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On the Asymptotic Capacity of Stationary Gaussian
Fading Channels
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Abstract—We consider a peak-power-limited single-antenna
flat complex-Gaussian fading channel where the receiver and
transmitter, while fully cognizant of the distribution of the fading
process, have no knowledge of its realization. Upper and lower
bounds on channel capacity are derived, with special emphasis on
tightness in the high signal-to-noise ratio (SNR) regime. Necessary
and sufficient conditions (in terms of the autocorrelation of the
fading process) are derived for capacity to grow double-loga-
rithmically in the SNR. For cases in which capacity increases
logarithmically in the SNR, we provide an expression for the
“pre-log,” i.e., for the asymptotic ratio between channel capacity
and the logarithm of the SNR. This ratio is given by the Lebesgue
measure of the set of harmonics where the spectral density of the
fading process is zero. We finally demonstrate that the asymptotic
dependence of channel capacity on the SNR need not be limited
to logarithmic or double-logarithmic behaviors. We exhibit power
spectra for which capacity grows as a fractional power of the
logarithm of the SNR.

Index Terms—Asymptotic expansion, channel capacity, fading
channels, high signal-to-noise ratio (SNR), multiplexing gain, non-
coherent, Rayleigh, Rice, time-selective.

I. INTRODUCTION

I N this paper, we study the capacity of a single-antenna
discrete-time flat-fading channel. We assume that the fading

process is a stationary circularly symmetric complex-Gaussian
process whose law (i.e., mean and autocorrelation func-
tion)—but not realization—is known to the transmitter and
receiver. Some authors refer to models, such as ours, where the
realization of the fading is unknown to the receiver and trans-
mitter as “noncoherent” models. Our channel model includes
as special cases the Rayleigh and Ricean channel models that
correspond to zero-mean (Rayleigh) and non-zero-mean (Rice)
independent and identically distributed (i.i.d.) fading. Our
emphasis here will, however, be on the case where the fading
process has memory (is not i.i.d.) and thus introduces memory
into the channel model. The fading is thus “time-selective.”
This memory can be exploited by the system designer to allow
for the receiver to track the fading level and to thus achieve
higher communication rates. While we do not preclude the
possibility of the use of training sequences to learn the channel,
we view this possibility as a special case of coding. Thus, the
capacity of this channel is the ultimate limit on the rate of
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reliable communication on this channel irrespective of the type
of coding employed, be it via training sequences or not.

Even in the absence of memory, this channel model does not
lead to explicit expressions for channel capacity, and it is thus
not surprising that previous analyses of this model were mostly
based on a further simplification of the model. A commonly
used simplification is the block-constant fading model [1]. In
this model, the fading is no longer assumed stationary.1Instead,
it is assumed that it is drawn independently every symbols
and then remains constant for the duration of symbols. The
capacity of this simplified model was studied in [2] in the high-
signal-to-noise ratio (SNR) regime, where capacity was shown
to increase logarithmically with the SNR, with the “pre-log”2

being given (for ) by . A different simplified
model—one that generalizes the block-constant model—was
recently proposed in [3]. Here the fading is still nonstationary
but it has a more intricate structure. The fading is i.i.d. in blocks
of size , but within the block the fading need not be constant;
an arbitrary covariance structure is allowed. The high-SNR anal-
ysis shows that unless the covariance matrix is of full rank, ca-
pacity grows logarithmically in the SNR with the pre-log deter-
mined by the rank of the covariance matrix. For the
pre-log is .

To the best of our knowledge, the only study that addresses
our model without any simplifications is by Lapidoth and Moser
[4]. There, it was shown that if the fading process is regular in
the sense that its “present” cannot be predicted precisely from its
“past,” then capacity grows double-logarithmically in the SNR.3

This was perhaps the first indication that the high-SNR behavior
of channel capacity can depend critically on the model, and that
simplifications of the model may lead to completely different
asymptotic behaviors.

1The fading in the Marzetta–Hochwald model [1] is cyclostationary. By in-
troducing a random time shift that is uniformly distributed over the duration of
the block one can stationarize the process, but the resulting process is no longer
Gaussian.

2By the “pre-log” we refer to the limiting ratio of channel capacity to the
logarithm of the SNR. Some authors refer to this as “multiplexing gain,” but this
latter expression seems more appropriate for multiple-antenna systems where it
can be greater than one.

3A special case of regular Gaussian fading is the first-order Gauss–Markov
fading model, which has been recently studied in [5] and [6]. Chen et al.[5]
focused on the mutual information that is achievable with fixed (SNR-indepen-
dent) input distributions, whereas Etkin and Tse [6] focused on the asymptotics
of channel capacity (input distribution allowed to depend on the SNR). Note that
the asymptotics studied by Etkin and Tse are different from the ones that are of
interest to us here. Whereas we fix the channel and study the limiting behavior
of channel capacity as the SNR tends to infinity, Etkin and Tse study a double
limit: the SNR tending to infinity and the variance of the fading innovations
tending to zero. Thus, their asymptotics correspond to the limiting behavior as
the SNR tends to infinity and the fading becomes more and more deterministic.
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In order to better understand channel capacity at high SNR
and in an attempt to bridge the gap between the double-loga-
rithmic and the logarithmic behaviors discussed above, we ex-
tend here the study of [4] to the case where the fading is not reg-
ular, i.e., when the present fading can be determined precisely
from the past values of the fading. We shall derive upper (33)
and lower (47) bounds on the capacity of this channel with a
view to an understanding of channel capacity at high SNR (48),
(53). With the aid of these bound we shall obtain the following.

• A characterization (in terms of the power spectral density
of the fading process) of the fading processes that lead to
a double-logarithmic dependence of channel capacity on
the SNR. See Section VII (55).

• An expression for the pre-log when capacity grows loga-
rithmically in the SNR. See Section VIII (61).

• Examples of fading processes that lead to other asymp-
totic behaviors, e.g., processes for which capacity grows
like a fractional power of the logarithm of the SNR. See
Section IX (74).

It should be emphasized that this paper deals only with single-
antenna communications. This is not to imply that extensions to
the multiple-antenna scenario are straightforward. On the con-
trary, the multiple-antenna scenario seems to be much more
complicated. Some recent advances in the analysis of multiple-
antenna fading channels with memory include an exact compu-
tation of the fading number for regular single-input multiple-
output (SIMO) systems [7]; and the extension of the calcula-
tion of the present paper to the pre-log for some Gaussian mul-
tiple-input single-output (MISO) fading channels [8].4

The rest of this paper is organized as follows. In Section II,
we describe the channel model and define its capacity. In Sec-
tion III, we discuss the classical prediction problem and the
noisy prediction problem for stationary circularly symmetric
Gaussian processes. In Section IV, we propose upper bounds on
channel capacity, and in Section V, lower bounds. An asymp-
totic analysis of these bounds is performed in Section VI. This
analysis is used in Section VII to derive necessary and suffi-
cient conditions for capacity to grow double-logarithmically in
the SNR. The study of the pre-log is the subject of Section VIII
and asymptotic behaviors other than logarithmic or double-log-
arithmic are presented in Section IX. Section X discusses the
application of the new bounds to the finer analysis of regular
fading channels. The paper concludes with a brief summary and
some conclusions in Section XI.

II. CHANNEL MODEL

We consider a discrete-time channel whose time- complex-
valued output is given by

(1)

4For nonregular fading, Koch [8] solves for the pre-log of peak-limited
Gaussian MISO channels when the Gaussian fading processes from the
different transmitters to the receiver are independent.

For regular fading, [8] computes the fading number for Gaussian MISO
channels when the channels from the different transmitters to the receiver are in-
dependent and are additionally either all of zero mean (and arbitrary spectrum)
or all of identical power spectra (and possibly different means.)

where is the complex-valued channel input at time ;
the constant is a deterministic complex number; the com-
plex process models multiplicative noise; and the com-
plex process models additive noise. The processes
and are assumed to be independent and of a joint law that
does not depend on the input sequence .

We shall assume that the sequence is a sequence of
i.i.d. circularly symmetric complex-Gaussian random variables
of zero mean and variance . Thus, where we
use the notation to indicate that has a
zero-mean variance- circularly symmetric complex-Gaussian
distribution, i.e., to indicate that the density of is
given by

(2)

As to the “fading process” , we shall assume that it is
a zero-mean, unit-variance, stationary, circularly symmetric,
Gaussian process of arbitrary spectral distribution function

, . Thus, is a monotonically nonde-
creasing function on [9, Theorem 3.2, p. 474]

(3)

and

(4)

Notice that we do not assume that is absolutely continuous
with respect to the Lebesgue measure on , i.e., we do
not assume that the process has a spectral density. Since

is monotonic, it is almost everywhere differentiable, and
we denote its derivate by . (At the discontinuity points of

, the derivative is undefined. We do not use Dirac’s delta
functions in this paper.)

Unless we restrict the channel inputs, the capacity of this
channel is typically infinite. Usually one considers channel ca-
pacity under an energy constraint on the input but, to treat the
problem analytically, we have chosen in this paper to consider
the peak-power constraint

(5)
We define the SNR by

SNR (6)

The subject of our investigation is the capacity SNR ,
which is defined by

SNR (7)

where the supremum is over all joint distributions on
satisfying the peak constraint (5), and where the limit exists

because was assumed stationary.
It should be noted that SNR need not have a coding the-

orem associated with it. A coding theorem will, however, hold
if is ergodic, as is, for example, the case if is abso-
lutely continuous, i.e., if has a spectral density.
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III. NOISELESS AND NOISY PREDICTION

As we shall see, the large-SNR behavior of SNR depends
critically on the mean-squared error in predicting from
past values [9, Theorem 4.3]

(8)

If then [4]

SNR SNR

(9)

where denotes the exponential integral function

(10)

and where the term tends to zero as SNR .
We follow Doob [9, Sec. XII.2, p. 564] and refer to processes

for which as regular and to those for which
as nonregular or deterministic. Note, however, that Ibragimov
and Rozanov [10] require that regular processes also have an
absolutely continuous spectral distribution, i.e., possess a spec-
tral density.

With (9) established, we shall focus in this paper on the case
where . For the asymptotic analysis of this case we
shall find it important to analyze the noisy prediction problem
for . This problem can be stated as follows. Let
be a sequence of i.i.d. random variables. The noisy
prediction problem is to predict based on the observations

. We denote the mean-squared
error associated with the optimal predictor by and note
that it is given by

(11)

Indeed, the conditional expectation of given the observations
is the same as the conditional

expectation of given those observations. Since is
independent of the observations, can be thus written
as the prediction error for the process but with the
variance of subtracted.

Note that in view of our normalization (4), the fact that
is Gaussian, and the fact that is also conditionally Gaussian
given the noisy past it follows
that

(12)

We next recall some facts related to the prediction problem for
circularly symmetric stationary Gaussian processes. To simplify
the exposition, we shall somewhat abuse convention and refer to

complex random variables as circularly symmetric
Gaussian even for . Also, we shall use the notation to
refer to the random variables .

We first note that if a process is a circularly symmetric
Gaussian process, then the conditional distribution of condi-
tional on is a Gaussian with a deterministic
variance. That is, if

then

almost surely

Moreover, has a Gaussian (unconditioned) distribution.
Finally, if is stationary, then the prediction error is

monotonically nonincreasing in and

(13)

(For the latter claim, see [9, p. 562], [9, Sec. IV, Theorem 7.4],
[9, Sec. VII, Theorem 4.3].)

IV. AN UPPER BOUND

To upper-bound we use the chain rule

(14)

and upper-bound each of the individual terms in the sum by

(15)

where the first equality follows from the chain rule; the subse-
quent inequality from the nonnegativity of mutual information;
the following equality from the absence of feedback, which re-
sults in the future inputs being independent of the present
output given the past and present inputs and the past out-
puts ; and the last equality from the expansion of mutual
information in terms of differential entropies.

We now consider the maximization of the right-hand side
(RHS) of (15) over all joint distributions on satisfying the
peak constraint

almost surely (16)

This maximization can be written as a double maximization over
the distribution of and the conditional law of
its past

(17)
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where the second equality follows from the observation that
specifying the law of also specifies the law of

(because the laws of and are fixed) and hence also de-
termines its differential entropy .

We next note that

(18)

where are i.i.d. , and where the
infimum is achieved by any conditional law under
which are almost surely of magnitude . This
follows because once the value of has been fixed, the
variables influence the conditional
differential entropy of only through the information they
convey on and hence on . These variables
convey information about through the ratios

, and this information is maximized
when the inputs are of maximum magnitude , in which case

(19)

(20)

Combining (18) with (17) and (15) we obtain

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

SNR

SNR
(32)

where the term depends on and and for any fixed
, converges to zero as . Here (21) follows from

(15); (22) follows from (17); (23) follows from (18); (24) fol-
lows from the definition of mutual information; (25) follows
from the stationarity of the fading process; (26) follows by re-
vealing the distant past; (27) follows by the chain rule; (28) by
maximizing each of the two terms individually; (29) follows
from the data-processing inequality, which applies because con-
ditional on , the random variable is independent of

; (30) follows from (12); (31) follows from
the analysis of the high-SNR behavior of the capacity of the
peak-limited memoryless Ricean fading channel [4, Corollary
4.19]; and (32) follows from the definition the SNR (6).

Notice that (32) could be turned into a nonasymptotic bound
by upper bounding the term with an appro-
priate nonasymptotic upper bound on the capacity of the peak-
limited memoryless Ricean fading channel, e.g., [4, Sec. IV.F.3,
eqs. (166) and (174)]. We shall not pursue this here because our
focus is on the high-SNR regime.

Combining (32) with (14) and (7) we obtain the upper bound

SNR
SNR

SNR

(33)

where the is as above. Note that this term can be upper-
bounded firmly as in the analysis of Ricean fading [4].

V. A LOWER BOUND

To derive a lower bound on channel capacity we shall con-
sider inputs that are i.i.d. and uniformly distributed over
the set . Using the chain rule

(34)

and a Cesáro-type theorem [11, Theorem 4.2.3] we obtain
after discarding future outputs that the capacity can be
lower-bounded by

(35)

We now proceed to lower-bound the term on the RHS of (35)
using the fact that we have chosen to be i.i.d. and satis-
fying , almost surely

(36)
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where

(37)

Notice that it was only in the last inequality that we used the fact
that under the input distribution that we have chosen all inputs
are of magnitude no smaller than .

Expressing the present fading as

(38)

where

(39)

we obtain from (36) that

(40)

where , , , , are independent random variables of
the following laws: is uniformly distributed over the set

; the additive noise is
distributed; the prediction error in predicting from

is distributed where is the
mean-squared prediction error; and . Notice
that by (13)

(41)

To lower-bound the RHS of (40) we derive in Appendix I the
lower bound

(42)

(43)

for , , as above and for deterministic. Here

(44)

This lower bound actually holds for any law on and has
the following interpretation: it is the relative entropy distance
between the law on and a Gaussian law of equal power,
subtracted from the Gaussian capacity corresponding to output
power and noise .

For the distribution on in which we are interested ( uni-
form over ) we have

(45)

so that (43) implies

SNR
(46)

To use this bound in order to lower-bound the RHS of (40) we
note that the RHS of (40) is just the expectation of the left-hand
side (LHS) of (46) over with respect to the distribution of

. Thus, from (46) and the expectation of the logarithm

of a noncentral chi-square random variable of two degrees of
freedom [4, Appendix X]

we now obtain using (35), (40), and (41)

SNR
SNR

(47)

Here for the above to hold also in the case (corresponding
to a central chi-square random variable) we define the value
of the function at as , where

denotes Euler’s constant. With this definition, the function
is continuous at . In fact, it is continuous,

monotonically increasing, and concave in the interval .
Its value at is and as it tends to infinity
logarithmically.

VI. ASYMPTOTIC ANALYSIS

To simplify the asymptotic analysis, we shall relax the bounds
at the expense of some accuracy. We begin by writing the upper
bound (33) as

SNR
SNR

SNR (48)

where the term depends on only. We also note that the ca-
pacity is always upper bounded by the capacity SNR cor-
responding to the case where the receiver has perfect side infor-
mation, i.e., has access to the realization of the fading process.
Thus,

SNR SNR

SNR

SNR (49)

where the term tends to zero as the SNR tends to infinity.
Here, the first inequality follows because side information

cannot hurt; the second inequality follows from Jensen’s in-
equality; and the third inequality follows because the second
moment of a random variable is always upper bounded by the
square of its maximal magnitude.

We next consider the lower bound (47). Since is
monotonically decreasing in in the interval (see (10))
it follows that for



442 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 2, FEBRUARY 2005

Collecting the RHS of the above with the
terms in the RHS of (47) into an term we thus obtain for
SNR

SNR
SNR SNR

SNR SNR
(50)

where the term is finite and does not depend on the SNR.
(The validity of (50) in the case where , i.e., for mem-
oryless fading, is verified separately.)

The upper bounds (48) and (49) and the lower bound (50) will
be the main tools in our asymptotic analysis.

To continue with the asymptotic analysis we now distinguish
between two cases depending on whether the noisy prediction
error is small or large compared with the noise variance.

Small Prediction Error: By (49) and (50) we obtain

SNR
SNR

(51)

Large Prediction Error: In the other extreme we note that if

(52)

then the lower bound (50) can be simplified to yield

SNR
SNR

if (52) holds (53)

As we shall later see, when (52) holds, the bounds (53)
and (48) will in most cases of interest suffice to capture the
high-SNR behavior of channel capacity. There is, however, one
more cosmetic change we would like to introduce. In view of
the form of the noisy prediction error (11), it is convenient to
express the bounds in terms of rather than in
terms of only. To this end, we note that if (52) holds,
then we can simplify (48) to

SNR
SNR SNR

SNR if (52) holds (54)

The bounds (54) and (50) are now both in this more convenient
form.

VII. THE LOG-LOG

In this section, we shall use the asymptotic results of Sec-
tion VI to characterize the fading processes that yield a double-
logarithmic dependence of channel capacity on the SNR. We
will show

(55)

which, in view of (11), can also be stated as

SNR
SNR

(56)
Notice that the relation on the RHS (and hence also on the

LHS) of (56) is satisfied whenever is bounded away
from zero, i.e., whenever (i.e., the fading is regular). It
can, however, be satisfied also by nonregular fading processes.
An example of a process for which and yet both
sides of (55) are satisfied is one of spectral density

if

if
(57)

where is arbitrary, and where is chosen so that
the variance of the fading be .

To prove (56), we begin by showing that its RHS implies its
LHS. We do so by showing that its RHS implies (52) so that
its LHS follows from the upper bound (54) upon dividing both
sides of the bound by SNR. To see that the RHS of (56)
implies (52) we assume that (52) does not hold and show that
this contradicts the RHS of (56). Indeed, were (52) not to hold,
it would imply that there is a sequence and some real
number such that

but this would imply

in contradiction to the RHS of (56).
Having proved that the RHS of (56) implies the LHS, we next

turn to prove the reverse. In fact, we will show that

SNR
SNR

(58)
This actually follows quite easily from the lower bound (50).
Assume the LHS of the above, and let be such that

(59)

and define the sequence

SNR

Then

SNR
SNR

SNR
SNR
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where the first equality follows from the behavior of the
function, the subsequent inequality from the lower

bound (50), and the final equality from (59).
In subsequent work [8], it has been recently shown that when

the limit on the RHS of (55) exists then one can express the
“pre-loglog” as

SNR
SNR

(60)

To prove this result one needs an improved lower bound on
channel capacity for cases where capacity grows double-loga-
rithmically in the SNR. Such a bound is derived in [8] by con-
sidering i.i.d. inputs where rather than having the inputs be uni-
formly distributed over the disc , the in-
puts are chosen to be still circularly symmetric but with the log-
arithm of their squared magnitudes being uniformly distributed
between and for some constant .

VIII. THE PRE-LOG

In this section, we shall determine the asymptotic “pre-log”
term. In the multiple-antenna literature this is sometimes called
the “multiplexing gain,” but this term does not seem very appro-
priate in our single-antenna context, especially since this ratio
cannot exceed one, so that, if anything, it is not a “gain” but
rather a “loss.” We will show that the limiting ratio of channel
capacity to SNR is determined by the nulls of the spectral
density. It is the ratio of the total length of the frequency bands
where the spectral density is null to the total frequencies

SNR
SNR

(61)

where denotes the Lebesgue measure on the interval
.

To prove (61), we begin by noting that if its RHS is , i.e., if
is almost everywhere zero, then by (11),

for any . Consequently, the claim in this case follows
from (51).

As to the case where the RHS of (61) is strictly smaller than
, we note that in this case it suffices to show that

(62)

Indeed, by rewriting (62) as

it is readily verified that when the RHS of (61) is strictly smaller
than , (62) implies (52), and the result then follows from (50),
(52), (54), and (62).

We thus proceed to prove (62) or equivalently (in view of
(11))

(63)
To thisend,wedivideup the integration in (63) into threedifferent
regions, depending on whether is zero, it is in the interval

, or it is in the interval . (The set of ’s for which the
derivative is undefined is of Lebesgue measure zero.)

(64)

The easiest term to deal with is the first term because for such
that , the integrand is , irrespective of

(65)

The third term converges to zero as . This can be shown
using the Monotone Convergence Theorem by noting that for
any the function

(66)

approaches zero as , and that if , then this function
is monotonically decreasing in in the interval .

To demonstrate that the second integral—the one corre-
sponding to —approaches zero as , we
must exercise a little more care, since the above function is
no longer monotonic in . Thus, rather than relying on
the Monotone Convergence Theorem, we shall rely on the
Dominated Convergence Theorem. Consider thus the function
(66) for . It is nonnegative for and
negative for . It is zero at and
converges to zero as . By setting its derivative to zero, we
find that for the function (66) has a maximum in the
interval at where satisfies

whence the function takes on the value . Thus,

As to the negative of this function, we note that it is positive
in the interval only for whence it is
monotonically increasing. Consequently, if we limit ourselves
to we obtain

if
otherwise,

(67)
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Consequently

(68)

Since the RHS of the above is integrable over

we obtain from the Dominated Convergence Theorem that the
second term in (64) also converges to zero.

In subsequent work [12], it has been shown that (61) con-
tinues to hold even if in the LHS we replace channel capacity

SNR with the feedback capacity SNR . Thus, even
though the fading channels we are considering are channels with
memory for which feedback can increase channel capacity, the
increase, if any, does not change the pre-log

SNR
SNR

(69)

Feedback also does not increase the fading number when the
fading process is regular [12].

IX. OTHER ASYMPTOTIC BEHAVIORS

In this section, we consider a family of spectra that gives
rise to new asymptotic behaviors of channel capacity. Gaussian
fading processes of these spectra result in channel capacity
growing as a fractional power of SNR. Note that since these
Gaussian processes have a spectral density, they are ergodic, so
that there is a coding theorem for the channels they induce.

The spectra are parameterized by two parameters: and
. The spectral densities are given by

if

if
(70)

where the constant normalizes the spectrum so that

(71)

Processes of such spectral densities are nonregular. Indeed,
by (8), the prediction error in the absence of noise is zero
because

(72)

In Appendix II, it is shown using the bounds (53), and (48),
that

SNR

SNR
(73)

or, upon substituting

SNR

SNR

(74)

X. APPLICATIONS TO REGULAR FADING

While this paper has so far focused on nonregular Gaussian
fading, it should be emphasized that the upper and lower bounds
of Sections IV and V are also applicable for regular Gaussian
fading. In fact, for regular Gaussian fading channels they can be
used to assess the SNRs at which the expansion (9) is useful.
A figure of merit for where this “log-log regime” begins was
given in [4] in terms of communication rates. It was suggested
that the double-logarithmic behavior begins when the rate of
communication significantly exceeds the fading number .

With the aid of the bounds of Sections IV and V, we can obtain
an indication of where the log-log regime begins in terms of the
SNR. For example, the above bounds suggest the rule of thumb
that the log-log regime roughly begins when the SNR is so high
that

SNR (75)

i.e., when the prediction of the present fading based on noisy
observations of the past fading corrupted by Gaussian noise of
variance SNR is almost as effective as the prediction based on
noiseless observations of the past. To this one should, of course,
add that the SNR has to be high enough so that the i.i.d. channel
capacity be in the double-logarithmic regime, i.e., that

SNR
SNR

(76)

XI. SUMMARY AND CONCLUSION

In this paper, we studied the capacity of a stationary dis-
crete-time Gaussian fading channel with memory, where both
transmitter and receiver are cognizant of the fading law (mean
and autocorrelation), but neither has access to the realizations of
the fading process. While previous studies [4] focused on the case
where the fading process is regular (i.e., one where the present
fading cannot be predicted precisely from past fading values),
here we extended the analysis to nonregular processes as well.

It was demonstrated that while regular fading processes result
in capacity growing only double-logarithmically in the SNR,
nonregular fading can result in very diverse asymptotic behav-
iors. Capacity may grow logarithmically in the SNR, double-
logarithmically, or in between, e.g., as a fractional power of the
logarithm of the SNR.

When capacity grows logarithmically, it was demonstrated
that the “pre-log” can be very easily determined from the spec-
trum of the fading process. For fading processes having a power
spectral density, it is simply the Lebesgue measure of the set of
harmonics in where the power spectral density is
zero. It is interesting to compare this result to the one obtained
via the block-constant fading model ( where is the
block duration [2]) or the more general model proposed in [3]
( where is the rank of the covariance matrix of the
fading inside the block).

Note, however, that our results on stationary fading channels
cannot be directly compared with those relating to the block-
constant fading model and the more general model of [3] be-
cause the latter two models are not stationary. Nonstationary



LAPIDOTH: ON THE ASYMPTOTIC CAPACITY OF STATIONARY GAUSSIAN FADING CHANNELS 445

models are sometimes appropriate for modeling slow frequency
hopping systems with random frequency hopping. For such sys-
tems, the block-constant fading model may be appropriate if we
interpret as the number of symbols transmitted per hop, but
only if we are also willing to model the channel at each fre-
quency as being a nonergodic channel with a fading level that
does not vary in time.5

It should be pointed out that in this paper we considered,
for mathematical convenience, a peak-power constraint rather
than the more common average-power constraint. Clearly, the
pre-log of the former cannot exceed that of the latter. We conjec-
ture that the two pre-logs are in fact identical. Indeed, for regular
processes, a peak-power constraint and an average power con-
straint lead to identical fading numbers [4]. From an engineering
point of view, the pre-log of the peak-constrained channel is
arguably more interesting than that of the average-power con-
strained channel. Indeed, if the latter were strictly greater than
the former, it would indicate that it can only be achieved by in-
puts whose peak-to-average power ratios tend to infinity.

More critical, however, is the assumption that time is discrete.
We suspect that the results may change once a continuous-time
model is addressed. Nevertheless, the discrete-time model is of
interest not only because it is tractable, but because it is relevant
in practice in all systems that base their receiver on samples
at the output of the matched filter, even if those do not form
a sufficient statistic.

Our results indicate that the asymptotic behavior of channel
capacity depends critically on the question of whether the fading
process is regular or not. The difficulties of answering this ques-
tion are discussed in [13]. For the reasons outlined in [13], we
suspect that there may not be a definitive answer to this ques-
tion. This is not to say that all channel modeling and capacity
calculations are pointless. From a practical point of view, one
can and should pick a model that is reasonable for the range of
SNRs of interest. One must, however, exercise great caution in
studying the asymptotes of channel capacity in limiting SNRs
that are beyond the range of applicability of the channel model.
Additionally, every asymptotic capacity calculation must be ac-
companied by conditions on the range of SNRs for which it is
useful. For regular fading channels, the fading number [4] and
the rule (75) may be indications of the range of rates and SNRs
for which the expansion (9) is useful.

APPENDIX I
A LOWER BOUND ON THE RICEAN MUTUAL INFORMATION

In this appendix, we prove the lower bound (42) on the mutual
information across the terminals of a Ricean channel. We define

and lower-bound the mutual information
by

5Since such a nonergodic channel has a pre-log of 1, one would be asymptot-
ically better off not hopping at all.

where is arbitrary. Here, the first inequality follows
because conditioning cannot increase differential entropy, and
the subsequent inequality follows because the Gaussian distri-
bution maximizes differential entropy for a given second mo-
ment. Inequality (42) now follows by optimizing over , i.e., by
choosing to minimize namely

APPENDIX II
ANALYSIS OF THE FAMILY OF SPECTRA

In this section we analyze the family of spectral densities (70)
and (71).

Notice that since the RHS of (70) never exceeds , the nor-
malizing constant must satisfy . However, since the
RHS of (70) is equal to for , we must also
have . Thus,

(77)

To study the prediction error in the presence of noise
, we need to study (11). As we shall see, for processes

with these spectra, tends to infinity as , and
we shall therefore focus on the integral

(78)

We shall next proceed to estimate (78) for small . In par-
ticular, we shall assume . To this end, we define

as the solution in of the equation

or explicitly as

(79)

Notice that since is monotonic on it follows that

(80)

(81)

By symmetry

(82)
and we thus proceed to estimate the integral over .
We break this integral into three integrals over the intervals

, , and . Using (80), we can bound the inte-
grand in the first integral by

to conclude that

(83)
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where the term is between and and thus tends to
zero as approaches zero. Using (81) we obtain

to conclude that

(84)

where the terms are between and . Finally, the
integral over can be precisely computed as

(85)

It thus follows from (82)–(85) that

(86)

where the is bounded in .
We now note that by (79)

and

so that by (86)

Since is much more negative than the RHS of the above,
we conclude that in (11) the integral is, indeed, the dominant
term; that (52) holds; and that

(87)

The asymptotic behavior of the capacity (73) can be now de-
duced from (87), (53), and (48).

ACKNOWLEDGMENT

The author wishes to thank Giuseppe Caire for interesting dis-
cussions on the modeling of fading channels, Sergio Verdú for
his comments that stimulated this research, and İ. Emre Telatar
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