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ON THE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF
THIRD ORDER DELAY DIFFERENTIAL EQUATIONS

SESHADEV PADHI

Abstract. Sufficient conditions in terms of coefficient functions have been
obtained so that all nonoscillatory solutions along with their first and second
derivatives of the third order delay differential equation

y′′′(t) + a(t)y′′(t) + b(t)y′(t) + c(t)y(g(t)) = 0

tend to zero as t →∞.
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1. This paper is concerned with the asymptotic behaviour of nonoscillatory
solutions of third order equations of the form

y′′′(t) + a(t)y′′(t) + b(t)y′(t) + c(t)y(g(t)) = 0, (1.1)

where a, b, c and g ∈ C([σ,∞), R), σ ∈ R, g(t) ≤ t and g(t) →∞ as t →∞.

Recently in [8] and [9], the authors have obtained a relationship between
the asymptotic behaviour of nonoscilatory solutions of (1.1) and the ordinary
differential equation

y′′′(t) + a(t)y′′(t) + b(t)y′(t) + c(t)y(t) = 0 (1.2)

for two cases: (i) a(t) ≥ 0, b(t) ≤ 0 and c(t) > 0; (ii) a(t) ≤ 0, b(t) ≤ 0 and
c(t) < 0. This has been performed by using the canonical transformation due to
Trench [14] and some comparison theorems due to Kusano and Naito [6]. Thus
it is possible to predict the behaviour of nonoscilatory solutions of (1.1) if we
know solutions of (1.2). It seems that it is not easy to study the asymptotic
behaviour of solutions of (1.1) directly. One can observe that the techniques
employed in [8] and [9] cannot be applied to studying the behaviour of solutions
of (1.1) when a(t) ≥ 0, b(t) ≥ 0 and c(t) > 0. We have used a different technique
to relate the asymptotic behaviour of nonoscillatory solutions of (1.1) to that
of the oscillation of (1.2).

A solution y(t) of (1.1) or (1.2) is said to be oscillatory if it has arbitrarily
large zeros and nonoscillatory if there exists T ≥ σ such that y(t) > 0 or < 0 for
t ≥ T . As usual, equation (1.2) is called oscillatory if it admits an oscillatory
solution and nonoscillatory otherwise. Equation (1.2) is said to be disconjugate
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if none of nontrivial solutions of (1.2) has more than two zeros, counting mul-
tiplicities. On the other hand, equation (1.1) is said to be oscillatory if all its
solutions are oscillatory and nonoscillatory if it admits an oscillatory solution.
In [11], the authors have obtained sufficient conditions under which equation
(1.1) with a(t) ≡ 0 and b(t) ≡ 0 is oscillatory.

2. This section deals with the asymptotic behaviour of nonoscillatory solutions
of (1.1). Throughout this section we assume that a(t) ≥ 0, b(t) ≥ 0 and c(t) > 0
for t ≥ σ. We assume that

c(t) ≥ d > 0, c(t)− a(t)b(t)− b′(t) ≥ 0 and b(t) is bounded. (H)

We can write (1.1) and (1.2) in the forms

(r(t)y′′(t))′ + q(t)y′(t) + p(t)y(g(t)) = 0 (2.1)

and
(r(t)y′′(t))′ + q(t)y′(t) + p(t)y(t) = 0, (2.2)

where r(t) = e
R t

σ a(s) ds, q(t) = r(t)b(t) and p(t) = r(t)c(t).

The following theorem in [10] will be needed for our use in the sequel.

Theorem 2.1. Suppose that 2c(t) − a(t)b(t) − b′(t) ≥ 0 holds. If a′(t) ≤ 0
and

∫∞
σ

c(t) dt = ∞, then (1.2) is oscillatory.

Lemma 2.2. Let 2c(t)− a(t)b(t)− b′(t) ≥ 0 and (1.2) be oscillatory. Then
a solution y(t) of (1.2) is nonoscillatory if and only if F [y(t)] < 0 for t ≥ σ,
where

F [y(t)] = r(t)(y′(t))2 − 2r(t)y(t)y′′(t)− q(t)y2(t). (2.3)

This follows from Lemma 5 in [3].

Theorem 2.3. Let (H) hold. If (1.2) is oscillatory, then every nonoscillatory
solution y(t) of (1.2) satisfies the property

lim
t→∞

y(t) = lim
t→∞

y′(t) = lim
t→∞

y′′(t) = 0.

Proof. Since 2c(t)−a(t)b(t)−b′(t) ≥ 0, from Lemma 2.2 it follows that F [y(t)] <
0 for t ≥ σ. If y(t0) = 0 for some t0 ∈ [σ,∞), we have F [y(t0)] ≥ 0, a contra-
diction. Hence y(t) 6= 0 for some t ∈ [σ,∞). Without any loss of generality we
may assume that y(t) > 0 for t ≥ σ. As r(t) > 1 and F [y(t)] < 0 for t ≥ σ;
then

0 ≤ (y′(t))2 ≤ r(t)(y′(t))2 < y(t)(2r(t)y′′(t) + q(t)y(t)). (2.4)

Thus
2r(t)y′′(t) + q(t)y(t) > 0, t ≥ σ (2.5)

Consequently, from (2.2) and (2.5) we obtain

0 ≤ r(t)y′′(t) + q(t)y(t)

= r(σ)y′′(σ) + q(σ)y(σ) +

t∫

σ

(q′(s)− p(s))y(s) ds ≤ k, (2.6)
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where k = r(σ)y′′(σ) + r(σ)y(σ). Then

2r(t)y′′(t) + q(t)y(t) ≤ 2k. (2.7)

Using (2.4) and (2.7), we get

(y′(t))2 ≤ 2ky(t). (2.8)

Further, from (2.3), for t ≥ σ

0 > F [y(t)] ≥ F [y(σ)] +

t∫

σ

(2p(s)− q′(s))y2(s) ds

≥ F [y(σ)] +

t∫

σ

(2c(s)− a(s)b(s)− b′(s))y2(s) ds

≥ F [y(σ)] +

t∫

σ

c(s)y2(s) ds

≥ F [y(σ)] + d

t∫

σ

y2(s) ds.

This inequality implies that y ∈ L2([σ,∞), R). Proceeding as in the proof of
Theorem 3.6 in [7], one may show that lim

t→∞
y(t) = 0. We consider two cases,

viz.,
∞∫

σ

a(t) dt = ∞ (2.9)

and ∞∫

σ

a(t) dt < ∞ (2.10)

First, we suppose that (2.9) holds. From (2.6) we obtain

k ≥
t∫

σ

(p(s)− q′(s))y(s) ds =

t∫

σ

(c(s)− a(s)b(s)− b′(s))r(s)y(s) ds.

Hence ∞∫

σ

(c(s)− a(s)b(s)− b′(s))r(s)y(s) ds ≤ k. (2.11)

Since

[r(t)y′′(t) + q(t)y(t)]′ = −(p(t)− q′(t))y(t)

= −(c(t)− a(t)b(t)− b′(t))r(t)y(t)

≤ 0,
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by (2.6) we get

lim
t→∞

[r(t)y′′(t) + q(t)y(t)] = `, 0 ≤ ` < ∞. (2.12)

Since equations (1.2) and (2.2) are equivalent, by integrating (2.2) from t to
s(σ < t < s) and then taking the limit as t →∞ we have

r(t)y′′(t) + q(t)y(t) = ` +

∞∫

t

(p(s)− q′(s))y(s) ds,

which by virtue of (2.11) gives

y′′(t) + b(t)y(t) ≤ [` +

∞∫

t

(c(s)− a(s)b(s)− b′(s))r(s)y(s) ds]r−1(t)

≤ (` + k)r−1(t).

This inequality in turn implies lim
t→∞

[y′′(t) + b(t)y(t)] = 0. Since b(t) is bounded

and lim
t→∞

y(t) = 0, it follows that lim
t→∞

y′′(t) = 0. Next suppose that (2.10)

holds. Clearly, (2.12) holds too. Since b(t) is bounded, we have lim
t→∞

r(t)y′′(t) =

α, 0 ≤ α < ∞. Clearly, (2.10) implies
∫∞

σ
1

r(t)
dt = ∞ and hence α > 0

yields y′(t) → ∞ as t → ∞, a contradiction. Hence α = 0. Consequently,
lim
t→∞

y′′(t) = 0. This completes the proof of the theorem. ¤

Remark 1. The boundedness of b(t) is not needed when (2.9) holds in Theorem
2.3.

Remark 2. Theorem 2.3 partially generalizes Theorem 24 in [4].

Corollary 2.4. Suppose that the conditions of Theorem 2.3 are satisfied. If
a′(t) ≤ 0, then every nonoscillatory solution of (1.2) satisfies the property

lim
t→∞

y(t) = lim
t→∞

y′(t) = lim
t→∞

y′′(t) = 0.

This follows from Theorems 2.1 and 2.3.

The objective of this section is to obtain a result similar to Corollary 2.4 for
the delay differential equation (1.1). We begin with the following lemma.

Lemma 2.5. Suppose that the second order differential equation

z′′ + a(t)z′ + b(t)z = 0 (2.13)

is nonoscillatory.If y(t) is a nonoscillatory solution of (1.1), then there exists
t0 ∈ [σ,∞) such that y(t)y′(t) > 0 or y(t)y′(t) < 0 for t ≤ t0.

Proof. Suppose that y(t) is a nonoscillatory solution of (1.1). Then there exists
t1 ≥ σ such that y(t) > 0 or y(t) < 0 for t ≥ t1. Let t2 > t1 be such that
g(t) > t1 for t ≥ t2. Hence y(g(t)) > 0 or < 0 for t ≥ t2. Clearly, −y′(t) is a
solution of the second order nonhomogeneous equation

(r(t)z′)′ + q(t)z = −p(t)y(g(t)), t ≥ t2. (2.14)
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Since (2.13) is nonoscillatory, from the result due to Keener [5] it follows that
all solutions of (2.14) are nonoscillatory. Hence, in particular, y′(t) is nonoscil-
latory. Consequently, there exists t0 ≥ t2 such that y(t)y′(t) > 0 or y(t)y′(t) < 0
for t ≤ t0. Thus the lemma is proved. ¤

Theorem 2.6. Let (H) and (2.10) hold and (2.13) be nonoscillatory. If for
any µ ∈ (0, 1

2
), the third order differential equation

u′′′ + a(t)u′′ + b(t)u′ + µ

(
g(t)

t

)2

c(t)u = 0 (2.15)

admits an oscillatory solution, then every nonoscillatory solution of (1.1) along
with its first and second derivatives tends to zero as t →∞.

Proof. Let y(t) be a nonoscillatory solution of (1.1). Without any loss of gen-
erality we may assume that y(t) > 0 for t ≥ t0 ≥ σ. Thus there exists t1 ≥ t0
such that y(g(t)) > 0 for t ≥ t1. By Lemma 2.5, there exists t2 ≥ t1 such
that y′(t) > 0 or < 0 for t ≥ t2. Suppose that y′(t) > 0 for t ≥ t2. Then by
(2.1), (r(t)y′′(t))′ < 0 for t ≥ t2 and hence y′′(t) > 0 or < 0 for t ≥ t3 ≥ t2.
Clearly, (2.10) implies that

∫∞
σ

1
r(t)

dt = ∞. If y′′(t) < 0 for t ≥ t3, then the

repeated integration of (r(t)y′′(t))′ < 0 from t3 to t yields y′(t) < 0 for large t,
a contradiction. Hence y′′(t) > 0 for t ≥ t3. This in turn implies y′′′(t) < 0 for
t ≥ t3. For every µ ∈ (0, 1

2
), there exists Tµ > t3 such that

y(g(t))

y(t)
≥ µ

(
g(t)

t

)2

(2.16)

for t ≥ Tµ (see Theorem 2.2 in [2]). Setting z(t) = y′(t)/y(t) for t ≥ Tµ, we get

z′(t) + z2(t) = y′′(t)/y(t). Further, taking u(t) = e
R t

Tµ
z(s) ds

and using (2.16) we
obtain

u′′′ + a(t)u′′ + b(t)u′ + µ

(
g(t)

t

)2

c(t)u ≤ 0

for t ≥ Tµ. From Lemma 4 in [3], it follows that (2.15) is disconjugate on
[Tµ,∞), a contradiction. Hence y′(t) < 0 for t ≥ t2. From (2.3) and equation
(2.1) we obtain for t ≥ t2

F ′[y(t)] ≥ r′(t)(y′(t))2 + (2p(t)− q′(t))y2(t) > 0. (2.17)

Hence F [y(t)] < 0 or > 0 for t ≥ t4 ≥ t2. We claim that F [y(t)] < 0 for t ≥ t4.
Since y′(t) < 0 for t ≥ t2, there are three possibilities on y′′(t), i.e., there exists
t5 ≥ t2 such that y′′(t) > 0 or < 0 or y′′(t) changes the sign for t ≥ t5. Let
t6 = max (t5, t6). Clearly, y′′(t) < 0 for t ≥ t6 implies that y(t) < 0 for large t, a
contradiction. If y′′(t) > 0 for t ≥ t6, then lim

t→∞
y′(t)exists and ≤ 0. From (2.17)

we obtain for t ≥ t6

F [y(t)] ≥ F [y(t6)] +

t∫

t6

(2c(s)− a(s)b(s)− b′(s))r(s)y2(s) ds (2.18)
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and hence

r(t)(y′(t))2 ≥
t∫

t6

(2c(s)− a(s)b(s)− b′(s))r(s)y2(s) ds. (2.19)

Taking the limit as t →∞ in (2.19), we have

lim
t→∞

r(t)(y′(t))2 = λ > 0.

Hence lim
t→∞

y′(t) = λ1, λ1 < 0. This in turn implies y(t) < 0 for large t, a

contradiction. If y′′(t) changes the sign for t ≥ t6, then y′(t) has maxima for
arbitrarily large t. We claim that lim sup

t→∞
y′(t) = 0. If not, then lim sup

t→∞
y′(t) < 0.

Then for 0 < ε < −k there exists T ≥ t6 such that y′(t) < k + ε for t ≥ T .
This in turn implies that y(t) < 0 for large t, a contradiction. Hence our claim
holds, i.e., lim sup

t→∞
y′(t) = 0. Let {tn} be the sequence of maxima of y′(t).

So lim sup
n→∞

y′(tn) = 0. Clearly, {tn} contains a subsequence {sn}, sn → ∞ as

n → ∞ and lim
n→∞

y′(sn) = 0. We may note that y′′(sn) = 0, n = 1, 2, 3, . . . .

Hence from (2.19)

0 = lim
n→∞

r(sn)(y′(sn))2 ≥ lim
n→∞

sn∫

t5

(2c(s)− a(s)b(s)− b′(s))r(s)y2(s) ds > 0,

a contradiction. Thus our claim holds, i.e., F [y(t)] < 0 for t ≥ t4. Clearly, for
t ≥ t4, (2.6), (2.7) and (2.8) are satisfied. From (2.8) it follows that y′(t) is
bounded. One may obtain from (2.18)

t∫

t4

y2(s) ds ≤ −F [y(t4)]

d
< ∞.

Hence
t∫

t4

y2(s) ds < ∞.

Now Lemma 1.2 of Singh [12] implies y(t) → 0 as t → ∞. Thus from (2.8) it
follows that y′(t) → 0 as t → ∞. Since (1.1) and (2.1) are equivalent, from
(2.1) we have

[r(t)y′′(t) + q(t)y(t)]′ ≤ −(p(t)− q′(t))y(t)

≤ −(c(t)− a(t)b(t)− b′(t))r(t)y(t) ≤ 0

for large t. Hence (r(t)y′′(t) + q(t)y(t)) > 0 or < 0 for large t. Clearly,
(r(t)y′′(t) + q(t)y(t)) < 0 for large t implies that y(t) < 0 for large t, a
contradiction. Hence (r(t)y′′(t) + q(t)y(t)) > 0 for large t. Consequently,
lim
t→∞

[r(t)y′′(t) + q(t)y(t)] = `, 0 ≤ ` < ∞. Since q(t) is bounded, we have

lim
t→∞

r(t)y′′(t) = `. If ` > 0, then y′(t) > 0 for large t. This contradiction proves
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that ` = 0. Consequently, lim
t→∞

y′′(t) = 0. This completes the proof of the

theorem. ¤

Corollary 2.7. Let (H) and (2.10) hold,
∫∞

σ

(
g(t)

t

)2

c(t) dt = ∞. If for any

µ ∈ (0, 1/2), µ
(

g(t)
t

)2

c(t)− a(t)b(t)− b′(t) ≥ 0, a′(t) ≤ 0, (2.13) is nonoscilla-

tory, then every nonoscillatory solution of (1.1) along with its first and second
derivatives tends to zero as t →∞.

This follows from Theorems 2.1 and 2.6.
The following result due to Potter ([13], Theorem 2.6) is needed.

Theorem 2.8. Suppose that r and q ∈ C1((σ,∞), R), r is positive and q is
nonnegative in (σ,∞) and

∞∫

σ1

1

r(t)
dt = ∞, σ1 > σ.

If L = lim
t→∞

{[r(t)q(t)]−1/2} exists and L > 2, then equation (2.13) is nonoscilla-

tory, where r and q are defined in (2.2).

Example. Consider

y′′′(t) +
1

t2
y′′(t) +

1

t− 1

(
2

t2
− 1

t3

)
y′(t)

+
1

e

(
1− 1

t2
+

(2t− 1)

(t− 1)t3

)
y(t− 1) = 0 (2.20)

for t ≥ 2. In this case L > 2 and hence, by Theorem 2.8, the second order
differential equation

z′′(t) +
1

t2
z′(t) +

1

t− 1

(
2

t2
− 1

t3

)
z(t) = 0

is nonoscillatory. It is easy to check that all conditions of Corollary 2.7 are
satisfied and hence all nonoscillatory solutions of (2.20) along with their first
and second derivatives tend to zero as t → ∞. In particular, y(t) = e−t is a
nonoscillatory solution of (2.20).

Remark 3. Our Theorem 2.6 improves Theorem 2.6 in [11].

Remark 4. Erbe [2] obtained several results for the bounded solutions only.
Our Theorem 2.6 is an improvement of Theorem 2.2 due to Erbe [2].
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