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ABSTRACT

The uniform approximation of continuous functions
of a.real variable on intervals, through positive linear
operators, is an active field of research at present. This
study first surveys the various linear operators used in
this connection, e.g. Operators of Bernstein, Szasz, Baskakov,
Meyer-Konig and Zeller as well as those of Shah and Suryanarayana

and the various results obtained from them.

The asymptotic form of most of these approximating
operators has been studied. These results are analogous to
those obtained by Sikkema with regards to the Meyer-Konig

and Zeller operator.

Using the method of Shisha and Mond a quantitative
estimation of the closeness of approximation of these

operators is then obtained.

Finally it is examined whether the derivatives of
these operators approximate uniformly the corresponding
derivatives of the function. It has been shown that for
the Meyer-Konig and Zeller, Baskakov and Szasz operators, .
they have the property that the vth derivative of a function
can be approximated uniformly by the vth derivative of the

operator.
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CHAPTER 1

INTRODUCTION

SURVEY OF VARIOUS RESULTS



CHAPTER 1

51.1
The problem of uniform approximation of continuous
functions of a real variable, on bounded closed intervals by
polynomials, was originated by Weirstrass in 1885. The use
of positive linear operators in connection with approximations

has been a very active field of research since then, particul-

arly in recent years.

S. Bernstein [1], O. Szasz [34], A. Lupas [23, 24,
25], M. Muller [25, 29], Meir ¢ Sharma [26], Jakimovski §&
Leviation [13, 14], Shah § Suryanarayana [30] are but a few
of the names one associates with the work currently being
carried out in this field. These papers introduce new
positive linear operators and study their properties. We may

study the following.

(i) If the operator approximates the function, whether, for
continuously differentiable functions, the derivatives of the

operator approximate the derivatives of the function.

(1ii) Whether asymptotic expressions for these operators -
could be obtained, indicating the order of accuracy of these

approximations.

(iii) Degree of convergence - How rapidly does the operator

approach the function?



(iv) Whether these could be extended to include complex

valued functions.

(v) Whether the operator is a member of some generalized

family of positive linear operators.

(vi) Whether there is any connection of these operators

with summability theory.

We give a brief survey of the work which has been

done and then move onto further new results.

§1.2 Bernstein Polynomials

1.2.1 Definition

In 1912, Serge Bernstein introduced a polynomial
"to demonstrate the Theorem of Weirstrass". This polynomial,

the Bernstein polynomial, is defined as
n

Bn(f;x) =k§o (E) xk(l--x)n"k f(%), n=1,2,

. .
. bn,k(X) f(H) (1)

(o]

o~

k

where bn,k(X) = (g) X (l-x)n‘k.

It was shown that 1lim Bn(f;x) = f(x) uniformly on [0,1]

n-ro

Many properties of this polynomiai have recently
been studied in a book by G.G. Lorentz, "Bernstein Poly-

nomials". [22]



1.2.2 Differentiability

The derivatives of an operator are a key to its
shape preserving properties. Lupas [23, 24] in 1967 examined .
these properties for various operators and showed that for

the positive linear operator
o (DX e K

L (f3x) = ) f(=), =xelo,a], a>o (1)

n = k! n

the (at+l)th derivative may be written as

Lt gy

n
" ¢(k+a+l)(x)
_ (atl)! k+toa+tl "n k k+1 ktotl, oq. Kk
= -———-—-———-—-a+1 z (-1) -I-]-,’ n AR o : ]X
n k=o k!
(2)
where [k 1., k+;‘+1;f] is the (a+1)th divided difference

of f.
When ¢n(x) = (l—x)n, and a=1,

L(a+1)

) B(a+1)
n

n

(f3x (f3x).

" The expression

(o) [ . - 1 o-1 (a)
Bn (f,X) = (1- E)".(l- —H—)kzo (” + 0

k’ n)bn -0, k( x)

o<ek<l, -

was derived in Bernstein's initial paper of 1912, and used

(a)

to show that whenever the derivative f exists and is

continuous in [0,1], then

lim Béa)(f;x) = f(a)(x) uniformly on [0,1] (3)

Nn->oo



1.2.3 Asymptotic Relations

Voronowskaja [35] in 1932 considered approximations

on the interval [0,1];

"If f(x) is bounded on [0,1], then at every point x where

the second derivative exists

1lim n[Bn(f;x) - f(x)] = ES%:ﬁl fP(x)." (1)

1>

Bernstein [1], in the same year wrote an addendum to this

paper [35] when he considered

n
) _ Ky _ x(1-x) - @ (k
Qn(f,x) -kgo [f(H) 7’1 f (n)J bn’k(x).

He showed that if |[f(x)|<M in the interval [0,1] and the

fourth derivative f ™ (x) exists at the point x, then

1im n? [Qn(f;x) - f(x)]

N>

(3) (1)
= x(1-x)(1-2x%) £7 G 3{x(1-x)}? £ &) (2)
. 3! y!

The result has since been generalized [22], tc

k 2k-1 - (s)
lim n [Bn(f;x) - f(x) - E S Tn’s(x)f (x)]
n->o s=1
(2k)
= (3x (o )

k!

where the Tn S(x) may be obtained from either

-2k 2k ! -k -k-1

- k
n Tn,Zk(X) = EE;! {x(1-x)}" n

+ 0(n )



or the recursion formula
- _ v
Th,p+1(x) = xQ2 x)[f~n’r(x) + ann,r—l(X)]'

P.L. Butzer [4] contributed greatly to this strand of work.

1.2.4 Degree of Convergence

LA

Popoviciu in 1935 showed that
3 -y
|B (£32) - £(x)| < Sw(n™?)

where w is the modulus of continuity.

Cimoca and Lupas [8] verify this result using the

results of a generalized polynomial.

1.2.5 Generalization

There are several generalizations of the Bernstein
Polynomial some of which reduce to Bn(f;x) as defined in
1.2.1 while others reduce to similar linear positive operators

of Bernstein type.

In 1966 A. Jakimovski and D. Leviatan [13], defined
the sequence

k+t

(n+t
nt+t

n-k k+t
n-k ®

) (1-%) £, -

where Bn(f;x,o) = Bn(f;x).

A. Meir and A. Sharma in 1967, [26] developed a Bernstein

polynomial using polynomial coefficients;



n
B (£30,0) = =3— 7 @IOLP O a0 K 1

L% () kZo Ko K
n

(a)

n

where L (t) are Laguerre polynomials and

Béo)(f;x,o) = Bn(f;X),

An operator which generalizes other common

operators as well as the Bernstein, is that of Lupas [23, 24]

k
. - k (k) pd k
Ln(f,X) - (-1) ¢n (x) kT f(H)’

k

He—1 8

o
the derivative of which is given in 1.2.2(2). Again the

substitution, ¢n(x) = (1—x)n, gives us Ln(f;x) = Bn(f;x).

Further generalizations of the Bernstein operator
are examined by Jakimovski and Ramanujan [16], Cimoca and
Lupas [8], Ibragimov and Gadziev [11] as well as Boehme and

Powell [2].

1.2.6 Summability Matrices

Two matrices of importance in Summability Theory
are those of Euler and Taylor. J.P. King [17] has shown that

the b (x),as defined in 1.2.1,generate these matrices. In

n,k
particular
(i) ¥ (1-x0"%  ifk <n
bn,k(X) =

o if k > n



generates the Euler matrix and

’

o) if k < n

'bn’k(x) =

_ )n+l

(E) Xk—n(l X if k 2 n

\

the Taylor matrix.

Similar work on Summability Theory may be found in

Boehme and Powell [2], Meir and Sharma [26] and King et al.
[18], [19].

1.2.7 Extension to the Complex Plane

Gergen, Dressel and Purcell [9] in 1962 extended

1.2.1 to hold in the complex plane; their theorem

"If f(z), z = x + iy, is analytic in the interior
E of the ellipse with foci at z = o and z = 1 then
Bn(f;z) + f(z) as n»» on E,

this convergéncé being uniform on each closed subset of E." (1)

Nearly forty years elapsed before the first of the

new operators was presented.

§1.3 Szasz Operators

1.3.1 Definition

Otto Szasz [34] in 1950 extended the range of
polynomial approximations to the infinite interval [o,») by

introducing the operator



Sn(f;x) = o ¥ y %5? f(%) n>o, xe[o,a] o<a<w
k=1
_ k
-kzl sn,k(X) £(2)
-nx @Mx) K
where 8n,k(X) = e T

He showed that this operator has properties
analogous to those of the Bernstein polynomial, but for the

infinite interval.

Lupas [23] in 1967 showed that

. Tk, X L L)
lim S_(f3;x) = S(f3x) =) £ "'(o) =+ , if £ ’/(0), kew exists,
nsw D k=1 k.

and so called it a '"quasi" Maclaurin Operator.

1.3.2 Differentiability

The differential relationship 1.2.2(2), given by
Lupas [4] also holds for the Szasz operator with the

substitution

-nx
¢n(x) = e . x € [0,a] , o<a<w.

The analogue of 1.2.2(3), given by Szasz [34] is the Theorem

"If f(x) is r-times differentiable, f(r)(x) = O(Xk)'

as x » « for some k>0 and if f(r)(x) is continuous at x=¢

(r) (r)

n (x) at x=g". (1)

then S (f3x) converges to f

This result was obtained by Jakimovski and Leviatan

At

[15] with the weaker restriction |f(t)| < e, t2o for some

finite A.
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1.3.3 Asymptotic Relations

Szasz analogue of 1.2.3(1)is Theorem 6 of his paper
[34] "If f(x) is bounded in every finite interval, if it is
twice differentiable at a point £>o0, and if for some k>o,

f(x) = O(Xk) x+o then

lim n{S_(£38) - £(£)} = ZEE™ (£)" (1)
n->oo
l.3.4 Degree of Convergence

Two of the theorems in Szasz paper we may consider
as giving us statements as to the order of accuracy of the
Szasz operator. Firstly,

Theorem 1, [34]3

lim sup ISn(f;x) - £(x)| = 0{m(28)}

where |x~-£|<6 and max |£f(x) - £(&)]| = m(8),

Theorem 5, [34];
This is an asymptotic result;

"If Sn(f;x) -+ f(x) uniformly as n-w,

lim vn {sn‘(f;g) - f(&)} = o,

n-roo
if f(x) is bounded in every finite interval and differentiable

at a point &>o0, f(x) = O(xk)." (1)

It also means that the approximation by Sn(f;x) is
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1.3.5 Generalizaticn

The generalization, 1.2.2 (1)by Lupas, with .
¢ (%) = e ™ | xel[o,a] o<a<ew, .

is one form for the Szasz operator.

In 1969 Jakimovski and Leviatan [15] defined

e"'nx 0{.‘ k

where the f(t) are defined on [0o,») and p,(x) are Appell poly-
k

nomials defined by

g(n)e® Ekz Py (%) n’
=o

and g(z) =) a_ 2,
n=o
k Xk—n

Pix) = E %h Geem)!”

If g(z) 1; 1.3.5(1)reduces to the Szasz operator.
In 1967 Meir and Sharma [26] generalized both the
Szasz operator and the asymptctic results 1.3.3(1)and 1.3.4(1).

Their operator

o k
. _ _=-nx 18k ..y (nx) k .
Sn(f,x,t) = e sech (2t Jnx)z (-1) H2k(lt)T7F7T f(ﬁ)’

k=o
where Hk(t) are Hermite polynomials of degree k.

The relationship is

Sn(f;x,o) = Sn(f;x)



- 19 -

The fwo results

lim v/n [ (£38, M- £(&)] = WE £ (8, ()

n->roo

1 2
lim n[S_(£38, A)- £(&)- AME f (gy]= A ;1

n-re vyn

L E. £ (E)  (3)

reduce to 1.3.4(1) and 1.3.3(1) resp. when A=o.

further new generalization is given by G.C. Jain

[12] when he defines

. k-1
g) nx (nx+kB) e—(nx+k6)

Pn(f;x, B) = Z f(
k=o k!

The relationship here is

Pn(f;x,o) = Sn(f;x)

Other generalizations are in Lupas [24].

1.3.6 Extension to the Complex Plane
Cheney and Sharma [7] in 1963, analysed the
behaviour of Sn(f;z)laﬁd found it analogous to the Bn(f;z),

1.2.7(1);

"If f(z), z=xtiy is analytic in the interior E of the

ellipse with foci at z=o and z=1 then

Sn(f;z) + f(z) as n»» on E,

this convergence being uniform on each closed subset of E."
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“§l.b Baskakov Operator

1.4.1 Definition

A.V. Baskakov in 1957 introduced another operator
on the infinite interval, with similar properties to Szasz.

The opefator

0 k .
K (f3x) = ) (n+§-l) -~§—;¢E f(?) xe[o,a]
. k=o (1+x)" ;
O<a<°°
_ v x
= Z hn,k(X) f(H)
k=o
where h (x) = (*TRL ———§E~—~ and § h (x)=1
n,k k (1+x)n+k k=o n,k ’

The substitution of

¢ (x) = (1+x)7"
in 1.2.2(1) and 1.2.2(2) gives the operator and its (o+1l)th

derivative resp.

Ibragimov and Gadziev [11] as well as Lupas [24]

have considered generalizations of this operator.

§1.5 Meyer-Konig and Zeller Operator

1.5.1 Definition

A new 'family" of Bernstein type approximation for

the infinite interval was introduced in 1960 by Meyer-Konig

and Zeller [27]. Theydefined



...lu__'

k+n

K ) xk f(~&—)

| oy o (o n¥l T
M (£3x) = (1-x) kzo ( o

.
mn,k(X) (=)

m
He-18

k=0 k+n
‘ - ntl k+n k
where mn’k(x) = (1-x) ( X ) x
[e¢]
and mh’k(x) = 1

k=o
Mn(f;x) approaches f(x) uniformly on [0,1].

The essential change is away from f(g) to f(Egﬁ).

1.5.2 Differentiability

In a study of shape preserving properties of this
operator, Lupas [23], has derived the first, second and
third derivatives. Manfred Muller [28], starting with Lupas'

first derivative showed;

"TIf the function f in [0,1] is uniformly differentiable

then lim MA” (f3x) = £ %Y (%) for each point [0,1]".

N->roo

1.5.3 Asymptotic Relations

Cheney and Sharma [7] have shown that if at a point

£ ¢ [0,1), f(t) possesses a finite second derivative,

M (£38) - £ | SEEE @ (@) [+ onr1) H; noe
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Muller [29] improved this result to

M, (£58) - £(8) [ SATEL £ (&) [+o(nrD) T,

only to combine with A, Lupas in 1970 [25] to obtain

. E(1-£)2

5= £2(g) + o(n™1),

Mn(fgg) - (&)

In a recent paper P. Sikkema [33] has extended this

result to:

"If f(t)e[0,1), and if f(t) is continuous to the left
at t=1 and if at &e[0,1], f(t) possesses a finite fourth

derivative,f ® (&), we have

2
M_(£38) - £(E) = EQ=8)" s (g 4

2n

e {% E(1-£)2(26-1)F @ () + 3 £(1-£)*(1-58)F (&)

+ % E2(1-£)* £ W (g)}
+ o(n72)."

1.5.4 Degree of Convergence

Lupas and Muller [25] showed

-1
lM (f X) - f(X)IS—Tw(n 2), n:2,3,ono

where w is the modulus of continuity.

Sikkema, using the results of Shisha and Mond [31],

has improved on this result; if x €[0,1],



- 1 -

. . 2 _ -1
M 5% - £Go [ {lemh (- B e ™)
n 4(n2-1)2

3 =Y
< 7% 0™ n=1,2,...

and added two more inequalities;

N

2 - -
M (F330-£Gx) | s {14x(1-x) 24 2LATXEZT0y g 40y 72,
n=1,2,...
and
coy L k(i-x)? x2(1-%x)(2-%) _
IMn(f,x) f(x)]= Qw(?//n+l + Y ‘> n=1,2,...

Other results for both Mn(f;x) and its first
derivative MH”(f;x) are given in Muller [29] and Cimoca &

Lupas [8].

1.5.5 Generalization

One generalization, analogous to that for the
Bernstein polynomial 1.2.5(1), was given in 1963 by Cheney

and Sharma [7]

o . o
. _ n+l tx (n) k k
Mn(f,x,t) = (1-x%) exp(i:i)kzo Lk (t) f(E;H) P

where Lﬁn)(t) are the Laguerre polynomials of degree k and

Mn(f;x,o) = Mn(f;x)

A. Jakimovski and M. Ramanujan [16] showed that if

f(x) is continuous in [§,1], >0, and t>o



...'17._

k-n nt+t+l n+t+l
X )

£ GrgrT

T ktt, .,
Mn(f;x,t) :kz (k_n)(i-X)

converges uniformly to f(x) for all x in [§,1], o<é<1.

Further generalizations are investigated in

Jakimovski and Leviation [14], Cimoca and Lupas [8].

§1.6 The Operator Class of Shah and Suryanarayana

1.6.1 Definition

Another form of positive linear operator was

introduced in 1965 by Shah and Suryanarayana [30];

o kAk ' Xk
Pn(f;X) = g(n,x)kzo f(T) (I)k (1’1)]'21 (1)
oo Xk
where ) g(n,x) o)y = 1 (2)
k=0 )

and {¢n(x)} is a sequence of real polynomials satisfying

(i) ¢n(x) is a polynomial of degree n
(ii) It possesses a recurrence relation of the type
Ao (%) = ¢ _1(x) + C ¢ _,(x)

(iii) All the zeros of {¢n(x)} lie in (-»,a], o<a<e

and ¢n(x)>o for all n and x>a.

(iv) ¢n(x)<(bx)n, x>0 and b>o.

In particular if
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1.6.2
(a) ¢n(x) =z Tn(x) the Chebychev polynomials with recurrence
" relation
L = -1
sT (%) = xT (%) 5T _p (%) (L)
and T (x) < (2x)" (2)
1.6.3
(b) ¢n(x) = Pn(x) the Legendre polynomials with recurrence
relation
n - _ n-1
7n=T nt¥) F XPp (%) - 5y P () (1)
and P (x) < (2x)" (2)
§1.7

From this survey we can isolate the operators and
areaé which have undergone most intensive study. Obviously
the oldest and most familiar Bernstein operator has been in
the vanguard of any new area of study. 'So the Bernstein
operator is the "reference" operator, and the aim is to

emulate its results with other operators.

We notice the asymptotic Bernstein results in
1.2.3, the similar results obtained for the Szasz operator
1.3.3, and more recently the analogous results for the Meyer-

Konig and Zeller operator- in the paper by Sikkema [33].
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This is the area of study of our first set of three
theorems in Chapter 33; to extend the asymptotic Szasz results
to a greater order of accuracy and to include a wider range >
of functions; to obtain a similar set of asymptotic Baskakov
results and to obtain the first asymptotic result, or
Voronowskaja type of result for two of the members in the

class of Shah and Suryanarayana. They are:

Theorem 1

1.7.1 If £(x), |f(x)]| < AeB% is defined on [o,®) and has
all finite derivatives up to, and including the eighth at a

point x = &, where A, & and 8 are all >o, then

(2) = (W)
S_(£38) - £(8) = 2 £@ ()+ g 2 L8) 4 gp2 L7 (8D

(3) (5) (6)

n 37 5! 6!
(5) (6) ‘ (7)
+hotg BBl v gsgr o 0E) 4 gps £ 00D

(
+ 105¢* f—%ﬁl} + o(n=")

where Sn(f;g) is as defined in 1.3.1.

The existing ‘theorem in 1.3.3 only admits funections

f(x), |[f(x)] = 0(xX). and ceases at o(n=2).

1.7.2 The Baskakov operator, defined in 1l.4.1 would, like

the Szasz operator, have asymptotic formulae to any desired

order. The asymptotic result for o(n™?) is,
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Theorem 2

If £(x),]|£f(x)|< AeBX,is defined in [o0,») and has
finite derivatives up to and including the fourth at a

point &, where A, £ and B are all >0, then

_ EQ1+E) £ (&)

n 2!

Kn(f;g)’— f(E)

( ()
EQA4E) ((140g) KD 4 gpavey £ (8D

n? 3! y!

£8 ) , qpp2(rep)2(regy L C8)

+ %3 {g(1+6(E+1))
y! 5!

6

(6)
+ 15g3(1+g)3 £___£§l } + o(n—%)

- where Kn(f;E) is as defined in 1.4.1.

For the operator class of Shah and Suryanarayana;

Theorem 3a

If £(x), |£(x)]| < AeP®

,1is 'defined in the interval
[o0,2) and has finite first and second derivatives at a

point &3 A, B and § all being >o, then,

1.7.3

P_(£38) - £() = E% £ (£) + o(n-1)

when the coefficients are the Chebychev polynomials 1.6.2,
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and Theorem 3b

1'7.4

P_(£38) - £(&) = '§% £@ (£) + o(n™1)

when the coefficients are the Legendre polynomials 1.6.3.

Closely allied with this asymptotic work is of
course the idea of degree of convergence or rapidity of
convergence of the actual operators. This next chapter,
chapter 4, then, makes use of some lemmas derived for the
previous theorems, together with the theorem of Shisha and

Mond to prove the following set of three theorems,

Theorem Ua

1.8.1

If Sn(f;x) is the Szasz operator, then at a point

x=£, Eela,b], o<a<b<w, f is continuous in [a,b],
%

2w (§>

n

IA

|s, (£:8) - £C8) |
where w is the modulus of continuity.

Theorem Ub

1.8.2

If Kn(f;x) is the Baskakov operator, then at a

point x=&, &e[a,b], o<a<b<w, f is continuous in [a,b],
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%

IK_(£38) - £(5)] < 20 (ELEEED

n

where w is the modulus of continuity.

Theorem U

If Pn(f;x) is the operator class of Shah and

Suryanarayana then at a point x=£, Eel[a,b], o<a<b<w, f is

continuous in [a,b],

1.8.3

1
2

E) - &
[P (£58) - £(8)] < 20 (52)

when the coefficients are Chebychev polynomials and

Theorem Ud

1'80L+

et

: 2
|P_(£38) - £(8)] < 20 (g + -2
n 16n2

when the coefficients are Legendre polynomials.

We notice in §1.2.2,Bernstein considered the vth

derivative of his operator, BéV)(f;x) and showed that in
the limit as n=»«~, it did approach the vth derivative of f(k),
f(V)(x). Szasz has enunciated a similar theorem for the
Szasz'operator Sn(f;x), but it appears that it has only been
shown to be true for the first derivative of the Meyer-Konig

and Zeller operator. No studies appear to have been done
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regarding the derivatives of the Baskakov operator.

The next set of three theorems in chapter 5 will
then;
(a) improve the Szasz result to include functions in an

arbitary bounded closed interval [a,b],
(b) extend the M-K and Z result to all derivatives, and

(c¢) derive an analogous result for the Baskakov operator.

1.9.1 Theorem 5

If Kn(f;x) is the Baskakov operator, defined in
1.4.1, and fe Cz[a,b] functions which are v times continuously

differentiable having compact support, then,

1im Kév)(f;x) - My, vz, 2, v

n-»>w

uniformly in any bounded closed interval [a,b], o<a<b<w,

Corollary.

If F=f3; xe [a-2e, bt2e], £ ¢ C'[a,b]

0 outside this interval

~

and F is the regularization of F such that

F=f3; xe [a,b]

0 outside (a-e, b+te)
FeC, bo, @)
then 1lim D(v)[Kn(F; x)] = f(v)(x) for all fe Cv[a,b]

n-o
v : l, 2, * 90 0
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1.9.2 Theorem 6

If Sn(f;x) is the Szasz operator and F ¢ cY[a,b]

then

(v)

lim sV (%) = £ ™M), v =1, 2, ...

n->o
uniformly in any bounded closed interval [a,b], o<a<b<w

Corollary.

If F=f 3 x e[a-2e, b+2e], £ ¢ C’[a,b]

1"

0 outside this interval

~

and F is the regularization of F such that

F

f xefa,b]

0 outside (a-&, b+e)

~

F e c: (-w, ®)
then 1lim D(V)[Sn(F; x)] = f(v)(x) for all feCV[a,b]
n->
v =1, 2, ...
1.9.3 Theorem 7

If Mn(f;x) is the Meyer-Konig and Zeller operator,

f(x) is v times differentiable then

1im Mév)(f;x) - Y% v=a, 2, ...

>

uniformly in [0,1).
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CHAPTER 2

PRELIMINARIES



CHAPTER 2

In this chapter we collect the essential theorems
to be used in the following chapters. Shorter results are

classified as lemmas and given prior to the proving of the

relevant new theoremn.

§2.1 Theorem 2.1

This is Theorem 137 in Hardy [10].

Suppose that x>o and

U
m

th

Um(x)

so that £ U_ = 1.

Then (i) the largest Um is UM, where
M= [X]a

two terms UM_l and U 0 being equal if M is an integer;

M
(ii) if m = M + h and

0<8§<1, then

y U 0(e %)
|h|>8x

where Yy = 62

Wi

- 26 -
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§2.2 Theorem 2.2

This is Theorem 139 in Hardy [10].

Suppose o0<k<1l and

c
n

U_(n)
m

LM (1-0™ (men)

(n+1)(n+2)
2!

= KMl (ne1) (1-k) +

~1
c
8
1

=1

Then (i) the largest U is Uy where

M = [%]a

two terms U M n

(ii) and o<é<1l, then

U 0Ce” T

|h|>6n ™

where v = v (k,8) >o.

§2.3 Theorem 2.3

(1-k)? +

M- and U being equal if K is an integer

This is Theorem 1 of Shisha and Mond [31], which

is a quantitative form of Korovkin's result,

Let -w<a<b<w, and let L;, L,,... be linear positive

operators, all having the same domain D which contains the
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restrictions of 1, t, t* to [a,b]. For n = 1,2,..., suppose
Ln(l;x) is bounded. Let feD be continuous in [a,b], with

modulus of continuity w. Then for n = 1,2,...,

2.3.1

[E-L O] < [I£]]-

’ !
!Ln(1>41]+||Ln(1)+1|,w(un),

L
where yu_ = |[Lnﬂt-x)2; x]]|?,
and || || stands for the sup norm over [a,b]. In particular,
if Ln(lgx) = 1, as is often the case, 2.3.1 reduces to

[ [£-L (D[] < 2wu ).

§2.4 Approximation of a Function by its Regularisation

These are lemmas from §3.2 in the book by Hans

Bremermann [3].

2.4.1 Lemma 1.

Let £(t) be continuous on E". Then for r+o the
regularized function f*pr converges to f uniformly on every

compact set in £,

The regularization of f, f*pr is defined as

(F¥p ) (x) = j £(t) p, (x-t)dt

gl
where p_(t) = [0 for [t]>r
% exp[-1/(1-t%)] for |t|sr, k is a constant

chosen so that
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J pr(t)dt = 1.

E
n

2.4.2 Lemma 2

Let £ be a (C™ function on E". The f*pr converges

to £ uniformly up to mth order on every compact subset of ™.

2.4.3 Regularization of Characteristic Functions

The characteristic function £, of [a,b] is defined

as 1 for x[a ,b ]

f (x) =
s G outside this interval

The regularized function fs*pr is (C”) and equals

1

. 1 1 1
f, everywhere except in (a—;, a+;), (b—;, b+;).
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CHAPTER 3

NEW ASYMPTOTIC THEOREMS



CHAPTER 3

Asymptotic Relations

§3.1

The methods of proof used to obtain the asymptotic
results, expressed as theorems 1, 2, 3a and 3b will all

follow the same pattern as outlined below.

If a function f(x) is o times continuously differ-

entiable, then it has a Taylor Series expansion,

3.1.1

' o . oy
£ty = £x) + 5 £93(x) it-f-’i?— s (e=x)% §(t)
j=1 '
0=1s24...

where |¢(t)| < € for |t-x| < & and x in the interval.

Applying Pn to both sides yields

a ~(3)
P (f3x) = £f(x) + ) LX)
n - EEL

Pn[(t—x)j;x]+ Pn[(t-x>“ o(t)x]
]

d=1,2,00.
If we can show that O(Pn[(t—x)a ¢(t);x])is small compared to

o (3) .
Pn(f;x) - f(x) -.Z £;11£§l-Pn[(t-x)3;x]

j=1 o 3
then
3.1'3 L]
o (3) .
P (f;x) - f(x) ~ E £——~$§l P [(t—x)J;x]
n 551 ] n

- 31 -
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becomes an asymptotic result.

§3.2
Before we proceed with the proof of the first
asymptotic result, Theorem 1, we will require the following

definitions and lemmas.

Definition 1

For the Szasz operator

-nx¥X w k (n*<)k
Sn(f;X) = e kZ f(H) _j(—!——
=¥o)
— m
let Dm = Sn(t 3%)
o m
_ k
-kgo (H) Sn,k(X)
In particular notice
0
D =) s_.(x)=1
(o} K=o n,k
3.2.1 Lemma 1
Tk
D. =) () s_ (%)
1 k=0 D n,k
= X.
3.2.2 Lemma 2
-2 w D
_L2mT me2. 2 m-1 _
Dm - X ( w ) (H) Dm_(2+w) + n Y m-233’ooo
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Proof of Lemma 2

0 m k
m " xZo n kK. :
- o~DX § K (k=1) (nx)* , e ¥ E k™1 (nx)¥
kK=o m k1T n k2o n -1 k!
_ %% -n¥x ¢ .m-2 (nx)k_2 Dp-1
= 5=z © Ik -2)! o
n k=2 *
2 o : k D
_ E_Z o~NX 2 (k+2)m—2 (Eﬁ) + _m-1
n k=o * n
- x2e~DX zv(nx)k y (m—2)(g)w (K)m—(2+w) 4 Pp-1
i k! ® w n n n
-2 w D
o m-2, ,2 m-1 | _
= x wzo Cu?) ) Do (o) =3 M= 2,3,...

With Dy, a consequence of the definition and D; as
obtained in Lemma 1, the recurrence relation above is used to

obtain:

(2)

]
»
N
+

D,

W B

o
w
]
»
-+
Sk
+
S
N
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3 2
D, = x* + 98X 4 Ix7 . x
n 2 3
Y w3 2
Ds = x5 + 10x” , 256x° , 15%x° . x
n n? n?d n*
5 [ ) 3 2
D¢ = x® + 15 , 65x , 80x° . 31x% . x
n n2 n3 n* ns
6 5 4 3 2
D, = x7 + 21x’ , 140x> ., 350x' . 301x° , 63x" . x
n n? n? n* n® n®
7 6 5 4 3 2
Dg = x° + 28x° , 266x° _ 1050x> , 1701x' , 966x° . 97x
n n? n? n* n® n
Definition 2
For the Szasz operator let
au =
Sn[(t—x) 3% ] _ASn,a(x).
3.2.3 Lemma
o - p V.V, .o -
Sn[(t-X) ;X] - Z (-l) X (v) Da_v d—l,z,. (3]
V=0
Proof of Lemma 3
[ ) k o
o, = AT
Sn[(t x)%3x] = Z (5 - %) sn,k(x)
k=o
- o~DNX v k _ X)a (nx)®
- n kT

k=0

+

X

n7

(1)
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o K a o=V
=™y @O (Y 1K
k=0 ' v=o
o . o _ k o-v
=3 -1V RV (% § ex (mx)Tk,
V=0 v k=o k. n
o
=) -V x¥ Mo 421,200
veo v To=v

By substituting the required values of o in lemma 3,

the following are obtained:

W
M
N
o+
1

b
A

ke
1
!
o

n
2
Sn[('t'-x)", x] = _.____3X + =
n? n3
' 2
Sn[(t—x)sg %] = 10x" , x
1’13 nl’
3 2
s [(t-x)6; x] = 22X 4 257 , X
" n3 n" 1,15
3 3 2
s [(t-x)7; x] = 12X_ 4 83%° 4 X
n ‘ e = ]
S [(t-x)®; x] = 105% 4 290x7 , 89x7 , %
These Sn &(X) are a linear combination of the Dv
9

computed in Lemma 2. Each D, is a linear combination of
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the Di (i=oy4..v=-1), sO Sn 0‘(x) is consequently a linear
b

combination of the Sn.i(X)’ (izo,...0-1). The explicit
]

relationship is given by

3.2.4 Lemma U
—_ (1) X _
n OL"‘l(X) - S ,a(X) + u:n n a’ 1(X)) (X«"Z,S,ooo
Proof of Lemma U4 (1)
From definition 2;
o o k
_ _=nx k (nx)
a(X) = Z (H'- x) T
k=o
differentiate both sides to obtain
o o k-1
(1) - _ + o~ DX k _ (nx)
Sn,a(X) nSn’a(x) asn,a—l(X) e kzo(n x) nk T
o ¢ k
_ -nx k _ (nx)” (k _
= -aS_ (x) + e kz (H x) KT {§ n}
=0
= - n
= asn,a—l(X) + = Sn,a+1(X)'
Therefore if we rearrange these terms
- (1)
n,a+l(X) == Sn a(X) + an Sn - 1( x)
3.2.5 Lemma 5

s [t - )8 ¢(t); x] = o(n™*) for [¢(t)| < e

when |t-x| < &8, 8>0
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-

Proof of Lemma 5

5,[(E-0° $(0); x] = ] K- e 5y 1 (%)
k=o
- DX ; (nx)™ EIEY .9
k=o kT n ’ "
k
=) X x)e $(5) o TF (Eﬁ)
) = 5 KT
IH ~x| <8
. " e .,k. _-nx (nx)k
+ % (= -x)° ¢(2) e kT
I—r-i- -Xl>6
= 21
+ ]
2
< e (105x® . u90x®  89x? | x
1 n* n’ n® n’
= ¢ o(n™")
8k
n

Also if ¢(§) < Ae for |§ - x| > &, A>o, B>0

then Bk ( )k
n _-nx (nx
22 <A . 1 e e KT
|= -x|>6
n
_ Bh k
= A Z o DX (e k.nx)

]]i -x|>6
n

(1)

(2)



- 38 -

Let eB/n < 1l+n
-nx {nx(1+ )}k
so that } < Ae ) T u
2 & x>
n
nxn _-nx(1l+n) {nx(l+n)}k
= Ae e ) T

|k-nx(1+n) |>nx(1+n) 8"’

§+xn
! -
where §' = X (1+7)

and for sufficiently small n

o< 8" < 1.

This now has the form of Hardy's theorem, 2.1 so

that

o1
!

= e#xn O{exp (- % §'? nx(1l+n))}

Ofexp (- & nx (872 (1+n)-3n)}
For sufficiently small n, let
§'% (1+n) - 3n = n >o

so that

o~
1

O{exp (- % n Gnln

o(n™") (3)

Now then if the results 3.2.5(2) and 3.2.5(3) are combined,
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Sn[(t—x)8 d(t); x] = o(n™")

3.2.6 Proof of Theorem 1

Let the positive linear operator in 3.1.2 be the
Szasz operator with o = 8;

: ) _ & f(j)(x) 3 .
S (f3x) = £(x) +j§l—~37———-8n[(t—x) s x] + sn[(t—x)8 o (t); x]

Using Lemma 5 we have
(3) : .
£——v$§l Sn[(t-x)J; x] + o(n™")

8
Sn(fsx) = f(x) +'Zl 3T

J

and on substituting from Lemma 3

£® (x)(3x2 X

F(x) + 2 F@ (x) + —X_ £ ® (%) +

Sn(f;x)

f “)(X)(10x2 v Xy 4 f® (x) (15x3
N 3 4 5

5% n? n 6! n n n

+

2 (8) - 4 3 2
63x Xy, f (X)(105x L490x +89x

-

f w’(x)(15x3 +
5 6 R 5 6

7! n" ns n 8! n n n

+ o(n™*)

Thus for f(x) defined on [0,a) and possessing all
the derivatives up to and including the eighth at a point
x=£, £>0, we have;

1_ {g f (3) (g) N 3&2 £ (4) (g)}

CrYy_ - & @
Sp(E38)- £(8) = 50 £ (8) + = "y -~

+ =)
2'n 3!n? 4! - n? n?
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=

(3) (5) (6)
+ {g f (E) + logz f > (g) + 1553 f 6 (E)}

(s)
b L 2900 o £9 (0, g5 D G0 L e E A8,

The proof of the next asymptotic theorem, Theorem
2 will need similar preliminary definitions and lemmas.
Again an iterrative process beéomes obvious in the computations.
We will obtain a result with an accuracy o(n~3); to obtain

a higher order result would involve tedious detail.

Definition 3

For the Baskakov operator

k
n+tk-1 k X

K (£3x) =}
o =0 (1+%)

k

Let K (%)
n,o

k
: Kn[(H - x)%; %] xelo.a], o<a<e

© o k
]k o oL X

n x k
k=o (1+x)n+k

ky .
hn,k(X) (H) = X (1)
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. v . k.2 x(1+x)
(ii) ) h () (=) = x? 4+ === (2)
koo D n n
Proof of Lemma 6
(i) The identity for the Baskakov operator is

o k
(140" = 7 (R (X

kK=o k 1+x

Differentiation of this identity yields

o k-1
n(l“‘x)n-l = z (n+}\ 'L) k (m) N ’
=0 (1+X)2

which, after multiplying both sides by x and redistributing

terms becomes

© k
n n+k-1
x(1+x)" = ] ( X ) ( =) (1+x) (32)
k=0
o k
or X = ) (k=1 (X
K=o (1)K
=7 n (x5
koo DK . 'n
(ii) Now differentiate 3.3.1(3) to obtain
o k-1
-1 (1+x) ntk-1, k.2 x
x(1+x)" 7 + =7 ) (D) e
n k=o k n (1+x)k+l

which, on multiplying both sides by x(1+x) T becomes

k
(n+k—1)(§)2 X 2 o x(1+x)

k
o (1ex)H n

1
]

Hn o~8
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e K 2, ., x(1+x)
or kzo hn,k(X) (H) = x° + ——;———
3.3.2 Lemma 7

(i) Kn[(t-x); x] = Kn,l(X)
= 0
(i1) Kn[(t-x)2; x] = Kn’z(x)
- x(1+x)
- n
Proof of Lemma 7
b k
Kn[(t—x);‘x] = Z hn,k(X) (= - x) (1)

k
hn,k(X) (H) - X

= x-X from 3.3.1(1)

= o
Kn[(t-x)zg x] ;Ehn,k(x)(g - x)? | (2)
k=o
=k§o hn,k(x)(§)2 - 2xkgo ho G0 () + x?
= x? +X(1;X) - 2x% + x* from 3.3.1(2)
. 20

n
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3.3.3 Lemma 8
Kn,a+1(X) = ELiiEl {K gla(X) + dKn,a_l(X)}
where Kngz(X) = %; Kn,a(X) 0 = 2,3,
Proof of Lemma 8 (1)
K, o0 = KL - 0% x)
. & - %) ———EEE;E b

k=0 (1+x%)

Therefore on differentiating both sides of this we have

© _ k
N COREIP SN O +kzo<§ —X)a(“+§—1)(1+z)n+E{§ - (212)}
e S CO R 1y (< -x)a<“+§“1) an+k {k-nx}
x(1+x) k=o (1+x)
= -0k ,a—l(X) + ;?2:;; Kn,a+l(X)‘
To rearrange the terms of this will yield
Ky g (0 = EEEL (B G +oak L GO)
0 = 2,3,..
3.3.4 Lemma S
Let X = x(i+x) and Y = 1+2x
Then
(i) Ky ,3%) = =

o
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(ii) K H(X) = X [3x + 116X
9 n2 n
(ii1) K o) = Z {10x + 12K
> n?d N
2
(i) K G0 = ¥ qasxe + 10XAIXE2)  30vP4,
, > n? n n?
(v) K (x) = XL [1gpxzs 4EXHUE2X? ., 30Y7+120X+1,
n,'] l* 2
n n n
Proof of Lemma 9
For o0=2 in 3.3.3(1) (1)
- o x(1+x) 1)
Kn,S(X) = = {K;’Q(X) + 2Kn,l(X)}
. x(1+x) (1+2x%)
n ‘' n
- XY
n2
For 0=3 in 3.3.3(1) (2)
_ ox(1+x) 1)
Kn,q(X) = = {K;,S.x) + 3Kn,2(X)}
_ X (2Xt ¥R, 03X
n n? n
= X (ax + 8K
n? n
For o=4 in 3.3.3(1) (3)
= w +
Kn,S(X) x(l+x){Kn’u(x) uKn,3(x)}

X (X (3x + HEXX (gy 4 &Yy 4 2XX
N p? n n? n n?
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. XY fqgy 4 112X,
n? n
For a=5 in 3.3.3(1) (W)
K = +x%) () <
n,B(X) x(1+x) {Kn,S(X) + Shn,u(X)}
( 2
= X(L2X4Y0) g0y 4 1112X) 4 X(qgy 4 125542 X x4
n n3 n nd n n?
2 2
- E {15X2+20X (1+5X)+5X(1+6X) + 30X+120X +l}
n? n n?
2
n? n n?
3.3.5 Lemma 10
k _ 6 k - -3
) (n %) ¢(n) hn,k(X) = o(n™?)
R
n
Proof of Lemma 10
Recall Hardy's theorem, §2.2 (L)

+ + -
) oy gy * = o™
IE - l:l|>6 ‘
n y
where y = %62 and o<6<1l, for this proof.
In the sum

k k
z (H - X)6 ¢(H)(

k
n+tk)

k+n-l) X
k
X (1+x)
[
n
Bk
let |(§ - x)¢ ¢(§)| < Ae "

1+6X

n

)}
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such that
k
g <— %) ¢ ¢(E £y =ty ¢ 2 (e

| —x|>s
n B
s a7 oM (-—X—- en)k (1+x) 7"

£ -x|>s
n.

Further let

which means 8

n
1l+x - xe

+
1+x 8

—Ye )_} 1
(l+x)

As 1lim (

n--o

Al } Iy

|5 -x|>s
n

) UM (X2

1+x

|§ - x|>8

=A(1+x)eBX|

lE _ xe
n. B/
1+x-xe

B

where E
x(1-e™) (x-1)
1+x(1-e2/™)

§!' = § -

§ - y(n)

5 ,
eﬁ5k 1+x - xe
1+x

2 (k+n) X e—
g ' k 1+x



and Y(n) =

Therefore

- u7 -
B/n

x(l-e ) (x-1)
]ix(l—es/n)

-+ 0 as n- o

§" > § and o<§'<1

Now 3.3.5(2) is in the form of Hardy's theorem 82.2 so

for

|oCt)| < €

Kn[(t-x)6 o(t); x] =

- %6’2n

= 0(e )

- %ﬁzn
= 0(e )

= 0(n™*)

= o(n"?)
Lemma 11
o(n~3%)

and |t-x|<8

Proof of Lemma 11

| T Lk x
Ko LCE0¢ (05 %] = | (G = 0% 0 by 5 G0

|5 -x]| <6

)

b

!

k k
£ - 0f o(Dh L)+

+ ]

2

)

|5 -x|>8

(1)

k k
(l’—l- -X) Gcb(H)hn ,k(X)



- 48 -

21 < g. §3 {15%x% + IOX(i3X+2) + 3Ozz+1} From 3.3.4(4)
= o(n™?%)
and 22 = o(n~%) from 3.3.5
Thus the Lemma.
3.3.7 Proof of Theorem 2
Let the positive linear operator in 3.1.2 be

the Baskakov operator with «=6.

: £43) () ]
K (£3%) = £(x) +jzl——3-,———— K [Ce-x) 95 %] + K [Ce-x)®¢ () 5x]

which from Lemma 11 becomes

6 (j)
f(x) + ) L (x)

Kn[(t-x)j; x] + o(n~?%)
. !
3=1

The equalities found in Lemmas 7 and 9 give

£Ox) £ UAx) XY , £ M%) X 1+6X
. = bt + [ad &
Kn(,f3X) f(x) + n 2! + 37 nz v n2{3>\+ n b+
(5)
+ £ 1% XZ {10x + 1+12X}
n
£ ®(x) X » , 10X(13X+2) . 30Y2%+1.
+ ‘—T“ s {15X2 + = e
+ o(n~?)
(2) (3) (w)
- fo + XEZG L L £ gy + LX) 5x2y
: (L) (5) : 6) ¢
' ig{i_ﬁ}l X(1+6X) + f—g-f—’ﬂ 10X2Y + ET,—(-EQ 15%3} + o(n=?)
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In particular at the point & where f(x) has all
the derivatives up to and including the sixth, we replace

X and Y by their respective values to obtain

) _ _ E(1+E) £ (8)
Kn(f,€> f(g) = = — +

(3) (1)
+ %2 {g(1+g) (1+28&) 5—_§$§l + 3E2(1+E)°2 f (g)}

( )
T {E(l+6(€+l)) “<5)

n

(5)
+10g (1+g) (1+2g)£__£§l

(6)
+ 158% (1+&)3 £—i§§§l ()} + o(n~%).

We now consider the asymptotic results, with degree
of approximation of o(n™!), for two members of the operator
class of Shah and Suryanarayana. This class of operator has
polynomial coefficients and we firstly construct a set of
definitions and lemmas when the coefficients are the Chebychev

polynomials, Tn(x). These will form the data for theorem 3a.

‘Definition U4

From the identity relationship for Chebychev poly-

nomials
© Xk
e"® cosh (x/n%-1) = ] T (n) &,
K= k k.
=0
let
o k(x) = e ™ gech(x/n2-1) Tk(n) o
, L ]

o0
such that Z an,k(X) =1
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3.4.1 Lemma 12

k
2K (%§) x 21

1
nx(1-/1 - Hz)]

o (x) < 2Ke ™ 20X
n,k

where K = max [e

Proof of Lemma 12

Since Tk(n) < (Zn)k

k
a (%) < e MX(on)¥ %, sech(x/n?-1)

b]

k
and this = e-ng (zi?) 2
A eanz—l + e—x/nz-l
k -xv/n?-1
= 9e~DX (2n§) e _
k- 1+ -2xv/n%-1
e
k
-2 (2nx)
< 2Ke “D% —%§
1
-/1- X
where ¥ = max [enX(l 1-n )] = max [exp( - )]
n(v1 - =2 +1)
Definition 5
k

0
_ o
Let Ga = z k¥ T, (n)

and Ga = 6, g(n,x)

where S, - e"*cosh(x/n?-1)

(1)
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Corollary
o k
6 = e ™ sech(x/n?-1) § T (n) &
o - k k!
k=o
= 1 from definition Uu.
3.4.2 Lemma 13

bl

G; = nx + x/n?-1 . tanh (x/n?-1).

Proof of Lemma 13 (1)

If we differentiate both sides of the identity

o0 k '
J T, (n) £, = e"* cosh(x/n?-1)

such that

oo k-1
Y k T, (n) X = ne™ cosh(x/n?2-1)+e™*./n?-1 sinh(x/n2-1)
k=o '

Now multipliying both sides throughout by x.g(n,x) will yield

the result:
% ® S
G, = gln,x) } k T (n) =
K=o k k.
- nx + x/n?-1 . tanh(x/n%*-1 ).
3.4.3 Lemma 14
o-3
& _ o 2 o-2 P : o-2 _o2 vV,o-2
6, = (2nx + 1) _, -x"27 "+ Z Gy oyop(2nx( 1) -x227 (7 )}

0 = 253,400
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Proof of Lemma 14 (1)
T Lo x5
G(!. = z k Tk(n) k!
o
oo x oo k
_ a-1,, pd -1 x
= g KT (k=1) &y Ty (n) + g k o1 T ()

Use the recurrence relationship for Tk(n) to obtain

® k
Ga: g (k 1)-, {2nT (n) -Ty (n)f+Ga_l
@ | @ k 2
_ a-2 (k-1) _k-1 2
= 2nx %k (]'Z:'I)!X Tk_l(n) X zk (n)z-k—i-j +G o=
2 Xk =2 xk
= 2nx) (k+1)% T (n) - x2) (k+2) 1T (n) + 6, 4
X -
- KO (2+v)
= 2ank o Tk(n)( g
k 0=2
2y X a-2, Lo=-(2+v) _v
- x Y ! Tk(n)( Z .7 k 2 + 6,5
0 V=0
x5 a1 %2 -2, a-(v+2)
= 2nXZE, Tk(n){k + ) ( ) k }
! ve1 Vv
k a-3 '
27X a-2 a=2,,0-(2+y) v
- x 2?! T, (n){2 + Z ",k 2"} + 6, 4
V=0
= S {2nx(%72)- x227(%72)}-2%"2x26 +6
= 2nxGy 4 zo a-(2+v) LM g+l v o oa-1
-3
a-2 a-2y__2 ,V,0-2
= (2nx+1)G _,-2 x2G +VZOG C(oy) P20 ) =x2 27T 7))
Therefore
o-3
® % o-2 <2 o-2 oV (0= -2
G, = (2nx+1)G, ;-2 +VZO Ga (2+y) 120x (G, 10" S S

0= 2,340



Corollary

b

@
i

3. 4.4

o
Pn{(t—x)a; x} = (*. 6

Corollary

Pn{t—x; x}
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In particular when =2 in lemma 14,

(2nx+1)Gj — 20%24Q

(2nx+1){nx + x/n%-1 tanh (x/n?-1)}-x2

(2nx+1l)nx - x2 + (2nx+1) xv¥/n?-1 tanh(xv/n?-1)

Lemma 15

V=0 v

(-1)Vx"Y

%7V (2n)*7Y

In particular when a=1 in lemma 15

- % {1-/1- lz. tanh (xv/n?-1) }

and when o=2,

P_{(t-x)?;x}

Proof of Lemma 15

X

2

]

X2

yn?

Pn{(t—x)“; x} =

- /&-%2-

+ o(n~%)

k o
g(n,x)Z(iﬁ - x) Tk(n) -

k

+ o(n~*%)

/ 1

tanh(xvn?-

2
y+1) (% -
2

k
X

k!

X

4n

)

(2)

(1)

(2)

(3)
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OV v v
= g(n,x)) 5 (m)} (M (-1)"x
PR " vzo ¥ (2n)%7V
= é(n x) Z ( ) (CIDAEM Zku-VT (n) 53

Ve o (2n)%~V k ki

e(n,x) J (9 S—ll—_—-e

vzo ¥ (2m)® o=V
- o (a) ("1)VXV G*
veo V' (om)®"V  a-v

When a=1
1 V.V L
(-1)"x *
P {(t-x); x} = ] ——2-0 (%)
n vzo (2n)i”Vv 1-v
G:
= 7n T %

- %{1-/1- %2 tanh(xv/n?-1)}

£ {1-Q1- 1 -

1. . )tanh(xvh2-1)}

1]

o] 1=
o]

When a=2

Pn{(t—x)z; x} Z ( (5)

=¥ (2n)
G, .
4n?2 n

2 2
x2- X —(Vl-%z. tanh(x/n2-1)+1)(§ - %—)

yn?



2
= x? - X2 _(i- 1 -1 [ otannx/mi-D+1pE - )
4n? 2n? 8n* 2 un
= Eh - %hg + o(n™%)
3.4.5 Lemma 16
For x20 and for any fixed §>o (1L
Bk
- 2n
o (x) = % an’k(x) e
|2n=%1>8

= o(n”!) uniformly in o<x<b<e,

Proof of Lemma 16 - (2)

Part 1: If x28, let n be a positive number to be specified

later in the proof. From lemma 12 it follows that

. Bk
o, (x) < ) 2Ke™2DX oK (%%) e
k
|5 -x]>9

which

B \x
-2nx (an e2n)
z 2Ke —_—

!
M .
~
)

B

2n

k
o (x) < 2Ke™ DX (Eﬁiziﬂj

Now let  exp( + log 2) < 2+n so that

k
|7n-x1>8
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which

= oxen¥N ~nx(2+4n) @x(2+nﬂ K

= Ke e z ———-!-———

|k-nx(2+n) |>nx(2+n)6 '
+
where 6 28*xn and for sufficiently small n
x(2+n)
o<§ <1

Thus from Hardy's theorem, §2.2

o (x) = 2ke*™. ofexp(- % 5§72 nx(2+1))} -

O{exp (- %nx (8§'2(2+n)-3n)}

For sufficiehtly small n let

§'2(2+n)-3n = nl > 0

so that
o (x) < Of{exp(- 1 §'n )}
n 3 2
= o(n~1)
Part 2: If os<x<§, x=08, 0<0<1l, then for sufficiently small n
Bk
o (x) =]} @ 1 (%) e?n (3)
n k>2(nx+ns§) ?
which .k
- +
< 20X gx (n_x]i_?r_nl)

k>2(nx+nd)
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+
< 2Ke™2MX (._,__)nxb(f*”) " 1

) M-nx(2+n)

where M = [2(nx+né)]

'2neé(en66(2+n) M 1

M ) - né(2-6n)

2o

since M! = V/21M (Me‘l)M

Thus
1 21’16 9 2+n) 21’1(5(1'*'6)
opx) < — " 5tTvey
nv/n
o Y0 4
Now as o<6<1, (ng) <o

for sufficiently small n

: C1 o 2né
on(x) < _3%- (5)
n
= o(n~1!)

Thus the lemma is valid for all §>o.

3.4.6 Proof of Theorem 3a

Let o=2 in 3.1.2 to obtain;
2 £ (4) 3
P (f3x) = £(x) + ) ——5~——— P {(t-x)";x}+P_ {(t-x)2¢(t)5x} (1)
j=1
If given e>0, let o<6<x be such that |d(t)|<e for

for all t in |t-x|<8, and for all t and some A>o

o ()| < rePt
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then
’ oy 2 . - k 2k
P {(t-x)2¢(t);x} = ) D) a1 00 G =0 g (5 )
k
I?h"X|SG lfh-3|>6
=0 + ¢
1 2
< k 2
R ) oy 1 (%) (G =%)
k
I"Z"n"Xl <8
= ¢ o(n-1) from 3.4,4(5)
Bk
2
o, < A . ) el an’k(x)
|707%1>8
= o(n~1!) from 3.4.5(2)
Therefore
Pn{(t—x)2 d(t)3x} = o(n~t) ‘ (2)

So if f(x) is twice differentiable at a point x,

3.4.6(1) may be written as

(2) :
Pn(f;x)—f(x) = f(l)(X)Pn(t—X;X)+£——§£§l Pn{(t—x)z;x}+o(n‘1)

(3)

We may now substitute the results of lemma 15 into

this to get

(2)
X 48 4, i ex x4

P (fyx)-f(x)=f M (x){ i
n 4n 16n* 2 2n  8n?

+ o(n~1!)
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Thus if f(x) is twice differentiable at a point

x=£, &el[a,b], then

lim n[Pn(f;g) - £(&8)] = £F 2 ()

2

n->c 4

or in the alternate form

(2)
Pn(f;E) - £(§) = gf = C8) o(n-1)
4n

To prove the asymptotic result for the other member
in the class of Shah § Suryanafayana we will need a similar
set of definitions and lemmas. The coefficients of the
positive linear operators in this case are Legendre poly-

nomials.

Definition 6

From the identity relationship for Legendre poly-

nomials
o k
e™ J (x/1-n%) = § P (n) =,
0 - k k.
A k=0
let .
. xk
so that an’k(x) = 1.
k=o
3.5.1 Lemma 17

-2nx (2nx)
an,k(X) < 2Ke 5T
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where

2K = max (/{QNHX /l*%g) exp(nx(1l- /l—%z) )

Proof of Lemma 17

X
e

As Pk(n) < (2n)k and In(x) = , We may rewrite

2TX

the relationship

( Xk e~nx
(o) X) = P (n) 1
n,k KR S (/i)
k -nx
< (2n)k X <

it
ke J, (ix/nZ-D)
k -nx/2mxv/n%-1

(2nx) " e

i k. éx(Vnz—l)

k
< 21<(]2<nx) e-2nx /a

where 2K = max v2mx /1—%2. exp(nx(l—/l—%z) )

Definition 7

W

o Pk(n)

~IX

00
Let L, = z k

.
and La = La.g(n,x)

where 1 = "% Jo(x¢1-n2)

g(n,x)
Corollary
=-NnNx o Xk
L= = Pk(n) "k‘:

e
)
0 Jo(xfl—nz) k=0

1 from definition 6.
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3.5.2 Lemma 18

L = nx + nx/1-=, 1 (1)

1 n :
Io(nx/l-%z)

and

I . (nxv l-}"z)

L = (2n2?x? + nx-x2) + 2n%x? /1 12 L (2)

2 n
Io(nx¢1—%2)

Proof of Lemma 18

Consider the identity

o k
] P (n) E =" Jo(x/l—nz)
k=0 *

differentiate both sides to obtain

k-1

Yk P, (n) %, = negXJo(x/l-nz) - ¥ l-nz.Jl(x 1-n?)
k L]

Multiply this throughout by x.g(n,x) to get

J (x/1-n?)

I = nx - x/1-n% -

Jo(x 1-n?)

1
I (nx l-—z)
= nx + nx /1—12 1 n

ot

n 1
I (nxv/1-=,)
0 n
Now consider
2 Xk
k
xk
= )} kP (n)
k (k-1)!
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k-1 (k-1) k-1 F-1(™)
= 2nx ) X s=—=%, P, .(n)+nx ) x
k=1 (=131 "k-1 W1 k-7
k-2
b4 P (n)
- x2 z k-2
k=2 (k=-2)1

2nxl + nxL - x2%L
1 0 0

2nxL1 + Lo(nx-xz).

On multiplying this throughout by g(n,x) we obtain

%

L2 = 2nxLT + (nx-x%2%)
— T (nxv/1-=3)
= (2n?x? + nx-x?) + 2n2x2/1-%2 1 =
- Io(nxvl—%-z)J
3.5.3 Lemma 19
P [t-x3x] = -= 1_/1__2 1
n 2 n T
I (nx/1-=2
0 n
= -2 +ZX 1+ o(n™*)
un? 16n
o I (nx/1-35)
2 2 2 T nxv1-=2
P L(t-x)%3x] = 5 + - e 7 Ylmpe 1

I (nx 1-1%-2>

R
N
+
| %
|
1%
N
1
[NTh-
N
=
i
:1
N

"

k
X
e (2D (0-GeDE_ () from 1.6.3(1)

(1)

(2)
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Proof of Lemma 19

Pn[t-x;x]

(n,x) (S -x) X b ()
gin,X £*2n gy Ftn

1

23

Substitute the L: from lemma 18 to obtain

\ —
I ( 1-=7)

Pn[t~x;x] —% 1—¢1—%2 [ A 1
Io(nXVl-%z) ,

/

I

—% {1-/1-%2}

X X -l
(g2 * Ten* * o(n™") )

For the second part of the lemma;

k
k
P [(t-x)%;x] = g(n,x)£(§h— x) 2 %z P, (n)

% &
L xXL )
- 2 1 +
= =y - — X
4n n

% % )
From values of L1 and L2 derived in Lemma 18, we have

1
(2n?x?+nx-x2) ,x* [ 1 I (nxv1-72)
X + l_Hz 1

P [(t-x)2%;%x] = =
n yn? 2

1
Io(nx 1—52)

1
I (nxv/1-=3)
- xz-xzfl-%z 1 2 + x?
Io(nX 1-%2)

<2 x x2 x2 T I (nx 1-%2)
. X°.x x° %X / 1 1
T2 in"tn27?2 1-52 T
I (nxvy1-=3)
0 n




3.5.4 Lemma 20

Bk
2
o_(x) = . ) a) k(x) e n
I?h_xl>6
= o(n~1)

Proof of Lemma 20

To avoid the repetition of a similar proof, the
inequality in lemma 17 was chosen to be consistent with that
in lemma 12. Obviously the values of the constants K, n, etc.
will be different in each case, but these inequalities so
chosen, make the proof of lemma 20 identical in form to that

of lemma 16 and is thus not repeated.

3.5.5 Proof of Theorem 3b
Let o=2 in 3.1.2 so , (1)
g (J)(x)

P_(£3x)=£(x) + Z Pn{(t—x)j;X}+Pn{(t-x)2¢(t);x}

If given €>o0, let §, 0<8<x be such that [¢(t)]<e

for all t in |[t-x|<§, and for all t and some A>o,]¢(t)|<AeBt,
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Then

P {(t-x)%¢(1) ;x}= ' 7o« ) I e (0G0
Ifn"X=S(S l7n—-x|>6

where

k 2
an,k(X) (—z—n— x)

e o(n—?!) from 3.5.3(2)
Bk
A Z e2n o (x)
k
|90%1>8

Q
IA

o(n™1) from lemma 20

Therefore
Pn{(t—x)2 d(t)3x} = o(n~1)
Thus if f(x) is twice differentiable at point x,
3.5.5(1) takes the same form as 3.4.6(3),
£ 2 (%)

Pn(f;x)=f(x)+f‘1’(x)Pn(t-x;x)+———§——~ Pn[(t—x)zgx]+o(n_1),

or in the asymptotic form, from lemma 19, at the point x=§

_ £ g
Pn(f;g)-f(g)- -f"’(&){ah2+ ibn“+"'}

f(2) (E) £ §_2
= Gy Y Tent

-+

..} + o(n?1)
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Therefore

(2)
lim n[P_(£;8) - £(5)] = EL (&)

n-—>w

or (2)
P (£3£) - £(£) = 7 (&) 4 o(n-1)
8n
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CHAPTER Y4

THEOREMS ON DEGREE OF

CONVERGENCE



CHAPTER U4

Degree of Convergence

In the previous chapter we constructed various
asymptotic operators, which approach the function uniformly
with orders of approximation o(n~!), o(n=3%), etc. It seems
possible that if we were given the accepted order of approx-
imation, we could generate an asymptotic operator to meet
those conditions. The question which was left to be answered
in this chapter is - to what order do these basic operators

themselves approximate?

This chapter makes use of Theorem 2.3.1 to get
expressions for the rapidity of convergence of the Szasz,
Baskakov and Shah & Suryanarayana operators. Each of these
operators has

Ln(l;x) =1,

(See Szasz 1.3.1(4), Baskakov 1.4.1(3) and Shah €& Suryanarayana
1.6.1(2)). Using the simplified form 2.3.4 of Shisha & Monds

theorem

||f_Ln(f)||s2w(un) we have the following theorems

Theorem Uta

Rapidity of Convergence of the Szasz Operator

From Lemma 3
2, - X
Sn[(t-x) 3x] = =

- 68 -
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Therefore

>
= X
wo= 11Z|
So that at a point x=£, &e[a,b], o<a<b<w

- 15
|sn(f,g) £(8)] = 2“'{(11) }

Theorem 4b

Rapidity of Convergence of the Baskakov Operator

From Lemma 7

_oY)2. - x(1+x)
Kn[(t x)%3x] = =
Therefore
_ o x(1+x)
b= | EEER))

At a point x=£, &el[a,b], o<a<b<e

Therefore

3
K, (658 - £(0)] = 2 {cé%i@-)}

‘Theorem Uuc

Rapidity of Convergence of Shah & Suryanarayana Operators

When the coefficients are Chebychev polynomials

degree n, from Lemma 15

Nof %
|
oof %
w

Pn[(t-x)zgx] <

o]

A
N X
]

of
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At a point ¢ in [a,b], o<a<b<w

[P (£38) - £(&)]| < Zw(\(%n) .

Theorem ud

When the coefficients are Legendre polynomials of

degree n,

2
Pn[(t-x)z;x] < X 4 %

In 6n "

At a point & in [a,b], o<a<b<w

2 %
£+£l})

|PLC£58) - £CE)] < 20| (g + 34,

L[]
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CHAPTER 5

APPROXIMATION OF THE

DERIVATIVES OF FUNCTIONS



CHAPTER 5

Derivatives of the Operators

So far we have examined how the various operators
approximate the functions f(x). 1In this chapter we lock at
the derivatives of the approximating operators to see how

they approximate the derivatives of the functicns.

Before we attempt the first theorem,on derivatives

of the Baskakov operator,we will state some obvious lemmas.

§5.1 Theorem 5

If Kn(f;x) is the positive linear Baskakov operator

and f(x) is v times differentiable then

(v)

n

lim K (v)

N>

(f3x) = (x) v=1,2,...

in any bounded closed interval [a,b], o<a<b.

5.1-1
Lemma 21
nt+k, _ nt+k-1

k() = (o PR (1)
Lemma 22

k(™R = - CTUTTH (2)
Lemma 23

k(PRI = (nekev-1) TRIT (3)
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5.1.2 Proof of Theorem 5

Assume that fecg[a,b], i.e. f vanishes outside of
[a,b] and possesses any derivatives of orders up to v. The

proof is inductive:

As Kn(f;x) = E hn,k(X) f(g)
) O I ST U 10
then
gk K (f3%) = K;D (f3x)

= 1P £ 0T e T (i R (aex) (RHRFD)
k

l+n-1) k-1
X

)"(ﬂ"’k)
k-1

F 125 (n+i-1) (¢ (1+x
k

k+n 1 -(n+k+1)}

= (n+k) ¢ >f<§>xk(1+x>

from lemmas 21 and 22

k+n 1. k -(n+k+1)

2f<k+1)( +1) C )% (1+x)

k+n 1,.k -n+k+1)

- zf(—)( n+k) ( )% (1+x)

nfk 1, k

Lo (Th R Qo kD ekt e ()

k+6
JE YK (1) TR £ (Rl 058

k

<1

n,k

(1) k+6n k
3
n+1,k(X) f ( )

m
At~
o

n
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k+e
- W (X (1) (1)
}%‘hn+l,k(X)f ( +1) + }Zchml, (x){f (—T—L) -£ ( 1)1
k+96
However n,k - k kt+l k
) ‘ n n+l n n+l
1 k
< Hll AT
< Eii since as< & <b
n n
Therefore

k+

0
£ @ (22K - r Ko < we @ 2

wee (0 by

where w(f M,8) is the modulus of continuity, » 4

converges uniformly to zero as n-»w

Therefore

k+6 K
Ith+l k(x){f(” (
k b

: b+1
K 0 (I sue @5 22

>0 4s n-Hx

Therefore

lim K;n (f3x) = 1lim Zh 41 (R u)(n+l)
n-re n-»o k

> £ Y (%).

Assume that in the closed interval [a,b]



_K(v)
n

(f;x) )

11

(v), k
ghn+v,k(X)f Cﬁ:;

z(k+n;v 1y <X (1+%) ~-(ntv+k) (v)(___)

k ntv
Then
d v), . N 72 D I
ax Kn (fi;x) = Kn (fix)
k
- (n+v+k)xk(1+x)_(n+V+k+l)}
=y (£ (v)(_kwok(k+n;v 1y KoL 14x) ~(nFVHR)
k
- (v HO R (L) TRV (V) Ky demav -,y

) {f(V)( —5) (ntktv- 1)(n+iiz-2)xk-1(1+x)-(n+V+k)
k

-(n+v+k+1l) (v)( k

k+n+v-1
n+v )}

~ (v ) xS (1+x) ) (T

ntk+v-1

)—(n+v+k+1)
k

- z{f<V)(k+1>(n+k+ ) ( )% (1+x

n+k+v—1)

: ) (n+v+k+1> (v)(__“)}

k
X (1+x 5FY

-(n+k+v) (

-(ntvtk+1) (V) k+1) gV XK 4y
£ ntv

} (ntictw) (R (e
k

. k+6
Z(n+k+v) (n+k+v-1)xk(l+x)-(n+v+k+1)f(v+l)( n+v k)

i (n+v) k ntv

where o < en+v,k < 1
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k+6
+ - -
_ z(n k;v 2) xk(1+x) (n+v+k+l)f(v+l)( n+v,k)
k n+v
= (v+1) n+v k
® sy OOF nrk
- (v+1) k
}z:hn+v+1,k(X)f (n+v+l)
(v+1) n+v k (v+1)
+ ————3N) -
Ehn+v+l,k( x){f ( TV 22) (n+v+1)}
+
Now k Bn+v,k _ K k+1 k
n+v ntv+l ntv n+v+l
< 1 1 k
nt+v ntv+l
< b+l
nt+tv
+
< Eﬁl since a < X < b
n
‘'Therefore we have
L)) KOy v kL s GvrD) br
ntv ntv+l n
+ O as n-w
and thus A ,
. (v 1) (v+1) k
iiﬂ n (£3%)= iiﬁ Ih o yer,kOOF (5577 (1)
f(V+1)(x).

Theorem 5 is true then for all values of v, feCZ [a,b].
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5.,1.3 Corollary to Theorem S

Define F = £, xe[a-2e, b+2e], fe C'[a,b]

o otherwise (2)

and let F be a regularization of F such that the support of

F is contained in [a-e, b+e] i.e.

F=f, xe[a,b]
= 0 outside (a-2e, b+2¢g)
Then 1lim K(V)(F;x) = f(V)(x), v=0,1,2,... feCV[a,b]
Joln
Proof:

Vo (v), =
we know (DVEy(t) = DYV (F(t)) from 2.4.2

and lim D(V)[Kn(g;t)]= D(V)g(t) = from theorem 5
n->
Thus Lim D¢V Kn(E;t) - DV Er(t)
n-reo —_—
- DV r(o)
£ 4y feC¥[a,b]

We now consider a similar situation with the Szasz

operator as

§5.2 Theorem 6

If S (f3;x) is the positive linear Szasz operator
n
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k
(nx) £(

-nx
Sn(f;x) = e KT

k

=NPy

)

e~ 8

o

then if f(x) is v times differentiable

1lim S(V)
n

n-rc

(fix) = £ (0

for all x in the bounded closed interval CZ [a,b].

5.2.1 Proof of Theorem 6

1!
o~
w

. k
Sn(f,x) k(x) f(;)

i
o

Therefore

S (f;x) = S;” (f3x)

X[

f( ) -
Y ——T— {nk(nx)k-l e % - pe™™* (nx)k}

k-1
E ne DX {f(k) (nx) f(k) (nx) }

- D! TR R
= Jne "% Sﬂﬁl {f(k+1 - 15
3 n’’
-nx (nx)k (1) k+91
:23 —k—-!-— f (-—n———) 059131
k+6

(v 1
2 sn,k(x) f (_ﬁ—_)

k+6
Jo () £0 () + Jo  GO{E Y (H- f“’( 1
n,

and
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k+6 k+6

\ ) ' - (K e (D )y (K
Iisn,k(x){f(l (—H- 18 (H)}slisn’k(x)l |£ P (=—D-£ B (9|
<g

k+0 . 6
as |£ @ (—H—l) - £ (H)I < € whenever Hl < §

Therefore

1im S (f;x) lim } s (x) £fW (D)
n,k n
n->o n->ce k

f® (x)
Assume that in this closed interval

S(V)(f;x)
n ,

|
S~
(V]
v
o

—~
X
~
+h
—~

|
o

Then

wm
~
<
~
~
Hh
»x
~
n

f(v)(g) . .
n {nk(nx)k_1 e X _ne ™™ (nx)™}
k!

k
X JOT qee(WI iy L £V ()

_ _-nx z(nx)k f(v+1)<EiEz)
- © ke n o<6,,<1
v
k+0
- (v+1) v
=] oy (0 £ (—5)
k+6
+1), (v+1) k
= Jo, oV Epags L Go eV (- )



k+0

(v+1) (v+1) k +
|Ton 1 GO LEY B (VD Sy <] fs L Go [ £

k+6V
)

(V+1)(
n

where |f

Therefore

lim

n-+e

SéV+l)(f;x)
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(v+1) ,k
- I (I—l')l

IN

~(v+l) k
f (H)|

= f(V+1)(x)

IA

The theorem will therefore hold for

Corollary to Theorem 6

0

€ whenever — <

S

all v, feCZ [a,b].

xe[a-2¢, b+2e], feC'[a,b]

feC'[a,b]

5.2.2
Define F=1£f,
= o0 otherwise
then lim D(V)(S (Fyx)) = f(V)(x),
n--co n
\%
where D(V) = d v
dx
and E is the regularization of f such that
F = f, xe [a-2e, bt2e]
= 0 outside (a-g, bte)
~ [ o]
Proof F ¢ Co (o, ®)

k+0

S

n

V)

(1)
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T

We know (DXV?E)(t) = DYX(P(t)) from 2.u.2

and lim D(V) [Sn(g;t)] = D(V)g(t) = g(V)(t), ge CZ[a,b]

N>

from Theorem 6.

Thus

1im D(V)(S (F x)) = DV F(x)
100
= (V)P(X)

= f(V)(x) for all fe C'[a,b].

8§5.3 Theorem 7

For the positive linear Meyer-Konig and Zeller

operator, Mn(f;x), with f(x) which has a derivative of order

v, v=1,2,... in the interval [o0,1),
1im M(V)(f x) = £V (x) V=125,
1>

uniformly in the interval,

5.3.1
Lemma 24

k(k;n> = (n +1>(k+n) (1)
Lemma 25

KDLy = O™ 4 <k+n) (2)

k



Lemma 26

CEh ™

k+tn+l i n+l
5.3.2
Lemma 27

k(R = (nr1-v)
Lemma 28

(n+k+1-v) (T27Y)
Lemma 29

(ntv+l) (n-v)

k-1l+n-v+1

(n+1-v) (vl

(k+n-v+1) (k+n-v)

5.3.3 Proof of Theorem 7

(k+n—v+l) -

From the M-K and Z operator

Hi

Mn(f;x)

differentiated yields

d .
-a'x Mn(f ,X)

1"

Zmn,k(x) f(

(1-x)""1 yE¢

M;U‘(f;x)

~(n+1) (1-0 PR TP

+(1-x)"F T TEC

(3)

(1)

(2)

(3)
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Using lemma 24 gives

Ky ktny_k
M (5302 -(n+1) (1-x) "L £ () ) M

n+l k k+n) Xk—l

+(n+1) (1-x) i) Gen

YE(C

=(n+ 1) (1= =T £ () (TP T £ () (1T

) (

k+n

k+n

k
z (k+n)(k 1 ]

)X

k+1 | k+l+n, k
=(n+ D) (1-x) [JE () O DX

1K £ (SN + ¢TH1

k+1

k+1l+n,_k k k k+1l+n
) € )= T F () ( )]

= (n+1(1-x) " [Lf (e X Y X

from lemma 25

=(n+1) (-0 TP (r - )
(k#n+l, ' ‘

k
:(n+l(l-x)nz L . n X f(l)(¢n—1,k)

(k+n+1) (k+n)

k1 k_
where k+n+l > ¢n—l,k > k+n

N L A IR CES

= an-l,k(X) £ W (¢n_
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_ : (1) k ( (v k
—an_l,k(x)f (ETH:T)+Zmn—1,k(X){f 1)(¢n—1,k)_f ! G 3

:21 : +5

2

However

k k k k
|k+n—l N ¢n-l,k|slk+n—l - k+n|+lk+n - ¢n—l,kl

k k k+1
Sl(k+n)(k+n—l)l+’k+n - k+n+1I

< 11' k n '
~ kitn'kt+tn-1 k+n+l

IA
S

With the modulus of continuity w(f ¥ 3 &§) for £ then

s wlE @y D

( - (1) k
£ 1)(¢n—1,k) - £ (anT

L 2 i -
So 22 is never greater than w(f ¥’ ; =), which converges

uniformly to o as n»=, in [o0,1)

Thus lim M;” (f3x) lim Zmn_l,kCX’ £ (¢n-l,k)

n-® n-+>®

£ W (x)

Now assume

(v) k
Zmn-v,k(X)f (E?H:GQ

M(V)(f;x)
n

- - Y,
v+1(k+£ v Xk f(v,(k+§_v)

J(1-x)"
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Then

d (v)
a (.f, )

M$V+l)(f;x)

k+n ~vy (V) k
2( ) (k+n-v

n+l-v

) (k" (1-%) ~(nt1-v) (1-3) V53

== VI e K ek T aen - r1-n )

- k -
(-7 MV eV (K o (ke 1) KK)

(1™ 1Y (o e U R (s 1wy RV K

) (ntl-v){x"~ k l -x( X

(1-0)P7Y 70V (K

ktn-v

from Lemmas 27 and 28

n-v _k, k+tn- v+l (v) k+1 (v) k
(1-x) Y (n+t1-v)x ( y{f (ETH?T_V) -f (k+h V)}

where —— < 0, _(y+1),k © E¥§;%?T

= Zmn-v—l,k(X) f(V+l)(¢ru-v--1,k)

=Im_yo1, k0 f(v+l)(ETH¥$?I
+Zmn-v-1,k(X){fV+l)(¢n-v-1,k)ffcv+l)(ET5§$:T)}
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Now
|E+nrv—i ¢n—v—l,klslk+n—v-l - k+n—v|+lk+n—v - ¢n-v—1,kl
flemk Kk kil
ktn-v-1 k+n-v k+tn-v k+nwv+ll
1 k v-n
Slk+n—v {|k+n-v-ll+|k+n—v+l!H
< 2
n
With the modulus of continuity w(f(V+l)§ ¢§) for f(V+1) the
following inequality holds
(v+1) (v+1) k _(v+1l) . 2
| £ (¢n-v—1,k) £ (k———+n_———v_l)| <w(f 3 =)
LI (v+1l), 2 s
) is therefore never larger than w(f 5 ;) and this

2
converges uniformly to o as n+, in [o0,1).

Therefore
. (v+1) . _ . (v+l) k
lim M_ (f3x) = lim ) mn-v—l,k(X) f (=T
n-»co n-»w k
= £t VEL, 2,0 .s

Therefore

lim MQV)(f;x) > f(V)(x) is true for all v and feCV[o,l).

In~>co
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