ON THE ASYMPTOTIC EFFICIENCY OF A SEQUENTIAL PROCEDURE
FOR ESTIMATING THE MEAN'

By NORMAN STARR’
Columbia University and University of Minnesota
1. Introduction. Let the independent, identically distributed random variables
(1) X1, Xa, -
be N (g, ¢°) with x unknown and 0 < ¢ < «. Define forn = 2,
2  Xe=rTXhiX, S&=0-1DTXL&X - X)),

and suppose that for fixed s, £ > 0 the loss incurred in estimating u by X, from
a sample of fixed size n is

3) L. = A%, — uf' + n (4 > 0),
with risk
(4) va(e) = E,L, = AE,IX,, — pls -+ n'.

When ¢ is known the problem of finding the value of n, say n’, for which the risk
(4) is a minimum is perfectly straightforward; let »(c),

(5) V(O') = II,,,O(O') = 1'ninn>0 Vn(a')r

denote the minimum risk. On the other hand, ¢n ¢gnorance of ¢ no procedure based
on a fixed number n of observations of (1) will minimize (4) simultaneously for
all 0 < ¢ < «. Accordingly, the possibility of utilizing a sample of random size
N determined by a certain sequential rule & to be specified later, will be con-
sidered. In analogy with (3) the loss using % is for fixed s, t > 0 and N,

(6) Ly = AlXy — u|' + N* (4 > 0),
with risk
(7 7(0) = E,Ly = AE,|Xy — u|* + E,N".

It would seem to be of considerable practical importance to compare the values
of »(¢) and 7(a) for values 0 < o < o« of the parameter upon which these func-
tions depend. For, either it will turn out that » and 7 do not differ appreciably for
any value of ¢, in which case a very useful and easily applied statistical procedure
will have been justified, or in the contrary case a horrible example of the dangers
of “optional stopping” will have been exposed.
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1174 NORMAN STARR

The impetus for considering & was provided by H. Robbins [4], who com-
puted 7 for a number of values of ¢ in the special case s = ¢ = 1 of the loss criterion
(3), verifying that the difference between 7 and » is negligible at the values of ¢
considered. Presumably 3, for other, if not all, specializations of the loss (3),
will exhibit this desirable property for moderate values of o.

The purpose of this article is to establish a condition on % (specificially, the
condition on the starting sample size m of the procedure) for which the risk

efficiency,
(8) 7(0) = 7(c)/v(0),
i.e. the ratio of the risk using % in ignorance of ¢, to the minimum risk using a

sample of fixed size n’ when ¢ is known, converges to 1 as ¢ becomes infinite.
This condition turns out to be simply

(9) m > &/(s + 2t) + 1.

Thus for example in the special case s = 2, ¢ = 1 of the loss criterion (3), i.e.
squared-error loss and unit cost of sampling, R is asymptotically risk efficient
if and only if it requires that N = 3.

2. Preliminaries. Suppose ¢ is known. We wish to find the value 2’ (a function
of ) for which the risk (4) is a minimum. Observe that (3) may be rewritten as

(10) L, = (4¢"/n"®) |} (X, — n) /o + n', 0<o< .
Since for fixed n,
(11) Z =t (Xy = w)/o
is N(0, 1), the risk (4) is simply
(12) (o) = (Ad®/n*®)(2/7)} [7 2% dz + n'
= (2/8)Kd"/n"? + n',
where
(13) K = K(4,s) = (s/2)AT((s + 1)/2)2""/T(})
depends on A and s only. Treating n = 0 as a continuous variable, we have
(14) va(a)/on = —Ko'/n"* + ',
which, when set equal to zero, has the unique positive root
(15) n’ = (Ko*/t)?e?),

since from (12)
(16) lim,o va(0) = limy e va(o) = o,

n" is the value of » = 0 which minimizes (4). Accordingly, we have by simple
algebra from (15) and (12) that the minimum risk (5) is
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(17) v(o) = ((2/9)t + 1)(n")".

Suppose now that o is unknown. We will consider the following sequential
procedure:

Let K be defined by (13), and let {k, , » = 1} be any sequence of positive con-
stants such that

(18) liMae bn = K;

then in analogy with (15) we define the sequential rule 3 : Observe the sequence
(1) term by term, stopping with Xy , where

(19) N is the first integer n = m such that 7 = (k._yS."/t)" ",

with the starting sample size m = 2 a fixed integer.
As in for example [4] and [5], define the independent N (0, 1) random variable

(20) Wo = (201 Xi — nXnp1)/oln(n + 1)]} (n 2 1),
and

(21) Vi= D2 i W} (k = 2).
Observing that

(22) Vo= (n — 1)8.%/d" (n 2 2),
it is easily seen that (19) may be rewritten in the form

(23) N is the first integer = = m such that V, < I(n, q),

where forn = 2,0 <o < «,

(24) 1n,0) = (t/kas)™(n = DnH00/gt;

then the probability distribution of N is defined for n = m by

(25) pu(e) = P(N=n) = P(Vin 2lk+1,0) for k=n—1,

but not forany m — 1 <k <n — 1).

We propose to evaluate the performance of & in terms of the risk 7 defined by
(7). Asin [4] and [5], observe that for fixed n = 2, X,, is independent of the vector
(Wy, +++, Wa_1); hence L, and the event {N = n} are independent for all
n = m, and ‘

5(0) = 2 7-mpn(0)Be(Ly | N = n)
(26) = D nem Pa(0)ra(0)
= 2 %em Pa(0) ((2/8)Kd* /0" + n')
= (2/s)Ksa*E(N*") + EN', 0<o< »,
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and

(27) 9(0)

Il

#(e)/v(0)
= (2/)KSE(N™"")/((2/s)t + 1)(n")" + EN'/((2/s)t + 1)(n")",
simplifying, with some algebra, to
(28) (o) = ((2/8)t + 1)7((2/8)t(n’) "E(N ") + E(N/n")").
To show that 9 is asymptotically risk efficient, that is, that

(29) limg,e (o) =1,
we could verify that for arbitrary fixed w,
(30) EN°~ (n°)° as o — o,

for then (29) follows immediately from (28). However, it is apparent that the
validity of (29) depends in some way on the size m of the starting sample of 9.
For suppose that the terms of the sequence (1) have a very large variance. Then
if s is “large” relative to ¢ in a specialization of the loss criterion (3), the portion
of loss assignable to error of estimate will effectively “dominate’ that associated
with the cost of sampling. This suggests that the risk may blow up “out of all
proportion” if the possibility that sampling is terminated very early is permitted.
Accordingly, we establish in the next section a necessary and sufficient condition
on the starting sample size m for which (29) holds; this condition amounts to the
verification of (30) for w = ¢ and, when (9) is satisfied, for w = —s/2.

3. Results.
TaeorEM 1. With n° defined by (15) and with N defined by (19) (or (23))

(31) plim,.., (N/n°) = 1.

Expression (31) may be proved directly by extending the methods of [3], or
may be treated as a corollary to Lemma 1 of [2].
THEOREM 2. For w > 0 fized

(32) limy, E(N/n°)® = 1.
Proor. Let 0 < ¢ < 1 be given, and define
(33) a=(1-¢ 0
then ‘
(34) EN® = ) 5_.n°P(N =n) = o°P(N = a).
Therefore,
(35) E(N/2")* z (1 — )P(N 2 a),

and from Theorem 1

(36) lim inf, . E(N/n%)° = 1 — e.
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Also, with 0 < e < 1 given, define
(37) B =1+
then
(38) EN®= 2 amn’P(N =1n) = (8+ 1)°P(N S8+ 1) + T(8),
where
(39) T(8) = 2inzpr1n"P(N = n).
Rewriting (38) in the form
(40) E(N/n")* £ (84 1)/n")°P(N = 8+ 1) + T(8)/(n")",

it is clear that for ¢ sufficiently large, #f

(41) T(B) < %
where X is a constant independent of 3, then Theorem 1 together with (40) imply
(42) lim SUpPaw E(N/n")® <1 + €

which, with (36), proves (32). Hence, the proof is complete if we verify (41).
To prove (41), note from (23) that

(43) (N =n} C (Vo> Un—1,0);

then,

(44) T(B) = 2azs(n+ 1)°P(N =n + 1)
S 2nzs (n+ 1)°P(V, > U(n, 0)).

Define forn = 2,0 < 0 < «,
(45) h(n,o) = lU(n,o)/(n — 1).

Inasmuch as the sequence {k.} satisfies (18), we can always choose o (€) so large
that for ¢ > a(e),

(46) by £ (14 )02 K, 0<7r<(s+2)/sw, nz8
Then it is easily seen that for ¢ > o(e),
(47) h(n,o) 2 (1 + €)', >0, nz=8

hence, from (44) and (47), for o > o(e),
(48)  T(B) £ 2uzs(n+ 1)°P(V./(n — 1) > h(n, o))
S 2a(n+1D)P(Va/(n—1)—1> (1+¢) —1), >0,
which, with the 2mth moment Markov inequality (m = 1), gives
(49) T(B) = 2nzp(n+ 1)°
BE(Vy— (n—1)"™/(1L4+ ¢ — 1)"™n—-1" m=1, 7>0.
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Observe that Vi(k = 2), originally defined by (21), is a chi-squared random
variable with & — 1 degrees of freedom. It can be proved by an induction on p
that forp = 1,2, --- |

(50) E(V]H_l)ﬁ_p = (]C + 27‘) s (]C + 2r + 2p - 2)E(V}c+1)r

where ¥ = 1, r = 1 are integers. Then it is easy to establish the fact that
E(Vip — k)™ = a polynomial “P™(k)” ink of order m (m = 1,k = 1), by ex-
panding the argument, performing an induction on m, and applying (50). Now
let

(51) m = {w} + 1,

where {x} = smallest inteter > z; then from the previous fact, (49), and (51),
foro > a(e),

(52) T(B) S Lazs[(n+ 1P (n)/(n — 1)21*]
S0 2z S 08T 2K (0<ys1),

verifying (41), and completing the proof of (32). []

We have already commented that the condition (9) on the starting sample size
m of R for which (30), and therefore (29), holds, is reflected in the limiting be-
havior of the negative moments of the sampling variable N. To formalize, we
define for s, ¢ > 0 (as always fixed),

a(m, ) = 27"/ (m — 1)I'((m — 1)/2),

(53) blw) = (K/0)=/*+,

I(n) = d’l(n, o), n = 2,
and let
(54) @(m, w) = a(m, w)b(w)l(m)™ ",

where the fixed integer m = 2 denotes as usual the starting sample size of % ; then
we have
TueoREM 3. For w > 0 fized

limgne (n°)°EN"° = 1, for  m > 2sw/(s+ 2t) + 1,
(55) =14+ &(m,w), for m = 2sw/(s+2t)+ 1,
= o, “ for m < 2sw/(s + 2t) + 1.
Proor. From (15) and (24) we have
(56) (n)°U(m, o) ™" = b(e)l(m) D2l (0=

thus, the theorem follows immediately provided

(57)  limeaw (n")°EN™ = 1 + a(m, ) lime., {(n")“L(m, o) """},
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To prove (57),let 0 < ¢ < 1 be given and with « and 8 defined by (33) and
(87), respectively, define for w > 0 fixed
m=m "P(N =m),
(58) m =g “P(m < N £8),
Ts = Domirgnza® “P(N = n),
7= a “P(N Z a).
(A) Observe that
(59) EN®zm+ .

Recalling that V; (k = 2) is a chi-squared random variable with ¥ — 1 degrees
of freedom, we have from (25)

m=m P(Va = l(m,a))
(60) = m /T ((m — 1)/2)2M V72 [§me) pm=Di=lgal2 g,
> a(m, w)e O (g g) ™D,
Noting that for fixed n = 2,
(61) limesw i(n, 0) = 0,
we obtain from (59) and (60)
(62) lim info.e (n’)°EN"° = a(m, o) limg.. {(n°)“I(m, o) ™%
+ (1 4 €)' limgsw P(m < N £ B)
which, with Theorem 1, gives
(63) lim infysw (n’)°EN"°
2 a(m, o) liMe,e {(n°)Um, )™ P +1 -5 (0 <8 =20() < 1).
(B) Also, observe that
(64) EN*=sm+m+m.
We have first of all
m=m “P(V, = l(m,0)) ‘
(65) = m/T((m — 1)/2)20 D2 [Lmo) yonbi=t a2 g

< a(m, )l(m, o) ™72,
Next, remarking from (23) that

(66) {N =n} C{V, =i(n,o)},
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we obtain

I\

™ = Dmiagngatt "P(Va < Un, o))
(67) = Zmngnge[0/T((n = 1)/2)27707] [52 5001700 gy
= Dmtgnza [0/T((n = 1)/2)207°"
. J‘é(n.cr) ( x(n+p)/2—le—x/2) g2 dz, 0 < p < 1.

With h(n, o) defined by (45), observe that since the sequence {k,} satisfies (18)
we can always choose o(¢) so large that for ¢ > o(e),

(68) h(n,e) £ 1 — ¢ forall n = a,

where 0 < £ = £(e) < 1. Observe further that there exists a value p, 0 < p < 1,
such that forn = 3,0 > o(e),

(69) n+p—2>(n—1)(1—-¢& = (n—1h(n,o) = ln,o).

Then from (67), since X™t?/*7¢*% achieves its maximum at n + p — 2, we
have

T S Domprgnca [0 /T((n — 1)/2)2 V2. 1(n, o) W1 im0
.f(l)(n.«r) x—(p+1)/2 dzx
(70) = [2/(1 — p)] Zm+l§n§a /T ((n — 1)/2)2"1"7
-l(n a)(n—l)IZe—l(n.a)lz
= [2/(1 = p)] Zmtignsa [0 (n — 1) P2/D((n — 1)/2)2¢ 002
'[h(n, 0')6_}‘(”'0)]("_1)/27 > O’(e).
Moreover,
(71) r((n _ 1)/2) = J‘(()n—l)ﬂ x(n—l)/Z—le—x de = ((n _ 1)/2)("_1)/2_16_(n_1)/2,
Let

(72) A(n, o) = h(n, o)e™,
then it is easily verified from (68) that for ¢ > o (e),
(73) A(n,a)§(1_5)65<1’ n < a 0<£<1

Hence, from (70), (71) and (72), we obtain
78 < [2/(1 — p)] Dmrrgnzan “[(n — 1)/2]A(n, o) "7
(74) =2/(1 = p) Xomprznzan “l(n — 1)/2]A(n, ¢)™?A(n, o) @m0
< o™ 2e(1 — p)7 Dmiigngan “[(n — 1)/2]

U™ A(n,0) ", 5 > 0e),
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which, with (73) and the ratio rule for series convergence, gives for ¢ > o(e)
(75) T = G/l a_m’

where G is a constant independent of o. Therefore, from (64), (65), and (75), we
obtain for ¢ > o(e),

(76) (n°)°EN"* £ a(m, w)(n°)“l(m, o)™ "
+ (g/e™) () + (1 = &)7P(N Z a).
From definitions (15) and (24), we have
(77) limgoe (7°)“U(m, 0) ™" < © = lim,,e [§(n°)°/c"] = 0;
hence, from (76), (77), and Theorem 1, we obtain finally
(78) lim SUpsse (n’)°EN "
< alm, @) liMpaw {(10)Um, o)™ + 148 (0 <§ =38'(e) < 1),

which, with (63), completes the proof of (57), and a fortiori, (55). []

Let n(¢),0 < ¢ < =, be defined by (8), and let @(m, ») be defined by (54),
where the fixed integer m = 2 denotes the starting sample size of R ; then we have
the main result:

COROLLARY. For s, t > 0 fized,

limgoe (o)

(79) =1, for m > §/(s+2t) + 1,
=14+ (2/s)t@(m, s/2)/((2/s)t + 1),  for —m = §/(s+2t) + 1,
= o, for m < §/(s+2t) + 1.

The corollary follows from Theorem 2 (with w = ¢), Theorem 3 (with w = s/2),
and (28). []

4. Remarks. Suppose we modify the cost of sampling in (3) so that for fixed
s > 0 the loss is

(80) L.* = A|X, — u° + logn (4 > 0);

then, by methods analogous to those of Section 2 it can be shown that when ¢ is
known

(81) ¥ (o) = (2/8)Ko’/n'"® + logn (risk),
(82) (n")* = K¥%° (minimizing value of n = 0),
and

(83) v¥(o) = 2/s + log (n°)* (minimum risk).
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When o is unknown we consider the sequential procedure $*, which (with
{k,} defined to be any sequence of positive constants satisfying (18)) is, in
analogy with (82),

(84) R*: Observe the sequence (1) term by term, stopping with X~ ,
where N¥ is the first integer n = m for which n = k22385

with the starting sample size m = 2 a fixed integer.
Using ¥ in ignorance of ¢ it can be confirmed that

(85) v*(0) = (2/)K*E((N*)™*) + E(log N*) (risk)
and from (83) and (85), for 0 < ¢ < <0,
(86) n*(e) = (2/s)((n*)*)E((N*)™")/(2/s 4 log (n')™)

+ E(log N*)/(2/s + log (n")*) (risk efficiency of %*).
With a(m, w), m = 2, defined in (53), let
(87) a*(m, w) = a(m, 0)[(K/kn1)"*(m — 1)m""]";

then by the methods of Section (3), we can prove:
TrroreM 1¥. With (n°)* defined by (82) and with N* defined by (84)

(88) plimg.. (N*/(n’)*) = 1.
TueoreM 2%, For > 0 fived
(89) limgue E(N*/(n")*)* = 1.
TueorEM 3. For w > 0 fixed
liMgaw ((n°)*)°EN*™ = 1, for m > 2w + 1,
(90) =14+ a*m,w), for m=2w+1,
= o, for  m < 20w+ 1.

Thus, from (86), (89), and (90), we have
CoroLLARY ™. For s > 0 fixed

(91) limgow 7" = 1, for mzZs+1,°
= o, for m < s+ 1.

These results, in addition to their interest for the problem of obtaining a point
estimate of u (with minimum risk), can be related in a simple way to the problem
of estimating u by an interval of fixed width (with prescribed confidence) when,
as in the former problem, the experimenter is observing terms of the sequence
(1).

It is easy to show, see for example [3], that when ¢ is known, an interval estimate
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{X, — d, X, + d} for u of width2d (d > 0) and with coverage probability at least
a (0 < a < 1) is guaranteed, provided the sample size n is chosen so that
(92) n = do’/d (0 <o < ),
where a is the solution of
(93) @2r)7? [ e dt = a

When ¢ is unknown, the following sequential procedure has been studied [1],

(21, 3], [5]:

Let {a, ,n = 1} be any sequence of positive constants for which
(94) limyae ax = a,
and in analogy with (92) define the sequential rule

R4 : Observe the sequence (1) term by term, stopping with Xy,
(95) where Ns is the first integer n = ms such that
n = dh 1S, /d®, with ms = 2 a fixed integer.

Then form the interval

(96) In, = (Xy, — d, Xy, + d)

which has the required width.
The limiting behavior of N« and of its first moment have received considerable
attention, for example [1], [2], [3]; it has been proved that

(97) plim,.. (d’Ny/d’c") = 1,
from which it follows easily that
(98) limy,e P(uely,) = a (asymptotic consistency of ),
and moreover,
(99) lim,.e E d’Ny/ad's" = 1 (asymptotic efficiency of Rx).
(In fact, (97), (98), and (99) hold irrespective of the underlying common dis-
tribution of the terms of (1).)
Observe now that the results of this section relating to the problem of point es-
timation enable us to describe the limiting behavior of all of the moments of

N, the sampling variable for the procedure 3. For, suppose we take as our loss
criterion (80), and let

(100) k. = (an/d)a; n=12:.-;

that for preassigned 0 < « < 1 and d > 0 this is permissible follows from the
fact that the sequence {k,} may be chosen in any way such that (18) holds,
where K (which, for fixed s > 0, depends only on (arbitrary) A) is arbitrary.
Therefore,
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(101) K = limgse by = lim,., (a,/d)* = (a/d)".
Hence, rewriting (82) in the form
(102) (n")* = {(a/d)"}"'s" = d'"/,

and (84) in the form
(103) N™ is the first integer n = m for which
n _2— {(an‘l/d)ﬂa} aSnZ — ai_lsn2/d2’

we see by comparing (92) and (95) with (102) and (103), respectively, that the
performance of %« and R* (for the special choice (100) of the {k,}) is identical.
Therefore, for 0 < a < 1, d > 0 preassigned, we have

THEOREM 14 . With a defined as the solution of (93)

(104) plim,.,, (I°N4/ds”) = 1;

reproving (97).
THEOREM 24 . For w > 0 fized

(105) liMyee B(d’Ny/d’a”)® = 1.
THEOREM 34 . For w > 0 fized, and Q*(m, ») defined by (87),
limge E(d*Ny/d'e®)™ = 1, for ms > 20 + 1
(106) =14+ Q" (ms,w), for me=20+1
= oo, for my < 20 4+ 1.

In particular, note that (99) follows as a corollary to Theorem 2, . Moreover,
we observe from Theorem 24 that the asymptotic sampling variability of R« may
be partially characterized by

(107)  limg.e var (d°Ny/d’e”) = lim,.,, E(d’Ny/d’s")’
— limye (E(d’Ny/a%6"))? =1 —1 = 0.

Finally, we remark that all the results of this article hold if the sequential pro-
cedures we have considered are modified in such a way that the experimenter is
permitted to terminate sampling only with odd-numbered observations (in which
case the starting sample size is a fixed odd integer =3). The performance of such
modified rules has been evaluated for moderate values of ¢ by Robbins [4] with
relation to the problem of point estimation, and by the author [5] with relation to
the problem of fixed-width interval estimation.
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