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Suppose C is a compact, convex subset of Rn, having a smooth boundary 8C.

Let F(r, 8) be the Fourier transform, in polar coordinates (r=(xx+ ■ ■ ■ +x2)1/2;

8=(xj//•,..., xjr)) of the indicator function of the set C, where by the indicator

function of C, we mean the function whose value on C is 1, and whose value on

the complement of C is 0. Then it is known (cf. [1], [2]) that the function 0(0)

= supr r(n+1)l2\F(r, 0)| is bounded on 5n_1, provided 8C is sufficiently smooth, and

has everywhere positive Gaussian curvature. If 8C has points of zero curvature,

this need no longer be true (cf. [4]). The following, however, remains true.

Theorem 1. If C is compact and convex, and 8C is analytic, then for some p>2,

0(0) is of class Lp on S*_1.

This is a consequence of the following stronger result.

Theorem 2. Suppose C is compact and convex, and 8C is analytic. Let N(8)

be the map which takes Sn_1 homeomorphically onto 8C, by sending 8 e S"'1 into

the unique point on 8C at which the exterior normal to 8C has direction 8. (N(8) is the

inverse of the Gaussian normal map. The fact that N(6) is 1-1 follows immediately

from the convexity ofiC, and the analyticity ofdC.) For a point a e 8C, let K(a) be the

Gaussian curvature of8C at a. Then there exist three C°° functions Bx(r, 8), B2(r, 8),

and R(r, 0), such that

(1) F(r, 8) = Bx(r, 8) + B2(r, 8) + R(r, 8).

(2) For some M >0,

\Bx(r, 0)| S M[K(N(8))]-ll2r-'n + 1)i2,

and

\B2(r,8)\ S M[KiNi-9))]-ll2r-(n + 1)l2.

(3) For any fixed k, R(r, 9) = 0(r~k), uniformly in 8.

Proof of Theorem 1 (assuming Theorem 2). Suppose Theorem 2 has been

established. Then to prove Theorem 1, it suffices to show that [A^(A(0))]"1/2 and
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[K(N(-8))]~112 are both in F^S"-1), for some p>2. In order to show that

[K(N(8))]-112 is in Fp(5n_1) for some p>2, it clearly suffices to show that

Ji(a)[K(a)]~pl2 is of class F1 on 8C, where Jx(a) is the Radon-Nikodym derivative of

the inverse of N(8). Similarly, to show that [K(N(-8))]~112 is in Lp(Sn~1), it clearly

suffices to show that J2(a)[K(a)]~pl2 is of class F1 on 8C, where J2(a) is the Radon-

Nikodym derivative of the inverse of the composition of N(8) with the antipodal

map of Sn~1 onto itself. Since Jx(a)=J2(a) = K(a), the desired result is a conse-

quence of the following lemma.

Lemma 1. Suppose f(Y)^0 is real analytic in a neighborhood of the origin in Rn.

Then there exists a neighborhood N of the origin, such that for sufficiently small

8>0, |/(F)| ~ô is integrable over N.

Proof. We may assume/(0)=0. Now it follows from the Weierstrass preparation

theorem, that in a suitable orthonormal coordinate system (y, t) = (yx,. . -,yn-i, t),

f(y, t) can, for small y and t, be expressed in the form Q.(y, t)P(y, t), where

P(y, t) = (tk + Hk.i(y)tk-1+ ■ ■ ■ +Hx(y)t+H0(y)), with k a positive integer and the

7/y's analytic, and Q.(y, t) is analytic and bounded away from zero. Since Q.(y, t) is

bounded away from zero, it suffices to prove the lemma for P(y, t). Now P(y, t)

= (t—ax)-- -(t—ak), for suitable a/s, which depend, of course, on y. Suppose now

£>0 is fixed, and A e [0, 1). Then

j'^ \(t-axy--(t-ak)\-"kdt g ¿ ¿ J*   ¡t-a^dt,

by the inequality between the geometric and arithmetic means. Since j*_s \t — z\~Ádt

is uniformly bounded for all complex z, the desired result follows from Fubini's

theorem, if we restrict our attention to a small hypercube about the origin, take

8<l/k, and integrate first in the /-direction.

Proof of Theorem 2. By definition,

F(r, 0) =  f exp (2irir(0, Y)) dVY,

where dVY is the volume element on Rn. By the divergence theorem, the last integral

equals

(i) ¿ Lexp {2nHe'Ym n{ y)) dSY'

where dSY is the area element on 8C, and «( F) is the exterior normal to 8C at the

point F. It is evident that for a given 0, the function (0, «( F)) is analytic on 8C.

Suppose now that e>0, and let H(Y) be a nonnegative C00 function in F", which is

supported in the ball | F| ^e, and which is identically 1 in a neighborhood of the

origin. For each 0eS,,l_1, introduce functions hx(8, Y) and A2(0, F) on 8C, by
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defining hx(8, Y) to be the restriction to 8C of H(Y-N(8)), and h2(9, Y) to be the

restriction to 8C of H(Y—N(— 8)). Then if e is sufficiently small, (1) equals

¿ £ exp i>ir(0, Y))hx(8, Y)(8, n(Y)) dSY

(2)

+2~nTr Í exp (27r""(ö' y))/,2(ö' y)(ö'w(y)) ds?+R(r> ö)>

where F(r, 8) = 0(r~k) uniformly in 0, for any fixed k (cf. [3, p. 767]).

It thus suffices to show that the integrals in (2) are bounded by multiples of

[A:(A(0))]-1/2z--<'l+1>'2, and [K(N(-8))]-ll2r~{n+1)l2, respectively. We shall prove

this for the first integral. The proof for the second integral proceeds along the same

lines.

Introduce polar coordinates (p, </>) in the («— l)-dimensional hyperplane tangent

to 8C at ^(0), placing the origin at N(8). Then

i
exp(2mr(8, Y))hx(8, Y)(8,n(Y)) dSY

ec

=  f      dSt f />" - 2/(0, </>, p) exp (2rTirE(8, +, P)) dp,
JS"'2 JO

where f(8, </>, p) is, for each 0, C00 with support in the ball \p\ Se, and the partial

derivatives off (8, </>, p) with respect to p can be bounded independently of 0 and <f>.

E(6, </>, p) is of the form d(8)—i/t(8, </>, p), where d(8) is the distance from the origin

in Rn to the support plane to 8C at A(0), and <p(8, (/>, p) may be assumed, after an

orthogonal transformation of the (p, ^-coordinate system if necessary, to be of the

form $[ki(o)<t>ï+ ■ ■ ■ +kn-i(8)tô-iT0 + 0(P3), where (</>x, ...,^B_X) = </,, and the

ki's are the principal curvatures of 8C at A(0).

The following lemma shows that Theorem 2 will be proved if we can show that

(3)       f pU '2/(Ö' *' p) CXp (-2nirEi9' *' p)) dp

S M[ki(8)</>2+ - - ■ +kn-i(8)4,2n_xy*-1»2r-«-1»2,

for some M>0.

Lemma 2.

Js„.2 [ki(8)Vi+ ■ ■ ■ +^n-iW2-i]-(n-1)'2 ds, = rl£lw2){kl(ey ' •Af»-^>-1/a

0_(n-l)/2
-[A-(A(0))]-1/2.

r((«-i)/2)

Proof. Consider the integral

J^ *._!•■ • J^ exp {-(kx(8)y2+ - • - +kn.x(8)y2n_x)} dyx

= rr<-1"2(A:1(0).../vn.1(0))-1'2.
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In polar coordinates, the integral becomes

f      dsj" p*-2 exp {-(kx(8)<p2 + •••+£„_x(8)<pl_x)}dP.
Jsn-2        Jo

The inner integral is a Mellin transform, whose value is

ir((«-l)/2)(/c1(0)^+ • • • +zcn_1(0#2_1)-<"-1>'2,

and the result follows immediately.

In order to prove (3), we need some information about the derivatives with

respect to p of F(0, </>, p). Note, to begin with, that for each 0, F(0, <f>, p) is, for

small p, of the form d(8)-Z™=2an(8,<p)pn, where a2(8, </>) = $[kx(d)</>2 + ■ ■ ■ +

kn-i(6)<Pz.-i]- Moreover, it is evident from compactness arguments that

(1) There exists an integer N, and a positive number p., such that

N

2 K(0, <p)\ ̂ M,   for all (0, <p) e S""1 x Sn~2.
n = 2

(2) There exists some fixed power series 2¿°= 2 bnpn, having a positive radius of

convergence, such that |an(0, <f>)\ ^ \bn\, for all (0, <f>) e Sn~1x Sn'2. (To see this, we

could, for example, argue as follows: it follows easily from the Heine-Borel

theorem, that there exists some 8>0, such that for all (8,<f>)e Sn~1y.Sn~2, the

function 2"= 2 ctn(8, <f>)pn has a complex analytic extension into a neighborhood of the

disk \p\ S S. Moreover, if 8 is small enough, the function max,,,, =ä | 2"= 2 ctn(6, </>)pn\

is a continuous function of 0 and <f>, and hence is bounded, say by M, on 5n_1

x Sn~2. By Cauchy's estimate, |an(0, j>)\ g M 8~n.)

Lemma 3. For a polynomial 7r(x)=amxm+ • • ■ -f-aiX-l-ao, with real or complex

coefficients, define, for 0<r^ 1, Mn(r) = max0ix¿r \tt(x)\, and M*(r)= |am|rm+ • • ■

+ |ai|r+|a0|. FAe« there exists a constant M>0, depending on m, but otherwise

independent of-¡r(x), such that Mz(r)^ MM*(r), for 0<r^l.

Proof. By the change of variable Xi—x/r, we may assume r=l. Now Mn(l)

and M*(l) are both norms on Cm+1, if we identify the coefficients of -n with co-

ordinates in Cm+1. The result thus follows from the equivalence of norms on Cm+1.

Lemma 4. Define F*(0, </>, /») = 2"=2 \a„(8, </>)\pn, and denote by Ea)(8, </>, p) and

L*\9, </>, p), respectively, the jth partial derivatives with respect to p of E(8, </>, p) and

E*(8,<f>,p). Then there exist positive numbers M and 8, such that |F(1)(0, </>, p)\

^ ME^(8, <b, p), forOipèS, and (8, <j>) e 8n~1 x S""2.

Proof. We know that there exists a number p > 0, and an integer A^, such that

2n = 2 |i*n(0, <p)\^P; for all 0 and <j>. Moreover, there exists a power series 2"= 2 bnpn,

having a positive radius of convergence, such that |a„(0, <f>)\ S \bn\, for all 0 and </>.
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Define n(0, </>, P) = 2£.a nan(8, ¿y-1, tt*(8, </>, p) = Z%=2 n\an(8, </>)\Pn-\ and

Mx(d,<p,P)= max \ir(6, </>, t)\.
OStSfl

Then E(1\8, </>, p) = tt*(8, </,, p) + o(tt*(8, </,, P)), and

\E™(8,</>,p)\ = \tt(8,<p,p) + o(tt*(8,<I>,p))\,

where the "o" terms are of uniformly lower order for (0, </>) e S""1 x Sn~2. Now

|F(1)(0, </>, p)\ is, for each 0 and </>, an increasing function of />, since C is convex,

and this implies that |FU)(0, <f>, p)\ ̂  |Afn(0, </>, P) + o(-n*(8, </>, p))\. By Lemma 3,

the last inequality implies that |F(1)(0, </>, p)\ ̂ M'(tt*(8, </>, p) + o(tt*(8, </>, p))), for

some M' > 0, and this proves the desired result.

Corollary. \E™(0, </>, P)\ ̂  \a2(8, 4>)\p = \[ki(8)<pl + ■ ■ ■ +kn.x(8)^x]p.

Lemma 5. Suppose m is a fixed positive integer. Then there exist numbers M,

8>0, such that for j=l,.. .,m,0SpSK and (8, <f>) eSn~1x Sn~2,

^-^(M.p)! gM|£(1'(0,<¿,p)|.

Proof. Define 7r*(0, </>, p) as in the proof of Lemma 4. Then it is clear from

power series considerations, that for any integer m>0, there exists a number

Af>0, such that pi~1E%\8, </>, p)SM'tt*(8, </>, p), for sufficiently small p. The

desired conclusion thus follows from Lemma 4.

In order to simplify the proof of (3), we next introduce the following functions,

which occur when we integrate the left side of (3) by parts :

P»-2f(8, </,, P)
Lx(8, </>, p) = E™(8,<j>,p)

j (ñ ,    *     (d/8p)(L^x(8,<p,P))
L^'*'^ =-F<i>(0, <p, P)-'   for*^2-

Lemma 6. For any integer j% 1, there exists a 8 > 0, such that for p e [0, 8],

(a) LAß, </>, P) = 0([kx(8)<p2+ • • • +A:n_1(0)^_1]-y-1-2O,

(b) (8/8p)Li(8, 4>, p) = 0(lkx(8)<p2+ -.. +ztn.1(0)ii2_1]-y-2-2O,

uniformly on Sn_1 x Sn_2.

Proof. This follows from Lemma 5 and the corollary to Lemma 4 in the following

way:

For any given/ L, can be expressed in the form 2¡ \pUi(E{1))~Vi, where the At's are

products of various derivatives with respect to p off and Ea\ and the m('s and z;¡'s

are appropriate integers. Now

8 „ 8

8pLi~~ dp
2vu'(f(1))-
i

= 2 (pu>(EaYVt |^ + MiAi/),''-1(F(1,)-"'-riA(i,''<£<2)(F(1>)-(l'l + 1)|

and from this it is evident, by Lemma 5, that 8L¡\8p can be bounded by p'1 times

a multiple of a bound for L¡. Similarly, by the corollary to Lemma 4, L¡ = (F(1)) "1

■8Lj-x/8p can be bounded by p'2[kx(8)</>f-\-Vkn-x(8)</>l_xY112 times a multiple
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of a bound for Ly_i. The conclusions of Lemma 6 thus follow from an obvious

induction procedure.

We shall now establish (3), and we shall assume, in what follows, that the e

which occurs in (3) is small enough so that the conclusions of Lemma 6 are valid

for p e [0, e], and /"a [(«+1)/2]. We may also assume that K(N(8))>0. We begin

with the case in which « is even. Integrating by parts (« — 2)/2 times, and using the

fact that Fa>(0, <f>, p) has a first order zero in p (since K(N(8)) > 0), and that/(0, </>, p)

and all its derivatives with respect to p vanish at p = e, the left side of (3) takes the

form

const.
\8~p L<n-vi*) exP (2nirE) dP-r(n-2)/2

Now define 8 = ^(0)^+ • • • +A:n_1(0)^_1]-1'2z-1'2. Then J0=f0+fó.

By Lemma 6, the first integral is bounded by a multiple of

[kx(8)<pl+ ■ ■ • +zcn_1(0)^_1]-<"-1>'2z-1'2.

The second integral, after one integration by parts, can be expressed in the form

(2ttz'z-)- 1Lni2 exp (2TrirE)        - (2-nir)~1 \   lj- Lnl2\ exp {InirE) dp,

and it follows from Lemma 6 that both these terms are bounded by a multiple of

[kx(8)xj>\+ ■ ■ ■ +zcn_1(0>¿2_1]-('t-1>/2z•-1,2, which proves Theorem 2 if « is even.

If « is odd, we integrate the left side of (3) (« — 3)/2 times by parts, to obtain an

expression of the form

const.
L W L(n'3)l2j exp (27n>£) dP-

Now define S as before, and again note that ,fo=ío+íó-

By Lemma 6, the first integral is bounded by a multiple of

[kx(8)<p2+ ■ • • +kn_x(8)<p2n_xY^-^2r-\

The second integral, after integration by parts, takes the form

(27TZZ-) - %n_ 1)/2 exp (2ttzVF)       - (2ttz>) -1 \   I — F(n _ 1)/2j exp (2ttzVF) dp.

By Lemma 6, the first quantity is bounded by a multiple of

[kx(8)<p2+ ■ ■ ■ +kn_x(8)<p2_x]-«-"<2r-\

If, now, we integrate the remaining quantity once more by parts, we obtain

-(2TTir)-2L(n+X)i2 exp (2ttzVF) I      +(2ttz>)-2 J Í— F(7t+1)/2j exp (2ttz>F) dp,

and it follows from Lemma 6 that both these quantities are bounded by a multiple of

[kx(8)<f,f+ ■ ■ ■ -l-A;n_1(0)^2_1]-(n-1),2z--1, which completes the proof of Theorem 2.
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Remarks. 1. It is, I believe, quite likely that Theorem 1 remains true without the

convexity requirement on C. This is, at any rate, certainly true in two dimensions

(cf. [5]).

2. Theorem 1 has applications to the geometry of numbers. We mention two

here. The proofs are straightforward generalizations of the methods in [5].

(A) Suppose C is compact and convex, and 8C is analytic. Denote by V the

volume of C. For s e SO(ri), let Ls be the image of the integral lattice-points under s.

For x>0, let A(x, s) be the number of points in Ls which intersect the set xC, and

let R(x, s) = N(x, s)- Vxn. Then

f      \R(x,s)\ds = 0(xn(n~1Wn+1)),
JSOin)

where ds is normalized Haar measure on SO(n).

(B) Let C be as in (A). Let G be the group of all motions of the form st, where

s e SO(ri) and t is a translation. Let / be the subgroup of integral translations, and

define H=G/I. Then H clearly acts on the set of integral lattice-points in a well-

defined way. For he H, let Lh be the image of the integral lattice-points under h,

and let A(x, h) be the number of points in Lh which intersect the set xC. Define

R(x, h) = N(x, «)- Vxn. Then

(f \R(x,h)\2dh\m = 0(xin~»12),

where dh is normalized Haar measure on //.
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