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ON THE ASYMPTOTIC BEHAVIOR OF THE COEFFICIENTS OF
ASYMPTOTIC POWER SERIES AND ITS RELEVANCE
TO STOKES PHENOMENA#*

G. K. IMMINKTY

Abstract. This paper discusses the relevance of the asymptotic behavior of the coefficients of asymptotic
power series for the study of Stokes phenomena. By way of illustration a connection problem is considered
in the theory of linear difference equations.

Key words. asymptotic expansion, isomorphism of Malgrange, Cauchy-Heine transform, saddle-point
method, Stokes phenomenon, linear analytic functional equation, difference equation

AMS(MOS) subject classifications. 30E15, 39

Introduction. In this paper we extend and apply ideas of Malgrange [10] and
Ramis [12] concerning the connection between Stokes phenomena, in a wider sense,
and formal power series. We start with an illustrative example.

Let y be an analytic function on the Riemann surface of log z, with the following
properties.

(i) y admits an asymptotic expansion of the form ¥ _  y,z " as z>c0 in the
sector S: —7/2<argz<5w/2.

(ii) y(z)—y(ze*™y=ce? ceC*.

The second property implies that the asymptotic behavior of y changes abruptly as
arg z becomes larger than 57/2 or less than —#/2. Such a change in asymptotic
behavior will be called a Stokes phenomenon.

Now consider the function h defined by

1 (s o) e'—t
h(z)=— dt, O<argz<2m.

2mi )y t—z

h is a Cauchy-Heine transform of e * (cf. [12]). By deformation of the path of
integration it may be continued analytically to the Riemann surface of log z. With the
aid of residue calculus we readily verify that

(0.1) h(z)—h(ze™)=e""
Moreover, h admits the asymptotic expansion ¥_, h,z " as z-> 0, z€ S, where
(0.2) h,= —ﬁ Lw e 't" ' dt, neN.
From (ii) and (0.1) we conclude that
y(ze*™)y—ch(z e*™) = y(z) - ch(z).

Thus it turns out that y — ch is a single-valued analytic function, admitting an asymptotic
expansion of the form ¥ _ a,z”" as z-> 0, z€ S, where

(0.3) a,=y,—ch,.

* Received by the editors January 19, 1989; accepted for publication (in revised form) February 14, 1990.
1 University of Groningen, Institute of Econometrics, P.O. Box 800, 9700AV, Groningen, the Nether-
lands.
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This implies that y—ch is holomorphic at c« and, consequently, ¥ _,a,z " is a
convergent power series. From (0.2) and (0.3) it now follows that

. Yn
c= 21713132)(’1_1)!.
Apparently, the constant c¢, which plays a central role in the Stokes phenomenon
occurring in this example, is intimately related to the asymptotic behavior of the
coefficients y,. It is this relationship that forms the subject of this paper.

We shall consider the following situation. Suppose we are given a number of
sectors S,, ve{l1,---, N}, which cover a neighborhood of c and a corresponding
number of functions y, with the following properties: y, is analyticin S, and represented
asymptotically by a series of the form Zf:o v,z " (independent of v) as z> 0, z€ S,,
ve{l, -, N}. Moreover, assume that

(04) yv+1(z)—yv(z) = Z C;/(P;(Z), AS Svn Su+1, V€{1> T, N}a
j=1

where Sy, =€>"S,, yn+1(z) =y,(ze7>™), ¢/ € C, and the ¢} belong to a certain class
of analytic functions. We shall establish a relation between the complex numbers c;
and the asymptotic behavior of j, for n—co. In some applications this relation may
be exploited to “compute” at least part of the numbers c; from the coefficients j, (cf.
[9] and Remark 2 herein).

If the y, represent (sectorial models of) a resurgent function, our results could
be derived from the work of Ecalle (cf. [4]). For the present purpose, however, this
assumption is not needed and we shall establish the relation mentioned above in a
more direct manner.

The argument is essentially the same as the one we used in [9]. It is based on the
Propositions 1.1-1.3 herein. Proposition 1.1 concerns the properties of Cauchy-Heine
transforms of functions like the ¢ in (0.4). Proposition 1.2 enables us to construct,
from the Cauchy-Heine transforms of the ¢/, analytic functions H, with the same
properties as the y, and only differing from the y, by a convergent power series in
1/ z. The coefficients of the asymptotic expansion A of the H, are given by the expression

1 N m
-—— X X c,«”J (" dr, Y < S,
Yv

27Tl v=1j=1

A,=

Under certain conditions, like those mentioned in Proposition 1.3, the saddle-point
method may be applied to the integral

J el ()" dt
Vv

to obtain its asymptotic behavior for n - cc. The main result is stated in Theorem 1.4.
In § 2 this result is applied to a connection problem in the theory of homogeneous
linear difference equations.

1. The general argument. Let C,, denote the Riemann surface of log z. Let z,€ C,
a, BeER, a <B. By S(a, B) we denote the sector

S(a, B)={zeC,: a<argz< B}
and by S(z,, a, 8) the set
(1.1) 8(zo, @, B) ={zeCx: a <arg (z—2z0) <P, |2| > |z|}.

This will also be called a sector.



Downloaded 12/18/18 to 129.125.148.19. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

526 G. K. IMMINK

If S is a sector of the form S = S(z,, @, 8), then S will denote the sector S(z,, ,
B+2m).
Let S=S(zy, o, B), S'= S(z,, a', B’) with a <a'<B’'<B. We shall write

S'e€S

whenever z,€ S and S'< S(z,, ', B').

Let ﬁ=2:°:0 h,z”" be a formal power series in z~', S a sector of the type (1.1),
and h a function on S. We say that h is represented asymptotically by h as z-> in
S, and write

h(z)~ Y, h,z™", z->0in S
n=0

if, for every S'€ S and every N €N,
N-1

Ry(h;2)=h(z)— ¥ h,z "=0(z""), z>00, zel§'
n=0

Any function ¢ which is analytic in a sector § and represented asymptotically by
zero (i.e., the series with coefficients equal to zero) as z- o in S, may be written as
the difference of two determinations of its Cauchy-Heine transform. The following
proposition, due to Ramis, is concerned with the asymptotic properties of this Cauchy-
Heine transform.

ProrosiTioN 1.1 (cf. [12, Prop. 4.2]). Let « and B be real numbers such that a < B,
z0€ S(a, B), and let ¢ be an analytic function on S= S(z,, a, B). Suppose there exist
positive numbers M,,, n €N, such that

(1.2) sup |z"¢(z)| < M,, neN.

zeS

Then the function h defined by

z e()
h(z)=—} ————d S(z0,0,0+2
(Z) 21” Jy {(g_z) ga VAS (ZO, > 77)9
where vy is a half line in S from z, to c© with direction ®, has the following properties:
(i) h can be continued analytically to S,
(ii) h(z)—h(ze*™)=¢(z) forall z€ S,
(iii) h is represented asymptotically by

® 1
5 o] et ar)
n=0 i y

as z-> X in S. Moreover, for every S' € S there exists a positive constant Cg such that

sup |z"R,(h; 2)| = Cs M, 1, neN.
ze§’

Proof. Let us suppose that S is a convex set, i.e., B—w/2<argzo<a-+w/2. In
that case every half line from z, to c© with direction @€ (a, 8) lies in S. If y has
direction @, h is obviously analytic in S(z,, ®, ®+27). The analytic continuation to
S is obtained by varying ©. Part (ii) follows immediately from Cauchy’s theorem.

Now let §'=5(z,,a’, B')€S. Then there is a number €< (0, 7/2) such that
ate<arg(z—zo)<B+2m—e forall ze S'. Let ze S’ and choose @ € (a, B) in such
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a way that @+ ¢ <arg (z —zy) <O +2x —e. Let yo be the half line from z, to c© with
direction ©. For all { € yg the following inequality holds:

Zo .
sin &.

1

(1.3) [{—z|> |z =z sine>|z|<1—

It is easily seen that

Zan(h;Z)ZE%J M{"_l dg, neN.

Yo {—z

With (1.2) and (1.3) it follows that

1 - d
|z"R,.(h;z)|<—.< - @) J | M.
24rsin e Z ve 1 {
Hence
-1
d.
Sup!ann(h;Z)|<——__ ( - ‘Z"O ) sup J —g Mn+1
ses' 27 sin e Zy Oc(a,) Jyo | £

and this proves (iii).

If S is not convex the above argument must be adapted in an obvious manner.

ProrosiTioN 1.2 (cf. [10], {12]). Let NeN. Let a,, B,, ve{l,---, N}, be real
numbers such that a,=a, <B, =B, If v<N and an=ayn=a, 27 <By=
Bui1=PB+2m. Let z,€ S(a,4,,8,) and S" =8(z,, @, 41, B,), v=1,-- -, N.

Suppose that, for every ve{l,: -+, N}, we are given an analytic function ¢, on S*
with the property that ¢,(z)~0 as z—»> in S”. Let

z ¢.({)
h, Z)=—,J- ———d{, z€8(z,,0,,0,+27), ve{l,---, N},
=5 ) 2G5 ( ) ved )
where v, is a half line in S” from z, to °© with direction ®, and let

1 N

H ()= Y h(2)+ ¥ h.(ze®™) ifve{2, -+, N},

7 =v

H(2)= % h(ze™)  and Hya()= 3 h(2)

pw=1

The functions H, have the following properties:

(i) Foreveryve{l,---, N+1}thereexistsaz,e S(a,, B,) suchthat iy, =%, e*™
and H, is analyticon S,=S(zZ,, o, B,).
(ii) HV+1(Z) _HV(Z) = QD,,(Z) for all ze SV m Sv+1’ ve {13 T, N}, and HN+1(Z) =

H(ze™®™) for all ze &*™S,.
(iii) H, admits an asymptotic power series expansion H independent of v, as z > ©
insS,.

Moreover, if I;I,,, v=1,---, N+1, are functions with the same properties, then there
exists a function h, holomorphic at %, such that
H,—H,=h forallve{l,---, N}

Proof. From Proposition 1.1(i) we deduce that H, is analytic in

v—1 N
N S(z,, @ys1, B +27) N S(z,, 0, 2m, B,) ifre{2,---, N},
1

n= n=v
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S(z., a1 —2m, B,) ifr=1,

1

iDz

and in
N
N S(z., aye1, B +2m) ifr=N+1,
m=1

and this set contains a sector of the form S(Z,, a,, 8,) for a suitable choice of Z,. Part
(ii) follows immediately from Proposition 1.1(ii) by observing that

H,.\(2)-H/z)=h,(z)-h,(ze*™) forallve{l,---, N}

Furthermore, Proposition 1.1(iii) implies that H,(z) ~ ZZO:O H,z ", as z-»>in S,, where

1 N
(1.4) H,= —2—. z J ¢, (0)¢" 1 df,  neN.
Tl y=1 Y

Now suppose that H,, v= , N+1, are functions with the properties (i)-(iii)
mentioned in Proposmon 1. 2 Then there exist z, € S(a,, B,) such that both H, and
H, are analytic on S, =8z, a,, B.) and we have

H,.(z)-A,(2)=H,.(2)-H,(z), ze§N8,.,, ve{l,---,N}
and
Hy(z2)—H((ze )= Hy(2)—Hy(ze ™),  zeSnis.
It follows that
H,,,—-H,,,=H,—H, forallve{l,---, N}
and, moreover,
Hy1(2) = Hyoa(2) = Hy(z e 2™) — Hy(z e 7).

Hence the function h = H, — H, can be continued analytically to a reduced neighbor-
hood of co. Furthermore, property (iii) implies that h admits an asymptotic power
series expansion in z™' as z-> o0 in a neighborhood of o and, consequently, h is
analytic in a full neighborhood of co.

The next proposition concerns the asymptotic behavior of integrals of the type

J e(z)z" dz,

where vy is a half line and ¢ is an analytic function with the property that ¢(z)~0 as
z— o0 in some sector S containing y. The conditions (iii)-(v) below are purely technical
and have been chosen in such a way that the result follows by a straightforward
application of the saddle-point method. They might be relaxed or replaced by other
conditions. We have merely tried to define a class of functions for which this method
works.

ProrosiTiON 1.3 (cf. [2, Thm. 7, Remark 6]). Let o and B be real numbers such
that o < B, zo€ S(a, B), and let  be an analytic function on S = S(z,, a, B) with the
property that

(i) expy{z)~0asz-»>o0 in S.

Let g: SxN-C be defined by

g(z,n)=y(z)+nlogz
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Suppose there exists noeN such that for all n = n, the following conditions hold:

(ii) The equation 3g/3z =0 has a solution s, € S such that the half line v, from z,
to oo through s, is contained in S. Moreover, s, > 0 as n- 0.

(iii) There exists a number O € (0, w/2) such that

,0°g

arg—s2 — Py (s.,n)[=06

and, furthermore, s%(3°g/3z%)(s,, ) >0 as n >,
(iv) There exist positive numbers &, and K such that

=K

a3g( n){ azg(z n)}~

l:f 'Z _S,,! < 80|S,,I-

(v) Let a,=arg(s,—zo) —args,. There exists a positive number &,, a function
n::(0, &,) >N, a bounded function g,:(0, &) x(—1,0)> R, and a function g,:(0, £,) X
(0, 0) > R such that, for all € € (0, €,), exp g:(¢, *) € £(0, ), and, for all n=n,(¢),

Re {g(s,(1+ 7€), n)—g(s,(1~ge™), n)} = gi(e, 7)
if e (—|1—zo/s,|, —£), whereas
Re {g(s,(1+ 7€), n)— g(s,(1+ & e™™), n)} = ga(e, 7)

if 7€ (g, 00).

Furthermore, let f be a bounded analytic function on S and suppose there exists a
positive number & such that

(vi) SUDze1, (o) |f(z)—1->0 if n>00, where I,(e) denotes the segment between
sn(1—¢ € and s5,(1+ € ™).

Let

@(z) =f(z) exp ¥(2),

and

1
J,,=—-—'J’ ¢(z)z"dz
2@ J,

where vy is a half line in S from z, to . Then we have

J,=12 28—25 o
= wsnazz(sn,n) Sn €Xp g(s,, n)(1+0(1)), n->co,

where arg {s2(6°g/8z%)(s,, n)} V* e (—, 0).

Proof. We shall closely follow the proof of Theorem 7 in [2]. Let n= ny. Due to
(i), (ii) and the properties of f, we may replace y by v,. Let £ >0. We begin by
considering the integrand on the segment I,(g). We put

( n)-— (sn, n)

.

n

= h(z).

From (iv) we deduce that

a2g

h(z)= K |23 (., 1)

2] exf w0l
=Y A
{ on ({){
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provided |z —s,| < &o|s,|. With the aid of Gronwall’s generalized inequality (cf. [5,
p- 36]) we find

8g(

h(z)<K poe

sn, n)

n

where K is a positive constant, provided |z — s,| < &|s,|. Hence it follows that, for all
g€ (01 EO)’

(1.5) —(z n)= (z—-s,,) 2(s,,,n)(1+eO(1)) n-» o

(1.6) g(z,n)—g(sn,n)“—(z—sn)2 2(sn,n)(1+80(1)) n- o,

uniformly on I,(g). Here O(1) is uniformly bounded in &.
We introduce a new variable w by means of

(1.7) W =g(s,, n)—g(s,(1+7e™),n), |r[=e
Due to (1.6) we have

2 2 2ia, 2828
w?=—1° e*%s, aZz(s,1,n)(1+.90(1))

and we remove the ambiguity in the definition of w by demanding that

A azg 1/2
(1.8) w=¢e'°‘"(—si5—2(sn, n)) (1+£0(1)),
z
where the square root has its principal value. Equations (1.7) and (1.5) imply that
d og ; o O
w—w-— —5, e (s,,(l +r1e ), n)=—s%i7e’n g(s,,, n)(1+e0(1)).
dr 3z
Consequently,
d 62 1/2
(1.9) —w=e (—si—%(s,,, n)) (1+0(1)).
dr 0z

Let w. correspond to 7= =*¢. From (1.8) it follows that

2 1/2
(1.10) w.=x¢ ei“"(—sﬁg;%(sn,n)> (1+e0(1)).

From (1.7), (1.9), (1.10), and condition (vi) of Proposition 1.3 we deduce that

s, (1+ee*n)
J ¢(z)z" dz

sp(1—ge'®n)

) w, ) d -1
=5, e exp g(s,, n)J e ™ “(%) dw(1+o0(1))
w_ T

azg -1/2 w, )
= (—-sf, pye (Sn, n)) s, exp g(s,, n) J e 2 dw(1+0(1))(1+£0(1)).

Using (1.10) and condition (iii) and noting that lim, .., @, =0, we conclude that, for
every € >0,

n—->oo

lim J’ e dw =27,
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Hence
1 s,(1+eei®n) ( 82g )1/2
— "dz=|2msi—=(s,, n S,
2 J's,,(l—sei“") ‘P(Z)Z z T (922( )
- (exp g(s,, n)(1+0(1))(1+£0(1)),

where arg {s2(6°g/9z%)(s,, n)} V*e (~m, 0).
Next we consider the integral

J::(e)=J'oO - e(2)z"dz

s, (1+ee'n)

From (1.7), condition (v), and the properties of f we deduce that, for n= n,(¢),

[J(e)l=C

I exp ga(e, 7) d7

£

1
S €Xp {g(sn, n)— Wi}

B

1
S €Xp {g(sn, )= Wi}

where C and C, are positive constants. In view of (1.10) and condition (iii) this implies
that

&g -1/2
JI(E)=<S31§(S", n)) S» exp g(s., n)o(1),  n->©

and the same property holds for the integral over the segment between z, and s,(1—
e e"»). Combining the above estimates we find

82 -1/2
Jn=<2wsf,5—§(s,,,n)> s, exp g(s,, n)(1+0(1))(1+0(1)), n- oo,
z

Since this is true for every sufficiently small ¢ the result follows.

THEOREM 1.4, Let NeN. Let a,, B,, ve{l,: -, N}, be real numbers such that
a,Sa, 1 <B, =B, nifv<Nanday=ay =a;F20<BN=Bn=B1+2m Let Z, ¢
S(a,,B,) and S,=S(Z,,a,,B,), v=1,---, N, Sy.1=€>"S,. Suppose that, for each
ve{l, -, N}, we are given an analytic function y, on S,, admitting an asymptotic
expansion Y., _, 9,z " as z—> in S,, independent of v. Let

yn+1(2) = pi(z e ™), Z2€ SN+15
and
¢v(z)=yv+l(z)_yv(z)s ZESVﬂS,,+1, Ve{lal'.’N}'

Suppose that for every ve{l,---, N} there exists a sector $* < S,NS,.,, a positive
integer m(v), and, for every je{l,---,m(v)}, analytic functions ¢; and f; on S”,
satisfying the conditions of Proposition 1.3, and a complex number c| such that

m(v

) ~
e.(z)= -21 ¢ fi(z)expyj(z), zeS"
j=

Let g}(z,n)=y/(z)+nlog z, let s’ denote its saddle point, and let

aZgy ) —1/2 ) )
Zz’ (s, n)} sy exp g, (sw’, n),

Mj(n)= {ZW(SZ”‘)2 3

je{l, .-, m(v)}, ve{l,---, N},
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where arg {(s;/)*(6%g}/3z°)(sy’, n)} V? & (—m, 0). Then there exists a convergent power
series Y _, h,z™" such that
N m(v)
(1.11) $o=h,— Y Y {Mj(n—-1)(1+0(1))}, n-co
p=1 j=1
Proof. There exists z,€ S,(18S,., such that §,MNS,,, contains the sector S =
S(z,, @,11,B,). As y, and y,,, admit the same asymptotic expansion, it follows that

GDV(Z):J’VH(Z)‘)"V(Z)"’O asz—-)OOinSV, V€{19”'3N}'

Obviously, the functions y, possess the properties (i)-(iii) mentioned in Proposition 1.2.

According to Proposition 1.2 there exists a function h, holomorphic at ©, such
that y,=h+H, forall ve{1,---, N}. Let 210 h,z"" be the power series expansion
of h. With (1.4) we find

N1
ﬁn=hn_ Z . (pv(z)zn_l dz
r=1 2’Trl YV

N m(v) C}’

:hn_z Z

v=1 j=1 27Tl

J f1(z) exp ¢} (2)z" " dz, neN,
Yv

where 7, is a half line $*, ve{l,---, N}.

The proof is completed by application of Proposition 1.3 to each term of the sum
in the right-hand side of the above identity.

Remark 1. If the y, as well as the functions f exp ¢; are solutions of some
homogeneous linear functional equation, the numbers c¢; play a role similar to the
Stokes multipliers in the theory of linear differential equations.

Remark 2. If one of the functions M} in (1.11) dominates the rest for n— oo, the
corresponding coefficient ¢; may be determined from the asymptotic behavior of j,.

Remark 3. Propositions 1.1 and 1.2 may also be used to obtain estimates of the
growth of the remainder terms R,(y,; z) as n-co. This will be illustrated by the
application to linear difference equations in the next section.

Example. The nonlinear differential equation
(1.12) gz:-a—z+y+%y3, a,beC*

dz z z
possesses three formal solutions of the form Zf:vl ¥,z ". The coefficients 7, can be
determined from the recursive relations

“2prat(n+4)fptb T FuImPm =0, nz=-1,

(1.13) et
GaP=-3,  Fo=—35n
and
Fuizt (Mt D)o +d ¥ IuImfm=0, n=zl,
(1.14) it matmn

A

J1=Po=71=0, }72=—a.

Let y denote one of the formal solutions and let S be a sector of aperture less than
. It is a well-known fact that there exists a solution of (1.12), analytic in S and
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represented asymptotically by 7 as z - 00 in S, uniformly on S (cf. [13]). Suppose that
y1 and y, are two solutions with these properties. Obviously,

d b
(1.15) :i"z'(%_h)=y1—J’2+;3(Y%"'ylyz'*‘yg)(h“y’z)-
Let =Y. __, $.z~" and suppose the coefficients j, satisfy (1.13). Then we have
3
(1.16) Yitywetyi=—1 (2 =2)+h(2),

where h is a bounded analytic function on S, admitting an asymptotic expansion as
z-> o0 in S. Inserting (1.16) into (1.15) we obtain

d 3 b
?d—; i=y2)= {_2+;+? h(Z)} (31—y2)
and this implies that
yl—y2=ce"2zz3(1+0(1)) z->©in S,
z

where ¢ is a complex number. Hence it follows that (1.12} has a unique solution y~,
analytic in a left half plane and represented asymptotically by the series ¥ _, 5,z "
as z->0o0 in this half plane. Moreover, it is easily seen that y~ may be continued
analytically to a sector of the form S(z,, —3#7/2,37/2), with z, € C, without a change
in asymptotic behavior.

Furthermore, we have
. 1
y (z)—y (ze*™)=c~ eﬁzzz3<1+0<—)>, ¢ eC,
z

asz=>o0in S(=37/2+e, —mw/2—¢) for any € € (0, w/2). Applying Theorem 1.4 we find

n+3 A—
n

c = —27Ti’}1_)1'g(n+2)!.

In a similar manner it is shown that (1.12) possesses a unique solution y* analytic
in S(z,,—m/2,57/2) for some z,€ C,, and represented asymptotically by the series
¥ F%z™" determined by (1.14), as z-> 0 in this sector. Moreover, it turns out that

) 1
y(z)—y (ze?™)=¢" ez(1+0<->>, c"eC,
z
as z=> o0 in S(—m/2+¢, w/2—¢) for any ¢ € (0, 7/2). Application of Theorem 1.4 now
yields the relation

. (_l)n—l}‘)\*—
¢ =2qi lim —————==,
e (n—1)1

2. An application to linear difference equations. We consider the mth-order
homogeneous linear difference equation

(2.1) 2 a(z)y(z+j)=0,
j=0
where a,eC{z7'}, j=1,- -, m (or, equivalently, a system of m first-order difference

equations). The “generic” case is when the characteristic equation of (2.1) has m
distinct roots. This case has been treated in [8]. Here we shall deal with a more singular
class of equations.
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Under certain conditions, (2.1) possesses m linearly independent formal solutions
of the form

(2.2) P(z)=hi(z)z" exp (dzlog z+uz), j=1,-+-,m,
where hj(z) =Y_, h,z™" with k=1, p;eC, d;€Q and g, C for all je{l,- -, m}
(cf. [3], [11]).
We put
Pi— Pj = Py di—dj=dij’ and  u;—uy = uy, Lje{l,---,m}

and we assume that, for all i, je{1,-- -, m} such that i #j and d; =0,

(2.3) Re p; # 0.
For merely technical reasons we further assume that
(2.4) Im u; £{0, —dyw}mod 27 ifi##j, ije{l,---,m}

but this condition can easily be removed. For all i, je{1,- -+, m} such that i #j we
shall denote by n; the integer determined by

0<Im py;+2n;m <27 ifd; =0,
(2:3) 0<Im py+(2ny+dy)m<2w ifd;>0.
Let S,,- - -, S; be sectors of the following form:
S,=8S(Re™? —7.0), S,=e""?S,, S;=8,=¢"8,,
Ss=e'7PS, and S¢=S,=€"$,,

where R>0. If R is chosen sufficiently large, equation (2.1) possesses, for each
jef{l, -+, m} and ve{1,3,4,6,7}, a unique solution y;, represented asymptotically
by #; as z -0, uniformly on

-1 . -1
(V3 —1)7'r+6<arg(z—Re(”/3_5/6)’")§£—3—7r ifve{l1,4,7},
(2.6)
(§—1>w§arg(z—Re(”/3*1/2>"")<§7r—3 if ve {3, 6}

for every € (0, w/2) (cf. [6, Thm. 2.4.5}; note that this is a stronger statement than
y;~7¥; as z>0 in S,). Moreover, we have

(2.7) yi-yi=pwi,  ¥i-yi=p5yi,
where p; and p}, are periodic functions of period 1 with the property that
(2.8) lim pi(2) = lim pS(z)=0, je{1,---,m}

Furthermore, for each je {1, - -, m}, equation (2.1) possesses a unique solution yf,
analytic in S, and represented asymptotically by # as z-c0 in S,, such that

Vi=yi=L pivis  ¥im¥i= L Piyi,
where p); and p?j are periodic functions of period 1 with the following properties:
pi=p;=0 ifd;>00rd;=0and Re u;=0,

(2.9) limlmz_,_oop,!j(z) exp {—2(n; — 1) wiz} and limy,, , .o p,2-j(z) exp {—2nymriz}
existforall i,je{1, - -, m}such thati#j.
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Similarly, for each je {1, - - -, m}, there exists a unique solution yf , analytic in Ss and
represented asymptotically by §; as z—> 00 in S, such that

5

yi—yi= é Pyvi,  yi-yi= é Py,
where p} and p?j are periodic functions of period 1 with the following properties:
pi=p;=0 ifd;<0ord;=0andRe u;=0,
(2.10) lim jp,.0 pi(z) exp {—2nymiz} and limy,, . . — p3(z) exp {—2(n; — 1) iz}
existforall i, je{1,-- -, m}suchthati#}j.
Now let
hj(z)=yj(z)z P exp (—dzlogz—p;z), je{l,---,m}, ve{l,---,7}L

Obviously, h} is represented asymptotically by i;, asz-»ooin S, forall je{l, -, m}
and all ve {1, ---,7}. Moreover, if v€{1, 3, 4, 6, 7}, the asymptotic expansion is uni-
formly valid on (2.6) for every 6 € (0, w/2). The uniqueness of h; implies that

(2.11) hj(z)=h}(ze™™) forallje{l,---, m}.

Furthermore, we have, for all je{1,:---,m}and ve{l, - -, 6},
(2.12) h*™ (2)—h}(z)= Y pi(z)h](z)z" exp (dyz log z + pu;z).
i=1

For all i, je{l,---,m} and all ve{l,---,6} we define an integer n; and complex
numbers c;; and u; as follows:

(2.13)
.
max {n eZ: . lim pi(z) exp (—2nriz) exists} ifve{2,3,4}and p;;#0,
my={ . . ny
i = 9 min {n €Z: : lim pi(z) exp (—2nmiz) ex1sts} ifre{l,5,6}and p;;#0,
kO otherwise,
0 ifp;=0,
e T
limyp 000 pi{2) €xp (—2njwiz)  otherwise,
(2.15) My = i +2ng iz,

Furthermore, we define analytic functions f; and ¢}; by

0 ifc;=0
2.16 i(z) = PN i
( ) fJ(Z) {(C;)—-lp:;(z) exp (—2n:;77-lz)h:/(z) otheI'WISC,
(2.17) ei(z)=p;(z)h{(2)z% exp (dz log z+ u;z).
Obviously,

0i(z)=c;f;(2)z" exp (dyz log z+ pu;z),
i’je{l,...,m}’ Ve{lﬂll-’6}'

In order to check whether the conditions of Theorem 1.4 are satisfied, we will first
study the properties of the function g:SxN- C defined by

(2.18)

g(z,n)=dzlog z+puz=(n+p)log z,
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where deQ, ueC, peC, and S is one of the sectors S, N S, ,,, ve{l,---,6}. From
(2.18), (2.3), (2.7)-(2.10), and the definitions (2.13)-(2.15) we conclude that the
following cases need to be considered:
1. d=0, p=0, u=2mmi, meN, §=5,,

d=0,p=0, u=-2mmi, meN, S=S5,
d=0,Re u <0, Imu <0, S=5,NS,,
d=0,Re u<0, Imu>0,5=5,NS;,
d=0,Reu>0,Impu>0, S=S,NS;s,
d=0,Reu>0,Imu<0, S=S5;NS;,
d<0,Imu<0, S=5,N8,,
d<0,Imu>0,S=S,NS;,

9.d>0, Imu+dmr>0, S=5,NS8;s,

10. d>0, Im u+dm <0, S=55NS;.
In the first six cases, dg/dz =0 has a unique solution s, given by

Sl AN o o

+
(2.19) 5, =—22P
M
Hence
1
(2.20) arg s, = arg (———)(1+o(1)), n-» 00,
M
Furthermore, we have
¥'g w’ ¥'g
(2.21) ;(Sn,n)=—n+p, Sig(sn,n)="n—l),
a3g (92g -1
(2.22) 252—3- (z, n) {b—z—; (z,n)r =-2.

Let S'€S. In each of the cases 1-6 there exists a positive number 8 such that

8
cos (arg z+argu)<—— forallze S’

Il

This implies that, for all ze S’,
Re g(z, n)=-8|z|+(n+Re p)log|z|—Im p arg z.
Hence we easily deduce the existence of positive constants Ag and Cg such that

(2.23) sup |exp g(z, n)| < CgAsn".
ze§’
Now consider the cases 7-10. There d # 0 and the saddle point s, is a solution
of the equation

n+p

(2.24) Sn (log S, +£4 1) = 7

d

Let h be the inverse of the function z - z log z (cf. [9, Ex. IIT], [4, § 3.6]). It has the
following asymptotic behavior:

(2.25) h(z)=@(1+o(1)), 200,
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From (2.24) we deduce

+
s, =exp(-—§—1) h(—nd pexp (§+1>>
n+p n+p n ))}“
= — - __+ .
P {logh< 4 exp(d 1

With (2.25) it follows that

(2.26)

(2.27) 5, = (1+o(1)) n-> o,

d log
Equating the imaginary parts on both sides of (2.24), we get

Re 1 Im
Im s, (log Isn|+——dﬁ+1) +Re s, (arg Sy +%> =Tp'

With (2.27) we find

I
Im sn=~é(—lor;—n?<argsn+%>(l+o(l)), n- oo,

Hence

2(1 )zlm#(1+0(1)), n>o ifd<0,
(2.28) Ims, = h
m(lmu+dw)(1+o(1)), n->o ifd>0.

Furthermore, we have

o’g d n+p d? n+p 7
(2.29) g(s,,,n)=—s———2=—n logh| — 4 exp E+1 (1+0(1)), n>

and hence
o’g
(2.30) sf,a—z—i(s,,,n)=~n(1+o(1)), n- o,

We easily verify that

2(n+p)—dz

(2.31) z—~g(z n){ )}_ =— n+p—dz

and the expression on the right-hand side is obviously uniformly bounded on the half
plane —d Re z> 0 and thus on S, provided n = ny, where n, is some sufficiently large
number.

Let S'€ S. In each of the cases considered this implies the existence of a positive
number 8 such that

dcosargz<—& forallze S’
Let 0 <e < 8. Then there exists a positive constant C such that

lexp g(z, n)| < C exp (~¢lz|log|z])|z[",  ze§".
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The expression to the right of the inequality sign attains its maximum as |z} = h(ne/e)/ e
and the maximum value is equal to

o (ane ()

In view of (2.25) it follows that there exist positive constants Ag and Cg such that

(2.32) sup |exp g(z, n)I<CsrA§r< " ) .
ze§' logn

With the aid of (2.19), (2.21), (2.26), and (2.29) we can derive an explicit expression
for the function M :N- C given by

—-1/2

(92
(2.33) M(n)=(27TSia~§(sn, n)) $n €Xp 8(8n, 1),

where arg (s2(3°g/9z%)(sn, 1)) ?e (=, 0), in each of the cases considered above.
With (2.30) we find

+ n+p+1
{—27r(n+p)}_l/2exp(—-n—p)(%) ifd=0,

M(n)= n+p

dx(n)
where y(n)=log h((n+p)/d exp (n/d+1)). Let us define a function M,, :C-C by
(2.34)
—2mwiM,,.(s)

D(s)(—p)* ifd=0,

s S exp (& B
v e {orzon a4 et (Cree (1))

(—2mn)~V? exp{(n+p))((n)'1—1}< >n+p+1(1+ 0(1)), n->00,ifd#0,

ifd#0.
Using Stirling’s formula and the properties of the function h, we readily verify that
(2.35) —M(n—-1)=M,,(n+p)(1+0(1)), n-» 00,
Now let ve{l,---,6},%,€58,NS,.;,and let S be a sector of the following form:

. v 5 v—1
v=8(z,(--2)7+8,— ) i
S S(z,,, (3 6) 7+ 8, 3 71') if vell,4},

o -2 1
§* = (z . (%’—g) ﬂ> if ve{2,s),

S~"=S(Z~,,, (§—1>7r+8,§7r—5> if ve {3, 6},

where 8 € (0, 7/2). Let i, je{1,- - -, m} such that ¢} # 0, and let
gi(z,n)=dzlog z+puyz+(n+p;) log z, zeS”, neN.

From (2.19)-(2.22) and (2.27)-(2.31) we deduce that conditions (ii)-(iv) of Proposition
1.3 are satisfied, provided 8 is chosen sufficiently small. We readily verify that condition
(v) holds as well (with z,=12z,).
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Next, we consider the function f; defined by (2.16). The asymptotic properties
of h; imply that

(2.36) lim h;(z)=1 uniformly on s,

Furthermore, from (2.14) and the fact that p}; is analytic on either a lower or an upper
half plane it follows that

(2.37) |pi(2) exp (=2njmiz) — cj| = K exp (—27|Im z|), ze S,

where K is a positive constant. From (2.36) and (2.37) it is obvious that f}; is bounded
on S”. Moreover, with the aid of (2.20) it is easily seen that, in the case that d; =0,
fi satisfies condition (vi) of Proposition 1.3. Now suppose that ve{1,2,4,5} and
d; #0. Formulas (2.4) and (2.28) imply that |Im s,| >0 as n—> oo, where s, denotes
the saddle point of gj(z, n). With (2.36) and (2.37) it follows that, also in this case,
condition (vi) of Proposition 1.3 is fulfilled.

Apparently, all conditions of Theorem 1.4 are satisfied. Applying this theorem
and using (2.33) and (2.35), we obtain the following result.

THEOREM 2.1. For each je{l,:--, 6 m} there exists a convergent power series
3% o hnz™" such that

n=0 "Jyn

N m 6
hjnzhjn+ Z 2 c;{Md,],;L,’]'(n+pq)(1+0(1))}’ n_)wa
i=1wv=1
where cj; and My, ,.» are defined by (2.14) and (2.34), respectively.

With the aid of Propositions 1.1 and 1.2 we are able to estimate the growth of the
remainder terms R, (h;; z) for n>c0, je{l,- -, m}. Let ve{l,---,6}. S, NS, is a
sector of the form S(z,, a,, B,). We begin by considering the functions hj; defined by
z ¢i({)
(2.38) hiz)=r—| 7=

Y 2mi J,, {({—2)
where v is a half line in S, N S, from z, to © and ¢ is defined by (2.17).

ProposiTiON 2.2. Leti, je{l, -, m}, ve{l, -, 6}. The function hj; defined by

(2.38) is analytic in S, N S, ., and represented asymptotically by

© 1
X (j e dl)z_"
n=0 ml YV

as z—->© in S,NS,.,. Moreover, for every S'€ S, S,, there exist positive constants
Ag and Cg such that, for all neN,

d, ije{l,---,m}, ve{l,---,6}

CsAln! if d; =0,

2.39 "Ra(his 2= '
(2.39) igglz (h3; 2)] {CS,Ag,(n/logn)" if d;; # 0.

Proof. The first two statements follow immediately from Proposition 1.1 and the
properties of ¢};. qu let S€S,NS,.;. We can choose a sector S"€ S, S, of the
form S$"= S(Z,, &,, B,) such that '€ §". Let ¥, be a half line in $” from Z, to o and

s 2 | _eild)
P = j -2 %

As h}— h i is holomorphic at oo, it is obviously sufficient to prove (2.39) for i ;; instead
of hj. Using (2.18), (2.23), and (2.32) and noting that, due to (2.16), (2.36), and (2.37),
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fi is bounded on S”, we conclude that there exist positive numbers Ag- and Cg- such
that, for all neN,

{CSHAgnn ! ifd; =0,
Cs:As(n/(logn))" ifd;+#0.
The result now follows by application of Proposition 1.1.

THEOREM 2.3 (cf. also [7]). Let je{l,---,m}, ve{l,---,6}. For every S'ES,
there exist positive constants Ag and Cg such that

sup [z"R, (k] ; z)| < CsAgn!, neN

ze S8’

sup |z j(z)| =
zeS"

Moreover, if the numbers c’; defined by (2.14) vanish for all ie~{1, e ,~m} such that
d; =0 and all we{l1,- - -, 6}, then there exist positive constants Cs and Ag such that

~ - n \"
sup |z"R,(h}; z)| < CS,A§,<10g n) .

ze S’

Proof. Using (2.11), (2.12), and the definitions (2.17) and (2.38), and applying
Proposition 1.2, we conclude that there exists a function h;, holomorphic at o, such that

hi(z) = h(z)+ gl {z: i)+ T hy(z ezm')}.

Thus the statements of the theorem are seen to be an immediate corollary of Proposition
2.2,

To conclude this section we shall apply the above results to the second-order
difference equation

{(z+2)+a(z+2)+B}y(z+2)—{(z+ 1)+ y(z+1)*+ y(z+ 1)+ 8}y(z+ 1)+ oy(2) =0,

where a, B, v, § € C, o € C* (this is a particular case of the class of equations considered
in [1]). This equation possesses two formal solutions 7, and j, of the form

P2 =h(2)27* 7,
$2(z2) = hy(2)z7" 2 exp {~2z log z+ (2+log o)z},
where fn\j(z) =2T=0 fn},,z‘" with ﬁjo= 1, j=1, 2. Thus we have
Pr2=2y—a=—py, dp=2=—dy, pp=—Q2+logo)=—uy.
Assumption (2.4) is equivalent to
arg o # 0 mod 2.

We shall choose arg o € (0, 27r). With (2.5) it follows that n,, = n,; = 0. Hence, by (2.9)
the following limits exist:

Ilim pa(z) exp 2miz and Ilim pa.(2).

From these and other considerations, based on the particular form of the equation, it
can be deduced that the periodic functions p3,, p3,, pi: and p$, must be of the following
form:

c3, exp 2mriz + (exp 2mriy — exp 21ria) exp 4 iz
(1—exp2wi{z—a))(1—exp2mwi(z—b))

(2.41) Phi(z) = (1+pii(2)) " exp 2mi(y—a) -1,

(2.40) ph(z) =
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(2.42)
pu(2)=—p3i(z)

—c3,+ch exp 2mi(z —y)

- 1+{c}, —exp (—2mia) —exp (—2mib)} exp 2wiz +exp 2mi(y+2z)’

where a and b denote the roots of the polynomial z>+az+ 8, and ¢3,, ¢3,, and c3,
are defined by (2.14). From (2.7), (2.9), and (2.10) it is seen that ¢}, =0for v € {1, 2, 4, 5}
and c5; =0for v {3, 4, 5, 6}. According to Theorem 2.1 there exists a convergent power
series Yo, h1,z”" such that

hin =it Mo 2, () (1+ 0(1) + ¢ Mo 5, (n)(1+ (1))

(2.43) +eh M, (nt+a—2y)(1+0(1)
+ M,z (n+a—-2y)(1+0(1)), n-> o,

From (2.40)-(2.42) we deduce, with (2.13), that n},=—n$, =1, n3,=—1, n3,=0 and
hence, with (2.15), that

ph=—p$ =27, wyn=2+logo—2mi, ud = 2+logo.
Using (2.34), we find

Mo 3,(n) = (=1)"My ¢, (n) =T (n)(—=2mi) """,

1

As the dominating terms in (2.43) are the ones with coefficients ¢}, and ¢$, we conclude
that

) ’; (2 2n+1
c§1+c§’1=—hm——————12(2( 1))‘ ,

n-co n—1)!
3 6 _ 1: h12n+1(27ri)2n+2
Cll—cll—llm——(‘znT—“

If ¢, =0, then, by (2.41), p$, = exp 2mi(y— a) —1 and, in view of (2.8), this implies
¢$,=0 and y—a €Z. In that case (2.42) becomes
—c5,+ ¢y exp 2mi(z—a)
(1—exp2wi(z—a))(1—exp 2mi(z—b))

pa(2)==pa(z)=

(where we have used the identity a + b = —a), and the coeflicient ¢3;, v {1, 2}, of the
dominating term in (2.43) may be determined from the asymptotic behavior of h,, for
n- oo,

On the other hand, if ¢}, # 0, then the coefficients ¢}, and ¢3, cannot be determined
by this method.
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