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On the Asymptotic Behavior of Scaled

Singular Value and QR Decompositions

By G. W. Stewart*

Abstract. Asymptotic expressions are derived for the singular value decompositon of a matrix

some of whose columns approach zero. Expressions are also derived for the QR factorization

of a matrix some of whose rows approach zero. The expressions give insight into the method

of weights for approximating the solutions of constrained least squares problems.

1. Introduction. It is well known that certain widely used matrix decompositions

change in nontrivial ways when their rows or columns are multiplied by constants.

For example, let the n x p matrix X be partitioned in the form

(1.1) X=(XXX2),

and for 1 > ; > 0 define**

(1.2) X, = (XxtX2).

Let

(1.3) X,= UtStVtT

be the singular value decomposition of X, (see [4] for definitions). The columns of Ut

and Vt (the singular vectors of A',) and the diagonal elements of S, (the singular

values) are nonlinear functions of t, and there is no simple way of obtaining, say, St

from Sx.

One purpose of this paper is to derive expansions for the singular value decom-

position of X¡ as t approaches zero. An application of these expansions is the

following. When t is small, the ratio of the largest to the smallest singular values of

Xt will be large, and from this one might conclude that problems associated with X,

are ill-conditioned. In order to determine whether this apparent ill-conditioning is

real, it is necessary to have precise information about the singular value decomposi-

tion of X, (see [3] for an example).

A related problem concerns the QR factorization of a matrix. Partition X in the

form
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**There is an ambiguity in this notation, since Xx can mean either the first element in the partition (1.1)

or the matrix X, for t = 1. To resolve it, we let Xx refer only to the former.
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(1.4) X =
Xoi     X-
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484 G. W. STEWART

where Xxx is square, and write

(1.5) X,=
X,12

tXn     tX-22

[note the different definitions of X, in (1.2) and (1.5)]. Matrices such as (1.5) with

small t arise in the numerical solution of constrained least squares problems [1,

Chapter 22]. The approach is to down-weight the problem [represented by (X2X X22)]

compared to the constraints [represented by (Xn Xl2)]. The best method for solving

constrained problems in this way uses the QR factorization X, = Q¡R¡, in which Q,

has orthonormal columns and R, is upper triangular. In Section 3 we will derive

asymptotic expressions for Qt and Rr

2. The Singular Value Decomposition. We begin by observing that null vectors of

X behave in a simple manner under scaling. If Xv = 0 and

v =

is partitioned conformally with (1.1), then

tv.

is a null vector of X,. Thus null vectors behave linearly under transformations of the

form (1.2), and there is no need to treat them here. We shall therefore assume that X

has no null vectors.

The main result is summarized in the following theorem.

Theorem 2.1. Let the nX p matrix X have rank p, and let X be partitioned as in

(1.1). Let X, be defined by (1.2). Let

(2.1) B = {x[Xxy1XxTX2,

and

(2.2) X2 = X2 - XXB.

To each singular value sx of Xx there is associated a unique singular value s{l) of X,

which satisfies

(2.3) si'^s. + O^2).

Ifsx is simple and its right singular vector is denoted by vx, then the corresponding right

singular vector of X, satisfies

vx + 0(t2)

tBTvx + 0(t3)

Moreover, if the left singular vector of sx is denoted by ux, then the corresponding left

singular vector of X, satisfies

(2.4) „(')

(2.5) /(') ux + 0(t2).

To each singular value s2 of X2 there is associated a unique singular value s^ of X,

which satisfies

(2.6) 4° = ts2 + 0(t3).
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(2.7)
r,<0

If s2 is simple and its right singular vector is denoted by v2, then the corresponding right

singular vector of X, satisfies

" -tBv2 + 0(t3)

v2 + 0(t2)

Moreover, if the left singular vector of s2 is denoted by U2, then the corresponding left

singular vector of Xt satisfies

(2.8) m2,) = m2 + 0(t2).

Proof. We shall use the fact that the right singular vectors of Xt are the

eigenvectors of

At — X, Xt
tA-,

tA\x

t2A22

and the singular values are the nonnegative square roots of the corresponding

eigenvalues. The matrix AQ has two invariant subspaces corresponding to its parti-

tioning. Specifically the columns of

I

.0.

span an invariant subspace whose eigenvalues are those of Axx, while the columns of
"0"

span an invariant subspace whose eigenvalues are zero. The idea of the proof is to

use the perturbation theory in [2] to derive expressions for the corresponding

invariant subspaces of Ar Expressions for the individual singular values and singular

vectors may then be obtained from the expressions for the invariant subspaces.

Since X has full column rank, Axx is nonsingular. It follows [2] that for all

sufficiently small / there is a matrix P satisfying

(2.9)

and

such that

(-PI)A,

P = 0(t

= 0

I

P

spans an invariant subspace of At. If (2.9) is expanded and terms of order greater

than t are dropped, the result is

(2.10) P = tA2xA7¡ + 0(t3) = tBT + 0(t3).

The eigenvectors of A, in the invariant subspace have the form

(2.11)

where v is an eigenvector of

(2.12) (I + PTPyl/2(IPT)A

v,

(/ + pTpyí/¿ = Axx + o(t2).
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486 G. W. STEWART

If vx is a singular vector of Xx with singular value s1, then it is an eigenvector of Au

with eigenvalue sf. The order t2 perturbation in (2.12) perturbs s¡ by terms of order

t2, from which (2.3) follows. If sx is simple, the order t2 perturbation in (2.12)

induces an order t2 perturbation in vx. Thus we may take v = vx + 0(t2) in (2.11),

and (2.4) follows from (2.10). Finally (2.5) follows from the relation u[l) =

sï>-%oi'\

In order to establish (2.6), (2.7), and (2.8), note that the orthogonal complement of

the space spanned by the columns of (/ PT)T is the complementary invariant

subspace of A,. This subspace is spanned by

-PT

I

-tB + 0(t3)

I

As above, the eigenvectors and eigenvalues of the invariant subspace are to be found

from the matrix

-PT

I
(i + ppTy1/2(i + ppTy1/2(-pi)A

(2.13) = t2{-BTAlxB - BTA\X - AX2B + A22) + 0(t4)

= t2(X2 - XXB)T(X2 - XXB) + 0(t4)

= t2X[X2 + 0(tA).

The results now follow from (2.13) by reasoning as above.

Theorem 2.1 divides the singular values of X, into two classes. The first consists of

the singular values of Xx perturbed by terms of 0(t2). The initial components of the

corresponding right singular vector approach the right singular vector vx of Xx, while

the last components approach zero linearly with t along the direction BTvx. The left

singular vector is the left singular vector of Xx up to terms of order t2.

Singular values of the second class approach zero linearly with t. However, they

are to be sought in the matrix tX2, not tX2. From (2.1) and (2.2), it follows that

x2=[i-xx(x1Txxy1x[\x2

From this it is seen that X2 is the projection of X2 onto the orthogonal complement

of the column space of Xx. Singular vectors of the second class behave like those of

the first class, except that it is the first components of the right singular vectors that

approach zero.

A particularly satisfying feature of these expansions is that the error in any

expression is 0(t2) times the order of the expression itself. This suggests that one

can expect the asymptotic behavior to set in very quickly.

3. The QR Decomposition. In this section we shall derive expressions for the

asymptotic form of the QR decomposition of the matrix Xt defined by (1.5). The

results are summarized in the following theorem.

Theorem 3.1. Let X be of full column rank and be partitioned as in (1.4), where Xxl

is square. Let

^íi-^ii = -^li-^ii
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be the Cholesky factorization of X[XXXX. Let

487

tX2X     tX22

be the QR factorization of Xt. Let

it)

QÍD12

»(O
•'ni

0

O(0J\12

0(0^22

(3.1)

a«ú? fei

X22 X22 Gl^Tl -^i12'

^22 —  022^22

6e the QR factorization of X22. Then

Rxx + 0(t2)    RxxlXX2 + 0(t2)
(3.2)

Moreover,

(3.3)

and

(3.4)

O

o(0^12

o(0A22 O tR22 + 0(t3)

Qi?
ßii(O

(O

nd)
_Y.11

XXXR-X¡ + 0(t2)

tX2xRx{ + 0(t3)

-txgxl + 0(t3)

l+0(t2)

Proof. We use the fact that the Ä-factor of the QR factorization of a matrix X is

the Cholesky factor of XTX. In particular,

(3.5)
*u

IX21 tX21
= Xx\Xxl + 0(t2).

Since the Cholesky decomposition of a nonsingular matrix is a differentiable

function of its elements, it follows from (3.5) that Rft = Rxx + 0(t2). Since R[° =

R{[)~1XX2 we have Ä$ = RX¡XX2 + 0(t2). This takes care of the first row of (3.2).

We will return to the expression for Ä(20 later. The expression (3.3) is derived from

the relation

Ôii>

021'

*11

tx.21

n(i)-l
Äll

In order to derive (3.4) and an expression for R(22\ we use the fact that

QÍO22

o(0^22

is the projection of (X[2 tX^)7 onto the orthogonal complement of the space

spanned by (X[x tX^)7. The projection matrix has the form I - P, where

P =
Xu

tX7

I
tC

(^11-^11 + t X21X21)   (^11 '^21/

(i + t2cTcy\itcT),
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where we have written C = X2xXxxl. After some manipulation it follows that

(3.6) (I-P)
X12

tx.22

-t2CTX22 + 0(t4)

tX22 + 0(t3)

Thus R(£Tr22 = t2X2T2X22 + 0(t4), from which it follows that R$ = tR22 + 0(t3).

Equation (3.4) follows from (3.6) and the fact that

(0ÔÎ2 = (i-p)
'12

tx.22

D(0-1^22

Theorem 3.1 has some analogies with Theorem 2.1. In both theorems the decom-

position is divided into two parts, one having a nonzero limit, and the other having a

zero limit. In both theorems the first part is obtained from the constant part of the

original matrix [e.g., (XXXXX2)], while the vanishing part is obtained from a modifica-

tion of the vanishing part of the original decomposition (e.g., from X22). In Theorem

2.1 the row space of X is divided into two orthogonal subspaces which become

uncoupled in the natural coordinate system of the partition [see (2.4) and (2.7)]. In

Theorem 3.1 the same thing happens to the column space of X.

The matrix X22 defined by (3.1) is a generalization of the Schur complement of Xu

in X. For square matrices, the Schur complement is what is left over after Gaussian

elimination has been performed on Xu. Its appearance here can be related to the

solution by elimination of the constrained least squares problem

(3.7)

(3.8)

minimize V-(*21*22)

subject to (X1X X12)
*i

= c.

If (3.8) is solved for bx and the result is substituted into (3.7), the result is the

problem

(3.9) minimize ||(y - X2XXxxc) - X22b22^2

On the other hand, the solution may be approximated as in [1] by solving

(3.10) minimize
b,

-Xtb,

for small t. From (3.2) and (3.4) the solution is seen to be

(3.11) tf> = R2\QT22{y - X2xX{xlc) + 0(t2).

Since R2\Q22 is the pseudo-inverse of X22, a comparison of (3.9) and (3.10) shows

that b2n differs from b2 by terms of 0(t2). Thus the solution by weighting is seen as

an approximation to the solution by elimination.

This relation throws light on an interesting piece of folklore: namely, that pivoting

on column size must be used when solving weighted least squares problems of the

form (3.10). The dicta is usually justified by an appeal to the numerical properties of

the particular algorithm used to compute the QR decomposition. An alternative line

of reasoning goes as follows. The method of elimination will not work if Xxl is
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singular, and it can be expected to produce inaccurate results when Xxx is nearly

singular. Since the method of weights mimics the method of elimination, the

columns Xt should be interchanged to make Xn well-conditioned. Pivoting on

column size during the computations of the QR decomposition is an adapative

algorithm for doing just this.
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