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Abstract
Banjac et al. (J Optim Theory Appl 183(2):490–519, 2019) recently showed that
the Douglas–Rachford algorithm provides certificates of infeasibility for a class of
convex optimization problems. In particular, they showed that the difference between
consecutive iterates generated by the algorithm converges to certificates of primal and
dual strong infeasibility. Their result was shown in a finite-dimensional Euclidean
setting and for a particular structure of the constraint set. In this paper, we extend the
result to real Hilbert spaces and a general nonempty closed convex set. Moreover, we
show that the proximal-point algorithm applied to the set of optimality conditions of
the problem generates similar infeasibility certificates.

Keywords Douglas–Rachford algorithm · Proximal-point algorithm · Convex
optimization · Infeasibility detection

Mathematics Subject Classification 49M27 · 65K10 · 90C25

1 Introduction

Due to its very good practical performance and ability to handle nonsmooth functions,
the Douglas–Rachford algorithm has attracted a lot of interest for solving convex opti-
mization problems. Provided that a problem is solvable and satisfies certain constraint
qualification, the algorithm converges to an optimal solution [1, Cor. 27.3]. If the
problem is infeasible, then some of its iterates diverge [2].

Results on the asymptotic behavior of the Douglas–Rachford algorithm for infea-
sible problems are very scarce, and most of them study some specific cases such as
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feasibility problems involving two convex sets that do not intersect [3–5]. Although
there have been some recent results studying a more general setting [6,7], they impose
some additional assumptions on feasibility of either the primal or the dual problem.
The authors in [8] consider a problem ofminimizing a convex quadratic function over a
particular constraint set, and show that the iterates of the Douglas–Rachford algorithm
generate an infeasibility certificate when the problem is primal and/or dual strongly
infeasible. A similar analysis was applied in [9] to show that the proximal-point algo-
rithm used for solving a convex quadratic program can also detect infeasibility.

The constraint set of the problem studied in [8] is represented in the form Ax ∈ C ,
where A is a real matrix and C the Cartesian product of a convex compact set and
a translated closed convex cone. This paper extends the result of [8] to real Hilbert
spaces and a general nonempty closed convex set C . Moreover, we show that a similar
analysis can be used to prove that the proximal-point algorithm for solving the same
class of problems generates similar infeasibility certificates.

The paper is organized as follows. We introduce some definitions and notation in
the remainder of Sect. 1, and the problem under consideration in Sect. 2. Section 3
presents some supporting results that are essential for generalizing the results in [8].
Finally, Sects. 4 and 5 analyze the asymptotic behavior of the Douglas–Rachford
and proximal-point algorithms, respectively, and show that they provide infeasibility
certificates for the considered problem.

1.1 Notation

Let H, H1, H2 be real Hilbert spaces with inner products 〈· | ·〉, induced norms ‖ · ‖,
and identity operators Id. The power set of H is denoted by 2H. Let N denote the
set of positive integers. For a sequence (sn)n∈N, we denote by sn → s (sn⇀s) that it
converges strongly (weakly) to s and define δsn+1 := sn+1 − sn .

Let D be a nonempty subset of H with D being its closure. Then T : D → H is
nonexpansive if

(∀x ∈ D)(∀y ∈ D) ‖T x − T y‖ ≤ ‖x − y‖,

and it is α-averaged with α ∈]0, 1[ if there exists a nonexpansive operator R : D → H
such that T = (1 − α) Id+αR. We denote the range of T by ran T . A set-valued
operator B : H → 2H, characterized by its graph

gra B = {(x, u) ∈ H × H | u ∈ Bx} ,

is monotone if

(∀(x, u) ∈ gra B) (∀(y, v) ∈ gra B) 〈x − y | u − v〉 ≥ 0.

The inverse of B, denoted by B−1, is defined through its graph

gra B−1 = {(u, x) ∈ H × H | (x, u) ∈ gra B} .
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On the asymptotic behavior of DRA and PPA for convex optimization 2721

For a proper lower semicontinuous convex function f : H →] − ∞,+∞], we define
its:

Fenchel conjugate : f ∗ : H →] − ∞,+∞]: u �→ sup
x∈H

(〈x | u〉 − f (x)) ,

proximity operator : Prox f : H → H : x �→ argmin
y∈H

(
f (y) + 1

2‖y − x‖2
)

,

subdifferential : ∂ f : H → 2H

: x �→ {u ∈ H | (∀y ∈ H) 〈y − x | u〉 + f (x) ≤ f (y)} .

For a nonempty closed convex set C ⊆ H, we define its:

polar cone : C� =
{
u ∈ H | sup

x∈C
〈x | u〉 ≤ 0

}
,

recession cone : recC = {x ∈ H | (∀y ∈ C) x + y ∈ C} ,

indicator function : ιC : H → [0,+∞] : x �→
{
0 x ∈ C

+∞ otherwise,

support function : σC : H →] − ∞,+∞]: u �→ sup
x∈C

〈x | u〉 ,

projection operator : PC : H → H : x �→ argmin
y∈C

‖y − x‖,

normal cone operator : NC : H → 2H

: x �→
⎧⎨
⎩

{
u ∈ H | sup

y∈C
〈y − x | u〉 ≤ 0

}
x ∈ C

∅ x /∈ C .

2 Problem of interest

Consider the following convex optimization problem:

minimize
x∈H1

1
2 〈Qx | x〉 + 〈q | x〉

subject to Ax ∈ C,
(1)

with Q : H1 → H1 a monotone self-adjoint bounded linear operator, q ∈ H1,
A : H1 → H2 a bounded linear operator, and C a nonempty closed convex subset
of H2; we assume that ran Q and ran A are closed. The objective function of the
problem is convex, continuous, and Fréchet differentiable [1, Prop. 17.36].

WhenH1 andH2 are finite-dimensional Euclidean spaces, problem (1) reduces to
the one considered in [8], where the Douglas–Rachford algorithm (which is equivalent
to the alternating direction method of multipliers) was shown to generate certificates
of primal and dual strong infeasibility. Moreover, the authors proposed termination
criteria for infeasibility detection, which are easy to implement and are used in several
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numerical solvers; see, e.g., [10–12]. To prove the main results, they used the assump-
tion that C can be represented as the Cartesian product of a convex compact set and
a translated closed convex cone, which was exploited heavily in their proofs. In this
paper we extend these results to the case where H1 and H2 are real Hilbert spaces,
and C is a general nonempty closed convex set.

2.1 Optimality conditions

We can rewrite problem (1) in the form

minimize
x∈H1

1
2 〈Qx | x〉 + 〈q | x〉 + ιC (Ax).

Provided that a certain constraint qualification holds, we can characterize its solution
by [1, Thm. 27.2]

0 ∈ Qx + q + A∗∂ιC (Ax),

and introducing a dual variable y ∈ ∂ιC (Ax), we can rewrite the inclusion as

0 ∈
(
Qx + q + A∗y
−y + ∂ιC (Ax)

)
. (2)

Introducing an auxiliary variable z ∈ C and using ∂ιC = NC , we can write the
optimality conditions for problem (1) as

Ax − z = 0 (3a)

Qx + q + A∗y = 0 (3b)

z ∈ C, y ∈ NCz. (3c)

2.2 Infeasibility certificates

The authors in [8] derived the following conditions for characterizing strong infeasi-
bility of problem (1) and its dual:

Proposition 2.1 ([8, Prop. 3.1])

(i) If there exists a ȳ ∈ H2 such that

A∗ ȳ = 0 and σC (ȳ) < 0,

then problem (1) is strongly infeasible.
(ii) If there exists an x̄ ∈ H1 such that

Qx̄ = 0, Ax̄ ∈ recC, and 〈q | x̄〉 < 0,

then the dual of problem (1) is strongly infeasible.
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On the asymptotic behavior of DRA and PPA for convex optimization 2723

3 Auxiliary results

Fact 3.1 Suppose that T : H → H is an averaged operator and let s0 ∈ H, sn = T ns0,
and δs := Pran(T−Id)(0). Then

(i) 1
n sn → δs.

(ii) δsn → δs.

Proof The first result is [13, Cor. 3] and the second is [14, Cor. 2.3]. ��
The following proposition provides essential ingredients for generalizing the results

in [8, §5].

Proposition 3.2 Let (sn)n∈N be a sequence inH satisfying 1
n sn → δs. Let D ⊆ H be

a nonempty closed convex set and define sequences (pn)n∈N and (rn)n∈N by

pn := PDsn
rn := (Id−PD)sn .

Then

(i) rn ∈ (rec D)�.
(ii) 1

n pn → δ p := Prec D(δs).
(iii) 1

n rn → δr := P(rec D)�(δs).

(iv) limn→∞ 1
n 〈pn | rn〉 = σD(δr).

Proof (i): Follows from [15, Thm. 3.1].
(ii) and (iii): A related result was shown in [16, Lem. 6.3.13] and [17, Prop. 2.2] in

a finite-dimensional setting. Using similar arguments here, together with those in [18,
Lem. 4.3],we can only establish theweak convergence, i.e., 1n pn⇀δ p. UsingMoreau’s
decomposition [1, Thm. 6.30], it follows that 1

n rn⇀δr and ‖δs‖2 = ‖δ p‖2 + ‖δr‖2.
For an arbitrary vector z ∈ D, [1, Thm. 3.16] yields

‖sn − z‖2 ≥ ‖pn − z‖2 + ‖rn‖2, ∀n ∈ N.

Dividing the inequality by n2 and taking the limit superior, we get

lim ‖ 1
n sn‖2 ≥ lim (‖ 1

n pn‖2 + ‖ 1
n rn‖2) ≥ lim ‖ 1

n pn‖2 + lim ‖ 1
n rn‖2,

and thus

lim ‖ 1
n pn‖2 ≤ lim ‖ 1

n sn‖2 − lim ‖ 1
n rn‖2 ≤ ‖δs‖2 − ‖δr‖2 = ‖δ p‖2,

where the second inequality follows from [1, Lem. 2.42]. The inequality above yields
lim ‖ 1

n pn‖ ≤ ‖δ p‖, which due to [1, Lem. 2.51] implies 1
n pn → δ p. Using Moreau’s

decomposition, it follows that 1
n rn → δr .
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(iv): Taking the limit of the inequality

(∀n ∈ N)(∀ p̂ ∈ D)
〈
p̂ | 1

n rn
〉 ≤ sup

p∈D
〈
p | 1

n rn
〉
,

we obtain

(∀ p̂ ∈ D) lim
n→∞

〈
p̂ | 1

n rn
〉 ≤ lim

n→∞ sup
p∈D

〈
p | 1

n rn
〉
,

and taking the supremum of the left-hand side over D, we get

sup
p∈D

lim
n→∞

〈
p | 1

n rn
〉 ≤ lim

n→∞ sup
p∈D

〈
p | 1

n rn
〉
. (4)

From [1, Prop. 6.47], we have

rn = sn − pn ∈ ND pn,

which, due to [1, Thm. 16.29] and the facts that ι∗D = σD and ∂ιD = ND , is equivalent
to

1
n 〈pn | rn〉 = σD

( 1
n rn

)
. (5)

Taking the limit of (5) and using (4), we obtain

lim
n→∞

1
n 〈pn | rn〉 = lim

n→∞ sup
p∈D

〈
p | 1

n rn
〉 ≥ sup

p∈D
lim
n→∞

〈
p | 1

n rn
〉 = σD(δr).

Since pn ∈ D, we also have

lim
n→∞

1
n 〈pn | rn〉 ≤ sup

p∈D
lim
n→∞

〈
p | 1

n rn
〉 = σD(δr).

The result follows by combining the two inequalities above. ��
The results of Prop. 3.2 are straightforward under the additional assumption that D

is compact, since then rec D = {0} and (rec D)� = H, and thus

lim
n→∞

1
n pn = lim

n→∞
1
n PDsn = 0 = Prec D(δs)

lim
n→∞

1
n rn = lim

n→∞
1
n (sn − pn) = δs = P(rec D)�(δs).

Moreover, the compactness of D implies the continuity of σD [1, Example 11.2], and
thus taking the limit of (5) yields

lim
n→∞

1
n 〈pn | rn〉 = lim

n→∞ σD
( 1
n rn

) = σD

(
lim
n→∞

1
n rn

)
= σD(δr).
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On the asymptotic behavior of DRA and PPA for convex optimization 2725

When D is a (translated) closed convex cone, its recession cone is the cone itself, and
the results of Prop. 3.2 can be shown using Moreau’s decomposition and some basic
properties of the projection operator; see [8, Lem. A.3 and Lem. A.4] for details.

A result that motivated our generalization of these limits to an arbitrary nonempty
closed convex set D is given in [18, Lem. 4.3], where Prop. 3.2(ii) is established in a
finite-dimensional setting.

4 Douglas–Rachford algorithm

The Douglas–Rachford algorithm is an operator splitting method, which can be used
to solve composite minimization problems of the form

minimize
w∈H f (w) + g(w), (6)

where f and g are proper lower semicontinuous convex functions. An iteration of the
algorithm in application to problem (6) can be written as

wn = Proxg sn
w̃n = Prox f (2wn − sn)

sn+1 = sn + α(w̃n − wn).

where α ∈ ]0, 2[ is the relaxation parameter.
If we rewrite problem (1) as

f (x, z) = 1
2 〈Qx | x〉 + 〈q | x〉 + ιAx=z(x, z)

g(x, z) = ιC (z),

then an iteration of the Douglas–Rachford algorithm takes the following form [8,10]:

x̃n = argmin
x∈H1

( 1
2 〈Qx | x〉+〈q | x〉+ 1

2‖x−xn‖2 + 1
2‖Ax−(2PC−Id)vn‖2

)
(7a)

xn+1 = xn + α (x̃n − xn) (7b)

vn+1 = vn + α (Ax̃n − PCvn) (7c)

We will exploit the following well-known result to analyze the asymptotic behavior
of the algorithm [19]:

Fact 4.1 Iteration (7) amounts to

(xn+1, vn+1) = TDR(xn, vn),

where TDR : (H1 × H2) → (H1 × H2) is an (α/2)-averaged operator.
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The solution to the subproblem in (7a) satisfies the optimality condition

Qx̃n + q + (x̃n − xn) + A∗ (Ax̃n − (2PC − Id)vn) = 0. (8)

If we rearrange (7b) to isolate x̃n ,

x̃n = xn + α−1δxn+1,

and substitute it into (7c) and (8),we obtain the following relations between the iterates:

Axn − PCvn = −α−1 (Aδxn+1 − δvn+1) (9a)

Qxn + q + A∗(Id−PC )vn = −α−1 (
(Q + Id)δxn+1 + A∗δvn+1

)
. (9b)

Let us define the following auxiliary iterates of iteration (7):

zn := PCvn (10a)

yn := (Id−PC )vn . (10b)

Observe that the pair (zn, yn) satisfies optimality condition (3c) for all n ∈ N [1,
Prop. 6.47], and that the right-hand terms in (9) indicate how far the iterates (xn, zn, yn)
are from satisfying (3a) and (3b).

The following corollary follows directly from Fact 3.1, Prop. 3.2, Fact 4.1, and
Moreau’s decomposition [1, Thm. 6.30]:

Corollary 4.2 Let the sequences (xn)n∈N, (vn)n∈N, (zn)n∈N, and (yn)n∈N be given by
(7) and (10), and (δx, δv) := Pran(TDR−Id)(0). Then

(i) 1
n (xn, vn) → (δx, δv).

(ii) (δxn, δvn) → (δx, δv).
(iii) yn ∈ (recC)�.
(iv) 1

n zn → δz := PrecC (δv).
(v) 1

n yn → δy := P(recC)�(δv).

(vi) limn→∞ 1
n 〈zn | yn〉 = σC (δy).

(vii) δz + δy = δv.
(viii) 〈δz | δy〉 = 0.
(ix) ‖δz‖2 + ‖δy‖2 = ‖δv‖2.
The following two propositions generalize [8, Prop. 5.1 and Prop. 5.2], though the

proofs follow very similar arguments.

Proposition 4.3 The following relations hold between δx, δz, and δy,which are defined
in Cor. 4.2:

(i) Aδx = δz.
(ii) Qδx = 0.
(iii) A∗δy = 0.
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On the asymptotic behavior of DRA and PPA for convex optimization 2727

(iv) δzn → δz.
(v) δyn → δy.

Proof (i) Divide (9a) by n, take the limit, and use Cor. 4.2(iv) to get

Aδx = lim
n→∞

1
n PCvn = δz. (11)

(ii) Divide (9b) by n, take the inner product of both sides with δx and take the limit
to obtain

〈Qδx | δx〉 = − lim
n→∞

〈
Aδx, 1

n (Id−PC )vn
〉 = −〈δz | δy〉 = 0,

where we used (11) and Cor. 4.2(v) in the second equality, and Cor. 4.2(viii) in
the third. Due to [1, Cor. 18.18], the equality above implies

Qδx = 0. (12)

(iii) Divide (9b) by n, take the limit, and use (12) to obtain

0 = lim
n→∞

1
n A

∗(Id−PC )vn = A∗δy,

where we used Cor. 4.2(v) in the second equality.
(iv) Subtracting (9a) at iterations n + 1 and n, and taking the limit yield

lim
n→∞ δzn = Aδx = δz,

where the second equality follows from (11).
(v) From (10) we have

lim
n→∞ δyn = lim

n→∞ (δvn − δzn) = δv − δz = δy,

where the last equality follows from Cor. 4.2(vii). ��
Proposition 4.4 The following identities hold for δx and δy, which are defined in
Cor. 4.2:

(i) 〈q | δx〉 = −α−1‖δx‖2 − α−1‖Aδx‖2.
(ii) σC (δy) = −α−1‖δy‖2.
Proof Take the inner product of both sides of (9b) with δx and use (12) to obtain

〈q | δx〉 + 〈Aδx | yn〉 = −α−1 〈δx | δxn+1〉 − α−1 〈Aδx | δvn+1〉 .

Taking the limit and using Prop. 4.3(i) and Cor. 4.2(vii) and (viii) give

〈q | δx〉 + α−1‖δx‖2 + α−1‖δz‖2 = − lim
n→∞ 〈δz | yn〉 ≥ 0, (13)
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where the inequality follows from Cor. 4.2(iii) and (iv) as the inner product of terms
in recC and (recC)� is nonpositive. Now take the inner product of both sides of (9a)
with δy to obtain

〈
A∗δy | xn + α−1δxn+1

〉
− 〈δy | PCvn〉 = α−1 〈δy | δvn+1〉 .

Due to Prop. 4.3(iii), the first inner product on the left-hand side is zero. Taking the
limit and using Cor. 4.2(vii) and (viii), we obtain

−α−1‖δy‖2 = lim
n→∞ 〈δy | PCvn〉 ≤ sup

z∈C
〈δy | z〉 = σC (δy),

or equivalently,
σC (δy) + α−1‖δy‖2 ≥ 0. (14)

Summing (13) and (14) and using Cor. 4.2(ix), we obtain

〈q | δx〉 + σC (δy) + α−1‖δx‖2 + α−1‖δv‖2 ≥ 0. (15)

Now take the inner product of both sides of (9b) with xn to obtain

〈Qxn | xn〉 + 〈q | xn〉 + 〈Axn | yn〉 = − α−1 〈(Q + Id)δxn+1 | xn〉
− α−1 〈Axn | δvn+1〉 .

Dividing by n, taking the limit, and using Prop. 4.3(i) and (ii) and Cor. 4.2(vii) and
(viii) yield

lim
n→∞

1
n 〈Qxn | xn〉 + 〈q | δx〉 + lim

n→∞
1
n 〈Axn | yn〉 = −α−1‖δx‖2 − α−1‖δz‖2.

We can write the last term on the left-hand side as

lim
n→∞

1
n 〈Axn | yn〉 = lim

n→∞
1
n

〈
zn + α−1 (δvn+1 − Aδxn+1) | yn

〉

= lim
n→∞

1
n 〈zn | yn〉 + α−1‖δy‖2

= σC (δy) + α−1‖δy‖2,

where the first equality follows from (9a), the second from Prop. 4.3(i) and Cor. 4.2(v)
and (vii), and the third from Cor. 4.2(vi). Plugging the equality above in the preceding,
we obtain

〈q | δx〉 + σC (δy) + α−1‖δx‖2 + α−1‖δv‖2 = − lim
n→∞

1
n 〈Qxn | xn〉 ≤ 0, (16)

where the inequality follows from the monotonicity of Q. Comparing inequalities
(15) and (16), it follows that they must be satisfied with equality. Consequently, the
left-hand sides of (13) and (14) must be zero. This concludes the proof. ��
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Given the infeasibility conditions inProp. 2.1, it follows fromProp. 4.3 andProp. 4.4
that, if the limit δy is nonzero, then problem (1) is strongly infeasible, and similarly, if
δx is nonzero, then its dual is strongly infeasible. Thanks to the fact that (δyn, δxn) →
(δy, δx), we can now extend the termination criteria proposed in [8, §5.2] for the
more general case where C is a general nonempty closed convex set. The criteria
in [8, §5.2] evaluate conditions given in Prop. 2.1 at δyn and δxn , and have already
formed the basis for stable numerical implementations [10,11]. Our results pave the
way for similar developments in the more general setting considered here.

5 Proximal-point algorithm

The proximal-point algorithm is a method for finding a vector w ∈ H that solves the
following inclusion problem:

0 ∈ B(w), (17)

where B : H → 2H is a maximally monotone operator. An iteration of the algorithm
in application to problem (17) can be written as

wn+1 = (Id+γ B)−1wn,

where γ > 0 is the regularization parameter.
Due to [1, Cor. 16.30], we can rewrite (2) as

0 ∈ M(x, y) :=
(
Qx + q + A∗y
−Ax + ∂ι∗C (y)

)
,

where M : (H1 × H2) → 2(H1×H2) is a maximally monotone operator [20]. An
iteration of the proximal-point algorithm in application to the inclusion above is then

(xn+1, yn+1) = (Id+γM)−1 (xn, yn), (18)

which was also analyzed in [12]. We will exploit the following result [1, Prop. 23.8]
to analyze the algorithm:

Fact 5.1 Operator TPP := (Id+γM)−1 is the resolvent of a maximally monotone
operator and is thus (1/2)-averaged.

Iteration (18) reads

0 = xn+1 − xn + γ
(
Qxn+1 + q + A∗yn+1

)
(19a)

0 ∈ yn+1 − yn + γ
(−Axn+1 + ∂ι∗C (yn+1)

)
. (19b)

Inclusion (19b) can be written as

γ Axn+1 + yn ∈ (
Id+γ ∂ι∗C

)
yn+1,
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which is equivalent to [1, Prop. 16.44]

yn+1 = Proxγ ι∗C (γ Axn+1 + yn) = γ Axn+1 + yn − γ PC (Axn+1+γ −1yn), (20)

where the second equality follows from [1, Thm. 14.3]. Let us define the following
auxiliary iterates of iteration (18):

vn+1 := Axn+1 + γ −1yn (21a)

zn+1 := PCvn+1, (21b)

and observe from (20) that

yn+1 = γ (Id−PC )vn+1.

Using (19a) and (20), we now obtain the following relations between the iterates:

Axn+1 − PCvn+1 = γ −1δyn+1 (22a)

Qxn+1 + q + γ A∗(Id−PC )vn+1 = −γ −1δxn+1. (22b)

Similarly as for the Douglas–Rachford algorithm, the pair (zn+1, yn+1) satisfies opti-
mality condition (3c) for all n ∈ N. Observe that the optimality residuals, given by
the norms of the left-hand terms in (22), can be computed by evaluating the norms of
δyn+1 and δxn+1.

The following corollary follows directly from Fact 3.1, Prop. 3.2, and Fact 5.1:

Corollary 5.2 Let the sequences (xn)n∈N, (yn)n∈N, (vn)n∈N, and (zn)n∈N be given by
(18) and (21), and (δx, δy) := Pran(TPP−Id)(0). Then

(i) 1
n (xn, yn, vn) → (δx, δy, Aδx + γ −1δy).

(ii) (δxn, δyn, δvn) → (δx, δy, Aδx + γ −1δy).
(iii) yn+1 ∈ (recC)�.
(iv) 1

n zn → δz := PrecC (δv).
(v) δy = γ P(recC)�(δv).

(vi) limn→∞ 1
n 〈zn | yn〉 = σC (δy).

The proofs of the following two propositions follow similar arguments as those in
Sect. 4, and are thus omitted.

Proposition 5.3 The following relations hold between δx, δz, and δy,which are defined
in Cor. 5.2:

(i) Aδx = δz.
(ii) Qδx = 0.
(iii) A∗δy = 0.

Proposition 5.4 The following identities hold for δx and δy, which are defined in
Cor. 5.2:
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(i) 〈q | δx〉 = −γ −1‖δx‖2.
(ii) σC (δy) = −γ −1‖δy‖2.
The authors in [12] use similar termination criteria to those given in [8, §5.2]

to detect infeasibility of convex quadratic programs using the algorithm given by
iteration (18), though they do not prove that δy and δx are indeed infeasibility certifi-
cates whenever the problem is strongly infeasible. Identities in (22) show that, when
(δy, δx) = (0, 0), the optimality conditions (3) are satisfied in the limit. Otherwise,
Prop. 2.1, Prop. 5.3, and Prop. 5.4 imply that problem (1) and/or its dual is strongly
infeasible.

Remark 5.5 Weak infeasibility of problem (1) means that the sets ran A and C do not
intersect, but the distance between them is zero. In such cases, there exists no ȳ ∈ H2
satisfying the conditions in Prop. 2.1 and the algorithms studied in Sects. 4–5 would
yield δyn → δy = 0. A similar reasoning holds for the weak infeasibility of the dual
problem for which the algorithms would yield δxn → δx = 0.
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