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ON THE ASYMPTOTIC BEHAVIOUR OF THE SOLUTIONS
OF A CERTAIN FOURTH-ORDER DIFFERENTIAL EQUATION

ERCAN TUNÇ

Abstract. The main purpose of this paper is to establish sufficient con-

ditions under which any solution of (1.1) is uniformly bounded and tend

to zero as t→∞.

1. Introduction and Statement of the Result

As we know from the relevant literature, up to now, many results have been

obtained on the asymptotic behaviour of solutions of certain non-linear differential

equations of the fourth- order (see, e.g., Hara [2-4], Abou-el-Ela, A.M.A and Sadek,

A.I. [1] , Sadek and Elaiw [7] and Tunç, C. and Tunç, E. [5], Tunç [9-10].

In this paper we investigate the asymptotic behaviour of solutions of the real

non-linear ordinary differential equation of fourth order:

x(4) + a(t)f1(x,
.
x,

..
x,

...
x) + b(t)f2(x,

.
x,

..
x) + c(t)f3(x,

.
x) + d(t)f4(x)

= p(t, x,
.
x,

..
x,

...
x),

(1.1)

in which the functions a, b, c, d, f1, f2, f3, f4, and p are continuous for all values of

their respective arguments. We assume that the functions a, b, c, d are positive definite

and differentiable in R+ = [0,∞), and that the derivatives ∂
∂y f2(x, y, z), ∂

∂xf3(x, y),
∂
∂y f3(x, y), ∂

∂xf2(x, y, z) and f ′4(x) exist and are continuous for all x, y, z and w. The

dots indicate differentiation with respect to t.
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The main purpose of this work is to prove the following

Theorem. In addition to the basic assumptions on the functions a, b, c, d,

f1, f2, f3, f4, and p, suppose that

(i) A ≥ a(t) ≥ a0 > 0, B ≥ b(t) ≥ b0 > 0, C ≥ c(t) ≥ c0 > 0, D ≥ d(t) ≥ d0 >

0 for t ∈ R+;

(ii) 0 <
[

f1(x,y,z,w)
w − α1

]
≤ min

{
c0α3

2
√

3α4DA

√
(ε− ε0)c0α3εa0α1,

√
6

3A

√
δ0ε

c0α3

}
for all x, y, z, w; α1 > 0, α2 > 0, α3 > 0, α4 > 0;

(iii) f3(x, 0) = 0 and ∂
∂y f3(x, y) ≥ α3 > 0 for all x and y;

(iv) There is a finite constant δ0 > 0 such that

a0b0c0α1α2α3 − C2α3
∂

∂y
f3(x, y)−A2Dα2

1α4 ≥ δ0

for all x, y and z;

(v) 0 ≤ ∂
∂y f3(x, y)− f3(x,y)

y ≤ δ1 < 2Dδ0α4
Ca0α1c2

0α2
3

for all x and y 6= 0,

(vi) yz ∂
∂xf2(x, y, z) ≤ 0 for all x, y and z

(vii) f2(x, y, 0) = 0, ∂
∂y f2(x, y, z) ≤ 0 and 0 ≤ f2(x,y,z)

z −α2 ≤ ε0c3
0α3

3
BD2α2

4
(z 6= 0),

where ε0 is a positive constant such that

ε0 < ε = min
{

1
a0α1

,
Dα4

c0α3
,

δ0

4a0c0α1α3∆0
,

Cc0α3

4Dα4∆0

(
2Dδ0α4

Ca0α1c2
0α

2
3

− δ1

)}
(1.2)

with ∆0 = a0b0c0α1α2
C + a0b0c0α2α3

ADα4
;

(viii) 1
y

y∫
0

∂
∂xf3(x, ζ)dζ ≤ c0α3(ε−ε0)

4C for all x and y 6= 0, and
{

∂
∂xf3(x, y)

}2 ≤
a0δ0α1(ε−ε0)

16C2 for all x and y;

(ix) f4(0) = 0, f4(x)sgnx > 0 (x 6= 0), F4(x) ≡
x∫
0

f4(ζ)dζ → ∞ as |x| → ∞

and

0 ≤ α4− f ′4(x) ≤ ε∆0a2
0α2

1
D for all x;

(x)
∞∫
0

γ0(t)dt < ∞, d′(t) → 0 as t → ∞, where γ0(t) := |a′(t)| + b′+(t) +

|c′(t)|+ |d′(t)| ,

b′+(t) = max {b′(t), 0} ;

(xi) |p(t, x, y, z, w)| ≤ p1(t)+p2(t)[F4(x)+y2+z2+w2]δ/2+∆(y2+z2+w2)1/2,
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A CERTAIN FOURTH-ORDER DIFFERENTIAL EQUATION

where δ and ∆ are constants such that 0 ≤ δ ≤ 1,∆ ≥ 0 and p1(t), p2(t) are nonneg-

ative continuous functions satisfying

∞∫
0

pi(t)dt < ∞ (i = 1, 2). (1.3)

If ∆ is sufficiently small, then every solution x(t) of (1.1) is uniformly bounded and

satisfies

x(t) → 0,
.
x (t) → 0,

..
x (t) → 0,

...
x (t) → 0, as t →∞. (1.4)

Remark.Our result includes those of Abou-el-Ela and Sadek [1], Sadek and

AL-Elaiw [7].

2. The function V0(t, x, y, z, w)

In what follows it will be convenient to use the equivalent differential system

.
x= y,

.
y= z,

.
z= w,

.
w= −a(t)f1(x, y, z, w)− b(t)f2(x, y, z)− c(t)f3(x, y)− d(t)f4(x) + p(t, x, y, z, w),

(2.1)

which is obtained from (1.1) by setting
.
x= y,

..
x= z and

...
x= w.

For the proof of the theorem our main tool is the function V0 = V0(t, x, y, z, w)

defined as follows:

2V0 = 2∆2d(t)
x∫
0

f4(ζ)dζ + 2c(t)
y∫
0

f3(x, ζ)dζ

+[∆2α2b(t)−∆1α4d(t)]y2 + a(t)α1z
2 + 2∆1b(t)

z∫
0

f2(x, y, ζ)dζ

−∆2z
2 + ∆1w

2 + 2d(t)yf4(x) + 2∆1d(t)zf4(x)

+2∆2a(t)α1yz + 2∆1c(t)zf3(x, y) + 2∆2yw + 2zw + k,

(2.2)
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where

∆1 =
1

a0α1
+ ε, ∆2 =

α4D

c0α3
+ ε (2.3)

and k is a positive constant to be determined later in the proof.

Now we will obtain some basic inequalities which will be used in the proof of

the result.

By noting (2.3), (i) and (iii) we obtain

∆1 −
1

a(t)α1
≥ ε, for all x, y, z and all t ∈ R+, (2.4)

∆2 −
Dα4y

c(t)f3(x, y)
≥ ε, for all x, y 6= 0 and all t ∈ R+. (2.5)

In view of (2.3), (i) and (iv) it follows that

α2b(t)−∆1c(t) ∂
∂y f3(x, y)−∆2a(t)α1

≥ 1
a0c0α1α3

[
a0b0c0α1α2α3 − C2α3

∂
∂y f3(x, y)−A2Dα2

1α4

]

−
[
c(t) ∂

∂y f3(x, y) + a(t)α1

]
ε

≥ δ0
a0c0α1α3

−
[
c(t) ∂

∂y f3(x, y) + a(t)α1

]
ε.

Also (iv) implies that

∂

∂y
f3(x, y) <

a0b0c0α1α2

C2
, α1 <

a0b0c0α2α3

A2Dα4
. (2.6)

Hence

α2b(t)−∆1c(t)
∂

∂y
f3(x, y)−∆2a(t)α1 ≥

δ0

a0c0α1α3
− ε∆0, (2.7)

for all x, y, z and all t ∈ R+.

Let Φ3 be the function defined by

Φ3(x, y) =


f3(x,y)

y , y 6= 0

∂
∂y f3(x, 0), y = 0.

(2.8)
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A CERTAIN FOURTH-ORDER DIFFERENTIAL EQUATION

Then from (iii) and (v) we have

Φ3(x, y) ≥ α3 for all x and y, (2.9)

0 ≤ ∂

∂y
f3(x, y)− Φ3(x, y) ≤ δ1 for all x and y. (2.10)

From (2.9), (i) and (2.3) we get

∆2 −
Dα4

c(t)Φ3(x, y)
≥ ε, for all x, y and all t ∈ R+. (2.11)

To prove the present theorem we need the following two lemmas:

Lemma 1. Subject to the conditions (i)-(ix) of the theorem, there are positive

constants D1 and D2 such that

D1[F4(x) + y2 + z2 + w2 + k] ≤ V0 ≤ D2[F4(x) + y2 + z2 + w2 + k] (2.12)

for all x, y, z and w.

Proof. Since f2(x, y, 0) = 0 and f2(x,y,z)
z ≥ α2 (z 6= 0), it is clear that

2∆1b(t)

z∫
0

f2(x, y, ζ)dζ ≥ ∆1b(t)α2z
2.

Therefore it follows from (2.2) that

2V0 ≥ 2∆2d(t)
x∫
0

f4(ζ)dζ + 2c(t)
y∫
0

f3(x, ζ)dζ + [∆2α2b(t)−∆1α4d(t)]y2

+a(t)α1z
2 + ∆1b(t)α2z

2 −∆2z
2 + ∆1w

2 + 2d(t)yf4(x) + 2∆1d(t)zf4(x)

+2∆2a(t)α1yz + +2∆1c(t)zf3(x, y) + 2∆2yw + 2zw + k.

Rewrite above inequality as follows:

2V0 ≥
c(t)

Φ3(x, y)

[
d(t)
c(t)

f4(x) + yΦ3(x, y) + ∆1zΦ3(x, y)
]2

+
a(t)
α1

[
w

a(t)
+ α1z + ∆2α1y

]2

+

2∆2d(t)

x∫
0

f4(ζ)dζ − d2(t)f2
4 (x)

c(t)Φ3(x, y)
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+[∆2b(t)α2 −∆1d(t)α4 −∆2
2a(t)α1]y2 + 2c(t)

y∫
0

f3(x, ζ)dζ − c(t)Φ3(x, y)y2

+[∆1α2b(t)−∆2 −∆2
1c(t)Φ3(x, y)]z2 +

[
∆1 −

1
a(t)α1

]
w2 + k.

From (2.4) we get [
∆1 −

1
a(t)α1

]
w2 ≥ εw2.

Then

2V0 ≥ V1 + V2 + V3 + εw2 + k, (2.13)

where

V1 := 2∆2d(t)

x∫
0

f4(ζ)dζ − d2(t)f2
4 (x)

c(t)Φ3(x, y)
,

V2 := [∆2α2b(t)−∆1α4d(t)−∆2
2a(t)α1]y2 + 2c(t)

y∫
0

f3(x, ζ)dζ − c(t)Φ3(x, y)y2,

V3 := [∆1α2b(t)−∆2 −∆2
1c(t)Φ3(x, y)]z2.

From (2.3), (2.9) and (i) we find

V1 ≥ 2εd(t)
x∫
0

f4(ζ)dζ + Dd(t)
c0α3

[
2α4

x∫
0

f4(ζ)dζ − f2
4 (x)

]

≥ 2εd(t)
x∫
0

f4(ζ)dζ + 2Dd(t)
c0α3

x∫
0

[α4 − f ′4(ζ)]f4(ζ)dζ.

Since the second integral on the right hand side is non-negative by (ix), it clear that

2α4

x∫
0

f4(ζ)dζ − f2
4 (x) ≥ 0. (2.14)
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A CERTAIN FOURTH-ORDER DIFFERENTIAL EQUATION

So V1 ≥ 2εd0

x∫
0

f4(ζ)dζ. Also from (2.3), (iii), (i) and (2.7) we obtain

∆2α2b(t)−∆1α4d(t)−∆2
2a(t)α1

= ∆2

[
α2b(t)−∆1c(t) ∂

∂y f3(x, y)−∆2a(t)α1

]

+∆1

[
∆2c(t) ∂

∂y f3(x, y)− α4d(t)
]

> ∆2

[
α2b(t)−∆1c(t) ∂

∂y f3(x, y)−∆2a(t)α1

]

> Dα4
c0α3

(
δ0

a0c0α1α3
− ε∆0

)
.

Since

y∫
0

ζ ∂
∂ζ f3(x, ζ)dζ ≡ yf3(x, y)−

y∫
0

f3(x, ζ)dζ

= y2Φ3(x, y)−
y∫
0

f3(x, ζ)dζ,

then

2c(t)
y∫
0

f3(x, ζ)dζ − c(t)Φ3(x, y)y2 = c(t)
[

y∫
0

f3(x, ζ)dζ −
y∫
0

ζ ∂
∂ζ f3(x, ζ)dζ

]

= c(t)
y∫
0

[
Φ3(x, y)− ∂

∂ζ f3(x, ζ)
]
ζdζ

≥ −Cδ1
2 y2, by (2.10).

Therefore we have

V2 ≥
[
Dα4

c0α3

(
δ0

a0c0α1α3
− ε∆0

)
− Cδ1

2

]
y2 ≥ C

4

(
2α4Dδ0

Ca0α1c2
0α

2
3

− δ1

)
y2, by (1.2).
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Similarly, from (2.3), (i), (2.10) and (2.7) we obtain

∆1α2b(t)−∆2 −∆2
1c(t)Φ3(x, y)

= ∆1[α2b(t)−∆1c(t)Φ3(x, y)−∆2a(t)α1] + ∆2[∆1a(t)α1 − 1]

> ∆1[α2b(t)−∆1c(t) ∂
∂y f3(x, y)−∆2a(t)α1]

> 1
a0α1

(
δ0

a0c0α1α3
− ε∆0

)
.

Therefore we obtain

V3 ≥
1

a0α1

(
δ0

a0c0α1α3
− ε∆0

)
z2, by (1.2).

Combining the estimates for V1, V2 and V3 with (2.13) we find

2V0 ≥ 2εd0F4(x) +
C

4

(
2α4Dδ0

Ca0α1c2
0α

2
3

− δ1

)
y2 +

(
3δ0

4a2
0c0α2

1α3

)
z2 + εw2 + k.

Then there exists a positive constant D1 such that

V0 ≥ D1[F4(x) + y2 + z2 + w2 + k].

Easily,by noting the hypothesis of the theorem, it can be followed that there exists a

positive constant D2 such that

V0 ≤ D2[F4(x) + y2 + z2 + w2 + k].

Therefore (2.12) is verified.

Lemma 2. Under the conditions of the theorem there exist positive constants

D4, D5 and D6 such that

.

V0≤ −D5(y2 + z2 + w2) +
√

3D6(y2 + z2 + w2)1/2[p1(t) + p2(t)]

+
√

3D6p2(t)[F4(x) + y2 + z2 + w2] + D4γ0V0.

(2.15)
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Proof. An easy calculation from (2.2) and (2.1) yields that

d

dt
V0 =

∂V0

∂w

.
w +

∂V0

∂z
w +

∂V0

∂y
z +

∂V0

∂x
y +

∂V0

∂t

= −∆1a(t)wf1(x, y, z, w)−∆2b(t)yf2(x, y, z)−∆2c(t)yf3(x, y)− b(t)zf2(x, y, z)

+w2 + c(t)y

y∫
0

∂

∂x
f3(x, ζ)dζ +∆1b(t)z

z∫
0

∂

∂y
f2(x, y, ζ)dζ +∆1b(t)y

z∫
0

∂

∂x
f2(x, y, ζ)dζ

+∆2a(t)α1z
2 + [∆2α2b(t)−∆1α4d(t)]yz + ∆1c(t)z2 ∂

∂y
f3(x, y)

+∆1c(t)yz
∂

∂x
f3(x, y) + d(t)y2f ′4(x) + ∆1d(t)yzf ′4(x)

−∆2a(t)yf1(x, y, z, w) + ∆2a(t)α1yw

−a(t)zf1(x, y, z, w) + a(t)α1zw + (∆2y + z + ∆1w)p(t, x, y, z, w) +
∂V0

∂t
.

Since

z

z∫
0

∂

∂y
f2(x, y, ζ)dζ ≤ 0, by (vii) and y

z∫
0

∂

∂x
f2(x, y, ζ)dζ, by (vi).

Then we find that

d
dtV0 = −(V4 + V5 + V6 + V7 + V8)−∆2a(t)yf1(x, y, z, w) + ∆2a(t)α1yw

−a(t)zf1(x, y, z, w) + a(t)α1zw + (∆2y + z + ∆1w)p(t, x, y, z, w) + ∂V0
∂t ,

(2.16)

where

V4 := ∆2c(t)yf3(x, y)− α4d(t)y2 − c(t)y

y∫
0

∂

∂x
f3(x, ζ)dζ −∆1c(t)yz

∂

∂x
f3(x, y),

V5 :=
[
α2b(t)−∆1c(t)

∂

∂y
f3(x, y)−∆2a(t)α1

]
z2,

V6 := [∆1a(t)
f1(x, y, z, w)

w
− 1]w2,

V7 := zb(t)f2(x, y, z)− α2b(t)z2 + ∆2b(t)yf2(x, y, z)−∆2α2b(t)yz,

V8 := α4d(t)y2 − d(t)f ′4(x)y2 + ∆1α4d(t)yz −∆1d(t)f ′4(x)yz.
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But

V4 = c(t)Φ3(x, y)
[
∆2 −

Dα4

c(t)Φ3(x, y)

]
y2−c(t)y

y∫
0

∂

∂x
f3(x, ζ)dζ−∆1c(t)yz

∂

∂x
f3(x, y)

≥ εc0α3y
2 − Cy

y∫
0

∂

∂x
f3(x, ζ)dζ −∆1Cyz

∂

∂x
f3(x, y), (2.17)

by (i), (2.9) and (2.11).

V5 =
[
α2b(t)−∆1c(t) ∂

∂y f3(x, y)−∆2a(t)α1

]
z2

≥
(

δ0
a0c0α1α3

− ε∆0

)
z2, by (2.7),

(2.18)

V6 = [∆1a(t)
f1(x, y, z, w)

w
− 1]w2 ≥ εα0α1w

2, (2.19)

by (i), (ii) and (2.3).

V7 = b(t)
[

f2(x,y,z)
z − α2

]
(z2 + ∆2yz), for z 6= 0

≥ −∆2
2

4 b(t)
[

f2(x,y,z)
z − α2

]
y2, by (vii).

By using (vii) and (2.3) we get for z 6= 0

∆2
2

4
b(t)

[
f2(x, y, z)

z
− α2

]
≤ 1

4
b(t)

(
Dα4

c0α3
+ ε

)2
ε0c

3
0α

3
3

BD2α2
4

=
1
4
b(t)

(
1 +

c0α3

Dα4
ε

)2
ε0c0α3

B
≤ ε0c0α3,

since ε < Dα4
c0α3

by (1.2). Then

V7 ≥ −ε0c0α3y
2 for all x, y and z 6= 0,

but V7 = 0 when z = 0, so

V7 ≥ −ε0c0α3y
2 for all x, y and z. (2.20)

By (ix)

V8 = d(t)[α4 − f ′4(x)](y2 + ∆1yz) ≥ −∆2
1

4
d(t)[α4 − f ′4(x)]z2.
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From (ix) and (2.3) we find

∆2
1

4
d(t)[α4 − f ′4(x)] ≤ 1

4
d(t)

(
1

a0α1
+ ε

)2
ε∆0a

2
0α

2
1

D

=
1
4
d(t) (1 + a0α1ε)

2 ε0∆0

D
≤ ε∆0,

since ε < 1
a0α1

by (1.2). Thus it follows that

V8 ≥ −ε∆0z
2. (2.21)

From (2.17) and (2.20) we have, for y 6= 0,

V4 + V7 ≥
[
(ε− ε0)c0α3 − C

y

y∫
0

∂
∂xf3(x, ζ)dζ

]
y2 −∆1Cyz ∂

∂xf3(x, y)

≥ 3
4 (ε− ε0)c0α3y

2 −∆1Cyz ∂
∂xf3(x, y), by(viii)

= 1
2 (ε− ε0)c0α3y

2 + 1
4 (ε− ε0)c0α3

[
y2 − 4∆1C

(ε−ε0)c0α3
yz ∂

∂xf3(x, y)
]

≥ 1
2 (ε− ε0)c0α3y

2 − ∆2
1C2

(ε−ε0)c0α3

[
∂
∂xf3(x, y)

]2
z2

≥ 1
2 (ε− ε0)c0α3y

2 − δ0
4a0α1c0α3

z2,

by using (vii), (2.3) and (1.2). But V4 + V7 = 0, when y = 0,by (2.17) and (2.20);

therefore we have

V4 + V7 ≥
1
2
(ε− ε0)c0α3y

2 − δ0

4a0α1c0α3
z2, for all y and z. (2.22)

From the estimates given by (2.18), (2.19), (2.21) and (2.22) we get

.

V0≤ −
1
2
(ε− ε0)c0α3y

2 −
(

3δ0

4a0c0α1α3
− 2ε∆0

)
z2

−εa0α1w
2 − a(t)zf1(x, y, z, w) + a(t)α1zw

−∆2a(t)yf1(x, y, z, w) + ∆2a(t)α1yw + (∆2y + z + ∆1w)p(t, x, y, z, w) +
∂V0

∂t

≤ −1
2
(ε− ε0)c0α3y

2 − 1
4

δ0

a0c0α1α3
z2 − εa0α1w

2 − a(t)zf1(x, y, z, w) + a(t)α1zw

−∆2a(t)yf1(x, y, z, w)+∆2a(t)α1yw +(∆2y + z +∆1w)p(t, x, y, z, w)+
∂V0

∂t
, (2.23)
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since ε < δ0
4a0c0α1α3∆0

by (1.2).Consider the expressions

W1 = −1
4
(ε− ε0)c0α3y

2 − 1
4
(ε− ε0)c0α3y

2 − 1
3
εa0α1w

2

−∆2a(t)
[
f1(x, y, z, w)

w
− α1

]
yw

and

W2 = −1
2

δ0

a0c0α1α3
z2 − 1

2
δ0

a0c0α1α3
z2 − 1

3
εa0α1w

2 − a(t)
[
f1(x, y, z, w)

w
− α1

]
zw

which is contained in (2.23). Because of the inequalities

−W1 = 1
4 (ε− ε0)c0α3y

2 + 1
4 (ε− ε0)c0α3y

2 + 1
3εa0α1w

2

+∆2a(t)
[

f1(x,y,z,w)
w − α1

]
yw

≥ 1
4 (ε− ε0)c0α3y

2 +
[

1
2

√
(ε− ε0)c0α3 |y| ±

√
1
3εa0α1 |w|

]2

≥ 0, by (ii),

and

−W2 = 1
2

δ0
a0c0α1α3

z2 + 1
2

δ0
a0c0α1α3

z2 + 1
3εa0α1w

2 + a(t)
[

f1(x,y,z,w)
w − α1

]
zw

≥ 1
2

δ0
a0c0α1α3

z2 +
[√

1
2

δ0
a0c0α1α3

|z| ±
√

1
3εa0α1 |w|

]2

≥ 0, by(ii),

it follows that

W1 ≤ −
1
4
(ε− ε0)c0α3y

2,

W2 ≤ −
1
2

δ0

a0c0α1α3
z2.

Hence, a combination of the estimates W1 and W2 with (2.23) yields that
.

V0 ≤ − 1
4 (ε− ε0)c0α3y

2 − 1
2

δ0
a0c0α1α3

z2 − 1
3εa0α1w

2

+(∆2y + z + ∆1w)p(t, x, y, z, w) + ∂V0
∂t
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From (2.2) we obtain

∂V0
∂t = a′(t)

[
1
2α1z

2 + 1
2∆2α1yz

]
+b′(t)

[
∆1

z∫
0

f2(x, y, ζ)dζ + 1
4∆2α2y

2

]
+ c′(t)

[
y∫
0

f3(x, ζ)dζ + ∆1zf3(x, y)
]

+d′(t)
[
∆2

x∫
0

f4(ζ)dζ − 1
2∆1α4y

2 + yf4(x) + ∆1zf4(x)
]

.

From the assumptions in the theorem, (2.6) and (2.14) we have a positive constant

D3 satisfying

∂V0

∂t
≤ D3[|a′(t)|+ b′+(t) + |c′(t)|+ |d′(t)|][F4(x) + y2 + z2 + w2] ≤ D4γ0V0,

by using the inequality (2.12), where D4 = D3
D1

.Therefore one can find a positive

constant D5 such that

.

V0≤ −2D5(y2 + z2 + w2) + (∆2y + z + ∆1w)p(t, x, y, z, w) + D4γ0V0.

Let D6 = max(∆2, 1,∆1), then

.

V0 ≤ −2D5(y2 + z2 + w2) +
√

3D6(y2 + z2 + w2)1/2 |p(t, x, y, z, w)|+ D4γ0V0

≤ −2D5(y2 + z2 + w2) +
√

3D6(y2 + z2 + w2)1/2 {p1(t)

+ p2(t)[F4(x) + y2 + z2 + w2]δ/2 + ∆(y2 + z2 + w2)1/2
}

+ D4γ0V0.

Let ∆ be fixed, in what follows, to satisfy ∆ = D5√
3D6

with this limitation on ∆ we

have
.

V0≤ −D5(y2 + z2 + w2) +
√

3D6(y2 + z2 + w2)1/2 {p1(t)

+ p2(t)[F4(x) + y2 + z2 + w2]δ/2
}

+ D4γ0V0.

(2.24)

Note that

[F4(x) + y2 + z2 + w2]δ/2 ≤ 1 + [F4(x) + y2 + z2 + w2]1/2. (2.25)
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From (2.24) and (2.25) we find
.

V0≤ −D5(y2 + z2 + w2) +
√

3D6(y2 + z2 + w2)1/2[p1(t) + p2(t)]

+
√

3D6p2(t)[F4(x) + y2 + z2 + w2] + D4γ0V0

3. Completion of the Proof

We define

V (t, x, y, z, w) = exp

− t∫
0

γ(τ)dτ

 V0(t, x, y, z, w), (3.1)

where

γ(t) = D4γ0 +
2
√

3D6

D1
[p1(t) + p2(t)]. (3.2)

Then it is easy to see that there exist two functions U1(r), U2(r) satisfying

U1(‖x‖) ≤ V (t, x, y, z, w) ≤ U2(‖x‖), (3.3)

for all x ∈ R4 and t ∈ R+ where U1(r) is a continuous increasing positive definite

function, U1(r) →∞ as r →∞ and U2(r) is a continuous increasing function.

From (3.1), (2.15), (3.2) and (2.12) we have

.

V = exp

− t∫
0

γ(τ)dτ

 [ .

V0 −γ(t)V0

]

≤ exp

− t∫
0

γ(τ)dτ

 {
−D5(y2 + z2 + w2) +

√
3D6(y2 + z2 + w2)1/2[p1(t) + p2(t)]

−
√

3D6[p1(t) + p2(t)][F4(x) + y2 + z2 + w2 + 2k]
}

≤ exp

− t∫
0

γ(τ)dτ

 {
−D5(y2 + z2 + w2)

−
√

3D6[p1(t) + p2(t)]

[(√
y2 + z2 + w2 − 1

2

)2

− 1
4

+ 2k]

]}
.

Setting k ≥ 1
8 , we can find a positive constant D7 such that

.

V≤ −D7(y2 + z2 + w2) = −U(‖x‖). (3.4)
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From inequalities (3.3) and (3.4) it follows that all the solutions (x(t), y(t), z(t), w(t))

of (2.1) are uniformly bounded [12; Theorem 10.2].

Auxiliary Lemma

We consider a system of differential equations

.
x= F (t, x) + G(t, x), (3.5)

where F (t, x) and G(t, x) are continuous vector functions on R+ × Q (Q is an open

set in Rn). We assume

‖G(t, x)‖ ≤ G1(t, x) + G2(x),

where G1(t, x) is non-negative continuous scalar function on R+×Q and
t∫
0

G1(τ, x)dτ

is bounded for all t whenever x belongs to any compact subset of Q and G2(x) is a

non-negative continuous scalar function on Q.

The following lemma is a simple extension of the well-known result obtained

by Yoshizawa [12; Theorem 14.2].

Lemma 3. Suppose that there exists a non-negative continuously differen-

tiable scalar function V (t, x) on R+ × Q such that
.

V (3.5) (t, x) ≤ −U(‖x‖), where

U(‖x‖) is positive definite with respect to a closed set Ω of Q. Moreover, suppose that

F (t, x) of system (3.5) is bounded for all t when x belongs to an arbitrary compact

set in Q and that F (t, x) satisfies the following two conditions with respect to Ω

(1) F (t, x) tends to a function H(x) for x ∈ Ω as t →∞, and on any compact

set in Ω this convergence is uniform;

(2) Corresponding to each ε > 0 and each y ∈ Ω, there exist a δ, δ = δ(ε, y)

and a T = T (ε, y) such that if t ≥ T and ‖x− y‖ δ, we have ‖F (t, x)− F (ε, y)‖ < ε.

And suppose that

(3) G2(x) is positive definite with respect to a closed set Ω of Q.

Then every bounded solution of (3.5) approaches the largest semi-imvariant

set of the system
.
x= H(x) contained in Ω as t →∞.
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Proof. (See [7]) From (2.1) we set F and G in (3.5) as follows

F (t, x) =


y

z

w

−a(t)f1(x, y, z, w)w − b(t)f2(x, y, z)− c(t)f3(x, y)− d(t)f4(x)

 ,

G(t, x) =


0

0

0

p(t, x, y, z, w)

 .

Thus from (xi) we find

‖G(t, x)‖ ≤ p1(t) + p2(t)[F4(x) + y2 + z2 + w2]δ/2 + ∆(y2 + z2 + w2)1/2.

Let

G1(t, x) = p1(t) + p2(t)[F4(x) + y2 + z2 + w2]δ/2 and G2(x) = ∆(y2 + z2 + w2)1/2.

Then F (t, x) and G(t, x) clearly satisfy the conditions of Lemma 3.

Now U(‖x‖) in (3.4) is positive definite with respect to the closed set Ω =

{(x, y, z, w) | x ∈ R+, y = 0, z = 0, w = 0} , it follows that, in Ω,

F (t, x) =


0

0

0

−d(t)f4(x)

 .

From (i) and (x), we have d(t) → d∞ as t →∞ where 0 ≤ d0 < d∞ ≤ D. If we set

H(x) =


0

0

0

−d∞f4(x)

 , (3.6)

then the conditions on H(x) of Lemma 3 are satisfied. Moreover G2(x) is positive

definite with respect to a closed set Ω.
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Since all of the solutions of (2.1) are bounded, it follows from Lemma 3

that every solution of (2.1) approaches the largest semi-imvariant set of the system
.
x= H(x) contained in Ω as t →∞. From (3.6),

.
x= H(x) is the system

.
x= 0,

.
y= 0,

.
z= 0,

.
w= −d∞f4(x),

which has the solutions x = k1, y = k2, z = k3, w = k4−d∞f4(k1)(t−t0). To remain in

Ω; k2 = k3 = 0 and k4−d∞f4(k1)(t− t0) = 0 for all t ≥ t0 which implies k1 = k4 = 0.

Therefore the only solution of
.
x= H(x) remaining in Ω is x = 0, that is, the

largest semi-invariant set of
.
x= H(x) contained in Ω is the point (0, 0, 0, 0). Then it

follows that

x(t) → 0, y(t) → 0, z(t) → 0, w(t) → 0 as t →∞,

which are equivalent to (1.4).

This completes the proof of the theorem.
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