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On the asymptotic behavior of perturbed linear systems

by Kuo-LianGg CHiou* (Detroit, Michigan, U.S.A)

Abstract. In this paper we shall study the existence and the asymptotic behavior of the
solutions of the linear system dy(r)/dt = A(t)y(¢) and these of the nonlinear system dx(t)/dt
= A(t)x(1)+f(t, x(1)). Several new results are obtained via the techniques introduced by Brauer
and Wong [1] and Hallam and Heidel [4]. Theorem 2.1 is an improvement of a theorem of
Hallam and Heidel [4] while Theorem 2.2 is related to a theorem of Brauer and Wong [1].

I. Introduction. In this section we shall be concerned with asymptotic
relationships between the solutions of the system

(L1) DO _ a0y, r20,

and those of the nonlinear system

(1.2) d;?) =A@x@®)+f(t, x®), t=0.

where x, y and f are n-vectors in R", A(¢) is a continuous n x n matrix in R"*"
for t 2 0, and f(¢, x) is a continuous function of ¢t and x for ¢t > 0 and [|x||
< 00. Here || -|| denotes any appropriate vector (or matrix) norm. Denote by
& (t) the fundamental matrix of (1.1) with initial condition ®(0) =1 (the
identity nxn matrix). “Throughout this paper we shall always call the
following three conditions “Assumption A”:

‘(i) a(f) and v(t) are positive continuous functions on J = [0, c0);

(i) A(t) is a nonsingular continuous nxn matrix on J;
and

(iii) w(t, s) is nonnegative, continuous on J xJ, and is non-decreasing
in s for s > 0 and fixed teJ.

There are two types of problems to be studied here. First, suppose that
a solution y(t) of (1.1) is given. We are interested in knowing if there exists a
solution x(z) of (1.2) such that ||4(t)(x(t)—y(®)|| = O(x(2)) as t - co for some
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given function «(f) and continuous n x n matrix 4(t). Many papers have been
devoted to a discussion of this problem (see [1], [3], [4], etc.). For example,
Hallam and Heidel [4] obtained the following theorem, namely,

THeorReM A (Hallam and Heidel [4]). Suppose that there exist a(t), 4(t),
and w(t, s) satisfying the following conditions:

(i) Assumption A;

(1) (|4 LIl < al);

(i) |8~ () (t, ) < w(t, |4 (®) xl{ ™ (£)); and

(iv) equation dr/dt = w(t, r) has a positive solution which is bounded on
the interval t =ty
Given any solution y(t) = @ (t)c of (1.1) with |¢| sufficiently small, there exists a
solution x(t) of (1.2) such that

4@ (x()—y@)| =o(@®) ast— 0.

Theorem 2:1 below deals with this type of problem. Our result (Theorem
2.1) is an improvement of Theorem A because we replace the condition
14()®@(1)| < «(f) by a more general inequality and we do not restrict the
initial condition of a given solution y(t), to be sufficiently small

Second we shall deal with the converse problem. Many papers have
been devoted to a discussion of this problem (see [1], [3], etc.). Theorem 2.2
below deals with this type of problem. Our result is related to a theorem of
Brauer and Wong [1]. In the last section we shall apply Theorem 2.1 to a
given equation to obtain a criterion which is an improvement of a criterion
from Theorem A.

II. Theorems. Before stating and proving our main theorems let us first
study some properties of w(r, r) in Theorem A.

LEMMA 2.1. Suppose that w(t,r) satisfies Assumption A. Then the fol-
lowing three statements are equivalent:

(1) Given any number ro >0 there exists a to >0 and a solution
r(t, to, ro) of the equation dr/dt = w(t, ¥) such that
limr (¢, ty, ro) = 0.

=

(2) "[-w(t, A)dt < oo for all A satisfying 0 < A < co.

(3) lim [ (s, )ds =0 for all A satisfying 0< 4 < 0.

| Bndie SN |
Proof The equivalent relationship between (1) and (2) was proved in
[4]. It is clear that (2) and (3) are equivalent. This proves the lemma.

Now we shall prove the following theorem via a technique introduced
by Hallam and Heidel [4]. ,-'

TueoreM 2.1. Let y(t) be an arbitrary nontrivial solution of (1.1) and B(r)
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be a positive continuous function on J. Suppose that there exist a(t), v(r)4(1),
and w(t, s) sarisfying the following four conditions:

(i) Assumption A;
(ii) for an arbitrary positive constant ¢ < 1, there exists ty > 0 such that

4@yl <(1—ga(r), t=tq;

(iii) 14O ()P~ () f (s, XN < v (s, l4s)xlla™ ' (s), for 1o <1 <53
and

b4

(iv) lim supw [w(s, 1)ds = 0; y(r) = min [a (), B(1)}.

Then therefe;ists (a) s‘olun’on x(t) of (1.2) such that

(2.1) 4@ (x@)—y@)j| =o(B(r) as t— .
and

(2.2) |14 (t) x(8)]| € e(t) ast—o0.

Proof. For a given positive constant & in hypothesis (ii), hypothesis (iv)
implies that there exists a large Ty (> t,) such that

(2.3) vt jw(s Ods<e fort>T,.

()

Via the Schauder-Tychonoff theorem (see [3], p. 9) we will establish the
existence of a solution of the integral equation

x(1) = D(c—0() [ 071 (s, x()ds,  ¢3 Ty

where @(f)c = y(t). Consider the set
F="u:u(t)=a"*()4(t) x(t), where x(t) is continuous on
Jo=1[Ty, ) and [lu(t)]| <1 for t > Ty}
and define the operator T by

t
(24)  Tu(t) J“li)(t)c = )( I¢ L(5)S (5, a(s) A7 (s) u(s))ds
First we will establish that TF < F. Taking the norm to both sides of (2.4)
and using hypotheses (i) and (iii) and (2.3), we obtain

||Tu(r)|l\|IA(zl<§;r)c|l U,,ll (@ (S)f(S,A"l(s)u'(s)a(s))”ds
4@yl v() %
ST tam o6 Muei)ds
MO0, <1,
2 (1)
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It is clear that a(t) 4~ 1(¢) Tu(t) is. continuous on J, = [T, o). This proves

TF c F.
Second we will show that T is continuous. Suppose that the sequence

{u,} in F converges uniformly to u in F on every compact subinterval of J.
We claim that T, converges uniformly to 7it on every compact subinterval
J, of Jo. Let g; be a small positive number satisfying e; < 1. Hypothesis (iv)
implies that there exists T; > T, so that for t > T,

(2.5) —(—) [(s, 1)ds < &,/4.
!
Then using (2.4) we obtain the following inequa_lities, for tel,.

26 (T -Tu@ll < III AR B S (5) (s, a(s) 47" () un(s)) ds—
- f A BB~ () f (s, als) 4™ (s)u(s))ds|

< ”A (t)¢(t)” j‘ [”dj_l(s)” "f S, tl(S)A I(S)u,,(S))
—f(s, a(®) 4™ (u(o)]ds+
+—16;F[HA O B() D (s)f (s, 477 (s)u,,(s)a(s))”+

+|4 () D) ()1 (s, als) 47 () u(s))|] ds.

Now using hypothesis (iii) and (2.5), the second integral on the right-hand
side of (2.6) satisfies

@7 %T (4020 ()15, a(s) 4™ () uy )|+
+HA® DO @7 (5)f(s, a(s) 47 (u(s))[] ds
?[ (5, Ty M)+ 015, 1w )] ds

//\

L
a(t) 7
—(——):f w(s, 1)ds <%’.

By the uniform convergence there is an N = N(g, T;) such that if n> N,
then

- -1 A £1
(28) [f(t a4 (D uy(0)—f (2, a(t) 4 OvOll < S5 3r m=Ty
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where

- o (2)
M; = su St and M,=sup———.
' TD$t£T1 2=l : teJI:”A () 2l

Combining (2.6), (2.7), and (2.8) yields for teJ;
|| Te(t)— Th,(t)]] <&, for n=N.

This shows that Tu, converges uniformly to Tu on compact subintervals J; of
Jo. Hence T is continuous.

Third we claim that the functions in the image set TF are equicon-
tinuous and bounded at every point of J,. Since TF — F, it is clear that the
functions in TF are uniformly bounded. Now we show that they are
equicontinuous at each point of J,. For each ueF, the function z(t)
=a(t)A™1(t) Tu() is a solution of the linear system below

dv -1
== A@v+f(t, a() A7 (t)u(?)).
Since [lz()ll < a @4~ O I Ta@I < 2@ 471 (Ol and ||f(z, a() 47 (@) u ()|
is uniformly bounded for ueF on any finite ¢ interval, we see that duv/dt is
uniformly bounded on any finite interval. Therefore, the set of all such z is
equicontinuous on any finite interval. To see that the functions in TF are
equicontinuous at every point in J,, consider

(29)  NTh(t)) = Tule)ll = llo™ ! (£) A (1)) z(t) —a ™ (22) A (1) 2 (E)l]
<™ (t) A E)IHlz (t) ~z @)l +lle™ (1) A (22) —a ™ (22) A ()] - iz (),

where t;, t, are in some finite interval. The right-hand side of (2.9) can be
made small by virtue of the equicontinuity of the family {z(z)} and the
continuity of a~!(t)4(t). Thus the functions in TF are equicontinuous at
each point of J,.

All of the hypotheses of the Schauder-Tychonoff theorem are satisfied.
Thus there exists a ue F such that u(t) = Tu(t); that is, there exists a solution
x(t) of

x(t) = y(t)—tp(t)]fcp"(s)f(s, x(s))ds.

Therefore x(t) is a solution of (1.2) and possesses the asymptotic behavior of
(2.1) and (2.2). This proves Theorem 2.1.

Remark 2.1. We here replaced the condition |[4(t)® ()| € «(f) in
Theorem A by the more general condition ||4(t)y(@)<(1—¢)a(t) in
Theorem 2.1. Here y(t) = &(t)c for some vector c.

If we take v(t) =||4(t)®(t)|| and «(t) = f(¢t), Theorem 2.1 implies the
following corollary.
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CoroLLARY 2.1. Ler y(t) be an arbitrary nontrivial solution of (1.1).
Suppose that there exist a(t), 4 (t), and w(t, s) satisfying Assumption A and for
some positive € < 1 there exists t, such that for t > t,

4@ 2@l _(;)(‘3(”” <t-g, O O M < ot ™ () 40 x(l)
and
lim Ta)(s, 1)ds = 0.

Then there exists a solution x(t) of (1.2) such that (2.1) with B(t) = a(t) holds.

Proof. Since |[4A({@)y(@)| < ||[4(t)P(t)l, Corollary 2.1 follows from
Theorem 2.1.

Remark 2.2. From Lemma 2.1, Corollary 2.1 is an improvement of
Theorem A. Moreover, the given solution y(t) in the above corollary does
not require a sufficiently small initial condition.

If we let the coefficient A4 (t) in (1.1) be constant, «(t) = (1), and A4(¢)
= ], Theorem 2.1 implies the following corollary.

CoroOLLARY 2.2. Suppose that A(t) is a constant n x n matrix. Let y(t) be
an arbitrary nontrivial solution of (1.1). Suppose also that there exist u(t) and
w(t, s) satisfying

(1) Assumption A,

(i) fly @I < alt), t = to;

(i) 111, X)I exp(llAllt) < ez, lixl| «™* (1))
and

(iv) im [ w(s, 1)ds =0.

t—a ¢
Then there exists a solution x(t) of (1.2) such that ||x(t)—y(t)|| = o(«(t)) and
[[x(t)] < a(t) as t — 0. .

Proof. Since ®(t)P~*(s) = exp(A(¢t—s)), using hypothesis (iii) we ob-

tain for ¢ <s,

(@)D~ (s) f (s, ) <N B(2) @~ (SIS (s, X)II < exp(|| 4]l (s—1)Lf (s, )|
< exp (=14l - (Al ) - 1L.f (s, *)l
<v(fols, fIxla™ (s).

Here we choose v(t) = exp(—||A|[¢t). Since {|y(¢)l| < «(¢) and y(t) = ®(¢)c for

some vector ¢, we obtain o(t) > exp(—||4]|7). Thus hypothesis (iv) in
Theorem 2.1 becomes

. v(1)

lim sup—

t=x p? t)

. [+ 4]

(s, 1)ds < lim fw(s, 1)ds = 0.

[ 2ad: ¥

-t R
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All hypotheses of Theorem 2.1 hold. This proves Corollary 2.2.

The following theorem deals with the converse problem to that considered in
Theorem 2.1.

THEOREM 2.2. Let x(t) be an arbitrary solution of (1.2) and B(r) be a
positive continuous function on J. Suppose that there exist a(t), v(r), 4(t), and
w(t, s) satisfying

(1) Assumption A;

(i) lld(t O S a(r) () for t 2 10;

(i) 1271 () f(r, 2l < (e, 14 x| B~ (1);

(v) IIA(Y)‘P(Y)GP HS) S, 0l vt ofs, (14 (s) x () B~ (5));

(v) j w(t, a(t))dt < o0;

and

.

(vi) lim sup-w [aw(s, afs))ds = 0.

1~z P(t)y
Then there exists a solution y(t) of (1.1) such that (2.1) holds.

Proof. Using the variation of constant formula, we can represent any
solution x(f) of (1.2) by the integral equation

(2.10) x(t) = @) x(to)+ D (1) [ P~ (5) S (s, x(s))ds.
Next, consider the expression

x(to)+ [ @~ () f (s, x(s))ds
Using hypotheses (i), (ii), (iii), and (v), we obtain

t

f||¢ L) f (s, x(s))|ds < f (s, 14 (s) x (sl B~" (s))ds
} (s, a(s))ds < 0.

As a consequence of the Lebesgue dominated convergence theorem, we have

(2.11) ¢ = lim jcb L(s) f (s, x(s))ds+ x(to).

1=
o

Substituting (2.11) into (2.10) shows

x() =P ()c—d(1) T@'l(s)f(s, x(s))ds
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and then

AQ)x() AQ@@Oc A0SO T _,
50 - fn  fo 2 Ol x6)ds.

Let y(5) = &(f)c. It is clear that y(z) is a solution of (1.1). Thus it follows
from hypothesis (iv), (2.11) and (2.10) that

|4 () (x(0)— y(t)J 1
B B ()
(

(2.12)

(2.13) 14(0) ® () @ (5)f (s, x(5))|| ds

f
t
I (s, 14 (&) x(s)lI B~ (s))ds
t
j (s, a(s))ds
t
Therefore, the theorem follows from (2.13) and hypotheéls (vi).
Corresponding to Corollary 2.1 if we take v(t) = [|4 () ¢ ()| and a(f) = 1
in Theorem 2.2, we obtain the following result.
CoroLLARY 2.3. Let x(t) be an arbitrary solution of (1.2). Suppose that
there exist a(t), A(t), and w(t, s) satisfying Assumption A,

lA@S@I <O, 197107 D<o 4@ x® 7 (tj),
and

lim [w(s, 1)ds =0.

11—+ ¢

Then there exists a solution y(t) of (1.1) such that (2.1) holds.

Remark 2.3. In Corollary 2.3 we do not require the initial condition of
a given solution x(t) to be sufficiently small as stated in [1], Theorem 1, and
[: o]

we use the condition, lim { w(s, 1)ds = 0 which is weaker than part (i) of

2w ¢
Lemma 2.1 as stated in [1], Theorem 1. Moreover, S(t) depends on the given
solution x(t) in Corollary 2.3 while f(t) depends on the fundamental matrix,
$(t), of (2.1) in [1], Theorem 1.
Corresponding to Corollary 2.2, if we let the coefficient A(t) in (1.1) be
constant, «(t) =1, and A4(t) = I, then Theorem 2.2 implies the following
corollary. '

CoroLLARY 2.4. Suppose that A(t) is a constant nx n matrix and B(t) is a
positive continuous function on J. Let x(t) be an arbitrary nontrivial solution
of (1.2). Suppose also that there exists w(t, s) satisfying Assumption A,

Ix@Il < B@), 11/, )l exp(lAll)) < (e, llxl B7* ()
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and

o]
lim [ w(s, 1)ds = 0.

{t—=m ¢

Then there exists a solution y(t) of (1.1) such that (2.1) holds.
III. Example. Consider the following differential equation
(3.1) "(O+20)+f(0)0"(t)=0, t=0,

where a > 0, r 2 1, and f(t) is a real continuous function for ¢t > 0. It is clear
that (3.1) can be rewritten as

dx(t)

(3.2) —

= Ax()+F(t, x(2)),

where

x(t)- = (Z’((tt)))’ A= (_2 (1)) and  F(t, x(t)) = 1(t) ((1))9' (®).

Thus we could consider (3.2) as a perturbed linear system of

dy(t)
d—t = Ay (t) .

If we apply Theorem A to (3.2), we obtain that if
(3.3) [1f(s) e *7ds < o0,

then there exists a nontrivial solution x{t) of (3.2) for which
(34) Ix(t)—e |l =0(e™™) as t— o0.
However, from Corollary 2.2 we obtain that if

(3.5) T 1f(s) e~ ds < o0,

then there exists a nontrivial solution x(z) of (3.2) for which (3.4) holds. This
later criterion is an improvement of the early criterion from Theorem A
because of (3.3) and (3.5).
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