h / 2  ~ , n ' / ~ ,  where j denotes integers; and also 

P*{n1l2(yn- x n ) / s n= + ~ ( n - ' / ~ )j h/snnl / ' )  = (h/snnl / ' )+(jh /~ ,n ' /~ )  

uniformly over all integers j a.s. As a result of these estimates of the jumps, 

(2.'10) - g ( x  n ' /2sn/h)  (the jump at  the nearest lattice point from x )  

= P* {n1l2(7,- x n ) / s n:X )  - nl/'sn/h)+ ( x )  + ~ ( n - ' / ~ )( h / ~ n ' / ~ ) g ( x  

uniformly in x a s .  The proof of (1.6) clearly ends by substituting (2.10) into (2.9). 
Turning to (1.7),according to Theorem 3 of Essben (1945),if F is lattice with span h 

and xo is one of its discontinuity points, then 

as., where xn = { ( n  x O / h )  - [ n  x O / h ] )  ( h / un1l2).Thus, (1.7)amounts to showing that 

Since the function g is bounded by 1/2 in absolute value, obviously the lim sup above is 
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less than or equal to  +(O) = l/&. T o  get the inequality another way, note that the event 
{o - sn > n-'"'log log n ) ' / 4 )  happens for infinitely many n's ,  a s .  xsnnl / ' /h  takes integer 
values at x = jh/s,nl/', j = 1, 2,  - - --,and at such a value o f  x ,  the difference x ~ n ' / ~ / h  
xs,nl/ ' /h equals j ( o  - s,)/s,. As j varies from 1 to  [On'"' for O > 0 ,  the difference j (o  -
s,)/s,  grows t o  more than [On'/2]n-'/2(log log n)'l4/s,, infinitely of ten a.s. Consequently, 
for any fixed E > 0 and 8 E (0, I ) ,  there exists z, E (0,E )  for infinitely many n's  as. ,  such 
that ~ , s , n ' / ~ / h  is an integer and ( z ,  - ~ , ) o n ' / ~ / h- z,s,nl""h E ( 1- 8, 1). For such a z,, 
obviously 

These facts amount t o  the conclusion that the l im sup in (2.11) is greater than or equal t o  
( 1- a s .  Since E > 0 and 6 E (0, 1) are arbitrary, the desired result follows. 8 )  infIEco,,,+(x) 

REMARK2.1. T O  get some idea about the effect o f  dependence on  the bootstrap, let us 
consider the simple case when the X ,  are m-dependent. Since Y1, Y2, Y ,  area ,  

conditionally independent and s: still converges t o  o%.s., 

nl/"(Y, - X n )+, N(0, 0 2 )  as.,  

whereas according t o  the CLT for the m-dependent processes 

n'/2(X,,- p) +yN(O, o2 + 2 C z ~ l  XI+, ) )COV(XI ,  

Thus ,  the  bootstrap as such should not be expected to  provide consistent approximation 
even in the  case o f  weak dependent processes; however, i f  the X ,  are derived from some 
independent sequence o f  r.v.'s and the exact generating procedure is known, then the  
bootstrap can be modified suitably t o  get rid o f  such inconsistencies. A detailed study on 
this line seems desirable. 

REMARK2.2. P*  {n1/2(y,- x , ) / s ,  5 x )  can be expanded up  to  as many terms as one 
wants under the  usual moment conditions, but we do need t o  impose the Cramer condition 
on F. In particular, the three term expansion easily leads us to  conclude that 

1 1  P *  {n1/'(7,- Xn) / sn5 x )  - P{n l / ' (X ,  - p) /o  5 x )  ] I r n  = O(n-'(log log n) '" '  a s .  

provided E I X 1 < w and the Cramer condition about F holds. 

3. Proof of Theorem 2. This  proof is somewhat long, so we shall separate out the major 
steps and present t hem  in the form o f  lemmas. Further details o f  the proofs can be found 
in  Singh (1980). W e  start o f f  with an exponential bound. 

LEMMA3.1. If t l ,  &, . . , 5, are i.i.d., ti= 1 -p or -p with respective probabilities p 
a n d 1  - p , t h e n  f o r a n y u s N , p ~  B , z ~  D a n d Z N B 5 D 2  wehave  

P{I Cr=llL r (1  + e / 2 ) D )5 2e-'. 

T h e  proof is an elementary application o f  Markov's inequality and we omit it .  

LEMMA3.2. Under the conditions o f  Theorem 2 

s ~ p ~ , ~ , ~ , , ~ ( l+ x )- ' I2  F , (Fi l ( t )  + xn-'I2) 

- F,(Fi l ( t ) )- F ( F i l ( t )+ xn-'/') + F ( F i l ( t ) )1 
= O(n-,3/4(loglog n )  ' I 2 )  a s .  

PROOF. Because o f  the law o f  interated logarithm for ~ ; ' ( t ) ,  it suffices t o  show that 
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= O(n-3/4(log log n)'I2) a s .  

Let us adopt the following notations: R,(x, y) = the expression inside I I above, 

Sm,,(a, b) = CEm+l[I(min(a, b) 5 X,  Imax(a, b)) - I F(b) - F(a )  ] 

where m, n are integers, n 2 m, n, = exp(rl/') and Cr = {n : nr 5 n < nr+l). For this choice 
of n,, 

An elementary approximation shows that the difference 

sup{R, (x ,y ) ;  1 x I s l o g n ,  y s l o g n )  - L , =  ~ ( n - I )  

where L, = max{ R,(x, y) ; x , I y = l l n ,  2/n, . . ., [ l  + n log nlln).  For all n E C,, nLn 
does not exceed the sum Lnl + L(r) + Ln2+ Ln/r where the new statistics are as follows: 

1 [ l  + n log n] 
1x1, IYI  =;, " ' 9  n 

1x1, I Y I =;, 
1 ..., [r  log n,+ll 

r I 
and 

1 [ l  + 2n log n] 
IzI =;, a * . ,  

n 

Along with the Bonferroni inequality, Lemma 3.1 is applied with varying choices of its 
parameters to see that all the four statistics are O(n1/4(log log n)'I2) a s .  

LEMMA3.3. Under the conditions of Theorem 2, as., 

lim sup,,, n3I4(log log n)-l/'{Fn(Fil(t) + n-lI2) 

PROOF.Let 17, = {t - F,(F-'(t)))/F'(F-'(t)). Using Bahadur's representation of 
quantiles (see Bahadur, 1966), the LIL for t - F,(F-'(t)) and some standard approxima- 
tions, it is verified that the lemma follows if we have 

(3.1) lim sup,,, log n)-'/'{S1,,(F-'(t) + 17, + n-'I2, F-'(t) + 17,)) > 0~ z - ' / ~ ( l o ~  a.s. 

Let us define m, = 2". For the sake of brevity, we shall write v*,, for m;1(mr?7mr -
m,-' qm,_,) and f i  for F1(F-'(t)). Note that, for all r r 2, m,-1 I3(log 2)-'m,(log m,)-2. NOW, 
for all r r 2, consider the following four events: 
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S ~ , , ~ ( F - ' ( ~ )  + q;, + m;ll2)A, = { I + qm, + m;ll2, ~ - ' ( t )  I 2 m:/41. 

A: = { ~ ~ , , ~ ( F - l ( t )+ qm,, F- l ( t )  + v;?) 1 2 m:'4). 

A: = { I ( ~ - ' ( t )  ~ - ' ( t )  IS I , ~ , - ~  + q;, + m ~ " ~ ,  + v;?) 2 m:'4). 

A ,  * -- {[s,~_,,~(F-'(~) 1/2  1.+ q;, + m;'I2, F- '( t)  + qg,)]2 8m:/4(log log my) 

By  the CLT,  

(3.2) p { S m m ( - ,- t € w + as r--* 


where W, = (-1, -2, ..., -m, 1/2r 2 }.  W e  have, by an elementary property o f  multinomial 

distributions, that uniformly in k E W, 

P{A:  I S,,-,,,,(-m, F - ' ( t ) )= k )  - @(-&log log m , ) ' / 2 / ( f t / 2 ) ) .  

Because o f  this and (3.2), C,=l,, P(A:) = 8"m i f  f t .  Since the events A: are independent 
(3.1)would follow i f  the events A,, A:, A:' happen only finitely often a s .  T h e  later claims 
are verified through probability estimates involving Lemma 3.1. T h e  details are omitted. 

PROOFOF THEOREM2. Let us notice first that, according to  Lemma 3.2 

F,(Fil( t)  + xn-'I2) - t = F,(Fil( t)  + xn-l12) - F n ( F i l ( t ) )+ O(n-') a s .  

= { F ( F i l ( t )+ xn-'I2) - F ( F i l ( t ) ) )  

+ { F n ( F i l ( t )+ m-1/2)F,(F;l(t))-

- F ( F i l ( t )+ ~ n - ' / ~ )  a s .+ F ( F i l ( t ) ) )+ O(n-') 

= f tm-'"'O( (1+ 1 x )1/2n-3/4(10glog n)'l2) a.s. 

Using this bound, some set inequalities on F i l ( t ) ,  Lemma 3.1 and the Berry-Esseen bound 
it is found that 

P* { I G i l ( t )- F i l ( t )  2 log n) = O(n-')  as. ,  

and uniformly in x 5 log n 

P* {G;'( t)  - F i l ( t )5 xn-'/" 1 

3 3  + O(n-'") 

= @(xf,( t( l- t ) ) - ' / '  O( (1  + x 1 ) 1 / 2
n

-1 /4  
(log log n)'12)) + O(n-1/2) as .  

= @(xft( t( l- t ))- ' I2)+ O(n-1/4(loglog n)'12) a.s. 

Putting together the estimates found so far and the Berry-Esseen bound for F i l ( t )  -
F- ' ( t )  (see Reiss, 1974; the rate n-'l2in Reiss's theorem can be established easily under 
our conditions), we have now that the left side o f  (1.8) is finite. In the next paragraph we 
shall see that the lim sup in (1.8) > 0 as .  T h e  proof of  the theorem is concluded using the 
Hewitt-Savage zero-one law. 

In the special case o f  x = 1, consider the expression (3.3) above. According to Lemmas 
3.2 and 3.3, 

co > lim sup,,, n1'4(log log n)'I2{nl" 'Fn(F, '( t)  + n-'I2) - t )  - f t )  > 0 a.s. 

This also means that ~ , ( F i ' ( t )  + n-'I2) = t + O(n-''2) a.s. Thus,  the expression (3.3) gives 
us lim sup,,, n1'4(log log n)- ' I2[P* {n ' /2(G;1( t )  - F i l ( t ) )5 1) - @ ( f t ( t ( l- t ) ) - 1 / 2 ]> 0 
a.s., which implies the result desired. 
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