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Abstract. The set of lengths of closed geodesies on a compact Riemann

surface is related to the Selberg zeta function in a manner which is evocative

of the relationship between the rational primes and the Riemann zeta

function. In this paper, this connection is developed to derive results about

the asymptotic distribution of these lengths.

Suppose § is a compact Riemann surface, regarded as a quotient of the

upper half-plane 27 + by a discontinuous group T. We assume that 22 + is

endowed with the metric y~2((dx)2 + (dy)2), and we denote the volume of S

by A. As is well known, the closed geodesies on S are in one-to-one

correspondence with the conjugacy classes of T. In particular, if y is an

element of T other than the identity, it can, by a change of coordinates, be

put into the normal form z -> Nyz, with 7Vy > 1. The number Ny, which is

evidently the same within a conjugacy class, is called the norm of the element.

The quantity log A^ is then the length of the closed geodesic corresponding to

the conjugacy class of y (see, e.g., [4]). Huber [3] has investigated the

asymptotic distribution of the closed geodesies, and found that their statistical

behavior is heavily influenced by the ."small" eigenvalues of the Laplace

operator on §. That is, by the eigenvalues, if any, in (0, £) for the problem

Af + Xf = 0 on S. Now questions of this sort ■ can be very easily treated

using the standard theory of the Selberg zeta function, and from this point of

view, the analysis is very evocative of the relationship between the distribu-

tion of rational primes and the Riemann zeta function. In this paper, we will

outline such a treatment.

We begin with a few definitions. From now on, the symbol y will represent

a closed geodesic on §. The symbol y" will mean the geodesic obtained from

y by «-fold iteration. A closed geodesic will be called primitive if it is not a

positive integral power of any geodesic other than itself. By analogy with the

theory of rational primes, we will define A(y) to be log Nyo, where y = y¿\

with y0 primitive.
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242 BURTON RANDOL

Now the Selberg zeta function Z(s) for the group T is an entire function of

order 2, having a sequence of zeros at 1,0, -1, -2,..., with the zero at

s = 1 simple, and having additional zeros in the critical strip 0 < Res < 1.

The zeros in the critical strip are located at points which are solutions of the

equations s (I - s) = \,, where \, ranges through the sequence of eigenval-

ues, omitting Xn = 0, for the problem A/ + Xf = 0 on S. The multiplicity of

such a zero is the same as the multiplicity of the corresponding eigenvalue

([1], [4], [8]). The expression i(l — s) is symmetric about the point s = j, so

the zeros of Z(s) within the critical strip occur in symmetric pairs about

s = \. These zeros are all located on the union of the real segment 0 < s < 1

with the critical line Res = |. It is possible to exhibit surfaces for which zeros

occur on ¿ < s < 1 [5], so the counterpart of the Riemann hypothesis for

Z(s) is not necessarily true. Such zeros correspond to eigenvalues in (0, ¿).

For Res > 1, the logarithmic derivative of Z(s) is given by the formula

z'(s)      ^        / ,x-i
Y^ =2A(y)(l-iVY-1)   N->

[4, p. 240], [8]. From this we immediately deduce the following lemma:

Lemma 1. For Res > 1, Z'(s)/Z(s) = ^yA(y)N~' + Z'(s + l)/Z(s + 1).

Proof.

Z'(s) _,
Y^ =2A(y)(l-V)   "y"

= 2 My)Ny- + 2 a(y)(jvt - l)" \-
y y

= 2My)X-' + 2 A(y)(l - N-x)~1N;<<+1\   Q.E.D.
y y

Lemma 2. Let H be a half-plane of the form Res < - e < 0, minus the union

of a sequence of congruent disks about the negative integers. Then there exists a

constant C > 0, such that for s G H, \Z'(s)/Z(s)\ < C\s\.

Remark. Such an estimate is valid in more general regions, but the present

form of the lemma will serve here.

Proof. Z(s) satisfies the functional equation

Z(l - s) = Z(s)expi-A I        wtan 7rwirW)

[8] which implies that -Z'(l - s)/Z(l - s) = Z'(s)/Z(s) - A(s

— ¿)tanit(s - j). Since Z'(s)/Z(s) is bounded in any half-plane of the

form Res > 1 + e, and tanvT(s - \) is bounded in the complement of a
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CLOSED GEODESICS ON COMPACT RIEMANN SURFACES 243

union of congruent disks about the  integers, this implies the desired result.

Lemma 3. Given real numbers a and b, there exists a sequence T„î<x> and a

constant C > 0, such that \Z'(x + iT„)/Z(x + iTn)\ < CT2,for a < x < b.

Proof. Z(s) is an entire function of order 2, and the reciprocals of the

roots on the critical line are not square summable. Accordingly, Z(s) has a

canonical product expansion

(1) Z(s) = eaí2+ií+cínII(l - j/p)eí/p+(1/2)(í/p)2,

p

where p runs over the nonzero roots of Z(s), and a, b, c, and « are constants

whose exact value is not important for our purpose. One deduces easily from

(1) that

(2) T7T - 2as + b + 7 + 2*V2(* - P)"'-
¿(S) S p

Supposing now t0 > 2 fixed, consider the segment of the critical line

¿ + it, with t0 - I < t < t0 + I. Define N(t) to be the number of roots on

the critical line on the interval £ + jx, with 0 < x < t. Now it is known [6]

that N(t) = (A/4it)t2 + 0(t), so we easily conclude that the number of roots

on the segment is O (t0). By the Dirichlet principle, there exists a £ + iT in

the segment whose distance from both endpoints is greater than \, and whose

distance from any root is greater than C/T, for some fixed C > 0. We

conclude that the portion of the sum 2ps2p-2(s - p)~x corresponding to the

roots in the segment for the choice sx = x + iT is 0(T2), since |s2p~2| =

0(1) for these p, when a < x < b. To deal with the segments {■ + it

(0 < t < t0 — 1), and j + it (t0+ I < t < oo), we proceed as follows. The

portions of the sum 2,ps2p~2(s — p)~x corresponding to the first and second

segments, respectively, can be written

s2xjt0-\\ + it)-2(sx-^-it)-ldN(t)
•'o

and

Recalling that N(t)^(A/4tt)t2, we easily conclude that both of these

expressions are 0(T2). Q.E.D.

Now suppose k is an integer > 2, and T, c > 1. Then
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1    rc+

27» Jc_/(

(3)

C + /00 Z'(s) . _.
—j-i-s~x(s+ l)~l- • • (s + k) xTsds

- »oo    Z (S)

= -±-. C   '"(SAM^-'li-'ii + l)"1 • • • (s + kyxTsds

1       rc + ioo Z'(S + 1) . .

= ir 2 amo - VT)'
*• iVT<r

1   rc+

277/  /<._,•

c+ioo Z'(S + 1)

00    Z(J + 1)

l(s +!)"'• • • (s + k)-lTsds,

by [2, Theorem 40].
The integrals which occur at the beginning and end of (3) are of the form

1     i-c+itx Z'(s + 8) . ,

The function Z'(i + 8)/Z(s + 8) is meromorphic, with simple poles located

at the set obtained by translating the zeros of Z(s) by — 8. By virtue of

Lemmas 2 and 3, it is permissible, in evaluating this type of integral, to shift

the line of integration into the half-plane Res < — 8, provided the new line

does not pass through a pole of the integrand, and provided we take account

of the residues thereby picked up. We thus easily find, if the line of

integration is shifted leftward to pass through a suitable point c' < — 1, that

1     /•c+ioo Z'(s + 8) . .

=   2   ck(8)T"
pes£

Rep>c'

1      rc' + ioo Z'(s + 8) , _.
+ T-' Í 7    +*('    (s + J)    ' • •  (s + k)   TSds>

2mt Jc'-i<X)   Z(s + 8)       v        '

where 5S* is the set of poles of (Z'(s + 8)/Z(s + 8))s~x(s + l)~l • • • (s +

k)~x, and ck(8) is the residue at s = p.

Now if 7 > 1, it follows from Lemma 2 that the last integral tends to zero

as c' -» — oo through, say, points of the form —(n+ \), so we conclude that

for T > 1,

1      /-c + ioo Z'(s + 5)
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We thus obtain the following result from (3):

Theorem 1. Suppose k > 2, T > 1. Then

2   A(y)(r-JVy)*=fc! 2 ck(0)Tk+p-k\ 2 ck(l)Tk+".
Ny<T pesé pest

Now if we define %(T) = 2Ny<TA(y), and %(T) = fT%.x(t) dt (j = 1,

2,..., ), it is well known that ^(T) = (f-)~x2Nr<TMy)(T - Nj. Theo-

rem 1 then becomes

Theorem 1'. Suppose k > 2, T > 1. 77k?«

*k(T) =  2 ck(0)Tk+p -  2 ckil)Tk+p.

pes/l pesf

In particular, bearing in mind the location of the poles of Z'(s)/Z(s) and

the fact that the residue at í = 1 is 1, we find that for k > 2, ^(T) = ((k +

1)!)-1T*+1 + 0(Tk+Pa), where p0 is either £, if Z(s) has no roots in ({■, 1),

or the largest root in this interval, if it does.

It is easy, using standard differencing techniques and the monotonicity of

¥0(T), to pass from Theorem 1' to information about ^0(T) itself. In the

process some information may be lost, however. The simplest technique

yields the following result:

Theorem 2 (Cf. the Nachtrag to [3]). Suppose Z(s) has roots ax,...,a„

m (| > !)• Then there exist constants cx,..., c„, such that

%(T) =T+ cxTtti + • • • + c„T* + 0(T3/4).

JfZ(s) has no roots in (f, 1), *¿T) = T + 0(T3/4).

Remarks. 1. This result has a somewhat unsatisfactory appearance in-

asmuch as any roots whiJi lie in (¿, f ] do not figure explicitly. It would be

quite interesting to determine the extent to which the statement can be

sharpened.

2. One can, by imitating the standard procedure for going from ¥0(T) to

it(T) in prime number theory, easily deduce from Theorem 2 that 2^ <7-l =

HT, T + 0(Tß/log T), where ß = max(f, a„ ..., a„).

Proof of Theorem 2. For a given positive number d, define the second

difference operator A, by setting A/(x) = f(x + 2d) - 2/(x + d) + f(x).

Now it follows from Theorem 1', that

%(T) = i T3 + '2c2p(0)T2+p + '2c2p(0)T2+p
0 i ii

+ 2c2p(l)T2+p + '2c2p(l)T2+p + 0(T3'*),
III IV
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where the first sum ranges over the finite set of elements of S$ which have

real part greater than - | and do not lie on the line Res = \, the second sum

ranges over the elements of Sç which lie on Res = j, the third sum ranges

over the finite set of elements of S2 which have real part greater than — f

and do not lie on the line Res «■ — j, and the fourth sum ranges over the

elements of S2 which lie on Res ■ — 5.

Now by computation, A(| 73) = Td2 + d3. Also, since in general A/(x) =

ix+ädy^+df'(0dt, we obtain the mean value theorem AT9 = d29(6-

l)f9~2, where 7 G [7, T + 2d]. Since *0(7) is nondecreasing, it follows

from the second equality that

(4) *0(7) < d~2A%(T) < %(T + 2d)

It also follows from the equalities for the difference operator that

i/-2Afi73 + 2^(0)72+" + 2^(l)72+'>)
Vi m /

= T+ c,7a' + • • • + c„7^ + 0(T3/*) + 0(d),

where the a/s are as described in the statement of the theorem, and

Cj = (2 + «,)(1 + a>2(0).

In order to estimate <i_2A(2nc2(0)72+p), we need two estimates for

A(c2(0)72+P). To begin with, it is evident that for such a p, ¿T2A(c2(0)72+p)

= 0(i/_2|p|~375/2). On the other hand, it follows from the mean value

theorem for the difference operator that we also have the estimate

¿~2A(c2(0)72+p) = 0(|p|-171/2). Now, using the previously introduced

counting function N(t) for the zeros on the critical line, it follows that for

M > 1,

ír2AÍ2cp(0)72+p] = oÍTx/2fMrxdN(t) + d-1Ti/2f*r3dN(t)\

= 0(MTx/2 + M~xd-2T5/2),

since N(t) ~ (A/4it)t2. If we now set M = 71/4, and d = 73/4, we conclude

that A(2„c2(0)72+P) = 0(73/4). In almost exactly the same way, we find

that <r2A(2IvC2(l)72+'') = Oír"1/4).' Thus d~2A%(T) = T + c,7a'

+ • • • + cnT°"+ 0(T3/4). Returning to (4), we conclude from the left side

of the inequality that ^0(^) < 7 + c, 7°' + • • • + c„7* + 0(73/4), and

from the right that T + cxTa> + • • • + c„T°" + 0(T3/4) < *0(7), which

proves Theorem 2.

Concluding Remark. It would be interesting to determine the extent to

which the methods of this paper extend to more general spaces (cf. [1] and

[7])-
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