ON THE ASYMPTOTIC BEHAVIOR OF THE FOURIER
TRANSFORM OF THE INDICATOR FUNCTION
OF A CONVEX SET

BY
BURTON RANDOL

Suppose C is a compact, convex subset of R", having a smooth boundary &C.
Let F(r, 6) be the Fourier transform, in polar coordinates (r=(x%+ - - - +x2)*/2;
0=(x,/r, ..., x,/r)) of the indicator function of the set C, where by the indicator
function of C, we mean the function whose value on C is 1, and whose value on
the complement of C is 0. Then it is known (cf. [1], [2]) that the function ®(6)
=sup, r®* 2| F(r, 6)| is bounded on S*~*, provided oC is sufficiently smooth, and
has everywhere positive Gaussian curvature. If 9C has points of zero curvature,
this need no longer be true (cf. [4]). The following, however, remains true.

THEOREM 1. If C is compact and convex, and 0C is analytic, then for some p> 2,
D(0) is of class L? on S™~1.

This is a consequence of the following stronger result.

THEOREM 2. Suppose C is compact and convex, and 0C is analytic. Let N(6)
be the map which takes S"~' homeomorphically onto 0C, by sending 0 € S*~! into
the unique point on 0C at which the exterior normal to 0C has direction 0. (N(6) is the
inverse of the Gaussian normal map. The fact that N(0) is 1-1 follows immediately
from the convexity of C, and the analyticity of 0C.) For a point o € 8C, let K() be the
Gaussian curvature of 9C at «. Then there exist three C* functions B,(r, 0), By(r, ),
and R(r, 0), such that

(1) F(r, 6)=B(r, 6)+ By(r, 0)+ R(r, 6).

(2) For some M >0,

| By(r, 0)] £ M[K(N(6))]Y2r-»+1i2)

and
| Bo(r, 0)] £ MIK(N(—6))]~12r-n+driz,

(3) For any fixed k, R(r, 0)=O(r~*), uniformly in 9.

Proof of Theorem 1 (assuming Theorem 2). Suppose Theorem 2 has been
established. Then to prove Theorem 1, it suffices to show that [K(N(6))] /2 and
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[K(N(—=6))]~Y2 are both in LP(S"~!), for some p>2. In order to show that
[K(N(8))]~¥2 is in LP(S"~1) for some p>2, it clearly suffices to show that
J1(0)[K(x)]~*"2 is of class L* on dC, where J,(«) is the Radon-Nikodym derivative of
the inverse of N(6). Similarly, to show that [K(N(— 6))] 22 is in LP(S" 1), it clearly
suffices to show that J,(e)[K(e)] =72 is of class L on 0C, where J,(«) is the Radon-
Nikodym derivative of the inverse of the composition of N(6) with the antipodal
map of S"~! onto itself. Since J;(«)=Jy(e)=K(c), the desired result is a conse-
quence of the following lemma.

LEMMA 1. Suppose f(Y)#0 is real analytic in a neighborhood of the origin in R
Then there exists a neighborhood N of the origin, such that for sufficiently small
8>0, | f(Y)|~¢ is integrable over N.

Proof. We may assume f(0)=0. Now it follows from the Weierstrass preparation
theorem, that in a suitable orthonormal coordinate system (¥, t)=(yy, - . ., Ya—1, 1),
f(y,t) can, for small y and ¢, be expressed in the form Q(y, ¢)P(y, t), where
P(y, )=+ H,_,()tc~ 1+ - - - + H,(y)t+ Hy(»)), with k a positive integer and the
Hj’s analytic, and Q(y, ¢) is analytic and bounded away from zero. Since Q(y, ?) is
bounded away from zero, it suffices to prove the lemma for P(y, t). Now P(y, t)

=(t—a,)- - -(t—a,), for suitable a;’s, which depend, of course, on y. Suppose now
£>0 is fixed, and A € [0, 1). Then

& k. e
[ ie-ay-ayrars g > [ gl a
-¢ j=1J-¢

by the inequality between the geometric and arithmetic means. Since [* |t—z| ~* df
is uniformly bounded for all complex z, the desired result follows from Fubini’s
theorem, if we restrict our attention to a small hypercube about the origin, take
8 <1/k, and integrate first in the z-direction.

Proof of Theorem 2. By definition,

F(r, 0) = f exp (2rir(6, YY) dVy,

where dVy is the volume element on R™. By the divergence theorem, the last integral
equals

€)) Zi—” L . exp (2nir(8, Y))(0, n(Y)) dSy,
where dSy is the area element on ¢C, and n(Y) is the exterior normal to oC at the
point Y. It is evident that for a given 6, the function (8, n(Y)) is analytic on 9C.
Suppose now that ¢ >0, and let H(Y) be a nonnegative C® function in R", which is
supported in the ball | Y| =e, and which is identically 1 in a neighborhood of the
origin. For each 6 € S"~1, introduce functions A,(f, Y) and hy(6, Y) on 0C, by
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defining h,(0, Y) to be the restriction to C of H(Y— N(6)), and h,(6, Y) to be the
restriction to 0C of H(Y— N(—0)). Then if ¢ is sufficiently small, (1) equals

o [ exp @airs, Yyhu(o, (6, n(¥) ds;
@
o f exp Qrir(6, Y))ha(6, Y)(0, n(Y)) dSy+ R(r, 6),
mir ac

where R(r, 6)= O(r~¥) uniformly in 6, for any fixed k (cf. [3, p. 767)).

It thus suffices to show that the integrals in (2) are bounded by multiples of
[K(N(6))]~Y2r-m+Vi2 and [K(N(—0))]~Y2r~®+1/2] respectively. We shall prove
this for the first integral. The proof for the second integral proceeds along the same
lines.

Introduce polar coordinates (p, ¢) in the (n— 1)-dimensional hyperplane tangent
to oC at N(0), placing the origin at N(6). Then

fa exp (2mir(6, Y)hy(6, Y)(6, n(Y)) dSy

= [ a5 [ 9206, 8, ) exp Q2rivEC6, 8, ) d,

where f(6, ¢, p) is, for each §, C* with support in the ball |p|<e, and the partial
derivatives of (0, ¢, p) with respect to p can be bounded independently of 6 and ¢.
E(8, ¢, p) is of the form d(8)—(0, ¢, p), where d(6) is the distance from the origin
in R* to the support plane to oC at N(6), and (8, ¢, p) may be assumed, after an
orthogonal transformation of the (p, $)-coordinate system if necessary, to be of the
form 3[k:(0)p3+ - - - +kn_1(6)97-1]5+O(p%), where (¢s,...,¢,-1)=¢, and the
k;’s are the principal curvatures of 9C at N(6).

The following lemma shows that Theorem 2 will be proved if we can show that

@ | o b0 exp @rirE G, 4. 9) do
S MO+ +h (B 1170000,

for some M >0.

LEMMA 2.
[os V@2 (@211 dS, = o s (a0 e ()
- s K@)
= T@=DPD '

Proof. Consider the integral

[" s [ exp (=@t a2
— - 1)/2(k1(0), TN R
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In polar coordinates, the integral becomes
[ f p"=2 exp {— (ku(O)2 + - - +hnr(8)43-1)} dp.

The inner integral is a Mellin transform, whose value is
I ((n=1)2)(k1(6)¢1+ - - - +kn-1(6)g7-1) """,

and the result follows immediately.

In order to prove (3), we need some information about the derivatives with
respect to p of E(0, 4, p). Note, to begin with, that for each 6, E(0, ¢, p) is, for
small p, of the form d(8)—>2.,a,(0, $)p", where ay(8, $)=3[k,(0)p2+---+
k,_1(0)¢Z_,). Moreover, it is evident from compactness arguments that

(1) There exists an integer N, and a positive number p, such that

N
D lax(6,4)| Z p, forall (6, ) e S*~1x S,
n=2

(2) There exists some fixed power series >, b,p", having a positive radius of
convergence, such that |a,(6, ¢)| = |b,|, for all (6, ¢) € S*~* x .S*~2, (To see this, we
could, for example, argue as follows: it follows easily from the Heine-Borel
theorem, that there exists some 8>0, such that for all (6, ¢) € S*~*x S*~2, the
function > 2., a,(8, $)p™ has a complex analytic extension into a neighborhood of the
disk |p| < 8. Moreover, if 8 is small enough, the function max,,; =5 | 2n= 2 @.(6, $)p"|
is a continuous function of 6 and ¢, and hence is bounded, say by M, on S"~!
x S*~2, By Cauchy’s estimate, |a,(0, )| SM 6-".)

LeEMMA 3. For a polynomial n(x)=a,x™+ - - +a;x+a,, with real or complex
coefficients, define, for 0<r=<1, M, (r)=maXo<,<, |7(x)|, and M¥(r)=|an|r™+ - -
+ |ay|r+|ao|. Then there exists a constant M >0, depending on m, but otherwise
independent of w(x), such that M,(r)= MM¥(r), for 0<r=<1.

Proof. By the change of variable x,=x/r, we may assume r=1. Now M,(1)
and M¥(1) are both norms on C™*1, if we identify the coefficients of = with co-
ordinates in C™*?, The result thus follows from the equivalence of norms on C™*1,

LEMMA 4. Define Ey(0, ¢, p)=2x- 2 |au(0, #)|p", and denote by EP(0, ¢, p) and
EQ(0, ¢, p), respectively, the jth partial derivatives with respect to p of E(8, ¢, p) and
E,(8, &, p). Then there exist positive numbers M and 8, such that |EV(0, ¢, p)|
2 MEQ(8, ¢, p), for 0Sp<3, and (0, $) € "~ x 6"~ 2.

Proof. We know that there exists a number >0, and an integer N, such that
>N_ 5 |aa(6, ¢)| Z s, for all # and . Moreover, there exists a power series > 5 b,p",
having a positive radius of convergence, such that |a,(6, )| < |b,|, for all 6 and ¢.
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Define 7(6, ¢, p) =312 na(0, $)p"~*, =*(6, 4, p)=21-2nlan(6, $)|p"~*, and
0 = 0 .
M, (8, ¢, p) ongl?g}i I""( s 6 t)l
Then E(6, ¢, p)=7*(0, ¢, p)+0(7*(8, ¢, p)), and
|E®X8, 8, p)| = |(6, $, p)+0(x*(6, 4, p))I,
where the “0” terms are of uniformly lower order for (8, ¢) € S*~* x S"~2. Now
|E(8, ¢, p)| is, for each 0 and ¢, an increasing function of p, since C is convex,
and this implies that |E®(6, ¢, p)| 2| M,(6, b, p) +0o(m*(6, ¢, p))|. By Lemma 3,
the last inequality implies that |E®(0, ¢, p)| = M'(7*(6, ¢, p)+ o(7*(6, $, p))), for
some M’ >0, and this proves the desired result.
COROLLARY. [E(6, 6, p)| Z |ax(6, #)|p=3Uer(O)2+ - - - +Kn-1(O)83 1Jp.
LEMMA 5. Suppose m is a fixed positive integer. Then there exist numbers M,
8>0, such that for j=1,...,m,0=p<8, and (0, $) € S"~1x S*~2,

Pj-llEU)(os ‘ﬁa P)l = MIE(D(03 é, P)I
Proof. Define #*(6, ¢, p) as in the proof of Lemma 4. Then it is clear from
power series considerations, that for any integer m>0, there exists a number
M’'>0, such that p/~EQ(0, ¢, p)< M'n*(6, ¢, p), for sufficiently small p. The
desired conclusion thus follows from Lemma 4.
In order to simplify the proof of (3), we next introduce the following functions,
which occur when we integrate the left side of (3) by parts:
_ P76, 4, p)
Ly(8, ¢, p) = EG, 4, p) ’
— (a/ap)(Lk—1(09 ¢9 P))
L., 9, p) = 90, 4,0 fork = 2.
LEMMA 6. For any integer j2 1, there exists a 8 >0, such that for p € [0, 3],
(@) Ly(6, ¢, p)=O0([k1(0)p3+ - - - +kn_1(0)¢n_1]"7p" "1~ %),
(b) (8/2p) LA8, b, p)=O([k1(6)g3+ - - - +ky_1(0)p7-1]77p" 2~ %),
uniformly on S™~1x S§"~2,

Proof. This follows from Lemma 5 and the corollary to Lemma 4 in the following
way:

For any given j, L, can be expressed in the form >, A;,p“(E®) =%, where the A,’s are
products of various derivatives with respect to p of fand E®, and the u;’s and v,’s
are appropriate integers. Now

2 0 o
L= 5 [Zmp (E®) ]

- 2 { pH(ED) % %A_i Fupt ~ Y ED) =0 — p ) ph ED(ED) - @, + 1)}
1 P

and from this it is evident, by Lemma 5, that 0L;/0p can be bounded by p~* times

a multiple of a bound for L,. Similarly, by the corollary to Lemma 4, L,=(E®)"!
-0L,_,/0p can be bounded by p~2[k;(0)¢Z+ - - - +k,_1(0)pZ_,]~ /2 times a multiple
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of a bound for L;_,. The conclusions of Lemma 6 thus follow from an obvious
induction procedure.

We shall now establish (3), and we shall assume, in what follows, that the e
which occurs in (3) is small enough so that the conclusions of Lemma 6 are valid
for pe [0, €], and j=[(n+1)/2]. We may also assume that K(N(6))>0. We begin
with the case in which » is even. Integrating by parts (n—2)/2 times, and using the
fact that EV(0, ¢, p) has a first order zero in p (since K(N(6)) > 0), and that £ (8, ¢, p)
and all its derivatives with respect to p vanish at p=e¢, the left side of (3) takes the
form

&
’ig—?:;t,'—z J (3% L(,,_z),z) exp (2mirE) dp.

[

Now define 8= [k,(0)¢3+ - - - +k,_1(0)$2_1] Y212 Then [4=[4+[°.
By Lemma 6, the first integral is bounded by a multiple of

[k (O)p2+ - - - + ko1 (0)p2_ ] Di2p-2i2,

The second integral, after one integration by parts, can be expressed in the form

€ &
(2mir)~1Ly; exp (2-n-irE)] — 2mir)-t f (% L,,,z) exp (2mirE) dp,
p=0o 4
and it follows from Lemma 6 that both these terms are bounded by a multiple of
[k1(0)p3+ - - - +k,_1(0)p2 _ ]~ WI2,=22_ which proves Theorem 2 if n is even.
If n is odd, we integrate the left side of (3) (n—3)/2 times by parts, to obtain an
expression of the form

const. (/0 .
POEOTS j (—3 L(n—3)/2) exp (2nirE) dp.
o \9p

Now define 8 as before, and again note that [§=[3+ [5.
By Lemma 6, the first integral is bounded by a mulitiple of

[k1(0)p2+ - - - + Kk _1(0)p2_ ]~ - ViZp-1,

The second integral, after integration by parts, takes the form

(2mir) =1Ly _ 12 €Xp (Zm‘rE)] —(Zﬂir)‘lf (% L(,,_l),z) exp (2mirE) dp.
I &

:
o=
By Lemma 6, the first quantity is bounded by a multiple of
[k (0)p2+ - - - + k1 (O)p2_ ]~ 221,

If, now, we integrate the remaining quantity once more by parts, we obtain
= @rir) L s oxp QuirE)|| +(2ir)® [ (5 Lossis) exp @irE) d,
p=0

and it follows from Lemma 6 that both these quantities are bounded by a multiple of
[k1(0)d%3+ - - - +k,_1(0)p2_ ]~ P2r=1 which completes the proof of Theorem 2.
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REemARKs. 1. Itis, I believe, quite likely that Theorem 1 remains true without the
convexity requirement on C. This is, at any rate, certainly true in two dimensions
(cf. [5]).

2. Theorem 1 has applications to the geometry of numbers. We mention two
here. The proofs are straightforward generalizations of the methods in [5].

(A) Suppose C is compact and convex, and &C is analytic. Denote by V the
volume of C. For s € SO(n), let L, be the image of the integral lattice-points under s.
For x>0, let N(x, s) be the number of points in L which intersect the set xC, and
let R(x, s)=N(x, s)— Vx" Then

f |R(X, S)l ds = O(x"("- i(n+ 1))’
SO(n)

where ds is normalized Haar measure on SO(n).

(B) Let C be as in (A). Let G be the group of all motions of the form s¢, where
s € SO(n) and ¢ is a translation. Let I be the subgroup of integral translations, and
define H=G/I. Then H clearly acts on the set of integral lattice-points in a well-
defined way. For h € H, let L, be the image of the integral lattice-points under 4,
and let N(x, &) be the number of points in L, which intersect the set xC. Define
R(x, h)=N(x, h)— Vx™. Then

1/2
(j IR(X, h)|2 dh) = O(x-Dr2),
H
where dh is normalized Haar measure on H.
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