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ON THE ASYMPTOTIC BEHAVIOR OF THE COEFFICIENTS OF
ASYMPTOTIC POWER SERIES AND ITS RELEVANCE

TO STOKES PHENOMENA*

G. K. IMMINK?

Abstract. This paper discusses the relevance of the asymptotic behavior of the coefficients of asymptotic
power series for the study of Stokes phenomena. By way of illustration a connection problem is considered
in the theory of linear difference equations.

Key words, asymptotic expansion, isomorphism of Malgrange, Cauchy-Heine transform, saddle-point
method, Stokes phenomenon, linear analytic functional equation, difference equation

AMS(MOS) subject classifications. 30El 5, 39

Introduction. In this paper we extend and apply ideas of Malgrange [10] and
Ramis [12] concerning the connection between Stokes phenomena, in a wider sense,
and formal power series. We start with an illustrative example.

Let y be an analytic function on the Riemann surface of log z, with the following
properties.

(i) y admits an asymptotic expansion of the form _,n__oYnZ as z- in the
sector S: -7r/2 < arg z < 57r/2.

(ii) y(z) y(z e2=i) c e -z, c C*.
The second property implies that the asymptotic behavior of y changes abruptly as
arg z becomes larger than 57r/2 or less than -7r/2. Such a change in asymptotic
behavior will be called a Stokes phenomenon.

Now consider the function h defined by

1 fo e -t
dt, 0 < arg z < 2h(z)

t- z

h is a Cauchy-Heine transform of e (cf. [12]). By deformation of the path of
integration it may be continued analytically to the Riemann surface of log z. With the
aid of residue calculus we readily verify that

(0.1) h(z)- h(z e 2"rri) e -z.
Moreover, h admits the asymptotic expansion 7-1 hnz-n as z m, z S, where

(0.2) hn
1 ttn_e- dt, n.

27ri

From (ii) and (0.1) we conclude that

y(z e2i) ch(z e 2"a’i) y(z) ch(z).

Thus it turns out that y ch is a single-valued analytic function, admitting an asymptotic
expansion of the form n__o anZ as z , z S, where

(0.3) an Yn chn.

* Received by the editors January 19, 1989; accepted for publication (in revised form) February 14, 1990.
? University of Groningen, Institute of Econometrics, P.O. Box 800, 9700AV, Groningen, the Nether-

lands.
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ASYMPTOTIC POWER SERIES AND STOKES PHENOMENA 525

This implies that y-ch is holomorphic at and, consequently, Yn__o a,,z-" is a
convergent power series. From (0.2) and (0.3) it now follows that

c -2 7ri lim Y"
(n- 1)!"

Apparently, the constant c, which plays a central role in the Stokes phenomenon
occurring in this example, is intimately related to the asymptotic behavior of the
coefficients y,. It is this relationship that forms the subject of this paper.

We shall consider the following situation. Suppose we are given a number of
sectors S, v {1,..., N}, which cover a neighborhood of o and a corresponding
number offunctionsy with the following propeies" y is analytic inS and represented
asymptotically by a series of the form ,o f,z-" (independent of v) as z , z S,

{1,..., N}. Moreover, assume that

(0.4) y+l(z)-y(z) c;;(z), z S S+1, v {1,..., N},
j=l

where SN+I e2=is1, YN+I(Z) Yl( z e-=), c C, and the belong to a ceain class
of analytic functions. We shall establish a relation between the complex numbers cf
and the asymptotic behavior of , for n . In some applications this relation may
be exploited to "compute" at least pan of the numbers c; from the coefficients , (cf.
[9] and Remark 2 herein).

If the y represent (sectorial models of) a resurgent function, our results could
be derived from the work of Ecalle (cf. [4]). For the present purpose, however, this
assumption is not needed and we shall establish the relation mentioned above in a
more direct manner.

The argument is essentially the same as the one we used in [9]. It is based on the
Propositions 1.1-1.3 herein. Proposition 1.1 concerns the propeies of Cauchy-Heine
transforms of functions like the ; in (0.4). Proposition 1.2 enables us to construct,
from the Cauchy-Heine transforms of the ;, analytic functions H with the same
propeies as the y and only differing from they, by a convergent power series in
1/z. The coefficients ofthe asymptotic expansionH oftheH are given by the expression

H, =-2i =1=1 c j(t)t"- dt, yc S.

Under ceain conditions, like those mentioned in Proposition 1.3, the saddle-point
method may be applied to the integral

f ;(t)t"- at

to obtain its asymptotic behavior for n-. The main result is stated in Theorem 1.4.
In 2 this result is applied to a connection problem in the theory of homogeneous
linear difference equations.

1. The general argument. LetC denote the Riemann surface of log z. Let zo C,
a, fl e N, a < ft. By S(a, fl) we denote the sector

S(,)={zeC" a <arg z<}
and by S(zo, a,) the set

(1.1) S(zo, a,) {z e C" a < arg (z- Zo) <, Izl > Izol},
This will also be called a sector.
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526 . K. IMMINK

If S is a sector of the form S S(zo, a,/3), then _S will denote the sector S(zo, a,
fl +2r).

Let S S(Zo, a, ), S’= S(zl, a’, ’) with a < a’</3’ </3. We shall write

S’(C)S

whenever Z E S and S’c S(zo, a’,/3’).
Let / Y=o h,z-n be a formal power series in z -1, S a sector of the type (1.1),

and h a function on S. We say that h is represented asymptotically by h as z oo in
S, and write

h(z)’- Y.h.z-", z-ooinS
n=O

if, for every S’ (C) S and every N E N,
N--1

RN(h; z)==- h(z)- E h,z-" O(z-N),
n=O

Z- OO, Z G S’.

Any function q which is analytic in a sector S and represented asymptotically by
zero (i.e., the series with coefficients equal to zero) as z- o in S, may be written as
the difference of two determinations of its Cauchy-Heine transform. The following
proposition, due to Ramis, is concerned with the asymptotic properties of this Cauchy-
Heine transform.

PROPOSITION 1.1 (cf. 12, Prop. 4.2]). Let o and fl be real numbers such that a < fl,
Zo S(a, fl), and let # be an analytic function on S S(zo, a, fl ). Suppose there exist

positive numbers M,, n N, such that

(1.2) sup [z"q(z)[ < M,, n e N.
zS

Then the function h defined by

h(z) z___ f o(____) d, z S(zo, 19 19+27r)
2rri (- z)

where y is a half line in S from Zo to with direction (R), has the following properties"
(i) h can be continued analytically to ,
(ii) h(z)- h(z e2i) (z) for all z S,
(iii) h is represented asymptotically by

z--,

as z in . Moreover, for every S’ there exists a positive constant Cs, such that

sup [z"R.(h; z)[ Cs,mn+l, n.
zS’

Proof Let us suppose that S is a convex set, i.e., /3-7r/2 <arg Zo< a + 7r/2. In
that case every half line from Zo to oe with direction O e (a,/3) lies in S. If y has
direction O, h is obviously analytic in S(zo, O, (R)+27r). The analytic continuation to
_S is obtained by varying O. Part (ii) follows immediately from Cauchy’s theorem.

Now let St--S(z1, ol’,[3’)(C)8. Then there is a number e(0, r/2) such that
a + e < arg (z Zo) </3 + 2 zr e for all z S’. Let z S’ and choose (R) E (a,/3) in such
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ASYMPTOTIC POWER SERIES AND STOKES PHENOMENA 527

a way that O + e < arg (z- Zo)< O + 27r- e. Let Yo be the half line from Zo to with
direction (R). For all " Yo the following inequality holds:

(1.3) I" zl > z Zol sine > zl \(1 Zo s) sin e.
Z1

It is easily seen that

f
z"R,,(h; z)=z__ | ,,-1 d,

2"tri J,o z

With (1.2) and (1.3) it follows that

]z"en(h"z)]< 1-
27r sin e

Hence

1 (1-2r sin e

Z1 Yo

suplz"R,,(h;z)l< M.+I
zS’

and this proves (iii).
If S is not convex the above argument must be adapted in an obvious manner.
PROPOSITION 1.2 (cf. [10], [12]). Let N. Let a, , u{1,...,N}, be real

numbers such that a <= O+ < fly +1 if < N and aN aN+ a +2 < fin
,+1 fll+2. Let z S(a+l, fl) and S S(z, a+l, fl), 1,. ., N.

Suppose that, for every { 1, , N}, we are given an analytic function on S
with the property that(z) 0 as z in S. Let

h(z)= f ( d, z S(z O 0+2) 6{1 N}
2i r. if(if-z)

where y is a half line in S from z to with direction 0 and let

--1 N

H(z)= h(z)+ h(ze2i) ifu{2,...,N},
=1 =
N N

Ha(z)= h(ze2i) and HN+,(z)= h(z).
=1 =1

e functions H have the following properties"
(i) For every u {1,. , N+ 1} there exists a S(a,) such thatZ+l 1 e2i

andH is analytic on S S(, a, ).
(ii) H+,(z) H(z) (z) for all z S S,+,, {1,. ., N}, and HN+,(z)

H(z e-=i) for all z e2 $1.
(iii) H admits an asymptotic power series expansion H independent of , as z

in S.
Moreover, ifH, 1,. ., N+ 1, arefunctions with the same properties, then there

exists a function h, holomorphic at , such that

-H=h foatt{,...,N}.

Proof From Proposition 1.1(i) we deduce that H is analytic in

u-1 N

S(z,,a,+,,,+2) S(z,,a+,-2,,) ifu{2,...,N},
=1 =

sup
O(,/3)
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528 . K. IMMINK

in

and in

N

tq S(z,, a,+-27r,/3) if v 1,
=1

N

S(ZIx, O/x+l, 3Ix -+’27r) if v N+ 1,
/=1

and this set contains a sector of the form S(, a,/3) for a suitable choice of. Part
(ii) follows immediately from Proposition 1.1(ii) by observing that

H+i(z)- H.(z) h(z)- h(z e2=i) for all u {1,. ., N}.

Furthermore, Proposition 1.1 (iii) implies that H(z)---n=o H,z-, as z in S, where

1
(1.4) H,=

2i=_,
Now suppose that , u= 1,..., N+ 1, are functions with the propeies (i)-(iii)
mentioned, in Proposition 1.2. Then there existz S(a,) such that both H and
H are analytic on S S(z, a,) and we have

v+l(Z)-v(z)=Hv+l(Z)-Hv(z), z.nS+l, v(1,...,N}

and

/-)N+I(Z)-/-)l(g e-2i) HN+I(Z)- HI(Z e-2=i), g SN+
It follows that

/-v+l nv+l IIv nv for all v {1,. , N}

and, moreover,

/rN+l (g) HN+I(Z) --/-]rl(g e--=i) HI(Z e-2"i).
Hence the function h--H1- H1 can be continued analytically to a reduced neighbor-
hood of . Furthermore, property (iii) implies that h admits an asymptotic power
series expansion in z-1 as z--> in a neighborhood of o and, consequently, h is
analytic in a full neighborhood of

The next proposition concerns the asymptotic behavior of integrals of the type

,(z)z" dz,
,/

where 3’ is a half line and q is an analytic function with the property that q(z)---0 as
z- oo in some sector S containing 3’. The conditions (iii)-(v) below are purely technical
and have been chosen in such a way that the result follows by a straightforward
application of the saddle-point method. They might be relaxed or replaced by other
conditions. We have merely tried to define a class of functions for which this method
works.

PROPOSITION 1.3 (cf. [2, Thm. 7, Remark 6]). Let a and fl be real numbers such
that a < fl, Zo S(a, fl ), and let q, be an analytic function on S S(zo, a, fl with the
property that

(i) exp p(z)-O as z->o in S.
Let g S x -> C be defined by

g(z, n)= O(z)+ n log z.
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ASYMPTOTIC POWER SERIES AND STOKES PHENOMENA 529

Suppose there exists no t such that for all n >= no the following conditions hold:
(ii) The equation Og/Oz =0 has a solution sn S such that the half line ynfrom Zo

to o through s is contained in S. Moreover, s, as n o.
(iii) There exists a number 6) (0, /2) such that

2 O2g (s, n) < Oarg- s,
Oz

(Og/Oz)(s,,n) asn.and, furthermore, s,
(iv) ere exist positive numbers eo and K such that

zg(z,n) g(z,n)

g Iz- s,[ < ols, I.
(v) Let a,=arg (s,-zo)-args,. ere exists a positive number el, a function

nl (0, e 1) , a bounded function gl (0, e 1) x (- 1, O) , and a function g2 (0, e 1) x
(0,) such that, for all e(0, e), exp g2(e, ") (0, ), an<for all nnl(e),

Re{g(s,(l+rei".),n)-g(s,(1-eei.),n)}gl(e, r)

if (-11 Zo/s, 1, e), whereas

Re{g(s.(l+rei".),n)-g(s.(l+eei.),n)}g2(e, r)

if (, ).
Furthermore, let f be a bounded analytic function on S and suppose there exists a

positive number e such that
(vi) SUpz.)lf(z)-l[O if n, where I,(e) denotes the segment between

s,(1 e e ’-) and s,(1 + e e-).
Let

and

q(z)=f(z) exp q(z),

q(z)z" dzJ"
2ri

where y is a half line in Sfrom Zo to o. Then we have

L 2rsOZg(s, n) s, expg(s,,n)(l+o(1)), n,0

where arg {s(Og/ozZ)(s,, n)}-/ (-m 0).
Proof We shall closely follow the proof of Theorem 7 in [2]. Let n no. Due to

(i), (ii) and the propeies of f we may replace y by y,. Let e >0. We begin by
considering the integrand on the segment I, (e). We put

g
(z, n)

g
(s, n) h(z).

Oz Oz2

From (iv) we deduce that

h(z) K
O2g

(s, n) fZ dC f d
Oz

+K h(C)
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530 G.K. IMMINK

provided Iz-s.l<eolS.I. With the aid of Gronwall’s generalized inequality (cf. [5,
p. 36]) we find

h(z)<-_K
Z S

Sn

where/ is a positive constant, provided [z-s,[ < eols,[. Hence it follows that, for all
e (0, Co),

Og
(1.5) oz(Z,n)=(z-s,)(s, n)(l+eO(1))

OZ2

(1.6)
1 )2

02g
g(z,n)-g(s, n)=:(z-& (s. n)(l+eO(1)),. OZ2

[r[<=e.

(s,,n)(l+eO(1))

uniformly on In(e). Here O(1) is uniformly bounded in e.
We introduce a new variable w by means of

(1.7) 1/2w2= g(sn, n)-g(s,(l +7"ei,), n),

Due to (1.6) we have

W
2 7,2 e2i%, 2 02g

S
OZ2

and we remove the ambiguity in the definition of w by demanding that

(1.8) w 7"e
2 Og (sn n) (1 + eO(1))--Sn
OZ2

where the square root has its principal value. Equations (1.7) and (1.5) imply that

dw i Og 2 e2i%
02g

"7-(sn(l+re "),n)=-snr (s, n)(l+eO(1))W --Sn e
Oa2Oz

Consequently,

dw e Og
(s n) (1 + eO(1))(1.9)

dr --Sn
OZ2

Let w+ correspond to r +e. From (1.8) it follows that

( O2g )1/2(1.10) w+=+eei% -sZ,(s, n) (l+eO(1)).
OZ2

From (1.7), (1.9), (1.10), and condition (vi) of Proposition 1.3 we deduce that
sn(l+eei’")

((Z)Z dz
Sn(1--eein)

Sn ei% exp g(s,, n) e- dw(1 + o(1))

Og (s n) s exp g(s, n) e-/ dw(1 + o(1))(1 + eO(1))

Using (1.10) and condition (iii) and noting that lim a =0, we conclude that, for
every e O,

lim e- dw .D
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ASYMPTOTIC POWER SERIES AND STOKES PHENOMENA 531

Hence

q(z)z" dz 2rs] (s, n)
27ri a sn(1--ee i’’) OZ2

a

(exp g(s., n)(1 + o(1))(1 + eO(1)),

where arg {sZ,(oZg/OzZ)(s,, n)} -1/2 (-Tr, 0).
Next we consider the integral

n(l+eein)
,(z)z" clz.

From (1.7), condition (v), and the properties off we deduce that, for n => nl(e),

IJ2(e)l <-- c s exp g(s,, n)-- w+ exp g(e, ’) d"

NC1 sexp g(s, n)- w+

where C and C1 are positive constants. In view of (1.10) and condition (iii) this implies
that

J(e) s,2 OZ202g (Sn, n) s, exp g(s,, n)o(1), n

and the same propey holds for the integral over the segment between Zo and s,(1-
e e.). Combining the above estimates we find

( Og )-/L 2s(s, n) s, expg(s, n)(l+eO(1))(l+o(1)), n.02
Since this is true for every sufficiently small e the result follows.
Tzoz 1.4. Let N. Let , , u6 {1,..., N}, be real numbers such that

+ < + if u < N and au u+ +2 <u u+a +2. Let
S(a,) and S S(,, ), u 1,. ., N, Su+ e=S. Suppose that, for each
u {1,..., N}, we are given an analytic function y on S, admitting an asymptotic
expansion =o yz-" as z in S, independent of u. Let

y+(z) y(z e-=), z S+,

and

(z) y+(z) y(z), z s s+, {, ., N}.

Suppose that for every u {1,..., N} there exists a sector S S+, a positive
integer re(u), and, for every j {1,. ., re(u)}, analytic functions f and ff on ,
satisfying the conditions of Proposition 1.3, and a complex number c such that

m()

(z) E c;f;() exp 6y(z), s.
j=l

Let g(z, n) (z)+ n log z, let s" denote its saddle point, and let

M (n) 2(s2’) Og (s’ n) s’ exp g(s’ n)02

je{1,...,m()}, e{1,...,g},
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532 G.K. IMMINK

where arg {(s,’J)2(o2g/oz2)(s,"j, n)} -1/2 E (---/r, 0). Then there exists a convergent power
series ,=o h,z- such that

N m(v)

(1.11) fi,=h,- E E cy{M;(n-1)(l+o(1))}, n-o.
u=l j=l

Proof There exists z E S S+1 such that S S+1 contains the sector S
S(z, a+l, fl). As y and Y+I admit the same asymptotic expansion, it follows that

q(z)=y+l(z)-y(z)--.O asz-*inS, uE{1,...,N}.

Obviously, the functionsy possess the properties (i)-(iii) mentioned in Proposition 1.2.
According to Proposition 1.2 there exists a function h, holomorphic at , such

that y h +H for all v E {1,..., N}. Let Y,--o h,z-" be the power series expansion
of h. With (1.4) we find

f, h, (0v(g)g n-1 dz
=1 2ri

N re(v)

h, y X c-2-
j ff(z) exp t;(z)g n-I dz, n E N,

=1 j=l 2ri

where y is a half line g, uE{1,..., N}.
The proof is completed by application of Proposition 1.3 to each term of the sum

in the right-hand side of the above identity.
Remark 1. If the y as well as the functions ff exp qf are solutions of some

homogeneous linear functional equation, the numbers c play a role similar to the
Stokes multipliers in the theory of linear differential equations.

Remark 2. If one of the functionsM in (1.11) dominates the rest for n -, the
corresponding coefficient c may be determined from the asymptotic behavior of )3,.

Remark 3. Propositions 1.1 and 1.2 may also be used to obtain estimates of the
growth of the remainder terms R,(y ;z) as n. This will be illustrated by the
application to linear difference equations in the next section.

Example. The nonlinear differential equation

(1 12)
dy a by3 C*dz-zz+y+ a,

possesses three formal solutions of the form Y,---1 )9,z-". The coefficients ), can be
determined from the recursive relations

-2fi,+z+(n+4)n+l+b 2 ;m,m2m3 =0, n>---l,
mi<=n

ml+ rrl2+ m3
(1.13)

(fi_l)2 ___1 1

b’ Yo

and

(1.14)
.+2+(n+l).+l+b , YmlYm2Ym3 O, n => 1,

m+m2+m3

Y-1 Yo-- Yl =0, y2=--a.

Let denote one of the formal solutions and let S be a sector of aperture less than
r. It is a well-known fact that there exists a solution of (1.12), analytic in S and

D
o
w

n
lo

ad
ed

 1
2
/1

8
/1

8
 t

o
 1

2
9
.1

2
5
.1

4
8
.1

9
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



ASYMPTOTIC POWER SERIES AND STOKES PHENOMENA 533

represented asymptotically by 33 as z- in $, uniformly on S (cf. [13]). Suppose that
Yl and Y2 are two solutions with these properties. Obviously,

d b
(1.15) d--- (Yl- Y2) Yl Yz+- (YI + YlY2+ y22)(Yl- Yz).

Let )--"n___l )g and suppose the coefficients 33 satisfy (1.13). Then we have

3
(1.16) y+yiy+y=--(z-z)+h(z),
where h is a bounded analytic function on S, admitting an asymptotic expansion as
zo in S. Inserting (1.16) into (1.15) we obtain

d---(yl-y)= -2+z - h(z) (Yl-Y2)

and this implies that

Yl--Y2--ce-ZZg3( 1-+ 0()) z in S,

where c is a complex number. Hence it follows that (1.12) has a unique solution y-,
analytic in a left half plane and represented asymptotically by the series Y,---1 33z-"
asz in this half plane. Moreover, it is easily seen that y- may be continued
analytically to a sector of the form S(Zl, -37r/2, 37r/2), with Zl e C, without a change
in asymptotic behavior.

Fuhermore, we have

y-(z)-y-(ze2=)=c-e-2Zz3 (1+ O ()), c-EC,

as z - in S(-3/2 + e, -/2- e) for any e (0, /2). Applying Theorem 1.4 we find

c- -2i lim 2n+3f
(n+2)l"

In a similar manner it is shown that (1.12) possesses a unique solution y+ analytic
in S(z,-/2, 5/2) for some zeC and represented asymptotically by the series
,=-1 y,z determined by (1.14), asz in this sector. Moreover, it turns out that

Y+(z)-y+(ze)=c+ eZ(l+O()), c+C,

as z in S(-/2+ e, /2- e) for any e (0, /2). Application of Theorem 1.4 now
yields the relation

c+= 2i lim (-1)"-lY".. (n-1)t
2. An application to linear difference equations. We consider the mth-order

homogeneous linear difference equation

(2.1) E aj(z)y(z+j)=O,
j=0

where aj C{z-1}, j 1,. -, rn (or, equivalently, a system of rn first-order difference
equations). The "generic" case is when the characteristic equation of (2.1) has rn
distinct roots. This case has been treated in [8]. Here we shall deal with a more singular
class of equations.
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534 O.K. IMMINK

Under certain conditions, (2.1) possesses m linearly independent formal solutions
of the form

(2.2) 3(z)- f(z)z’j exp (djz log z +/xjz), j 1, , m,

where h(z) Y’,,=o h,z-n with ho 1, p C, dj Q and C for all j {1,. ., m}
(cf. [3], [11]).

We put

P,-P=Po, di-d.=do, and /x,-/x=/Xo, i,j{1,...,m}

and we assume that, for all i, j {1,..., m} such that i#j and do 0,

(2.3) Re/xo 0.

For merely technical reasons we further assume that

(2.4) Im/xo {0, -doff} mod 27r if #j, i,j {1,. ., m}

but this condition can easily be removed. For all i, j {1,..., m} such that ij we
shall denote by no the integer determined by

0 < Im/x0 + 2 n07r < 2r
(2.5)

0 < Im/xo + (2no + do)Tr < 27r

Let $1," ", $7 be sectors of the following form:

if do <_- 0,

if do > O.

S S(R e-i(/2) --’17", O) S2 ei(r/2)S1 S S4 eirs

S ei(3"rr/E)Sl and S6 S7 e2is,
where R>0. If R is chosen sufficiently large, equation (2.1) possesses, for each
j {1, , m} and , { 1, 3, 4, 6, 7}, a unique solution yf, represented asymptotically
by y; as z oo, uniformly on

u-l-1 r+<arg(z-Re(/3-s/’i) <- r if,e{1 4,7},
3 3

(.
1 _-< arg ( R e(’/3-1/2)ri) < if , {3, 6}

for every e (0, /2) (cf. [6, Thm. 2.4.5]; note that this is a stronger statement than
y fi as z m in S). Moreover, we have

(2.7) y 7 y 6 6
Y PY Y PY

where p and p. are periodic functions of period 1 with the propey that

(2.8) lim p(z)= lim p(z) 0, je{1,...,m}.
Imz Imz-

Fuhermore, for each j e {1 m}, equation (2 1) possesses a unique solution y
analytic in $2 and represented asymptotically by as z in $2, such that

Y Y P ijY Y PoY
i=l i=l

and p are periodic functions of period 1 with the following propeies"where p o
2

P 0 P o 0 ifd > 0 or d 0 and Reo 0,

(2.9) limxmz- pO(z) exp {-2(n0 1)iz} and limxmz p(z) exp {-2noiz}
exist for all i, j 6 {1,. , m} such that # j.
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Similarly, for each j { 1, , m}, there exists a unique solution yj, analytic in $5 and
represented asymptotically by 3 as z oo in $5, such that

4 4 4 6
Yj Yj Yj YjPoYi , PijYi

i=1 i=1

where p and pj are periodic functions of period 1 with the following properties"

p p =- O if dj < O or dj O and Re lxij <-_ O,

(2.10) lim Imzcx3 p(z) exp {-2nij’rriz} and limimz--.- pSij(z) exp {-2(nij 1)Triz}

exist for all i, j { 1,. , m} such that j.

Now let

h;(z) y;(z)z-PJ exp (-djz log z- Izjz), j {1,’’., m}, , {1,..., 7}.

Obviously, h; is represented asymptotically by hj as z o in S for all j { 1, , rn}
and all , {1,..., 7}. Moreover, if u {1, 3, 4, 6, 7}, the asymptotic expansion is uni-
formly valid on (2.6) for every 6 (0, 7r/2). The uniqueness of hf implies that

(2.11) h](z)=h)(ze-2) forallj{1,...,m}.

Furthermore, we have, for all j { 1, , m} and , { 1, , 6},

(2.12) h;+l(z)- hy(z) p(z)h(z)zP’J exp (d,jz log z + izoz ).
i=1

For all i, j{1,..., m} and all {1,..., 6} we define an integer n and complex
numbers cij and/x0 as follows"

(2.13)

Imax{ n7/: Imzoclim p(z) exp(-2nTriz)exists}
n= |min n7: lim p(z) exp(-2niz)exists

/
0 otherwise,

{0 ifpO,(2.14) c limpo(z) exp (-2nz)
(2.15) ij ij + 2nijiz.

Fuhermore, we define analytic functionsf and by

(2.16) f(z) o ifC=0
(c)-,pij(z) exp (-2nijiz)h(z)

(2.17)

Obviously,

otherwise,

(2.18)
qj(z) cjf(z)z" exp (diz log z +/x jz),

i,je{1,...,m}, e{1,...,6}.

In order to check whether the conditions of Theorem 1.4 are satisfied, we will first
study the properties of the function g" S -* C defined by

g(z,n)=dzlogz+p,z=(n+p) logz,

if u e {2, 3, 4} and Po 0,

if , 6 { 1, 5, 6} and p 0,

otherwise,

o(z) p(z)h(z)zO, exp (doz log z +/x0z ).
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536 G.K. IMMINK

where d ,/. C, pC, and S is one of the sectors St, 0 Sv+l, v{1,..., 6}. From
(2.18), (2.3), (2.7)-(2.10), and the definitions (2.13)-(2.15) we conclude that the
following cases need to be considered:

1. d =0, p =0,/ 2mri, m, S $3,
2. d =0, p =0,/ =-2m,a’i, m N, S= $6,
3. d 0, Re/ < 0, Im/ < 0, S $1 f
4. d 0, Re/. < 0, Im/ > 0, S $2 f $3,
5. d=0, Re/>0, Im/>0, S=S4f’)Ss,
6. d 0, Re/z > 0, Im/z < 0, S $5 f $6,
7. d < 0, Im/z < 0, S S f $2,
8. d<0, Im/>0, S=SS3,
9. d>0, Im/+dr>0, S=S4f’)Ss,

10. d>0, Im/+dr<0, S=SsfS6.
In the first six cases, Og/Oz =0 has a unique solution s, given by

n+p
(2.19) s. -.

Hence

(2.20) arg sn arg (1 + o(1)),

Furthermore, we have

(2.21)
Og

(s, n) tx
Oz n+p

oZg (s, n) -n p,022

(2.22) z(z,n) (z,n) =-2
Oz Oz2

Let S’ S. In each of the cases 1-6 there exists a positive number 6 such that

cos (arg z + arg/x) < -7--7, for all z S’.

This implies that, for all z S’,

Re g(z, n) = -6lzl + (n + Re p) log Izl- Im p arg z.

Hence we easily deduce the existence of positive constants As, and Cs, such that

(2.23) sup lexp g(z, n)] < Cs,As,n .
zS’

Now consider the cases 7-10. There d # 0 and the saddle point sn is a solution
of the equation

(2.24) s,, log s,, +-+ 1
d

Let h be the inverse of the function z-)z log z (cf. [9, Ex. III], [4, 3.6]). It has the
following asymptotic behavior:

(2.25) h(z)= (1 +o(1)),
log z
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ASYMPTOTIC POWER SERIES AND STOKES PHENOMENA 537

From (2.24) we deduce

(2.26)
sn=exp--1 h

d

n+p
logh -n+Pexp +1

d d

With (2.25) it follows that

n
(2.27) s. (1 + o(1)), n- o.

d log n

Equating the imaginary parts on both sides of (2.24), we get

Re/X+l +Resn args,+Imsn log[sl +
d d d

With (2.27) we find

n ( Im/x) (1 + o(1)),ImS.-d(logn) args,+
d

Hence

(2.28) Ims.=
d-(1 n)2 Im/z(1 + (1))’ nc

[,2(-og n)
(Im br + dTr)(1 + o(1)),

ifd <0,

no ifd > 0.

Furthermore, we have

oZg(s, n)=
d n+p d 2 { n+p

(2.29) log h \-OZ2 S S. n + p d

and hence

2O2g(sn n) n(1 + o(1)) n - c.(2.30) s.
OZ2

We easily verify that

(2.31)
-103g(z,n)lO2g(z,n--7

2(n+p)-dz
n+p-dz

and the expression on the right-hand side is obviously uniformly bounded on the half
plane -d Re z > 0 and thus on S, provided n _-> no, where no is some sufficiently large
number.

Let $’ S. In each of the cases considered this implies the existence of a positive
number 6 such that

d cos arg z < -6 for all z S’.

Let 0 < e < 6. Then there exists a positive constant C such that

leap g(z, n)l < C exp (-lzl log Izl)lzi", z
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538 G.K. IMMINK

The expression to the right of the inequality sign attains its maximum as Iz[ h(ne/e)/e
and the maximum value is equal to

exp -2n+- h h
e

In view of (2.25) it follows that there exist positive constants As, and Cs, such that

(2.32) supers, lexp g(z, n) < Cs,As,
log n

With the aid of (2.19), (2.21), (2.26), and (2.29) we can derive an explicit expression
for the function M "M- C given by

) -1/2

(2.33) M(n) 2rs2.
02g

(s. n) s exp g(s n)

2where arg (Sn(oZg/ogZ)(Sn, tl))-l/ZG (--’rr, 0), in each of the cases considered above.
With (2.30) we find

[n+p\,+o+

(-27r( n + p )}-’/z exp (- n O { ] if d O,

-27rn)-/Zexp{(n+p)x(n)--l} (1 + o(1)), n-oo, ifd

where x(n)=log h((n+p)/d exp (/x/d + 1)). Let us define a function Ma,’CC by

(2.34)

-27riMa,, s)

r(s)(-)

’F(s) exp
log

ifd =0,

h(-s/d exp (l/d+ 1))
-d log h -exp + 1

ifd 0.

Using Stirling’s formula and the properties of the function h, we readily verify that

(2.35) -M(n-1)=Md.,(n+p)(l+o(1)), n-o.

Now let v { 1, , 6}, v Sv (3 S+I, and let ; be a sector of the following form:

g" S(:,( )r+6, v-1 ) if u { 1, 4},
3

3 ’ if e{2, 5},

S=S L, -1 +,- ife{3,6},

where e (0, /2). Let i, je{1,..., m} such that c0, and let

g(z,n)=dzlogz+z+(n+O)logz zeS, heN.

From (2.19)-(2.22) and (2.27)-(2.31) we deduce that conditions (ii)-(iv) of Proposition
1.3 are satisfied, provided is chosen suciently small. We readily verify that condition
(v) holds as well (with
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ASYMPTOTIC POWER SERIES AND STOKES PHENOMENA 539

Next, we consider the functionf defined by (2.16). The asymptotic properties
of h’ imply that

(2.36) lim h(z)= 1 uniformly on S.
Furthermore, from (2.14) and the fact thatp is analytic on either a lower or an upper
half plane it follows that

(2.37) Ip(z) exp (-2nTriz)- cl <-_ K exp (-27rllm z[), z

where K is a positive constant. From (2.36) and (2.37) it is obvious that fff is bounded
on S. Moreover, with the aid of (2.20) it is easily seen that, in the case that dij =0,
f satisfies condition (vi) of Proposition 1.3. Now suppose that ,6 {1, 2, 4, 5} and
d0 0. Formulas (2.4) and (2.28) imply that IIms,l as n, where s, denotes
the saddle point of g(z, n). With (2.36) and (2.37) it follows that, also in this case,
condition (vi) of Proposition 1.3 is fulfilled.

Apparently, all conditions of Theorem 1.4 are satisfied. Applying this theorem
and using (2.33) and (2.35), we obtain the following result.

THEOREM 2.1. For each j{1,..., m} there exists a convergent power series

nO hjnZ-n such that

6

h=h+ E E co{Md,.,,(n+Po)(l+o(1))}, n,
i=1 =1

where c and Md,,,, are defined by (2.14) and (2.34), respectively.
With the aid of Propositions 1.1 and 1.2 we are able to estimate the growth of the

remainder terms R(h z) for n , j {1,. ., m}. Let { 1,. , 6}. S S+ is a
sector of the form S(z,, fl). We begin by considering the functions h defined by

fr () d, i,j{1 m}, {1,...(2.38) ho(z)=2 (-z 6},

where y is a half line inSS+ from z to and is defined by (2.17).
PROPOSITION 2.2. Let i,j {1,. ., m}, {1,..., 6}. e function h defined by

(2.38) is analytic in S S+I and represented asymptotically by

,=o 2i
’() d z

as z in S S+I. Moreover, for every S’ S S+I there exist positive constants

As, and Cs, such that, for all n

Cs,A,n ifd 0,
(2.39) sup IzR,(h; z)l

zS’ [ Cs,A,(n/log n)" if dij O.

Proof The first two statements follow immediately from Proposition 1.1 and the
propenies of . Now let S’ S S+. We can choose a sector S" S S+, of the
form S"= S({, &,) such that S’ $". Let be a half line in S" from { to and

2i if(if- z)

As h-h is holomorphic at, it is obviously sufficient to prove (2.39) for h o instead
of h. Using (2.18), (2.23), and (2.32) and noting that, due to (2.16), (2.36), and (2.37),
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540 . K. MMNK

f is bounded on S", we conclude that there exist positive numbers As,, and Cs,, such
that, for all n t,

Cs,,A,,nV if d0. 0,
sup lz,q o( z)l <=
zS,, [ Cs,,a,,(n/(log n))" if do O.

The result now follows by application of Proposition 1.1.
THZORZM 2.3 (cf. also [7]). Let j {1,. , m},

there exist positive constants As, and Cs, such that

suplz"R,(h; z)[< G,a,n, n
zS’

Moreover, if the numbers c defined by (2.14) vanish for all { 1,. ., m} such that
do 0 and all { 1, , 6}, then there exist positive constants Cs, and As, such that

s’ log n

Proo Using (2.11), (2.12), and the definitions (2.17) and (2.38), and applying
Proposition 1.2, we conclude that there exists a function h, holomorphic at m, such that

h(z) h(z)+ 2 h(z)+ h"(zo e)
i=1 =1 =

Thus the statements ofthe theorem are seen to be an immediate corollary of Proposition
2.2.

To conclude this section we shall apply the above results to the second-order
difference equation

{(z++( + +l(+ -{( ++(++(++t( + +( 0,

where , , % e C, e C* (this is a paicular case ofthe class of equations considered
in [1]). This equation possesses two formal solutions fi and fi of the form

(z) (z)z-- exp {-2z log z + (2+ log )z},

hz-with =1 j=l 2. Thuswehavewhere h (z) 2 =o o

p=2-=-Ol, d=2=-d, =-(2+log)=-.

Assumption (2.4) is equivalent to

arg 0 mod 2.
We shall choose arg (0, 2). With (2.5) it follows that n n 0. Hence, by (2.9)
the following limits exist:

lim pl(Z) exp 2iz and lira
Imz-- Imz

From these and other considerations, based on the paicular form of the equation, it
can be deduced that the periodic functionsp,p,p and PI must be of the following
form:

c exp 2iz + (exp 2iy -exp 2i) exp 4iz,(.40 PI(z)
(1 exp 2i(z-a))(1-exp 2i(z-b))

(2.41) p(z) (1 +p(z))- exp 2i(-)- 1,
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(2.42)

pl(Z) --pzZ1(z)

-c21 + c2 exp 27ri(z- y)
1 + { c31 exp (-2-n-ia) exp (-2 crib) } exp 2 7riz + exp 2ri(y + 2z)’

where a and b denote the roots of the polynomial z+ az+/3, and 11, c1, and c3a
are defined by (2.14). From (2.7), (2.9), and (2.10) it is seen that c’a =0 for u {1, 2, 4, 5}
and c1 0 for v {3, 4, 5, 6}. According to Theorem 2.1 there exists a convergent power
series Y,=o h,z- such that

ft,,, h,,, + c311Mo,3,,(n)(1 + o(1)) + ClMo,,6,,(n)(1 + o(1))

(2.43) +ClM_z.,,(n+a-2y)(l+o(1)
+c,M_2,,,,(n+a-2y)(l+o(1)), noo.

From (2.40)-(2.42) we deduce, with (2.13) that n31 --n 6
1 1, nl -1, nl=0 and

hence, with (2.15), that
6 2,a-i, /xl 2 + log cr 27ri, /x 2+ logtl --L/ 11

Using (2.34), we find

"nMMo,v?,(n) (-1, o,,,(n) F(n)(-27ri)

As the dominating terms in (2.43) are the ones with coefficients c311 and c6 we conclude
that

h" 2. (27ri)2+1c311+ c611 -lim
--. (2n-1)!

12n+,(2rri) 2n+2CI- CI lim
(2n)!

If c1 0, then, by (2.41), PI -= exp 2ri(y or) 1 and, in view of (2.8), this implies
c161 =0 and y-a 7/. In that case (2.42) becomes

-c221 + c1 exp 27ri(z- a)pl(Z) --pzl(Z’)
(1 -exp 2"rri(z- a))(1 -exp 27ri(z- b))

(where we have used the identity a + b =-a), and the coefficient c1, v {1, 2}, of the
dominating term in (2.43) may be determined from the asymptotic behavior of/1, for

On the other hand, if c311 # 0, then the coefficients c21 and c2 cannot be determined
by this method.
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