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Abstract

The aim of this work is to study asymptotic properties of a class of fourth-order delay

differential equations. Our results in this paper not only generalize some previous

results, but also improve the earlier ones. Examples are considered to elucidate the

main results.
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1 Introduction

This paper is concerned with the oscillatory behavior of solutions of nonlinear fourth-

order differential equations of the type

(
r(τ )

(
x′′′(τ )

)α)′
+

∫ b

a

q(τ , ξ )f
(
x
(
g(τ , ξ )

))
dσ (ξ ) = , (.)

where the following conditions are satisfied:

(A) r ∈ C([τ,∞), (,∞)), r′(τ ) >  and α is a quotient of odd positive integers;

(A) q, g ∈ C([τ,∞) × [a,b],R), q(τ , ξ ) ≥ , q(τ , ξ ) is not zero on any half line [τλ,∞) ×
[a,b], τλ ≥ τ, g(τ , ξ ) ≤ τ for τ ≥ τ and ξ ∈ [a,b], g(τ , ξ ) is continuous, nondecreasing

with respect to ξ and limτ→∞ g(τ , ξ ) = ∞;

(A) σ ∈ C([a,b],R), σ is nondecreasing and the integral of equation (.) is in the

Riemann-Stieltjes sense;

and the function f ∈ C(R,R) satisfies one of the following conditions:

(S) f (x)/xα ≥ k >  for x �= ;

(S) f ′(x)/|f (x)| –α
α ≥ k >  for x �=  and f (uv)≥ uαf (v) for uv > .

By a solution of equation (.), we mean a function x(τ ) ∈ C[τx,∞), τx ≥ τ such that

r(τ )(x′′′(τ ))α is continuously differentiable for all τ ≥ τx and satisfies equation (.) for all

τ ∈ [τx,∞) . Here, we consider only proper solutions x(τ ) to equation (.) with property

sup{|x(τ )| : τ ≥ τ } >  for any τ ≥ τx. A solution of equation (.) is called oscillatory if it

has arbitrary large zeros, otherwise it is called nonoscillatory.

In recent years there has been much research activity concerning the oscillation behav-

ior of solutions of nonlinear differential equations (see [–]). In the last few years, many
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papers have appeared on the oscillatory theory of fourth-order differential equations (see

[, , –]).

The aim of this paper is to study the oscillatory behavior of the solutions of nonlinear

fourth-order differential equations (.) under the assumption

∫ ∞

τ



r/α(s)
ds < ∞, (.)

and we consider the function f with and without monotonicity. The results obtained es-

sentially generalize the results from Zhang [] and also improve some results from Bac-

ulykova []. Examples are provided to illustrate new results.

In order to discuss our main results, we need the following lemmas.

Lemma . ([]) If the function y satisfies y(i)(τ ) > , i = , , . . . ,n, and y(n+)(τ ) < , then

y(τ )

τ n/n!
≥

y′(τ )

τ n–/(n – )!
.

Lemma . ([]) Let y ∈ Cn([τ,∞), (,∞)). Assume that y(n)(τ ) is of fixed sign and not

identically zero on [τ,∞) and that there exists τ ≥ τ such that y(n–)(τ )y(n)(τ ) ≤  for all

τ ≥ τ. If limτ→∞ y(τ ) �= , then for every µ ∈ (, ) there exists τµ ≥ τ such that

y(τ ) ≥
µ

(n – )!
τ n–

∣∣y(n–)(τ )
∣∣ for τ ≥ τµ.

2 Main results

In this section, we establish new oscillation criteria for solutions of equation (.). For the

sake of convenience, we insert the following notation:

R(τ ) =

∫ ∞

τ



r/α(s)
ds, Ri(τ ) =

∫ ∞

τ

Ri–(u)du, i = , ,

Q(τ ) =

∫ b

a

q(τ , ξ )dσ (ξ ),

and F+(τ ) = max{,F(τ )}.

Lemma. If x(τ ) is an eventually positive three times continuously differentiable function

such that r(τ )x′′′(τ ) is continuously differentiable and (r(τ )x′′′(τ ))′ ≤  for large t, then one

of the following cases holds for large t:

(C) x′(τ ) > , x′′(τ ) > , x′′′(τ ) > ,

(C) x′(τ ) > , x′′(τ ) < , x′′′(τ ) > ,

(C) x′(τ ) < , x′′(τ ) > , x′′′(τ ) < ,

(C) x′(τ ) > , x′′(τ ) > , x′′′(τ ) < .

The proof is immediate and hence is omitted.
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Theorem . Assume that (.) and (S) hold. If there exist continuously differentiable

functions ρ,ϑ ∈ C([τ,∞), (,∞)) such that

∫ ∞

τ

(
kρ(s)Q(s)

(
g(s,a)

s

)α

–
α

(α + )α+
r(s)(ρ ′

+(s))
α+

(µsρ(s))α

)
ds = ∞, (.)

∫ ∞

τ

(
ϑ(u)

∫ ∞

u

[
k

r(v)

∫ ∞

v

∫ b

a

q(s, ξ )
gα(s, ξ )

sα
dσ (ξ )ds

]/α

dv –
ϑ ′
+ (u)

ϑ(u)

)
du = ∞, (.)

∫ ∞

τ

(
kR

α
 (s)Q(s) –

(
α

α + 

)α+
R(s)

R(s)

)
ds = ∞ (.)

and

∫ ∞

τ

(
kµ

α


α
Rα
 (s)g

α(s,a)Q(s) –

(
α

α + 

)α+ 

r/α(s)R(s)

)
ds = ∞ (.)

for some µ,µ ∈ (, ), then every solution of (.) is oscillatory.

Proof Let x be a nonoscillatory solution of equation (.) on the interval [τ,∞). Without

loss of generality, we may assume that x(τ ) > . From Lemma ., there exists τ ≥ τ such

that x(τ ) has one of the four cases (C)-(C) for τ ≥ τ. For Case (C), we define

ω(τ ) = ρ(τ )
r(τ )(x′′′(τ ))α

xα(τ )
.

Then ω(τ ) > . By differentiating, we obtain

ω′(τ ) =
ρ ′(τ )

ρ(τ )
ω(τ ) + ρ(τ )

(r(τ )(x′′′(τ ))α)′

xα(τ )
– αρ(τ )

r(τ )(x′′′(τ ))α

xα+(τ )
x′(τ ). (.)

It follows from Lemma . that

x′(τ )≥
µ


τ x′′′(τ ) (.)

for all µ ∈ (, ) and every sufficiently large τ . From (.), (A) and (S), we see that

(
r(τ )

(
x′′′(τ )

)α)′
= –

∫ b

a

q(τ , ξ )f
(
x
(
g(τ , ξ )

))
dσ (ξ )

≤ –kQ(τ )x
α
(
g(τ ,a)

)
. (.)

Thus, by (.), (.) and (.), we get

ω′(τ ) ≤
ρ ′(τ )

ρ(τ )
ω(τ ) – kρ(τ )Q(τ )

xα(g(τ ,a))

xα(τ )
–

αµ


τ ρ(τ )r(τ )

(
x′′′(τ )

x(τ )

)α+

. (.)

From Lemma ., we have that

x(τ )≥
τ


x′(τ ).



Moaaz et al. Advances in Difference Equations  ( 2017)  2017:261 Page 4 of 13

Integrating this inequality from g(τ ,a) to τ , we get

x(g(τ ,a))

x(τ )
≥

g(τ ,a)

τ 
, (.)

which with (.) gives

ω′(τ ) ≤
ρ ′(τ )

ρ(τ )
ω(τ ) – kρ(τ )Q(τ )

(
g(τ ,a)

τ

)α

–
αµ



τ 

(ρ(τ )r(τ ))/α
ω

α+
α (τ ). (.)

By using the inequality

Bz –Az
+α
α ≤

αα

(α + )α+
Bα+A–α for A,B >  and z ≥ , (.)

with A = αµ


τ

(ρ(τ )r(τ ))/α
, B = ρ′(τ )

ρ(τ )
and z = ω, we get

ω′(τ ) ≤ –kρ(τ )Q(τ )

(
g(τ ,a)

τ

)α

+
α

(α + )α+
r(τ )(ρ ′

+(τ ))
α+

(µτ ρ(τ ))α
.

This implies that

∫ τ

τ

(
kρ(s)Q(s)

(
g(s,a)

s

)α

–
α

(α + )α+
r(s)(ρ ′

+(τ ))
α+

(µsρ(s))α

)
ds≤ ω(τ)

for every µ ∈ (, ) and all sufficiently large τ , which contradicts (.).

Consider Case (C) holds. From Lemma ., we get that x(τ ) ≥ τx′(τ ), by integrating this

inequality from g(τ , ξ ) to τ , we get

x
(
g(τ , ξ )

)
≥

g(τ , ξ )

τ
x(τ ).

Hence, from (S), we have

f
(
x
(
g(τ , ξ )

))
≥ k

gα(s, ξ )

sα
xα(τ ). (.)

Integrating (.) from τ to u and using x′(τ ) > , we obtain

r(u)
(
x′′′(u)

)α
– r(τ )

(
x′′′(τ )

)α
= –

∫ u

τ

∫ b

a

q(s, ξ )f
(
x
(
g(s, ξ )

))
dσ (ξ )ds

≤ –kx
α(τ )

∫ u

τ

∫ b

a

q(s, ξ )
gα(s, ξ )

sα
dσ (ξ )ds.

Letting u → ∞, we see that

r(τ )
(
x′′′(τ )

)α ≥ kx
α(τ )

∫ ∞

τ

∫ b

a

q(s, ξ )
gα(s, ξ )

sα
dσ (ξ )ds,

and so,

x′′′(τ )≥ x(τ )

[
k

r(τ )

∫ ∞

τ

∫ b

a

q(s, ξ )
gα(s, ξ )

sα
dσ (ξ )ds

]/α

.
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Integrating again from τ to ∞, we get

x′′(τ ) ≤ –x(τ )

∫ ∞

τ

[
k

r(v)

∫ ∞

v

∫ b

a

q(s, ξ )
gα(s, ξ )

sα
dσ (ξ )ds

]/α

dv. (.)

Now, we define

w(τ ) = ϑ(τ )
x′(τ )

x(τ )
.

Then w(τ ) >  for τ ≥ τ. By differentiating and using (.), we find

w′(τ ) =
ϑ ′(τ )

ϑ(τ )
w(τ ) + ϑ(τ )

x′′(τ )

x(τ )
– ϑ(τ )

(x′(τ ))

x(τ )

≤ –ϑ(τ )

∫ ∞

τ

[
k

r(v)

∫ ∞

v

∫ b

a

q(s, ξ )
gα(s, ξ )

sα
dσ (ξ )ds

]/α

dv

+
ϑ ′(τ )

ϑ(τ )
w(τ ) –



ϑ(τ )
w(τ ). (.)

Thus, we obtain

w′(τ )≤ –ϑ(τ )

∫ ∞

τ

[
k

r(v)

∫ ∞

v

∫ b

a

q(s, ξ )
gα(s, ξ )

sα
dσ (ξ )ds

]/α

dv +
(ϑ ′

+(τ ))


ϑ(τ )
. (.)

Then we get

∫ τ

τ

(
ϑ(u)

∫ ∞

u

[
k

r(v)

∫ ∞

v

∫ b

a

q(s, ξ )
gα(s, ξ )

sα
dσ (ξ )ds

]/α

dv –
ϑ ′
+ (u)

ϑ(u)

)
du

≤ w(τ).

This contradicts (.).

Assume that Case (C) holds. Since r(τ )(x′′′(τ ))α is nonincreasing, we have that

r(s)(x′′′(s))α ≤ r(τ )(x′′′(τ ))α for all s ≥ τ ≥ τ. This yields

x′′′(s)≤
[
r(τ )

(
x′′′(τ )

)α]/α 

r/α(s)
.

Integrating this inequality from τ to u, we get

x′′(u) – x′′(τ )≤
[
r(τ )

(
x′′′(τ )

)α]/α
∫ u

τ



r/α(s)
ds.

Letting u → ∞, we see that

–x′′(τ ) ≤
[
r(τ )

(
x′′′(τ )

)α]/α
R(τ ). (.)

By integrating the last inequality from τ to ∞, we obtain

x′(τ )≤
[
r(τ )

(
x′′′(τ )

)α]/α
R(τ ). (.)
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Integrating again from τ to ∞, we find

x(τ )≥ –
[
r(τ )

(
x′′′(τ )

)α]/α
R(τ ). (.)

Next, we define

ψ(τ ) =
r(τ )(x′′′(τ ))α

xα(τ )
.

Thus, we see that ψ(τ ) <  and satisfies

ψ ′(τ ) =
[r(τ )(x′′′(τ ))α]′

xα(τ )
– α

r(τ )(x′′′(τ ))α

xα+(τ )
x′(τ ).

Hence, from (.), (.) and (S), we have

ψ ′(τ )≤ –k

∫ b

a

q(τ , ξ )
xα(g(τ , ξ ))

xα(τ )
dσ (ξ ) – αR(τ )ψ

+α
α (τ ).

Since g(τ , ξ ) ≤ τ and x′(τ ) < , we have that x(g(τ , ξ ))≥ x(τ ). Therefore, we get

ψ ′(τ )≤ –kQ(τ ) – αR(τ )ψ
+α
α (τ ). (.)

From (.), we have

Rα
 (τ )ψ(τ )≥ –. (.)

Multiplying (.) by Rα
 (τ ) and integrating from τ to τ , we obtain

Rα
 (τ )ψ(τ ) – Rα

 (τ)ψ(τ) + α

∫ τ

τ

R(s)R
α–
 (s)ψ(s)ds

+ k

∫ τ

τ

Rα
 (s)Q(s)ds + α

∫ τ

τ

R(s)R
α
 (s)ψ

+α
α (s)ds≤ ,

which with (.) gives

 + Rα
 (τ)ψ(τ) ≥ k

∫ τ

τ

Rα
 (s)Q(s)ds

+ α

∫ τ

τ

R(s)R
α–
 (s)

[
ψ(s) + R(s)ψ

+α
α (s)

]
ds.

Using inequality (.) with A = R, B =  and z = –ψ , we get

ψ(s) + R(s)ψ
+α
α (s) ≥ –

αα

(α + )α+
R–α
 (s).

It follows that

∫ τ

τ

(
kR

α
 (s)Q(s) –

(
α

α + 

)α+
R(s)

R(s)

)
ds≤  + Rα

 (τ)ψ(τ),

but this contradicts (.).
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In Case (C). In view of the proof of Case (C), we have (.) holds. From Lemma .,

we have that x(τ ) ≥ µ


τ x′′(τ ) for all µ ∈ (, ) and every sufficiently large τ . Thus, from

(A), there exists τ ≥ τ such that

x(g(τ ,a))

x′′(g(τ ,a))
≥

µ


g(τ ,a) (.)

for τ ≥ τ. Next, we define

ϕ(τ ) =
r(τ )(x′′′(τ ))α

(x′′(τ ))α
. (.)

We note that ϕ(τ ) <  for τ ≥ τ. By differentiating and using (.), (A) and (S), we obtain

ϕ′(τ ) ≤ –kQ(τ )
xα(g(τ ,a))

(x′′(g(τ ,a)))α
(x′′(g(τ ,a)))α

(x′′(τ ))α
– α



r/α(τ )
ϕ

α+
α (τ ).

Hence, (.) yields

ϕ′(τ ) ≤ –
kµ

α

α
gα(τ ,a)Q(τ ) – α



r/α(τ )
ϕ

α+
α (τ ). (.)

From (.), we get

Rα
 (τ )ϕ(τ )≥ –.

Multiplying (.) by Rα
 (τ ) and integrating from τ to τ , we obtain

 + Rα
 (τ)ϕ(τ) ≥

kµ
α

α

∫ τ

τ

Rα
 (s)g

α(s,a)Q(s)ds

+ α

∫ τ

τ

Rα–
 (s)

r/α(s)

(
ϕ(s) + R(s)ϕ

+α
α (s)

)
ds.

By following the same steps as in Case (C), we get that

∫ τ

τ

(
kµ

α

α
Rα
 (s)g

α(s,a)Q(s) –

(
α

α + 

)α+ 

r/α(s)R(s)

)
ds

≤  + Rα
 (τ)ϕ(τ),

which contradicts (.). This contradiction completes the proof of Theorem .. �

Theorem . Assume that (.) and (S) hold, and let g(τ , ξ ) have a positive partial

derivative on I × [a,b] with respect to τ . If there exist continuously differentiable functions

ρ,ϑ ∈ C([τ,∞), (,∞)) such that

∫ ∞

τ

(
ρ(s)Q(s) –

(α)α

(α + )α+
r(s)(ρ ′

+(s))
α+

(µksρ(s)g ′(s,a))α

)
ds = ∞, (.)

∫ ∞

τ

(
ϑ(u)

∫ ∞

u

(


r(v)

∫ ∞

v

Q(s)ds

)/α

dv –
α

k

ϑ ′
+ (u)

g ′(u,a)ϑ(u)

)
du = ∞, (.)
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∫ ∞

τ

(
f
(
R(s)

)
Q(s) –

αα

(α + )α+
R(s)

(f ′(R(s)))
α+

kα
 f

α(R(s))

)
ds = ∞, (.)

and

∫ ∞

τ

(
Rα
 (s)f

(
µ


g(τ ,a)

)
Q(s) –

(
α

α + 

)α+ 

r/α(s)R(s)

)
ds = ∞ (.)

for some µ,µ ∈ (, ), then every solution of (.) is oscillatory.

Proof Let x be a nonoscillatory solution of equation (.). Without loss of generality, we

may assume that x(τ ) > . By Lemma ., there exists τ ≥ τ such that x(τ ) has one of the

four cases (C)-(C) for τ ≥ τ. For Case (C), since g(τ , ξ ) is nondecreasing with respect

to ξ , x′(τ ) >  and f ′(x) > , we have that f (x(g(τ ,a))) ≤ f (x(g(τ , ξ ))). Thus, from (.), we

get

(r(τ )(x′′′(τ ))α)′

f (x(g(τ ,a)))
≤ –Q(τ ).

Now, we define

ω(τ ) = ρ(τ )
r(τ )(x′′′(τ ))α

f (x(g(τ ,a)))
.

By differentiating and using (S), we get

ω′(τ ) ≤
ρ ′(τ )

ρ(τ )
ω(τ ) – ρ(τ )Q(τ )

– kρ(τ )
r(τ )(x′′′(τ ))α

f +/α(x(g(τ ,a)))
x′(g(τ ,a)

)
g ′(τ ,a). (.)

From (A), there exists τ ≥ τ such that g(τ ,a) ≥ τ for τ ≥ τ. Hence, from Lemma .

and x() < , we obtain

x′(g(τ ,a)
)
≥

µ


τ x′′′(g(τ ,a)

)
≥

µ


τ x′′′(τ )

for all µ ∈ (, ) and τ ≥ τ. Therefore, (.) yields

ω′(τ ) ≤
ρ ′(τ )

ρ(τ )
ω(τ ) – ρ(τ )Q(τ ) –

µk



τ g ′(τ ,a)

(ρ(τ )r(τ ))/α
ω

α+
α (τ ). (.)

By following the same steps as in Case (C) of the proof of Theorem ., we get a contra-

diction with (.).

For Case (C). From (.), (S) and (A), we obtain

(
r(τ )

(
x′′′(τ )

)α)′ ≤ –f
(
x
(
g(τ ,a)

))
Q(τ ).

By integrating this inequality from τ to ∞, we obtain

r(τ )
(
x′′′(τ )

)α ≥
∫ ∞

τ

f
(
x
(
g(s,a)

))
Q(s)ds.
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Since f ′(x) > , we get

x′′′(τ )≥ f /α
(
x
(
g(τ ,a)

))( 

r(τ )

∫ ∞

τ

Q(s)ds

)/α

.

Integrating again from τ to ∞, we have

x′′(τ ) ≤ –f /α
(
x
(
g(τ ,a)

))∫ ∞

τ

(


r(v)

∫ ∞

v

Q(s)ds

)/α

dv.

Next, we define

w(τ ) = ϑ(τ )
x′(τ )

f /α(x(g(τ ,a)))
.

Then w(τ ) >  for τ ≥ τ. By differentiating and using (.), we find

w′(τ ) ≤
ϑ ′(τ )

ϑ(τ )
w(τ ) – ϑ(τ )

∫ ∞

τ

(


r(v)

∫ ∞

v

Q(s)ds

)/α

dv

–


α
ϑ(τ )

(
x′(τ )

f /α(x(g(τ ,a)))

)
f ′(x(g(τ ,a)))

f –

α (x(g(τ ,a)))

x′(g(τ ,a)
)
g ′(τ ,a).

Since x′′(τ ) < , we see that x′(g(τ ,a)) > x′(τ )

w′(τ )≤
ϑ ′(τ )

ϑ(τ )
w(τ ) – ϑ(τ )

∫ ∞

τ

(


r(v)

∫ ∞

v

Q(s)ds

)/α

dv –
k

α

g ′(τ ,a)

ϑ(τ )
w(τ ).

Then we get

w′(τ )≤ –ϑ(τ )

∫ ∞

τ

(


r(v)

∫ ∞

v

Q(s)ds

)/α

dv +
α

k

ϑ ′(τ )

g ′(τ ,a)ϑ(τ )
.

Integrating again from τ to τ , we have

∫ τ

τ

(
ϑ(u)

∫ ∞

u

(


r(v)

∫ ∞

v

Q(s)ds

)/α

dv –
α

k

ϑ ′(u)

g ′(u,a)ϑ(u)

)
du≤ w(τ),

which contradicts (.).

If Case (C) holds. As in the proof of Case (C) of Theorem ., we have that (.), (.)

and (.) hold. Then we define

ψ(τ ) =
r(τ )(x′′′(τ ))α

f (x(τ ))
.

Thus, we see that ψ(τ ) <  and satisfies

ψ ′(τ ) =
[r(τ )(x′′′(τ ))α]′

f (x(τ ))
–
r(τ )(x′′′(τ ))α

f (x(τ ))
f ′(x(τ )

)
x′(τ ).
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Hence, from (.), (.) and (S), we have

ψ ′(τ )≤ –

∫ b

a

q(τ , ξ )
f (x(g(τ , ξ )))

f (x(τ ))
dσ (ξ ) – kR(τ )ψ

+α
α (τ ).

Since x′(τ ) < , we get f (x(g(τ , ξ )))≥ f (x(τ )). Therefore, we obtain

ψ ′(τ )≤ –Q(τ ) – kR(τ )ψ
+α
α (τ ).

From (.) and (S), we have

f
(
R(τ )

)
ψ(τ )≥ –. (.)

Multiplying (.) by f (R(τ )) and integrating from τ to τ , we obtain

f
(
R(τ )

)
ψ(τ ) – f

(
R(τ)

)
ψ(τ) +

∫ τ

τ

R(s)f
′(R(s)

)
ψ(s)ds

+

∫ τ

τ

f
(
R(s)

)
Q(s)ds + k

∫ τ

τ

R(s)f
(
R(s)

)
ψ

+α
α (s)ds≤ .

Using inequality (.) with A = kf (R(s)), B = f ′(R(s)) and z = –ψ , we get

∫ τ

τ

(
f
(
R(s)

)
Q(s) –

αα

(α + )α+
R(s)

(f ′(R(s)))
α+

kα
 f

α(R(s))

)
ds

≤  + f
(
R(τ)

)
ψ(τ),

but this contradicts (.).

In Case (C). In view of the proof of Case (C) of Theorem ., we have (.) and (.)

hold. By defining ϕ(τ ) as the form (.), we note that ϕ(τ ) <  for τ ≥ τ. Thus, from (.)

and (A), we get

ϕ′(τ ) ≤ –Q(τ )
f (x(g(τ ,a)))

(x′′(g(τ ,a)))α
(x′′(g(τ ,a)))α

(x′′(τ ))α
– α



r/α(τ )
ϕ

α+
α (τ ). (.)

From (.) and (S), we see that

f
(
x
(
g(τ ,a)

))
≥ f

(
µ


g(τ ,a)

)(
x′′(g(τ ,a)

))α
.

Hence, (.) yields

ϕ′(τ ) ≤ –f

(
µ


g(τ ,a)

)
Q(τ ) – α



r/α(τ )
ϕ

α+
α (τ ).

By following the same steps as in Case (C), we get that

∫ τ

τ

(
Rα
 (s)f

(
µ


g(τ ,a)

)
Q(s) –

(
α

α + 

)α+ 

r/α(s)R(s)

)
ds≤  + Rα

 (τ)ϕ(τ),

which contradicts (.). This contradiction completes the proof of Theorem .. �
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Theorem . Assume that (.) and (S) hold. If the differential equations

(
r(τ )

τ α

(
x′(τ )

)α

)′
+ kQ(τ )

(
µg

(τ ,a)

τ 

)α

xα(τ ) = , (.)

x′′(τ ) + x(τ )

∫ ∞

τ

[
k

r(v)

∫ ∞

v

∫ b

a

q(s, ξ )
gα(s, ξ )

sα
dσ (ξ )ds

]/α

dv = , (.)

(


Rα
 (τ )

(
x′(τ )

)α

)′
+ kQ(τ )x

α(τ ) = , (.)

and

(
r(τ )

(
x′(τ )

)α)′
+
kµ

α


α
gα(τ ,a)Q(τ )xα(τ ) =  (.)

are oscillatory for some µ,µ ∈ (, ), then every solution of (.) is oscillatory.

Proof Proceeding as in the proof of Theorem ., for Case (C), we have that (.) holds.

Then, if ρ(τ ) = , we get

ω′(τ ) + kQ(τ )

(
g(τ ,a)

τ

)α

+
αµ



τ 

r/α(τ )
ω

α+
α (τ ) ≤  (.)

for all µ ∈ (, ). Hence, from [], we see that (.) has a nonoscillatory solution for every

µ ∈ (, ), which is a contradiction.

The rest of the proof is the same, and hence is omitted. �

From Corollary  in Dzurina [], if

∫ ∞

τ



r̂/α(s)
ds = ∞

and

lim inf
τ→∞

r̂/α(τ )

[∫ τ

τ

r̂–/α(s)ds

]α+

q̂(τ ) >
α


,

then equation

(
r̂(τ )

(
u′(τ )

)α)′
+ q̂(τ )uα(τ ) =  (.)

is oscillatory. In the following theorem, by using the results of Dzurina [], wewill establish

new oscillation criteria for solutions of equation (.) under the conditions

∫ ∞

τ

s

r/α(s)
ds = ∞ and

∫ ∞

τ

R(s)ds = ∞. (.)

Theorem. Assume that (.), (.) and (S) hold, and let (.) hold for someµ ∈ (, ).

If

lim inf
τ→∞

r/α(τ )

τ 

(
µg

(τ ,a)

τ 

)α(∫ τ

τ

s

r/α(s)
ds

)α+

Q(τ ) >
α

k
, (.)
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lim inf
τ→∞

(τ – τ)


∫ ∞

τ

[


r(v)

∫ ∞

v

∫ b

a

q(s, ξ )
gα(s, ξ )

sα
dσ (ξ )ds

]/α

dv >


k
, (.)

and

lim inf
τ→∞

Q(τ )

R(τ )

(∫ τ

τ

R(s)ds

)α+

>
α

k
(.)

for some µ ∈ (, ), then every solution of (.) is oscillatory.

Example . Consider the fourth-order differential equation

(
eτ

(
x′′′(τ )

))′
+

∫ 



δτeτ (ξ+)

eτ – 
x(τ – ξ )dξ , (.)

where δ >  is a constant. We note that

Ri(τ ) = e–τ , i = , ,  and Q(τ ) = δeτ .

If we choose ρ(τ ) = ϑ(τ ) =  and k = , then it easy to see that conditions (.), (.), (.)

and (.) hold for δ > 


. Thus, from Theorem ., every solution of equation (.) is

oscillatory for δ > 


.

Example . Consider the delay differential equation

(
eτx′′′(τ )

)′
+ beτx(τ – ) = , τ ≥ , (.)

where b > . According to Corollary  in [], equation (.) is oscillatory if b > 

e
. If we

choose ρ(τ ) = ϑ(τ ) =  and k = , then we conclude that (.) and (.) are satisfied and

(.) and (.) hold for b > 

. Hence, by Theorem ., every solution of equation (.) is

oscillatory for b > 

. Then our results supplement and improve some results obtained in

[]. In particular, we consider the equation

(
eτx′′′(τ )

)′
+ 

√
eτ+γ x(τ – γ ) = , τ ≥ γ , (.)

where γ = sin– 


√

. Since b = 

√
eγ > 


, every solution of equation (.) is oscillatory.

For example, x(τ ) = eτ sin(τ ) is a solution of equation (.). On the other hand, []

showed that every nonoscillatory solution of

(
eτx′′′(τ )

)′
+
eτ–/


x(τ – ) = , τ ≥ ,

tends to zero as τ → ∞, and we note that b = e–/


< 


.
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