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1. Introduction. We consider the following initial-boundary value problem:

ut = vx, (1.1)

Vt (,-2>

^■=-r6-t+4+k&)/ <u>
for (x, t) € [0,1] x [0, +oo) with the initial condition

(u,v, 6)(x,0) - (u0,V0,0o)(x), Mo > 0, d0 > 0, (1.4)

and the boundary condition

(i-5>

6x{0,t) = dx{l,t) = 0. (1.6)

This problem is a model of the one-dimensional motion of the polytropic ideal gas

with adiabatic ends which is put into a vacuum. (u,v,6), unknown functions,

represent the specific volume, the velocity, the absolute temperature of the gas;

(R, n,Cy ,k), given positive constants, stand for the gas constant, the coefficient of

viscosity, the heat capacity at constant volume, and the coefficient of heat conduction,

respectively. The condition (1.5) is called the stress-free condition.

Kazhykhov showed the global existence of a unique solution to this problem in [2],

He constructed the solution (u,v,6) in the Holder class Dt>o^7+" x H2r+a x H^+"}

(0 < a < 1) provided (wo, vq, Go) belongs to Hl+a x H2+a x H2+a. (For the definition

of the Holder spaces Hn+a etc., see [3].) We call this solution classical in this paper.

More recently Okada [5] and Kawashima [1] showed the asymptotic behavior of

the solution. The problem has a trivial solution

u(x,t) - u{\ + t), v{x,t) - u(^x , 9{x,t) = 6, (1.7)
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corresponding to initial data

u0(x) = a, v0(x) = u fx - , Q0(x) = 9,

where u and 6 are positive constants satisfying the relation

HU = Rd. (1.8)

In [5] and [1], they proved any classical solution which satisfies some restricted as-

sumptions on the initial data and/or the ratio between R and cy converges to the

state like (1.7).

On the other hand, the author has already investigated in [3] other asymptotic

properties of the solution which give the growth of u and /0' udx without the re-

stricted assumptions.

In this paper the author attempts to show the convergence of the classical solution

and its rate without any restricted assumptions. We have the following result.

Theorem 1.1. Let (u,9) be a positive root of the simultaneous equations (1.8) and

J (^Vq(x) + Cydoix)^ dx = J !{/ v0{x) dx -I- U ^ | dx + Cyd.

Then there exist positive constants A and C which depend on R,/j.,Cv,k, and the

initial data but not on t such that the classical solution (u, v, 6) to the problem (1.1)-

(1.6) satisfies the estimate

u(x, t) _ , , fl , _ ( 1 \
•* x,t)-J vq{x) dx - u ̂ x - - J- u, v(x, t) - vo(x) dx - u [x - - , 6(x, t) - 6 < C(i + o

1,2

-X

l+t

Here || • || i,2 is the norm of the Sobolev space W'-2(0,1).

Remark. A positive root (u, 6) of the above simultaneous equations exists; u and

6 are given by

(1.9)

]^vl{x) + Cvd^x^j dx.

We shall show the convergence («/(1 +t),v- /J v0(x) dx-u{x - 5), 0) to (u, 0, 6)

in Section 2, and its rate in Section 3. The idea of the proof is that we transform

the original problem (1.1)—(1.6) to the reduced problem (2.5)-(2.7) with (2.9)—(2.11)

below by the changes of unknown functions and the time variable. We shall study

the asymptotics of the latter problem.



POLYTROPIC IDEAL GAS WITH STRESS-FREE CONDITION 667

2. Convergence of solution. In order to prove Theorem 1.1, it is convenient to

transform the problem into the one somewhat similar to the outer pressure problem

which was discussed in [4], First we change an unknown function u —► u — u/( 1 +t),

and then change a variable t —»t = log(l + t). Thus we can rewrite (1.1)—(1.3) as

u-t + ii = vx, (2.1)

£.= ̂ 4 + ̂  , (2.2)
u u

x

cv0i = -R^ + lui + K (~ j . (2.3)
u u \u)x

Here we use the notation / to mean

f = f(x,t) = f(x,t(t)) = f(x,e' - 1)

for a function /(x, t) of x and t. However, to avoid complicated notation, in what

follows, we write again (U,v,d, t) as (u, v, 6, t). Moreover, we introduce a new un-

known function

w(x,t) = v(x,t) - f v0(£)d£- [ U{£,t)d£+ [ [ u(r],t)dt]di (2.4)
Jo J0 Jo Jo

If we use w(x, t) instead of v{x, t), the boundary condition (1.5) will be transformed

into (2.10), which is the same type as that of the outer pressure problem. As the

outer pressure problem was discussed in [4], we improve its arguments to derive our

result.

Remark that w belongs to V\T>o^T+a ^ (u<v) belongs to ri7>o{-®r+Q x Hr+n}-

Using w(x, t), we can deduce (2.1)—(2.3) as follows:

u,=wXl (2.5)

(_*£+ (2.6)

eye, = rw, +IIU-RS+ (fa""+ "" - m)w' +k(BA . (2.7)
u

In rewriting (2.6), we use the identity

-l

[ v(x,t)dx= [ v0(x)dx (2.8)
Jo Jo

which follows easily from (1.2) and (1.5).

Initial and boundary conditions (1.4)—(1.6) are deduced:

(2.9)(u,w,8)(x, 0) = (uo,wo,do)(x), Mo > o, 6o > 0, [ w0dx = 0,
Jo

(iio»

0,(0.0 = Ml. 0 = 0. (2.11)
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Since the original problem (1.1)—(1.6) has the solution in n7>o{^r+Q x HT+a x

H^+a), the reduced problem (2.5)-(2.7) with (2.9)—(2.11) also has a global solution

in the same class. Moreover both u and d are positive ([2, 3]). In the sequel we shall

investigate the asymptotic properties of the solution (w, w, 6) to the reduced problem.

In this section we shall prove

Theorem 2.1. The classical solution (u, w, 6) to the initial-boundary value problem

(2.5)-(2.7), (2.9)—(2.11) converges to (w, 0, 6) in Wu2(0,1) as t —► +oo.

This theorem says, by use of the terminology of the original problem (1.1)—(1.6),

that (m/(1 + t), v - Jq Vo dx - u(x - j), 6) converges to (u, 0,6) in W1 -2(0, 1).

The proof of Theorem 2.1 is divided into three steps. Firstly we show the uniform

(with respect to x) convergence of u to u, secondly the convergence (w, d) to (0, B)

in L2(0, 1), lastly the decay of derivatives of the solution in L2(0,1).

Is? Step. Uniform convergence of u to u. Since u is a positive root of the quadratic

equation

u2 + ^ a + 12 ^ v0{x)dx^j -24E0 = 0,

in order to show the convergence of u, it is enough to see

Proposition 2.1. u(x,t) satisfies

u2(x, t) + ^ u(x, t) + 12 1 I v0(x)dx | -24E0 = o(l),
R

-u{x,t) + \2^Jj v0(xjdx^j -24Eq — o(

where o(l) denotes the function which converges to zero uniformly in x e [0,1] as

t -* +oo.

Because the proof of this proposition is lengthy, first we mention its outline and

then give it by some lemmas.

Outline of Proof We integrate (2.6) over [0, x] by use of (2.10) to get

d fx . ,r fx ,r , ,r —R6 + uwx + uu
»({.,)«+J[ w{(.,)dt=—(2.i2)

Multiplying both sides of the result by fi~lu(x, t) and using (2.5), we have

u,(x, t) + u(x, t) (l - [ w{£, t)d£\ = — 6{x, t) + -u(x, t) [ w(£,t)d£.
\ Jo ) V V Jo

Therefore we have

u(x, t) = e~' exp | i J (w(£, t) - w0{i)) d£, J u0(x)

+ e~' f e^expji [ (w(€, t)-w(£, t))^1 (—6{x, t) +-u(x,r)f w(£,T)d£) dx.
Jo K^Jo J H Jo J

(2.13)
On the other hand, it is easy to see that our problem has the energy identity

a ^v2(x,t) + Cydix.t)^ dx = E0 (2.14)
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(see [3]).

Thus, we get the proposition if we show the following facts:

C~l <u(x,t)<C, (2.15)

(X w{Z,t)cU; = 0{\), (2.16)
Jo

f ex 0(x, t) - f 9(x,t)dx
Jo Jo

dz = o(l), (2.17)

Jo Jo
w2(x, x)dxdx - o(l), (2.18)

[ u(x, t)dx - u(x, t) = o(l), (2.19)
Jo

I e* ~ i^j U(X,t)dx^ = 0(1). (2.20)

Hereafter C(> 1) denotes a positive constant depending on R, //, cy, k, and the initial

data but not on t. Indeed, we have

u(x,t) = e~' [ eT [ —9(x,x)dxdx + o(l)
Jo Jo P

(by (2.13), (2.16), (2.15), (2.17))

=e" f0e,^{E"-f0\vl{x't)dx)dx+0 (1)

(by (2.14))

'£-AE°-\[CMx)dx) -TAf/'{f„u{x'x)dx) <4+o<i)

(by (2.4), (2.19))

, i \ 2
R I „ I f1 \ 1

= 7^\E°-i[J„ "°MdX) ')}+»(!)

(by (2.20), (2.19)). ■

Lemma 2.1. We have (2.15).

Proof. We use the expression due to Kazhykhov [2],

u(x'" = WT) {"oW +1 Je'e(x■rWx z)dr}-

where

B{x,t) = expj^j (u0(<f)-w(«J.O)^J-

It is crucial to show

C"1 < [ 6(x,t)dx < C, (2.21)
Jo
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W>dxd^C <2'22>

(for detail see [4, Lemmas 4.1-4.2]).

Dividing both sides of (2.7) by 6, and integrating with respect to x over [0, 1], we

have

/' cv\o%6dx= + f (X v{^,t)d^dx. (2.23)
dt J o dt fi Jo Jo

Here we also use (2.6), (2.10), and (2.4). Integrating over [0, t] and using (2.14), we

have

%{t) + [' ^(t) dt < C, (2.24)
Jo

where ?/{t) and ^(t) are nonnegative functions of t defined by

m = J |^v2(x, t) + Cy(0(x, t) - log0(x, t) - l)j dx,

Thus we get (2.22). In a similar way to the proof of [4, Lemma 4.1], (2.21) follows

from (2.14) and (2.23). ■

By similar arguments to [4, Lemmas 4.1-4.2], we have the following estimate,

which we need to prove (2.16).

Corollary. We have

0(x.t) < C(1 + T{t)). (2.25)

Lemma 2.2. We have (2.16).

Proof. From (2.15), (2.4), and (2.14), we have

f w2(x,t)dx<C. (2.26)
Jo

Therefore it is sufficient to see

^ ^ w(£,t)d£j dx = o{ 1).

After multiplying both sides of (2.12) by f* w(£, t) d£, we integrate with respect to

x over [0,1], Taking account of (2.14), (2.25), and (2.26), we have

jtii (r—) dx+[ {iow{(j)di)2 dx icn,)-

Consequently the integrability (2.24) of T\t) yields the desired assertion.

(2.24) gives (2.17) also.
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Lemma 2.3. We have (2.17)-(2.19).

Proof. It follows from (2.15), (2.25), (2.21), and the definition of ^\t) that

• l

6{x, t) dx - 6(x, 0
/Mo

i{f<s^dx[e(xj)dx
1/2

sup u(x, t)6{x, t)
(x,r)e[0,i]x[0,+oo)

< e + C(e) T[t)

for any e > 0. Thus we have (2.17).

Next we shall show (2.18). Making use of (2.13), (2.15), and (2.16), we have

[ fiu(x, t) dx - e~' [ eT f Rd(x,x)dxdx = o(l). (2.27)
Jo Jo Jo

Therefore (2.18) follows if we show
l

2w (x, x)dxdx + o(l).f nu(x,t) dx - e ' f e* [ R6(x,t) dx dx = e 1 f ex [
Jo Jo Jo Jo Jo

To prove this we multiply both sides of (2.12) by u(x, t), and integrating over [0, 1],

we have

~ [ u(x,t) [ w(£,t)d£dx + [ u(x,t) [ w(£, t)d£dx+ [ (w2 + R6)dx
dt Jo Jo Jo Jo Jo

d fl fl
— ̂  Aiudx+ pmdx.

° (2.28)

Here we perform integration by parts with the help of (2.5) and

fJo

i
w(x,t)dx = 0, (2.29)

which follows from (2.8) and (2.4). By use of (2.15) and (2.16), integration of (2.28)

yields the desired fact.
(2.19) is valid by (2.13), (2.15)-(2.17), and (2.27). ■

To prove (2.20) we need

Lemma 2.4. We have
-i

IGw2(x, t) + cyd(x, t) - ^%(x, i)j dx = o(l). (2.30)

Proof. Multiplying both sides of (2.6) by w(x,t), adding to (2.7), and integrat-

ing with respect to x over [0, 1], by use of boundary conditions (2.10), (2.11), and

Equation (2.5) we have

— J (±w2 + cvd^ dx +J (w2 + R6)dx-^J fiudx + j \iudx. (2.31)

From (2.28) and (2.31), in a manner similar to the proof of (2.18) we get

J {\w2^X' *) + Cv^(x' *)) dx - e~' j er J cyd(x, x)dxdx = o(l).

Here we use (2.18). From this and (2.27), we get the assertion. ■
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Lemma 2.5. We have (2.20).

Proof. By use of (2.5), we get

■-L-if. u{x, t) dx^ dx - u(x, t)

= e~' I / Uo(x) dx ] -2e~' er u(x,x)dx / wx{x,x) dx dx.
\J 0 / Jo Jo Jo

Clearly, the first term of the right-hand side tends to zero as t —► +oo. Since u is

bounded, the second term is majorized as

e~' / eT u(x,x)dx wx(x,x)dxdx
Jo Jo Jo

< Ce~' [ ex < [ (\nwx + fiu - R6\ + u - f udx + 6 - f 6 dx + w2\ dx
Jo [./o y Jo Jo

+ \j (jw2 + cve-c-j^u^ dx dx.

The right-hand side tends to zero as t —► +oo because of (2.24), (2.15), (2.21), (2.19),

(2.17), (2.18), and (2.30). ■
2nd Step. L2{0,1) convergence of (w, 6) to (0, 6). Since we have shown the uniform

convergence of u, the L2-decay of w implies the convergence of /J 8 dx to 6 by virtue

of (2.30). Thus our aim in this step is accomplished if we show

Proposition 2.2. For any k > 0,

/•' \ 12 1
dxJ | ^w2(x, t) + Cy ̂ 9(x, t) - J 0(x, +w4(x,t)

Hi.
+ J w2(x,x)dx ■ J wl(x, x) chrj dx = o{\

+ e k' ekz < I (dl(x, x) + w2(x, x)w2(x, x)) dx (2.32)

holds.

Before proving this proposition, we must show the following lemma, which is an

extension of (2.18).

Lemma 2.6. We have

e-kt f ekz f w2(Xi x)dxdx = o(l) (2.33)
Jo Jo

for any k > 0.

Proof. It is clear for k > 1 because of (2.18). To prove for 0 < A: < 1, we multiply
<*X

both sides of (2.12) by u(x,t) Jq w(£,t)d£, and perform integration by parts with
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respect to x over [0, 1] with the help of (2.5) and (2.29). Then, by use of the estimates

in the previous step, one gets

u(x,t)Q^ w^,t)d^j +2^ u(x,t) w(^,t)d^j +2^Jq w2{x,t)dx

< C max I [ w(£, t) d£ .
xe[o.i]| J0

Therefore the integration of the above differential inequality yields the assertion for

0 < k < 2. Here we use (2.16). ■

Proof of Proposition 2.2. By use of (2.6), (2.7), (2.10), and (2.11), we have

- nwx + fiu- Rd + —
„ Ow wwx 6X

-R 1- u 1- nw + K —
M M M

f' / Ow w2 \
- / ( uwx + uu- R8 - R—- + n— + fiwx dx.

Jo V MM/

Remark that terms in brackets vanish at x = 0 and 1 by (2.10) and (2.11). We

multiply both sides by \w2 + cy{6 - /0' 6 dx) and integrate with respect to x over

[0,1]. Thus we get

5 7, Si {lw2 +1c" (" " Si 6dx) } dx + Si'w* +'cv") dx

+ C_1 ̂ J 02xdx + J w2 dx ■ J w^dx^j (2.34)

< C | y{t) + J (w2w2 + w2) dx j.

Here we use several estimates of integration which follow from the aforementioned

step, for example

f 02 dx ■ f w2 dx < max 9(x,t) ■ f 0 dx ■ [ w2 dx < C ( [ w2 dx + V(t) ) .
Jo Jo *€[0,1] Jo Jo \J o J

Similarly we multiply both sides of (2.6) by w3, and integrate with respect to x

over [0, 1]. The outcome is

1 d /"' 4 , fX ( 4 . W2W2\
/ w dx+ ( w + 2 u   dx

4 dt J0 Jo V u J

<ej 02x dx + C(e) ̂ J w2 dx + ^{t^j
(2.35)

for any e > 0.
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Combining (2.34) and (2.35), we find that

2
d_
dt

+ +cw

+ k* J | ^ w2 + cy ̂ 6 - J 6 dx^ | + Cw

+ C1-1 jy (92+w2w2)dx + J w2dx ■ J

< C t^t) + J* w2 dx^J

holds for some k* > 0, which gives the assertion for 0 < k < k* by (2.24) and the

previous lemma. The assertion for k> k* follows from that for k = k*. ■

3rd Step. L2(0, 1) decay of (ux,wx, 9X). In a consequence of the foregoing result

we have only to show the following proposition.

Proposition 2.3. We have

J0 { + z* + (9*} dx = °{\)>

z(x,t) = fiw(x,t) + [ (fiu{£,t)- R6{Z,t))dl (2.36)
J o

Proof. By the help of (2.5), we can rewrite (2.6) as

d ( ux\ ux <R6 — uu)ux „9X
— lw-n-?-)+w-n— = - -R-.
dt \ u / u u2 u

Multiplying both sides by w - juuxu~l, we integrate with respect to x over [0, 1]. By

Schwarz's inequality we find that there exists a T > 0 such that

where

It [ (w ~ dx + L (w - dx

< C | 2^r) j dx + j (iv1 + 8l)dx + ^\t)

holds for t > T. Here we use (2.27) and the fact that for any e > 0,

(2.37)

- fiu\ < R 9 - [ 6 dx + R [ 9 dx - fiu
Jo Jo

< e + C(e) y{t)

holds for t > T = T(e) (see the proof of Lemma 2.3). We integrate the above

differential inequality. Because of (2.24) and (2.32), application of Gronwall's lemma

gives the L2-decay of w - piuxu~~x and thus that of ux.

In order to derive the L2-decay of {zx,dx) rigorously, we approximate initial data

smoothly such that the solution has derivatives zxt, 0xt in the classical sense, and
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then pass to the limit. However, since this procedure is rather routine, we shall not

give it here.

From (2.5)-(2.7), (2.10), and (2.11), we find that z satisfies the equation

R (zx\ R fxzxwx,r , kR 6x (, R\ ,
z, + —z = /x( —) / -*-*-[£,t)d£ --n 1 w{0, t), 2.38

CV \uJx Cy J0 U CV u V Cv J

and the boundary condition

zx(0, t) = zx(l, t) = 0. (2.39)

We multiply both sides of (2.38) by zxx, and integrate by parts with respect to x over

[0, 1] with the help of (2.39). Then it is easy to see that

J z2xdx + J z2xdx + C-1 J z\xdx <C j d2dx for t>T (2.40)

holds for some T{> 0), if we note that for any e > 0

[ zxx(x,t) [ -£—£(<Z,t)d£dx + [ ~x <e f z2xxdx for t > T
Jo Jo u Jo u Jo

holds for some T = T(e) > 0. To see this estimate, we perform an appropriate

integration by parts on the left-hand side and use the L2-decay of (w, ux). By virtue

of Proposition 2.2, (2.40) gives the L2-decay of zx and thus that of wx and

e ki f ekx f z2xx dx dx = o( 1)
Jo Jo

for any k > 0.

Finally we prove the L2-decay of 6X. We multiply both sides of (2.7) by 6XX and

perform a similar procedure to the above argument to have

Jtj\2xdx + c-lj\e2x + e2xx)dx<cj\z2x + z2xx + d2x)dx for t > T, (2.41)

which together with (2.32) yields the desired fact. ■

Now we complete the proof of Theorem 2.1, and therefore Theorem 1.1 is partially

proven.

3. Rate of convergence. In this section (u,w, 6) is a classical solution to the problem

(2.5)-(2.7), (2.9)—(2.11), and z is a function given by (2.36). To prove the remainder

of Theorem 1.1, we shall show

Theorem 3.1. The rate of convergence of (u, w, 6) to (u, 0, 6) in WL2(0,1) is expo-

nential, i.e., there exist positive constants C, X which depend on R,]u,cv,k, and the

initial data such that
• i

{(« - u)2 + w2 + (0- 9)2 + u2x + w2 + d2x} dx < Ce~XtJJo

holds.

Outline of Proof. In a consequence of Theorem 2.1, we have

I
i
{(m - u)2 + w2 + (6 - 0)2 + z2 + u2x + w2 + 6l + z2}(x, t)dx < S
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for some S > 0, and, without loss of generality, may assume that S is as small as

necessary.

For positive constants C, (/' = 1,..., 4) define £?(t) = Ci, C2, C3, C4):

_ [l\lw2 Cy/U (R6 R6 \ / ux\2 _ 2
m = I x 1 —~ ( log 1 ) + C[ I w — n— J + Ci6x + C^zx

w Jo [2 a cv + R \nu nu J \ u ' x x

+ C4 + cve (jj - log| - 1^ | dx,

where

y/(x,t) = w(x,t) + f (u(£,t) - u)d£ - f [ (u(rj,t)-u)drjd^. (3.1)
Jo J0 J0

Since both u and 6 are strictly positive and bounded by Theorem 2.1, f(r) is

equivalent to \\{u, w, 8)\\\ 2- Consequently we have only to prove that, under suitable

choices of C,'s, there exists a positive constant A such that

j g{t)+XZ{t)< 0 (3.2)

holds for t > 0 if 8 is sufficiently small. We shall give the proof of (3.2) by two

lemmas. ■

Lemma 3.1. If S is sufficiently small, then there exist positive constants C, (i —

1,2,3, 5, 6) such that

d fl ( \w2 cvM (RQ , R6 „ ( ux \2 „ o2 „ 21 j
"77 I ■{ ̂ 1—"—;—n I  1 J + Cj I u; — n— ) + Cidx + Ct,zx > dx
dt J0 [2 u cv + R \ fiu nu J \ u / J

+ c,l {a2 + (^-'oeTS-,) + (w^T)2 + wl' + z' + e2" + ^}'tx

<C6[ 62xdx (3.3)
J 0

holds.

Proof. We multiply both sides of (2.6) by u~lw, and integrate with respect to x

over [0, 1] by use of (2.10). Then we get

7, i Gt+dx+1 (t+"^)dx (34)

/•' \ n6w2 wuxzx 1 w2wx\

"k \R— + —>—2—fdx

Here we use also (2.5). On the other hand, (2.5) and (2.7) yield

f1 Gwx d fl 6 , 1 f' [ zx n Gwx wl wx (6X \ 1 1 ,
/ —^dx = --rl -dx+— { —- R—± + + n—+ k[ — \ - } dx.

Jo U dtj 0 U Cy Jo I U u2 u2 u \u ) xu J

By the help of (2.2), (2.4), (2.36), and (2.12), we write u~{ zx as (/Qx v d£)t and u~]wx

as (logu),. By use of (2.7) we perform integration by parts of the last term of the
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above equality. From this result, (3.4), and (2.23), we get

at J0 {2 u cv + R \nu fiu /J

+ /' (W2 | Cv^ W* | 1 Z* | 6
J0 \ U Cy + R U2 Cy + Rud Cy + R Ut

flfwuxzx 1 W2WX , KR 6XUX\ ^ 0
= Jo {—'2 - + ̂ TR-^)dx (3-5)

<CSl/2J + w2 + wx + zx| dx

+ eJ ~ + w2^j dx + C(e) J 6$ dx.

On the other hand, since Rd/fiu is strictly positive and bounded,

0 ^ 7777 -log 7777 - 1 ̂  C^R6 ~ ^2 ^ C^ + w<3-6>
tt ti ti ti

holds.

Moreover, (2.37), (2.40), and (2.41) hold for t > 0 if 5 is sufficiently small. Com-

bining these estimates and (3.5)-(3.6), and taking 5 and e sufficiently small, we get

(3.3) for some C,'s. ■

If an inequality C& < C5 holds, then we can easily show the exponential L2-decay

of (w, R6 - /j.u, z, ux,wx, 6X, zx) by use of (3.3). The inequality is true when R/cy

is sufficiently small, see [5, 1]. In general, however, one cannot expect it. Therefore

we need a more delicate analysis.

Lemma 3.2. We have

jt Si {!"2+cvS (I -iog? ~ 0}dx+6 Si (■$§+* JO dx - °- (3-7)

Jq {v2+vi+(§ -lQg| - ^ CJQ {w2+(w-^)2+™2x + 02x + 4} dx.

(3.8)

Proof. Using z(x, t) and y/(x, t), we can rewrite (2.6) and (2.7) as

* - (-)
V u ) x

and

Cye, = !^ + ^ + K(^)
U U V U J }

'(t),

or

Cy$l = & + ^£i +
U fiU

respectively. We multiply the first equation by if/ and the third by -66~l. We sum

up these three relations and integrate with respect to x over [0,1] by use of (2.11)

and (2.39). If we note (1.8), then we get (3.7).
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Recalling (2.29) and (3.1), we obtain
• l

/ dx = 0.
Jo

Therefore, if we note that

Hy/X = zx + R{6 - 6)

holds, we get

f i//2 dx < f i//2 dx < C f {z2 + [6 - B)2} dx.
Jo Jo Jo

Moreover, since 6 is bounded and strictly positive,

o< J-iog|-i <C{d-d)2

holds. Consequently, to prove (3.8) we must estimate 6-6.

' R26

(6-8)2 < C
2 n

+ 6cyfi I - { 36Cyju2 + 3Rz I 2E0 - {[v'dx)

(3.9)
holds by (1.9). From (2.14), (2.4), and (2.29), we have

2

Vo = 2Cy J 6 dx

fo \w2+ (jo ud/* ~ Jo fo UdT,d^) +2w [jo ud^~ fo foUdr,d^)\ dx'

We insert this into the right-hand side of (3.9). Hence one gets

(0 — 0) < C + 6 R2cv
An1

- 3RZ I twz +f \ w2+( r udt- /' [( udr\d£
Jo I \J0 Jo Jo j

+ 2w ud£ - fJl

R4d2-3R2(rudx\2 r(x-i)2dx< C

(62x + u2x+w2)dx j

< C |(/?0 - nu)2 + J (w2 + u2 + 02)d.x j

l + wl + {a;2 + (u> -+ 62x}dx< C
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Thus the lemma is valid. ■

It easily follows from Lemmas 3.1 and 3.2 that (3.2) is valid for some C,'s. There-

fore we complete the proof of Theorem 3.1. By use of the original time variable and

unknown functions, Theorem 1.1 is completely proven from Theorems 2.1 and 3.1.
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