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On the Asymptotic Behavior and
Radial Symmetry of Positive Solutions of
Semilinear Elliptic Equations in R"

1. Asymptotic Behavior

Y1 L1 & WeI-MimnG N1

1. Introduction

This paper is motivated by our previous studies on the conformal scalar
curvature equation [LN1]

n+2
(t.1) Au+K(x)u"=2=0

n 2

in R", n=3, where A = E o is the usual Laplacian and K is a given

1

i=1
function, and the Matukuma equation [LN2]

1
1.2 Au+ ———u? =0
(12) 1+|x|2u

in R, n= 3, where p > 1 is a real number. We refer the interested readers
to [LN1] and [NY] for the background of (1.1) and (1.2) in Riemannian
geometry and astrophysics.

In [LN2] it was established that bounded positive solutions of (1.2) with
u? (x)

finite total mass (i.e., SRn P——]
1+ x|

dx) must be radially symmetric if p >

n—1 . ..
5 Our approach there was to first prove that a bounded positive solu-

n—
tion of (1.2) with finite total mass must have the fastest possible decay, name-
ly, O(|x|*>~") near x =oo. Then the method developed in [GNN] applies if

n—1

since the decay of the term I

P> P (x) is faster than O(|x|™"1)

n— +|x|?

n—1
near x =oo. However, the range 1 <p = is left open due to the inad-



equate decay and new ideas are needed in treating this case. One of the pur-
poses of_ this paper is to close this gap. (See Theorem 2. below.)
In [LN{] we showed, for instance,-that if

1

1.3 ) — A
(1.3) K@ = 1

for some 7> 2 in R", then (1.1) does not possess any positive solutions tend-
ing to zero at o. On the other hand, it follows from previous works [N], [Na]
and [LN1] that every bounded positive solution of (1.1) must tend to a limit
C>0 at o, and for every sufficiently small C >0, there exists at least one
positive radial solution of (1.1) having C as its limit at oo. It thus seems to
be a natural question to ask whether all bounded positive solutions of (1.1)
with K given by (1.3) are radially symmetric. Again it is the ‘‘slow’’ decay
of Ku"*2/("=2) that causes the main difficulty here. Attempting to apply the
method in [GNN], one immediately encounters the fact that the fundamental
tool, Lemma 2.1 in [GNN], no longer holds. In fact, none of the integrals
there makes sense when 7 is close to 2. (See our discussions below.) In this
paper we shall circumvent this difficulty and give the above question an affir-
mative answer. (See Theorem 1 below.)

Our key new idea is to obtain precise asymptotic expansions of solutions
at o which turns out to be sufficient to get the ‘““moving plane’’ process
started near oo. This ‘“‘moving plane’” technique was first devised by
A. D. ALEXANDROV in 1956 and has been used by J. SERRIN and many other
mathematicians in their work. (See, e.g., [H], [S], and [GNN].) Our paper is
close in spirit to [GNN]—both treating semilinear elliptic equations in the en-
tire space R". To make the above discussion slightly more precise and to fur-
ther illustrate the main ideas involved, we quote one of the resulis in [GNN]:

Theorem A. ([GNN; p.380, Theorem 1”]) Let u be a positive C* solution. of
(1.4 Au+ g(|x],u) =0

in R", n =3, with u(x) = O(|x|™"), m > 0, near . Assume that

() for r=0 and 0<ssuy=maxu, g(r,s) is continuous, positive, non-
decreasing in s and strictly decreasing in r;

(ii) for some p> (n+ 1)/m and some constant C>0, g(r,u) = Cu? for
U _S_ Up.

Then u is radially symmetric about the origin and u, <0 for r > 0.

To get the “moving plane’’ process started near oo in the proof of Theo-
rem A, the following lemma was used in a very crucial way in [GNN].

Lemma B. ([GNN; p.375, Lemma 2.1]) Let u be given by



with f(y) = O(|ly|™9) at o for some q > n. Then

(L.5) lim [x|"2u(x) = | f(y) dy.
X200 Rn

Furthermore if g >n+ 1, then

"
(1.6) im X" 9
o X 00X

(x) » —(n—2) | f») dy;
Rn

if A'>A€R and {x'} is a sequence of points going to o with x} < A, then

i|n

lzx | - (u(x') — u(x™)) > 2(n=2) [ ) (A —y) dy
AP —xq{ R

.7

as i— o, where x= (X{,...,%,), and x* = (24 —x1, %3,...,%,) is the

reflected point of x with respect to the hyperplane x| = A.

Heuristically, the fact that u(x) = u(x*) for x near o with x; < A where
A > 0 is sufficiently large follows from (1.6) and (1.7) since (1.6) already im-
plies that u is strictly decreasing in the x(-direction for x; near oo (if f=0
and == 0). This is the starting point of the ‘‘moving plane’” process. Now, for

a bounded positive solution # of (1.1) with K given by (1.3), the decay of the
n+2

term Ku"~2 is precisely ~|x|~" near x = oo, which is not faster than |x|~"~!
if t = n+ 1, and Lemma B is not applicable. Similarly, for a bounded positive

solution u# of (1.2) with finite total mass, the term . u?P has the pre-

+|x|?
cise decay ~|x|7P®~2~2 near oo, which is again not faster than |x|™"7! if
n—1 - i )
p= 5 Thus the applicability of Lemma B is excluded and the question

of whether u is radially symmetric is left open. ( :
The crucial new idea in this paper is to obtain the precise asymptotic behavior
of solutions near o (which enables us to bypass Lemma B). The derivation of
such asymptotic expansions of solutions could sometimes be very technical and
tedious. However, using them we are able to prove the following results.

Theorem 1. All bounded positive solutions of (1.1) with K given by (1.3) are radial-
ly symmetric.

Theorem 2. All bounded positive solutions of (1.2) with finite total mass are radial-.
Iy symmetric.

As a by-product of our method, we also know precisely how all such solu-
tions behave near o. For instance, in case of the Matukuma equation we
have



Theorem 3. Let u be a bounded positive solution of (1.2) with finite total mass.
Then

c c

|xln—2 + lx|n-—2+y oot [x’n—2+(2k+1)7

o N —Y
len—1+y+”'+|x’n—1+ky+ lxln

near x =oo, where y = (p — 1) (n — 2), k is the integer for which ky = 1<
(k+ 1)y, and C> 0 and c are generic constants.

u(x) =

This follows immediately from Theorem 2 and Theorems 2.8, 2.12 and 2.16
in Section 2 below. Our other results in this direction, Theorems 2.41, 2.50 and
2.75, are also of independent interest. Furthermore, our method applies to the
more general equation (1.4), and we are able to refine and improve previous
results in [GNN] (such as Theorem A quoted above and Theorem 1 in
[GNN]); in particular, not only the condition on p is now optimal, the
monotonicity assumption of g(r, u) on u is also removed. (See, for instance,
Remarks 5.18 and 6.3 of Part II.)

For the convenience of the reader, we group our results into two parts.
Part I (containing Sections 1 and 2) is devoted to the derivation of the asymp-
totic behavior of all possible bounded positive solutions to several classes of
general equations including (1.1) and (1.2) where neither the coefficients X nor
the solutions u need to be radial. The symmetry results, Theorems 1 and 2,
are established in Section 5, Part II, as special cases of much more general
results. For the purpose of proving those symmetry results in Section 5, we -
apply the method developed in Section 2 to general equations including (1.1)
and (1.2) under the assumption that K is radial (while still no radial symmetry
hypothesis is imposed on solutions). Since we only need the asymptotic expan-
sions of solutions up to the order |x|~®~V in Section 5, our asymptotic con-
ditions on K (obtained in Section 2) can be considerably relaxed and the proofs
are simpler. These are done in Section 3, Part II. (This makes Part II essential-
ly self-contained.) Section 4 contains some very important technical estimates
(for example, Lemmas 4.6 and 4.9, which are to replace Lemma B above).
Finally, we conclude Part II with a few remarks in Section 6.

2. Asymptotic Behavior

In this section we determine the asymptotic behavior of positive solutions
of the eguation

(2.1) Au+g(x,u) =0
in R", n = 3. For simplicity we assume that

(2.2) g(x, u) = K(x) f(u)



where K 20 in R", f=0 on R*, and K and f satisfy some further more
precise conditions. In fact, our method is quite general — it applies to more
general nonlinearities than (2.2), for instance,

2.3) g(x, u) = XK;(x) fi(u).

The results in [I.N1] guarantee that a bounded positive solution # must
tend to a limit Cy at oo if K(x) f(u) decays sufficiently fast near oo,
Moreover, Theorem 2.13 in [LN1] gives the second term in the asymptotic ex-
pansion of u if C, is positive. In Subsection 2.1 we shall treat the case
Cy =0, and the case Cy > 0 will be further studied in Subsection 2.2. Various
extensions and generalizations are included in Subsection 2.3.

Throughout this entire paper we shall use the capital letter C to denote
generic positive constants which may vary from line to line and use the lower-
case ¢ to denote generic constants (not necessarily positive or negative) which
again may vary from line to line. We shall also use the notation R(x) to denote
a generic function which is Lipschitz continuous in a neighborhood of the
origin 0 with R(0) =0.

2.1. The Zero Limit Case
Our first step in the zero limit case is the following (also see Theorem 2.32)

Theorem 2.4. Let u be a positive solution of (2.1) with u(x) = O(|x|™™) near
x=o for some m>0. Suppose that g(x, u) =K(x) f(u) with K(x) =
O(|x|™") near o for some t =z 0, that f(u) = O(u”) near u =0 for u positive,
and that T+ pm>n. Then m=n —2 and

2.5 lim x| 2u(x) = _ §g(x, u(x)) dx=C; >0
X0 n(n—2)w, g

where w, is the volume of the unit ball in R". Furthermore,

O(|x|= D) ify>1,
©.6) u(x) — le,,‘_z =1 0(x|~ " Dlog|x|) fy=1,
O(|x |~ (»=2+7) fy<l,

Jor x near o where y=17+p(n—2) —n

Proof. By Lemma 2.3 in [LN1] we have

Q.7 w(x) = 1 S g u(fz)z &,
n [x — y,
Rn

Thus (2.5) follows from (1.5) in Lemma B (in the Introduction) and conse-
quently m =n — 2.



From (2.7) we deduce that

n(n—2) w,||x|"2u(x) — G|
n—2
= S x| = ll g u(y)) dy
x =
Rn

n—2
Ix——lyvim - 1‘ gy u)) dy

e f
|y|<% [x-—y[<% I:|YI>Lx“|]ﬁ[|x—y[>m:|

=L+L+1L
where I, I, and I; are defined by the last equality. We now estimate I;, I,

x|

and I; separately. In the region {y ER"||y| < %} the inequality ey <|x—y| <

3
—|2£~l holds. Thus

xn—Z_x_ n—2
h= S %;ﬁg—g(y,um)dy
i<l
2772 e fx =y "2 52 = =y P
) S ( x —y["? x| +|x —y| g0 u)) dy
i<El
c
éﬂ S lyl g u(y)) &y
pi<El
¢ M
= d
Ed S (A +|y))rre=n @Y
y< B

2

since |[x|2 = |x—y[2| =|x-x = (x—y)- (= )| = |y[(y| + 2x]). Noting
that v+ p(n —2) = y + n we have

3]
Clx|™ it y>1,

2
C . ,
I;“I a +r)”+” dr=4{ Clx|™'logl|x| if y=1,

0 Clx|™7 if y<1.

IIA



%]

To estimate I, we observe that in the region {yER”} |x —y| <—5} we have
% <|y| < §|;—| .- Thus, setting »=|x —y| we obtain from the definition of

12 that

L

I1A

x|

2 | c
-C n—=2.2—n +1 rn—l dr < .

OS P =G

X
Finally it is easy to see that if |x —y| > e then

and therefore

|x|

ylz=t
2
Combining the estimates for I;, I, and I3 we-obtain (2.6). Q.E.D.

We now come to the main results of this subsection, which refine Theo-
rem 2.4 by giving highér-order terms in the asymptotic expansion (2.6) of u.
It seems natural that if we need more precise asymptotic behavior of solutions,
we have to have more precise assumptions on the nonlinearity. Although our
method handles very general nonlinearities, results in such cases could be very
complicated. Thus, to make the method transparent we only include the
following theorems as examples to illustrate  the ideas involved. (See
Remark 2.30 for more complicated nonlinearities.)

Theorem 2.8. Suppose that the assumptions of Theorem 2.4 hold and that y > 1.
Suppose further- that

2.9 K(x) =|x|7"(C+ O(|x]™#))
near x = o for some yu >?2 — vy, and that for some g with g(n —2) >2 —y
(2.10) flu) = u? (C+ O(u?)
near u =10 for u> 0. Then
C a-x c x 1
2.11 = —— 4 +———+R|—5)——
@D w4 et 4R () e

near x = oo where a € R" is a constant vector.

Theorem 2.12. Suppose that the assumptions of Theorem 2.4 hold and that y = 1.
Suppose further that

(2.13) K(x) =|x|7*(C+c|x|"1 + 0(x]|™#))



near x =oo for some p>2 — y(=1), and that for some q with q(n —2) >
2—-y(=1)

@.14) Fluy = {u"(C + 0(u?)) if n>3,
W(C+cut+0Ow?)) ifn=3

near u =20 for u> 0. Then

(2.15) ury = —S 4 € +f’—'~f+R(x) !

x[*2 7 x* T ] x>/ |x|"~!

near x =, where a € R" is a constant vector.

Theorem 2.16. Suppose that the assumptions of Theorem 2.4 hold and that y < 1.
Suppose further that (2.13) and (2.14) hold. Then

[ (4 c C

len——Z +|x|n—2+y+"'+]xln—2+(2k+1)y

u(x) =

lxln—1+y +'“+lx|n—1+ky

2.17)
PRI PO Ny G2
e\ =) |x]¥ %2/ Jx"7

near x = o, where k is the integer such that ky = 1 < (k+ 1)y and a€R" is a
constant vector.

The proof of Theorem 2.16 is far more complicated than that of Theo-
rems 2.8 and 2.12. We shall therefore give a detailed proof of Theorem 2.16
and merely sketch the proofs of Theorems 2.8 and 2.12.

Proof of Theorem 2.16. The proof is divided into two steps.

Step L. First observe that if n = 4, we may then choose 0 < g < 1 such that
g(n—2) >2 —y. Thus in this case we may rewrite

(2.18) Ffuw) =uP(C + cu — cu + 0(u9))
=u?(C + cu + O(u?))

near u =0 for u < 0. Thus there is no need to consider the cases » = 4 and
n = 3 separately.

We shall now use the Kelvin transform to convert the problem to a neigh-
borhood of the origin, which is technically easier to handle. Setting

2.19) y=l~fl~2, v(x) = x> "u(y) =|y|"2u() = C + vy (x)

where v; (x) = O(|x|”) near x = 0 by (2.6), we obtain, by standard computa-
tion, for x near the origin, say, in B;(0)\{0}, that
(2.20)

0= Av+|x|7"2P[C + c|x| + O(x|M]1IC + c|x|" %0 + O((|x|""2v)9)].



Thus using (2.19) we have
0= Av+|x|"72[C, + O(x|")]?
X[C + c|x| + 0(x]|») + 0(x]|*) + O(x| "9 + O(jx|"**")]
= Av +|x|"72[C] + O(|x|")]
X[C + c|x| + 0(x|?) + O(x|#) + O(|x| ®~29) + O(|x|""2*7)]
= Mo +|x]772[C+ O(x|”) + O(x]*) + O(x]?) + O(|x| “29]
=M+ Clx|"2+ 0(x[¥7?)
= A+ Clx|"™* + fi(x)

since 2y -2<0, y—2+u>0 and g(n —2) +y—2>0, where f; and
€ > 0 are defined by the last equality. Setting

C
wx) =C — —— x|+ Fi(x), 0<]x| <1
y(y+n-2)
where F; is the Newtonian potential of f;, we see that A(v —w) =0 in

By(0)\{0). Since f; €17 (B,(0) for 1<p< "

, standard elliptic estimates

imply that F; € W>P (B, (0)) and thus F; is Holder continuous near x = 0 by
the Sobolev Embedding Theorem and the fact that

> This in
— 2

particular guarantees that » — w is bounded and therefore x = 0 is a removable
singularity of the harmonic function v — w, i.e., v=w + H in B;(0) where H

is a harmonic function in the entire ball B;(0). If 2y > 1, then

>n
2-2y

and F,€C“%(B,(0)) for any d <2y—1 by the Sobolev Embedding Theo-

rem. Thus if we set a = V(F; + H) (0), then

C
2.21 v(x)=C— ——— x|+ a-x+v(x
(2.21) (x) 1 y(y+n—2)|| 2(x)
near x = 0 where v,(x) = O(|x|'*) at x=0 for all 6 <2y — 1.
If 2y = 1, then again by standard elliptic regularity estimates we have

C
2 [x |7 + vy (x)

(2.22) v(x)=C — —————
y(y +n—

where v, (x) = O(lxla) near x = 0 for all J < 2y. Now we proceed inductive-
ly. Assume that for j = k — 1 we have

(2.23) v(x) = Cy+c|x|” + -+ +c|x| VD + p(x)



where v;(x) = O(Ix!‘s) for all 6 <jy near x = 0. Substituting (2.23) into
(2.20) we obtain, after a similar computation as above, that

0=Av+|x|"72[CP +c|x|” + - +c|x| VDY + 0(x|9)]
X[C+ c|x| + O(|x]|?) + O(x]|*) + O(|x|9"=D) + O(|x|*~2*7)]
=AM+ Clx|" 2+ c|x |72+ cx P2+ 0(x|°T77Y) + O(lx 7).

(Here, again we have used the assumptions that g+ y—2>0 and
qgn—2)+y—2>0)Since (j+1)y=ky=slandy—1>6+y—2, it fol-
lows that

0=Av+ Clx|" 2+ ¢[x|? 2+ +c|x}" 2+ 0(x]°772)

near x = 0 for all § < jy. Now the arguments leading to (2.22) may be repeated
here to yield that

v(x) =‘C1 + CI;CIJ' + o F o] x ) + v (3)

near x =0 where v (x) = O(|x|°) near x =0 for all §< (j+ 1)y. Since
this holds for all j <k — 1 we conclude that

(2.24) v(x) = Cp+clx|” + -+ +c|x]| ¥ 4 g (x)

near x = 0 where v (x) = 0(|x|5) at x = 0 for all J < ky. Iterating the above
argument by substituting (2.24) into (2.20) we obtain

0=2v+ Clx|? 2+ c|x|? 2+ +clx|?2 + O(x]°*77?)
near x = 0 for all § < ky. Note that since (k+ 1)y >1,d+y—2> —1 for
J sufficiently close to ky, it follows from the arguments leading to (2.21) that
(2.25) v(x) =Cp+clx|”+ + c|x|? +a x+ y(x)

near x =0 where v ((x) = 0(|x|1+5) near x =0 for all < (k+ 1)y —1
and a is a constant vector in R”

Step II. Iterating the arguments in Step I, we substitute (2.25) into (2.20)
and obtain after a tedious computation that

0= Av+ [Clx|"2 4 fx|? 24 4 x| #*D7=2 4 p(a-x) [x[7 2
+ O(|x |79y efx|? +elx| P 4 efx [P

near x =0 for all § < (k+ 1)y — 1. Similarly we conclude (as we did in
(2.21)) that near x =0,

(2.26) v(x) = Cp+clx|” +- +c|x| ¥V + (a-x) (1 + c|x]")
+Cfx|y+1+c|x|2y+1+'-'+c{x|k"+l+0(|x]7+l+5)

where a€ R" is a constant vector; in fact, a = V[v(x) — (C; + ¢|x|” +---
+ ¢|x|*¥")]|y=0. (Note that in deriving (2.26) we have used the fact that
A(a-x)|x|") =c(a-x)x|? "%, x*£0.) If y+ 1+ =2 for some § < (k+ 1)y ~1,



then (y + 1) + (k+ 1)y — 1 > 2, which implies that £k =1, and we stop at
(2.26). Otherwise, since y+ 1+ (k+ 1)y — 1 = 2y + 1 we may simplify (2.26)
as

(2.27) v(x) = Ci+c|x|? +-- +elx| %V + (a-x) (1 + c|x|?)
+c[x|y+1 + O(I'xfy+1+5).

near x =0 for all = (k+ 1)y — 1 (= y). Repeating this process, we finallty
arrive at

v(x) = Cp+clx|” +-- +clx|* + (@ x) (L +c|x|? +--- +c]x|®)
+c|x]y+1 L R o c{xfky“ +’U2k+1(JC)

where 1}2k+1(0) = 0, VU2k+1(0) =0 and Vap41 € Cky+1+6 near x =0 for all
o< (k+1)y—1. Since ky+1+<ky+1+ *k+Dy—-1=(2k+1)y,
which may still be less than or equat to 2, we need to iterate the above argu-
ment once more to obtain

v(x)=Cr+c|x|?+ - +c|x| DY+ (@ x) (1 +clx|P + -+ +c|x |+ c]x | FFD7)
+ex | el [T x| FEOTH 05 (x)

near x =0 where vy, € CHD7FIHI(B (0)) with vy,,(0) =0, Vg, ,(0) =0
for all 6 < (k+ 1)y — 1. Since (k + 1)y + 1 > 2, we combine the three terms
(@-x)|x| ®FDY x| "D+ and 4, ., into a single C? function ¢ in B;(0). It
is then easy to see that the function R(x) defined by

R(x) = {(p(x)/]x], x#*0,
0, x*+0

is Lipschitz continuous in B;(0). Thus it follows that, near x =0,

(2.28) v(x)=Ci+ec|x|T+ - +clx| FV 4 (a-x) A +c|x|"+ - +c|x|F)
+e|x P o] x [T+ R(x) x|,

and (2.17) follows from (2.28) and (2.19). Q.E.D.

We now come to the

Proof of Theorem 2.12. We proceed as in the proof of Theorem 2.16. Follow-
ing the argument leading to (2.20) we now have instead

(229) 0= v+ x| "0?[C +c|x| + O(x|'9) + O(x|#) + O(|x| *=29)]
near x = 0 for any § < 1, where v(x) = C; + v{(x) given by (2.19) and
vi(x) = O(~|x]| log |x|) = O(x|%)
near x =0 for any § < 1, guaranteed by (2.6). From (2.29) it follows that
0=Av+ Clx|™ + O(|x|"1F9)



near x =0 for any d < 1, since 4 > 1 and g(n —2) > 1. Thus
v(x) = C; + c|x| + a-x + O(|x|+9)

near x =0 for any 6 < 1 where a€ R" is a constant vector. Substituting this
back into (2.29) we obtain that

0=~Av+Clx| + c+pla-x)|x|™L + 0(x]°) + O(x|*) + O(|x| #~ D1y
near x =0, for all J < 1. This again leads to
v(x) = Cp +c|x| + (a-x) (1 + c|x]|) + vp(x)

near x =0, where v,(0) =0, Vo,(0) =0 and v,€C>%(B,(0)) for all
0’ <min {1, u—1, (n—2)g — 1}. This can clearly be rewritten as

v(x) = Ci+clx| +a-x+ R(x)|x|
near x = 0, where R(x) is a Lipschitz continuous function in B;(0) with

R(0) = 0. Transforming back via (2.19), we have (2.15). Q.E.D.

Finally we include a brief argument for Theorem 2.8. (Observe that both
4 and g may be chosen to be less than 1 in this case as long as n = 3.)

Proof of Theorem 2.8. We proceed as in the proof of Theorem 2.16. Following
the argument leading to (2.20), we arrive at
0= Av+|x|""2P[C+ c|x| + O(|x|*) + O(|x|1*~D)]

near x = 0 where v(x) = C; + v;(x) given by (2.19) and v;(x) = O(|x|) near
x = 0. Therefore

0=Av+ Clx|” 2+ 0(x|”™1) + O(|x]|**77%) + O(|x |12 +772)

near x =0. Since y—-1>0, u+y—-2>0, and g(n—-2)+y—-2>0, it
follows that near x =0

v(x) = Cp +c|x|”+a x4+ vy(x)

where v, € C?(B;(0)) with v,(0) =0 and V,(0) = 0. Again we may write
v2(x) = R(x)|x| in B;(0) and then (2.11) follows immediately from (2.19).
Q.E.D.

Remark 2.30. For a nonlinearity of the following form

1
X, U) = ufr + ul2
8% u) 1+ |x]|™ 1+|x|™

Theorems 2.8, 2.12 and 2.16 may not apply. However, the method does apply.
In fact, the techniques used in the proofs above apply to nonlinearities of the
form (2.3) with K;, f; satisfying the hypotheses of Theorems 2.8, 2.12 or 2.16.
In this more general case the asymptotic expansions of solutions u are similar
to (2.11), (2.15) and (2.17) except now terms with exponents involving various



combinations of y; = 1; + p;(n — 2) — n appear and make the asymptotic ex-
pansions of u look far more complicated than (2.11), (2.15) or (2.17). We shall
leave the details to the interested readers.

2.2. The Positive Limit Case

For simplicity, in this subsection we restrict our consideration to the equa-
tion

(2.31) Au+Kx)u? =0

in R", n= 3, where K= 0 in R" and p > 1. First, we summarize the known
results:

Theorem 2.32. Let u be a bounded positive solution of (2.31) and let K= 0 in
R" with K(x) = O(|x|™") near x = for some 7> 2. Then Cy=lim, ,u(x)
always exists. Moreover, if Cy =0, then u(x) = O(|x|*™) near o; if C;>0
and K ~ |x|~" near oo, then

Clx|*" if t>n,
(2.33) (u(x) = Gy) ~{ C|x|* "log|x| ift=n,
Clx|*T ifn>1>2.

(Here we use notation ‘‘f ~ g near o’ to denote that there exist two
positive constants C;, C, such that C;f(x) = g(x) = C,f(x) for all x near .)
This theorem follows from Theorems 2.9 and 2.13 in [LN1]. The rest of this
subsection will be devoted entirely to a refinement of Theorem 2.32 for the
case Cy> 0 (while the corresponding result for the case Cy =0 is already
contained in Subsection 2.1).

First, we take up the case that 7> n. As in Section 2 of [LN1], we have

1 S K(y) u?(y)

nin-2)w, J |x—y|"?
er

(2.34) u(x) = G+ dy = Cy + u;(x)

where u; is defined by the last equality. It follows immediately from the
proof of Theorem 2.4 that if K(x) = O(|x|™") near oo, then there exists
C; > 0 such that

O(|x|'™™) if y>1,
(2.35) uy (x) — |x|"1_2 ={ O(x|'" " log|x]) if y=1,
O(x|*>~"7) if y<1t

near x = oo, where y = 7 — n (in this subsection). The case that y > 1 is the
easiest and will be considered first. To refine Theorem 2.32 in this case, we
need to assume further that there exists 4 > max {2 — y, 0} such that

1 1
x- L (ero( 1))
x| |x|#
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near x = oo, Using the Kelvin transform, we set
X
236) y= Mk v(x) = x>y (p) =y |*ur () = C; + v (x)
where v; is defined by the last equality and »(x) = O(|x|) near x =0 by
(2.35). From the equation (2.31) we derive that
0= Av+|x|"2[C+ O(x|“)]ICy +|x|"2(Cy + v, (x))]?
= Ao+ Clx|"72 + Clx|”T"* + 0(|x|°)

near x = 0, for 0<5 < min {y, y + u — 2}. Since d > 0, similar but simpler
arguments used ‘in deriving (2.21) imply that

(2.37) v(x) = Cy+elx|? +e|x|"T"? +a-x + vy(x)
near x =0, where a is a constant vector in R" and v, € C*(B,(0)) with
v,(0) = 0, Vo, (0) = 0. Since y > 1, we can combine v, and lxl’”“”"2 into a
term of the form R(x)|x| where R is Lipschitz continuous in B,(0) with
R(0) = 0.

Next we consider the case y < 1. In this case we assume similarly that there

exists ¢ > 2 — y such that
1 1
- (C+ <4 0(—”»
|x| x| x|

near o. We may assume without loss of generality that u < 2.

If y <1, it follows from (2.35) that |x|" 2u;(x) — C; =O(|x|~7?) near oo.
Thus after the change of variables (2.36) where now v;(x) = O(|x|”) near
x =0, the equation (2.31) becomes
(2.38) 0= Av +|x|”72[C + c|x| + O(x|")]IC, +|x|""2(Cy + v, (x))]P

=Av+ C|x|V‘2+c’x!7—l+C|x|y+n—4+0(|xln+2y—4)+0(Ix’y+,,_2)

K(x) =

near x=0. Since n+2y —4z2y—1> ~1 and y+u —2>0, the same
arguments leading to (2.21) give that

v(x) =Cl+C|x|y+C|X|yH+c|x|y+”_2+a-x+52(x)
EC1+Clxly+a-x+1;2(x)

where a is a constant vector, 7, and v, are C“°(B;(0)) functions for
0 <8<y, and v,(0) =5,(0) =0, Vo, (0) = V7,(0) =0.- Substituting this back
into (2.38) we have

0=Av+Clx|” 2+ c|x|” L e|x |7t % + c|x|#*H + 0(|x|9)
near x = 0. Similarly, we conclude as before that

(2.39)
b(x) = Gy + elx]? + el |7+ elx] P02 o efx |72 g x + RG]

near x = 0.



The case that y =1 may be handled in a very similar fashion. Recall from
(2.35) and (2.36) that |x|"~%u; (x) — C; =0(|x|~°) near x = oo for any 6 < 1.
Thus, after the application of the Kelvm transform (2.36) equation (2.31)
becomes

0=2Av+ Clx|™ +c+ 0(x|*t972)
near x =0, for any d < 1, and it follows that
(2.40) v(x) =Cy +clx| +a-x + R(x)|x]

near x = 0.
The above discussion may be summarized as follows.

Theorem 2.41, Let u be a bounded positive solution of (2.31). Suppose that K = 0

in R” with K(x) = O(|x|™") near x =o for some t>n, and that y =7 — n.
Then Cy = lim,,ou(x) always exists. If Cy> 0, then the following statements

hold:
= (o)

O fr>n+1 and
near x =co for some yu > max {0, 2 — y}, then

2.42) u(x)=co+|lclll_'2+a'x+ ¢ +R(x) :
=

%" fx | %12/ |x"

K(x)

near x = o, where R is Lipschitz continuous in B;(0) with R(0) =0.
i) ftr=n+1 and

ko = 1 (e 0 0(%»

near x = for some u>?2 — vy, then

C .
Q43 uln = Co+, !n1_2+ ? 4 22 +R< ") .
X

x " x| %2/ x|

near x =co when 1=n+ 1,

C c c c

(2.44) u(x) =G+ |x|n—-2 In—2+y + |n—1+y + ]x|2n~4+?

|x |x

+ c +a~x+R X 1
|x|2n—4+2y |x|” lxl |x|” 1
near x = when T<n+ 1.

This theorem follows immediately from (2.37), (2.39), (2.40) and the Kelvin
transform (2.36).
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Remark 2.45. Combining Theorems 2.32, 2.8 and 2.41 we see that if K(x) =
|x]77(C + ¢|x|™' + O(|x|™*)) near o for some t>n and u>2+n—r,
then the asymptotic behavior of all bounded positive solutions of (2.31) is well
understood. This fact will enable us to prove that in this case all bounded
positive solutions of (2.31) are radially symmetric if K is radially symmetric
and decreasing in |x|. (See §5 in Part IL.)

Next we consider the case 7 = n. This case needs a little more care. Let
u be a bounded positive solution of (2.31). Then again we may write
u = Cy + u; where u, is defined in (2.34). By Lemma 2.3 in [LN1] we have
0 < u;(x) = C|]x|> " log|x| near x =oo. Assume that for some p > 2
(2.46) K(x) =|x|7"(C+clx| ™ +c|x|72 + O(x| ™))
near x = o, Then we have from (2.31) that near x =

0= Auy + CCHlx|™" + O(|x|™ ") + O(|x|*>~*" log |x])-

Setting
CCy log x|
n—2 |x|"2

C W (x) =uy —
near x = oo, we have
Aw, + O(lx|™" 1) + O(|x|* ™ log|x]) = 0

near x = oo, Since u,(x) >0 as x> and 2n —2 = n + 1, we conclude from
the proof of Theorem 2.4 that lx|”‘2u2(x)—>c1 as x— oo, and that near oo

C1 1
—_ =0
) |x|" 2 (IXI”‘H)

for any &> 0. (Note that ¢; may not be positive, but the proof of
Theorem 2.4 still works.) Now we can proceed as in the previous case. Setting

|n——2

le%’ p(x) = |x[2 ") =y " 2m(y) = ¢ + v (x)

where v (x) = O(|x|'~%) near x =0, we have, from (2.46), that near x =0
cch 1 .

—g + — [C+ clx| + c|lx|® + 0(x|"]

lx1* x|

x[Cy — C|x|" 2 log |x| + ¢y |x]|"™% +|x|" 20, (x)1P.

(2.47) 0= Ay —

That is,
ccy - CCh
0=Av—~ |C—|§ + ﬁ [l +c|x| +c|x]?+ O0(x|"]
x x

X[1 — C|x|""%log |x| + c|x|""2 + |x|" vy (x) + O(|x]|*"*(log [x)})]



near x = 0. Straightforward computation shows that

0=Av, + [-C|x|**log|x| +c|x|**+c|x| T+ c+ O(x|" 3% + O(|x]|“7)]
near x = 0. Since

(2.48) A(x|"*2log|x|) = (b +2) (b +n)|x|® log|x| + (n + 2b + 2)|x]|®,
we derive

(2.49)

0=A(v—C|x|"2log|x|) +c|x|"*+c|x| " +e+O(x|"378) + O(|x|#~?)

near x = 0 for any & > 0. Now we need to consider two subcases separately:
nz4 and n=3.
If n=4, (2.49) yields that

v(x) = Clx|" ?log|x| +c|x| + a x + vy(x)

where v, € C? near x =0 with v,(0) =0, Vu,(0) =0 by similar arguments
used in §2. As before, v,(x) = R(x)|x| near x =0 for some Lipschitz con-
tinuous function R with R(0) = 0. This establishes the first half of the follow-
ing theorem.

Theorem 2.50. Let u be a bounded positive solution of (2.31). Suppose that for
some constants € >0, y > 2

1 ~ c c 1
K(x) = n<c+—+—+0(-)>
NPT PR

near x =oo. Then Cy = lim,_ o u(x) always exists. If Cy > 0, then for n = 4,

CCh log|x] 1 c a-x
n—2 n—2 + n—1 n
n—2 |x| | x| |x] |x|

log |x| x 1
C +R{ —
x| 2 (lxlz) %[

near x =oo, and for n =3,

(2.51) u(x) =G+

@5)  ue)=cyp+Ccp Bl e ploslxl e ax
Xl ¥ 2  x? x)?

(log |x|)? log | x| x 1

+c +c +R{ —)—

|x[? |x|? |x[2/ |x]?

near x = oo, where a € R" is a constant vector and R is a Lipschitz continuous
Junction near x =0 with R(0) = 0.

Completion of the Proof. If n =3, (2.49) becomes
0=A(v; = Clx|log|x]) + ¢c|x|™ + ¢+ O(x|™%) + O(|x|*7?)



near x = 0. Since & > 0 can be.: arbitrarily small, we have, as in (2.21), that
near x =0

(2.53) v1(x) = Clx| log|x| +c|x| + a-x + vy(x)

where v, € C*? near x =0 with v,(0) =0, Vu,(0) =0, for any J < 1, ie.,
v(x) = O(|x|'™°) near x =0 for any J < 1. Substituting (2.53) back into
(2.47), we obtain, after a somewhat tedious computation, that

(2.54) 0= Ay — Clx| ' log x| + c|x|™" + C(log |x])* + ¢ log |x|

+c+ Cla-x)|x|"1+ O(x]|®)
near x = 0. From (2.48) and the fact that

A(]x|*(log |x])®) = 6(log|x|)* + 10 log |x| + 2
in R®, we may rewrite (2.54) as
0 = Afy; — Clx| log|x| + C|x|*(log |x])? + c|x|? log | x|]

+ Cla-x)|x|"  +c|x|™t + ¢+ O(x]?).
Thus it follows that near x =0,
(2.55) v1(x) = C|x| log |x| + ¢|x|*>(log |x{)* + ¢|x|? log | x|

+ Cla-x)|x| +c|x| +a - x+ v3(x)

where v; € C>¢ near x = 0 and v3(0) =0, Vv3(0) = 0. Comparing (2.55) to
(2.53) we see that a = 4. Since we can rewrite C(a-x)|x| + v3(x) as R(x)|x]|,
(2.52) follows immediately from (2.55). This finishes the proof of Theo-
rem 2.50.

Finally we turn to case 2 < 7 < n. Assuming that
(2.56) K(x) =|x|7(C+ 0(|x|™))

near oo where u > max{0,1 —#} and =71 — 2, we see that a bounded
positive solution # must satisfy (2.34), i.e., u = Cy + u; where u,; is defined in
(2.34); and by Lemma 2.3 in [LN1] we have

(2.57) 0=u(x)=Clx|* "

near x =oo. As in the previous case that 7 = n, we cannot apply the Kelvin
transform directly to derive the asymptotic behavior of u; more care is needed.
In fact, this case is harder than previous ones, and our estimates are not quite
as explicit as before.

Let k be the positive integer such that kn <n — 2 = (k + 1) #. Then we set

(2.58)
Ni(x) =

p
1 S (Co+ N1 ()P K(y) dy, [=1,2,....,k+1,

n(n—2) w, lx —y|"2



and Ny(x) = 0. It follows again from Lemma 2.3 in [LN1] that

(2.59) 0=N@x)=CA+[x)7", I=1,2,...,k+1.
Now we assert that for x € R",

(2.60) INi(x) —=N_(x)| = CA +|x])7, I=1,...,k,
(2.61) [Nip1 (1) = Ne(x) | = €+ [x[)> " log ((x] +2).

First, when [ = 1, (2.60) follows from (2.59). For 1 < [ =k, we proceed by in-
duction. By the induction hypothesis we have

INi_1(y) =N, ()| K(y)
n—2 dy
|x — ¥

IN(x) =N _1(x)|=C S

R

1 1

=C .
= S (1 +|yl)(l-—1)n+r lx___yln—-z dy

R

1 t 1

— e 23 |
=C S = S (11 50D s"t ds dt

x| 0

C
=
(1 +|x])"

for all x€ R", and (2.60) is established. For (2.61) we have similarly that

o]

t
1 1
|Nk+1(x) —Nk(x)' =sC S o S W s" L ds dr

x| 0

e

t
1 n—1
cS _1Ss ds dt
" 1+ 5"

x| 0

IIA

=< C|x|* " log | x|

for |x| large. Thus (2.61) holds.
Next we observe that

(2.62) u(x) = Co+Ny(x) +up 1 (x), 1=0,1,...,k
where for /=1,

(2.63)

u X} =
: 1( ) n(n 2) Wy,
R

1 S [(Co+ N1 () +u(0)? — (Co+ N (0)P1K (y) dy
|x—y|*? '



By (2.57) and the arguments used in deriving (2.60) and (2.61) we obtain
0w (x) =Clx]"@D7 for 1=0,1,...,k—1
near x = oo, and
0=<u(x) =Clx|* " log x|
near x = oo, Setting / =k in (2.62) and iterating one step further, we have
Au+ K(Co+ NP +K[(Co + N+ up)? — (Cy + NP1 = 0.
Hence
(2.64) u(x) = Gy + Nep1 (%) + tg42(x)
where u,, is given by (2.63) with / =k + 1. Since
[(Co + Ne) + et ) = (Co+NePIK() = O(ly| ™" log|y])

near y =oo, we conclude from the proof of Theorem 2.4 that

. _ 1
lim x| 2w (x) = —————— | [(Co+ Ny + wy1)” — (Co + NpYP1K dy
X n(n—2)w,
Rn
= Ciy2

and

Ce+2 1
(2.65) W2 (x) — ——= =0(7n_)

|xl 2 Ix|6+ 2

near x =o for all é < min {1, #}.
We are now ready to apply the Kelvin transform. We set

x -—P
(2.66) Y= p(x) =[x w1 () = Cryg + 9, (%)

where v, is defined by the last equality and therefore v (x) = O(]xl‘s) near
x =0 for all § < min {1, #}. Straightforward computation shows that

©.67)
— —n—2 i
0= Av+|x]| K<|x{2>

p p
o) o fron ()]}

Thus we have

) v et [ () [ e



where f; is defined by (2.67) and the last equality, and f;(x) = O(|x|” +-2y
near x =0 for any & < min {1, #} since ¢ may be chosen so small that
2(n—2) —eg>n—2+ 4. Using (2.56) and (2.61) we derive from the above
formula that near x =0

(2.68)

0=~Av+ C‘{xl”"‘{[co + Nis (I E ) + Grgalx]” ]P‘ [CO +N"(|x—x|5)]p}

+ fi(x) +g1(x),

where g is defined by (2.68) and g;(x) = O(|x|7*#~27%) near x = 0 for any
& > 0 arbitrarily small. Note that n + u — 2 — ¢ > —1 if & is sufficiently small
and, near x =0, that

[t (55) sl = e (15)
= OQN,c+1 — Ny| (#) + Ck+2|x|”“2).

To continue, we first introduce the following notation. Let f be a con-
tinuous function in a deleted neighborhood of the origin, say, B;(0)\{0},
with f(x) = O(|x|°) at x =0 for some ¢ > —2. Set

f) S f

n—2 dy — n—-2
|x =¥ |l

1
2.69) W(f)(x)= nni—2) o, g
R”

where f is defined to be identically zero outside B;(0) for convenience. Note
that W(f) (0) =0 and W(f) (x) = O(|x|?) at x =0 for any ¢’ <2 + ¢ and
g =1.

Then it follows from (2.68) and the argument leading to (2.21) and (2.22)
that near x =0
(270) 'U(x) — {Ck+2 + Wl(x) + vZ(x) lf 2}7 é 1’

Ck+2+W1(x)+a-x+172(x) if 277>1,

where v,(x) = O(|x|""?) near x =0 for all § < n, 7,(x) = O(|x|”) at x=0
for any p < min {25, # + u, 2}, a is a constant vector R" and

s ([ () o son ()T

Observe that &, € C! at x = 0.
In case 27 < 1, we proceed as follows. Substituting (2.70) into (2.67) we
obtain, as in (2.68), that

0= Av

+C‘[x|’7‘”{|:C0+Nk+1(l ‘2>+Ck+2|x|” 2 |x|mm 2Wl(x)] [C0+Nk<ﬁ>]p}

+ 0(|x|2n+6—2) + 0(|x|n+y—2—s)



near x =0 for any é < # and any & > 0 small. As before we conclude that

near x =0

(271) 'U(x) — {Ck+2 + Wz(x) + US(X) lf 3}7 § 19
Ck+2+W2(x)+a'x+173(x) if 371>1,

where v3(x) = O(|x|*"*%) at x=0, #;3(x) = O(x|”) at x=0 for any

p <min {35, # + u} (thus ;€ C' near x =0), a is a constant vector in R"

and

Wz(x) = W(C|xl”_n{[C0 +Nk+1 (rxx' ) + Ck+2!.X|n —2 +|x[” 2VV (JC):I

|aes (D)

Iterating this process we finally arrive at
2.72) v(x) =Ca+W(x) +a-x+7,,.,(x)
near x =0, where a is a constant vector in R", h is the first positive
integer such that (A+ 1)n > 1, ¥,,1(x) =0(|x|?) at x=0 for any p <
min{(h + 1), n + &, 2} and W, is defined recursively by W,=0 and
(2.73)

~ X
Wi (x) = W(C{x|’7‘” {[Co + Ny (|x| ) + Ceaa|x]" 72 +]x["” 2Wz(x)]

leen(H)]Y)

near x = 0. Since ;. € C! near x = 0, it follows that
(2.74) v(x) = Cyyp + Wi(x) + R(x)

where R is in C' (thus Lipschitz continuous) near x = 0. This together with
(2.64) and (2.66) imply the following

Theorem 2.75. Let u be a bounded positive solution of (2.31). Suppose that K =z 0
in R", n =3 and that

K(x) =|x|7"(C+ O0(x|™))

near x = oo for some constants 2 < t<n, C>0 and u > max {0, 1 — n} where
n=1—2. Then Cy=lim, ,u{x) always exists. If Cy > 0, then

o Crin 1 x x 1
. wo =) +Rr(-5) ——
@.76) w0 = C"*N’““(’“”f G h(lx|2)+ (lxlz)lxl”‘?

near x = oo, where k is the integer such that kn <n — 2.2 (k+ 1) n, h.is the first
positive . integer such that” (h'+ 1) n >1, and Ny, is defined by (2.58). Wy is
given by (2.73) and (2.69), the constant Cyy, is defined in (2.65) and R is a
Lipschitz continuous function near 0 with R(Q) = 0. ‘




2.3. Further Extensions

The methods we used in Subsections 2.1 and 2.2 can aiso be applied to
the study of the asymptotic behavior of solutions for more general equations
and for domains other than the entire R". In this subsection we shall indicate
some such generalizations.

First, we consider domains other than R”, and we have

Remark 2.77. Theorems 2:8, 2.12, 2.16, 2.41, 2.50 and 2.75 also hold for the
corresponding exterior domain problems with similar proofs.

Next, we discuss more detailed higher-order expansions of solutions of
(2.1). Although it suffices for our later applications to expand the solutions
of equation (2.1) up to the order of |x|™" near x =0 (such as in (2.11),
(2.15), (2.17), (2.42), (2.43), (2.44), (2.51) and (2.52)) or up to the order of
|x| ==Y (such as in (2.76)), we could, by continuing the iteration process
there, obtain expansions up to any order provided that K also has a similar
higher-order expansion. For instance, in Theorem 2.75 once we have (2.76), we
then set

CT9) s =u( |G+ N @ + 5%+ — w2
In -2 ‘xjn 2 2

|x]

and let v, be the inversion of w3 given by the Kelvin transform (2.66).
Now in B;(0)\{0}, v, satisfies

1
0= Bopsa() + i K<|—x%) {[Co +Nk+1<ﬁ> +.ck+2!x|"‘2
p X 14
+ fxl”"th(x) +Ixf”_zvk+3(x):| - I:CO +N;€<W>:I }

- C’|x|”‘"{[€0 +Nk+1(IXI > + Ck+2lxl" 2 x| W, 1(x)]

X p
— Gy +N{ — .
[ ’ (||>] }
Hence we have as in (2.68) that

(2.79)

0= Avgps(x) + Cfx’ﬂ_"{[co +Nk+1( a

P I)+Ck+2[x(” Z4)x|" ZWh(x)]u

[Co +Nk+1(]xx! ) + Cran|x|" 72+ [x] 772 W, _ 1(x)] } + f2(x)

= Avgya(x) +.&(x) + fr(x),



where f, and g, are defined by (2.79), and it is easy to check that

1
fHrlx) = OQxf”'l +|x|[#*12 Jog —| |>’
X

&(x) =g (x]) = OQxI (012 Jog ﬁ)

(2.80)

near x = 0.
From (2.79) and (2.80) we have

V43 (x) = W(g) (|x]) + Tppalx)
where 7,4 € CI’J(BI(O)) forany d =n and d <y + 7 ~ 1 with 7;,,.4(0) =0.
In particular, it follows that near x = 0,
Vee3(x) = W(g2) (|x]) +b-x + vp4(x)

where b is a constant vector in R" and vy, 4(x) = O(|x|™2(9*+12)) near x = 0.
Therefore if it is assumed that u + # > 2, # > 1, then by the same iteration
process which was used in deriving (2.74) we have

Vi3 (x) = W(g) (|x|) + b-x + W(x) +|x|R(x)

near x = 0 where W is the Newtonian potential of a function of W(g,), and
R(x) is Lipschitz continuous with R(0) = 0. Thus

p Ck+2 1 X
2.81 =Cy+ N, + + W, —
( ) u(x) 0 k+l(x) ’X|n_2 |Xln—2 h(IXl2>

e (A =wyvEa
T AN £ 1 - N
near x = oo,

Finally we consider equations more general than (2.31). In Subsection 2.2
the simple equation (2.31) was studied because more precise asymptotic expan-
sions, namely, (2.42), (2.43) and (2.51), can be obtained. However, our method
does apply to more general equations. To illustrate this, we list below the cor-
responding results for the equation

(2.82) Au+ K(x)f(u) =0 in R*, nz=3,
where K= 0, f(0) =0 and fECI(O, o) N C%[0, o) for some 0 < o < 1.

Theorem 2.83. Let u be a bounded positive solution of (2.82). If K(x) =0(|x|™%)
near x = for some T > 2, then Cy =lim,_ ., u(x) always exists. Moreover, if

1T C>o

Co =0, then u(x) = O(|x|*™") near o provided that o >
and K ~ |x|™7 near oo, then "
Cix|*™" when T > n,

(u(x) = CGy) ~{ C|x|2""log|x| when 7=n,

Clx|?>® when 2 < 7 <n,



The proof is similar to that of Theorem:2.32, which may be found in
[LN1].

For the case that Cy > 0, the next three theorems are the counterparts of
Theorems 2.41, 2.50 and 2.75.

Theorem 2.84. Ler u be a bounded positive solution of (2.82). Suppose that K(x) =
O(|x|™F) near oo for some t>n and that y =1t —n. Then Cy=lim, o u(x)
always exists. If Cy> 0, then the following statements hold.

DI t>n+1 and K(x) =|x|""(C+ O(x|™#)) near o« for some u>
max {0, 2 — y}, then near o,

G L ope( L) ex, 1 >
= N T Ix|n—1 R lx]2 '
2.85) u(x) =Cy+ P + x| Wl(lx!) + BE + x| <lx¥2)

() If t=n+1 and K(x) =|x|7°(C+ ¢jx|1 + O(x|™#)) near o for some
u>2—vy, then

c Lo Lypax, L g ®
« = Con—2 [y n=2 (x| R
@86 ) =Co+ iyt Wz(l l) e T (|x|2>

near x = when t=n+ 1,

C L UL S ST A
. _ o NI S R{
(2 87) u(x) C0+ lxln—Z + |x|n_2 3<|_x|) + |x|" * Ix|n_1 (‘xlz>

near x = when t<n+ 1, where

Wi(x)) = W(Clx " f(Co + Cilx["D),

Wi(xD) = W(x72(C + elxD (G + Gl ["72)),

Wilx]) = W(x|""2(C +e|x) f(Co +|x|"72(Cy + WE(x)))))
with W given by (2.69).

Since the proof is similar to that of Theorem 2.41, we shall be brief and
only sketch a few key steps for the case that n < v < n + 1. First, we write
u(x) = Gy + u;(x). By the proof of Theorem 2.4, there exists a positive con-
stant C; such that

|x["2uy(x) — C, = O(|x|™7)

for x near oo. Then let v = C; + v; be the inversion of u; defined in (2.36),
and we have (similar to (2.38))

(2.88) 0= Av+|x|""2(C+¢lx| + O(x|") F(Co +|x|""2(C; + v1(x)))
= Ao+ |x|"7H(C +&|x|) f(Co+ Cy|x|"72) + O(|x|#T7 72 4 x| "2 —4)
near x = 0. Therefore by arguments used in Subsection 2.2 we have

(2.89) v(x) = C) + W3(|x|) + v (x)


http:Iimx--.00

where v,(0) = 0 and v, € C1(B;(0)) since min(u + y, n + 2y —2) > 1. Now,
substituting (2.89) back into (2.88), we obtain

0=Av+|x|""(C+elx) F(Co+|x|""2(C + W5(x|)))
+ O(|x |72 4 [x]"H77?)
near x = 0. Similarly it follows that
v(x) = Ci+ Wi(|x|) + a-x + x| R(x)

near x =0, where a€R", R is Lipschitz continuous and R(0) =0, since
min(¢ + y,n+ y — 1) > 2. Thus (2.87) is proved.

Theorem 2.90. Let u be a bounded positive solution of (2.82). Suppose that for
some constants C >0, ¢y, ¢; and p > 2

1 ~  C1 cy 1
k= (es 8 %o 1)
| x| x| |xf? x|

near x =oo. Then Cy = lim, ,,u(x) always exists. If Cy > 0, then, for n = 4,

(2.91)
() = Co +Nur) + o+ W*(">+“'X+‘1 R(x)
ux) = Co + Ngy - a2 il T p Py 12
x| x| x12) | (xmh\x]?

near x = oo, and, for n =3,

2.92) u(x) = Co+ Ny (x) + — + — Wg“(%) + 50y —1]7 R(%}

x| x] x| x|

near x = oo, where

F(Cy+Nsi_1(9)) K()

(n—2)w, S |x —y|"?
Rn

(2.93)  Ngi(x)
n

with NﬁOE 0, and

Wi(x) = WQx!2(€+cl|x| +c)x]?) [f(CO +Nyy (Pc_xla) +|x|""2c1) —f(CO)]>,

W;‘(x)=W(|x|_2(C’+clix| +c5]x]%)

x [f (co +Npy (ﬁ) +]x|(C + W:f(x))> —f(CO)])

near x = 0.

Theorem 2.94, Let u be a bounded positive solution of (2.82). Suppose;that
K(x) =|x|7"(C+ O(|x|™")) near x = for some constants 2<t<n, C>0
and u>max{0,1 —n} with n =1 — 2. Then Cy=1im, ,,u(x) always exists.



If Co>0, then
(2.95)
Crin 1 - x 1 x
u(x) = Co+ Npgy (%) + — =5 + —— Wh(—>+TR<—)
CEIREEE  xr  xrm T[x2) T [x ) T\

near x = o, where k is the first integer such that kn <n—-2=(k+ 1)n, h is
the first positive integer such that (h+ 1)n > 1, Nyyiy is defined by (2.93), R
is Lipschitz continuous near 0 with R(0) =0, and

X

(2.96) Wi(x) = W<C’1x|’7‘” [f(co + Neii (W) +1x]" 72 (cpaz + Wi(x))

(o))

1=0,1,2,... with Wy=0.

The proofs of Theorems 2.90 and 2.94 are omitted here since they are
similar to those of Theorems 2.50 and 2.75, respectively. (We should perhaps
point out that the constant ¢;,, in (2.95) and (2.96) is given by

1
= o [ KU M ) — 1G4 )

which may or may not be positive. Similarly, the u,’s appearing in (2.62) may
also change sign. Nevertheless, the same arguments go through with only
minor modifications.)
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