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In [l] Moore and Nehari established the following: If a(t) is posi-

tive and continuous, the equation

(1) x" + a(t)x2n+x = 0,        » a non-negative integer,

has solutions for which

x(t)
lim -= a > 0
i->»    t

if and only if

/OO

^+la(t)dt < oo.

This theorem is an extension of a theorem of Atkinson [2]. Theorem

1 of this paper establishes the sufficiency of the above theorem with-

out an assumption as to the sign of a(t). A theorem somewhat like the

theorem of Trench [3] is given in Theorem 2 but for a nonlinear

equation. As an application of this theorem, a stronger asymptotic

result (under a stronger assumption) for equation (1) is given in

Theorem 3. Other theorems on the asymptotic behavior of (1) when

a(t) >0 are contained in [4].

Theorem 1. If a(t) is continuous and

/oo
t2n+11 a(t) | dt < oo

then equation (1) has a solution x(t) with the property that

x(t)
lim-= a ¿¿ 0.
<-»»    t

Proof. Let A(t) =x'(t), B(t)=x(t) -tx'(t) so that

x(t) = A(t)t + B(t)

and
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tA'it) + B'(t) = 0.

A(t) and Bit) then are solutions of the system

- A'{t) = a(t)[A(t)t + B(t)Y«+\

B'(t) = ta(t)[A(t)t + .B(f)]2n+1

or in integral form

B(sp 2B+1

(3)

c '       r       b{s)i 2n+i
■4(0 = i4(/o) - J   a(i)j2"+1   ¿(j) + — ¿i,

/• «        r       B(s)i2n+i
B(t) = S(*„) + J   a(5)i2"+2 U(5) + -^        ¿5.

Note that the initial conditions on Ait) and Bit) are determined by

the initial conditions on xit) and x'it). Let wit) — Ait) +Bit)/t and

denote \Ait)\ +\B(t)/t\ by ||w(t)||. Then from (3) it follows that

(io>0)

(4) ||te(0|| ̂  ||w(/o)|| + 2 f   | «(*) | HwMH^+^+^j.

In order to establish the boundedness of ||w(¿)||, the following theo-

rem of Viswanatham [5] will be applied.

Theorem 2. If y(0=»?+./i$/(s, yis))ds, where fit, y) is continuous

and monotonie increasing in y in the region R defined by \ t —10 | ^ a,

\y — y0\ ¿b, and yit) is continuous in the interval \t —10\ úa, then

y it) ú<pit), toút^to+cc, where <pit) is the maximal solution of the differ-

ential equation z'=/(x, z) through (/0, y) and a = min [a, b/M], where

M is the bound on ¡fit, y) \ in the given rectangle.

The differential equation associated with (4) is

<t>' = 2¡a(0|/2n+V+1W,

Hto) = ||w(/o)||

which has solution («5^0)

<bit) = <\\wito)\\-2n - 4« I   s^11 ais) | dsV

If

I ait) | t*»+ldl
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then <p(t) will be bounded if the initial condition is chosen to satisfy

1
|w(*o)|| <

[4nk(ßo)]1,tn

Although Theorem 2 is valid only locally, it can be extended in this

case to arbitrarily large t since <p(t) is known to exist for all t.

Suppose for h>t0, it were the case that ||w(fi)|| ><t>(h). Then there

is a last point í2<íi where ||w(¿2)|| =4>(h) and Theorem 2 may be ap-

plied in a neighborhood of t2.

From the form of <p(t), it can be seen that if a bound for <p(t) with

<p(h)='n is found, this bound is more than sufficient for a solution

With <j)(ti) =7], ti>t0.

Given the boundedness of ||w(/)[| it follows from equation (3) that

lim(_M;4(2) and limt~a> B(t)/t, and thus lim»..«, w(t), exist. However,

w(t)=x(t)/t and to prove the theorem there remains only to show

that for some x(t) this limit is not zero. This solution will be chosen

by selecting appropriate initial conditions on w(t). Let tj be a real

number

/     1     V'2»
°<9<(-rr 1

\4«*(0)/

and let t0 be a number > 1 such that

k(h) < —— >

where w is the bound on ||w(/)|| for ||w(l)|| =rj, guaranteed by the

above argument. Then the initial condition A(t0)=r], B(t0)=0 satis-

fies (4) and

w(t) = r¡ + f a(s)s2n+l (— - 1J w2n+lds

or

»(oo) > n - W2n+ik(to) > 0.

Thus there is a solution such that

x(t)
lim-= lim w(t) = a > 0.
(—»00 / Í—.00

Theorem 3. Let zx(t), z2(t) be independent solutions of
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z" =f(t)z

and suppose g(t) is continuous and that

f\g(t)\y(t)dt< *,

where

t \ r 2n+2, \     2»+2/ ,i
y(t) = max[zi    (/), z2    (t)\.

Then there are solutions of

u" = f(t)u + g(t)u2n+l

which can be written in the form

u(t) = a(t)zi(t) + ß(t)z2(t)

where lim^«, a(t) and limi.M ß(t) exist.

Proof. For convenience we shall suppose that the linearly inde-

pendent solutions Zi(t), z2(t) have been chosen so that the Wronskian

zi(t)zl(t)-z2(t)zl(t) is equal to -1. Let A(t) =u'(t)z2(t) -u(t)z¿ (t)

and B(t) = u(t)z{(t)-u'(t)zi(t). Then

«(0 = A(l)zi(t) + B(t)z2(t),

A'(t)zi(t) + B'(t)z2(t) = 0.

This yields the differential equations

A'(t) = g(t)z2(t)[A(t)zi(l) + B(t)z2(t)\2*+\

B'(t) = g(t)zi(t)[A(t)zi(t) + B(t)z2(t)]2»+\

It is convenient to consider the integral form

(5)

A(t) = A(0)+ f g(s)z2(s)(A(s)zi(s) + B(s)z2(s))2»+ids,
J o

B(t) = B(0) - f g(s)zi(s)(A(s)zi(s) + B(s)z2(s))2"+ids.
J o

Using the fact that

| A(t)zi(t) + B(t)z2(t)\2»+i

g ( | A(t) | + | B(t) | )2«+> max[ | tl\*>+\ | z212»+>]

it follows that
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\Ait)\ + | 5(0 |  á | ¿(0)| + | 5(0) |

+ 2 f ' | gis) \i\Ais)\+\ Bis) | y»+iyis)ds.
J o

Using Theorem 2, it follows that

\Ait)\  + | 5(0 |   =g«K0

where for «2:1,

0(0 =  {[ \A(0) |   + | 5(0) | ]"2« - 4« J ' | gis) | yWdij-
l/2n

(The case « = 0, treated by Trench, will not be developed here.)

Since the integral within the braces converges, an appropriate

choice of initial conditions can guarantee that the expression in

braces remains bounded away from zero by some fixed amount.

Thus <j>it) is bounded and so then must the quantity | A it) | +15(01

be bounded. Using the boundedness of A(t) and 5(0 it can be shown

that the integrals on the right side of (5) are in fact convergent and

thus A(i) and 5(0 approach limits as t—*<*>.

Theorem 4. If ait) is continuous and if

ait) | t2n+2dt < »
/'

then equation (1) has solutions which can be written

xil) = at + b 4- o(l),        a, b constants.

Proof. Set/(0 = 0 in Theorem 3 and let Zi(f)**t, z2(0 = l be the
solutions of z" = 0. By Theorem 3 some solutions of equation (1) may

be written as x(0 =Ait)t+B(t) where lim^o, A if) =a and lim^« 5(0

= b, a, b constants. By observing that

t\Ait)-a\   g  f   | ais) | 52»+2(| Ais) \ + \ B(s) | Y^ds

it follows that

t\A(t) - o\   = o(l)

and the proof is complete.

A related result for the linear case is given in [6, p. 239].
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THE DOMAIN OF UNIVALENCE OF CERTAIN CLASSES
OF MEROMORPHIC FUNCTIONS1

RAYMOND J. DISTLER

1. Introduction. Let K be a closed set of points in the complex

plane and let $iK) be the family of functions

(i)      /GO-Z——>     ^*>o,     ¿ = 1,2, •••,«,
*=i z — a*

where all of the poles lie in K. In this paper we shall find the domain

of univalence for the class ff(Ä'). By this we mean a domain U= UiK)

such that each/(z)Gí(üC) is univalent in U, but if any open set is

adjoined to U, then there is an/0(z)GiW that is not univalent in

the enlarged domain.

In this direction Cakalov [2 ], [3 ] has proved two beautiful theorems.

Theorem A. If all of the poles of (1) lie in the circle \z\ ^1, then

/(z) is univalent in the domain \z\> V(2), and this domain is maximal

for the class of all such functions.

Corollary. Let ait), iG [ —t, t], be nondecteasing, with at least one

point where it is increasing. Then

/T    daÜ)

_T z — e"
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