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SUMMARY

Many statistical applications involve models for which it is difficult to evaluate the likeli-

hood, but from which it is relatively easy to sample. Approximate Bayesian computation is a

likelihood-free method for implementing Bayesian inference in such cases. We present results

on the asymptotic variance of estimators obtained using approximate Bayesian computation in a

large-data limit. Our key assumption is that the data is summarized by a fixed-dimensional sum-

mary statistic that obeys a central limit theorem. We prove asymptotic normality of the mean of

the approximate Bayesian computation posterior. This result also shows that, in terms of asymp-

totic variance, we should use a summary statistic that is the same dimension as the parameter

vector, p; and that any summary statistic of higher dimension can be reduced, through a linear

transformation, to dimension p in a way that can only reduce the asymptotic variance of the pos-

terior mean. We look at how the Monte Carlo error of an importance sampling algorithm that

samples from the approximate Bayesian computation posterior affects the accuracy of estima-

tors. We give conditions on the importance sampling proposal distribution such that the variance

of the estimator will be the same order as that of the maximum likelihood estimator based on

the summary statistics used. This suggests an iterative importance sampling algorithm, which we

evaluate empirically on a stochastic volatility model.

Some key words: Approximate Bayesian computation; Asymptotics; Dimension Reduction; Importance Sampling;
Partial Information; Proposal Distribution.

1. INTRODUCTION

Many statistical applications involve inference about models that are easy to simulate from,

but for which it is difficult, or impossible, to calculate likelihoods. In such situations it is possible

to use the fact we can simulate from the model to enable us to perform inference. There is a wide

class of such likelihood-free methods of inference including indirect inference (Gouriéroux &

Ronchetti, 1993; Heggland & Frigessi, 2004), the bootstrap filter (Gordon et al., 1993), simulated

methods of moments (Duffie & Singleton, 1993), and synthetic likelihood (Wood, 2010).

We consider a Bayesian version of these methods, termed approximate Bayesian computation.

This involves defining an approximation to the posterior distribution in such a way that it is

possible to sample from this approximate posterior using only the ability to sample from the
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2 W. LI AND P. FEARNHEAD

model. Arguably the first approximate Bayesian computation method was that of Pritchard et al.

(1999), and these methods have been popular within population genetics (Beaumont et al., 2002),

ecology (Beaumont, 2010) and systems biology (Toni et al., 2009). More recently, there have

been applications to areas including stereology (Bortot et al., 2007), finance (Peters et al., 2011)

and cosmology (Ishida et al., 2015).

Let K(x) be a density kernel, scaled, without loss of generality, so that maxxK(x) = 1.

Further, let ε > 0 be a bandwidth. Denote the data by Yobs = (yobs,1, . . . , yobs,n). Assume we

have chosen a finite-dimensional summary statistic sn(Y ), and denote sobs = sn(Yobs). If we

model the data as a draw from a parametric density, fn(y | θ), and assume prior, π(θ), then we

define the approximate Bayesian computation posterior as

πABC(θ | sobs, ε) ∝ π(θ)

ˆ

fn(sobs + εv | θ)K(v) dv, (1)

where fn(s | θ) is the density for the summary statistic implied by fn(y | θ). Let fABC(sobs |
θ, ε) =

´

fn(sobs + εv | θ)K(v) dv. This framework encompasses most implementations of ap-

proximate Bayesian computation. In particular, the use of the uniform kernel corresponds to the

popular rejection-based rule (Beaumont et al., 2002).

The idea is that fABC(sobs | θ, ε) is an approximation of the likelihood. The approximate

Bayesian computation posterior, which is proportional to the prior multiplied by this likelihood

approximation, is an approximation of the true posterior. The likelihood approximation can be

interpreted as a measure of, on average, how close the summary, sn, simulated from the model is

to the summary for the observed data, sobs. The choices of kernel and bandwidth determine the

definition of closeness.

By defining the approximate posterior in this way, we can simulate samples from it using

standard Monte Carlo methods. One approach, that we will focus on later, uses importance sam-

pling. Let Kε(x) = K(x/ε). Given a proposal density, qn(θ), a bandwidth, ε, and a Monte Carlo

sample size, N , an importance sampler would proceed as in Algorithm 1. The set of accepted

parameters and their associated weights provides a Monte Carlo approximation to πABC. If we

set qn(θ) = π(θ) then this is just a rejection sampler. In practice sequential importance sampling

methods are often used to learn a good proposal distribution (Beaumont et al., 2009).

Algorithm 1. Importance and rejection sampling approximate Bayesian computation

1. Simulate θ1, . . . , θN ∼ qn(θ);

2. For each i = 1, . . . , N , simulate Y (i) = {y
(i)
1 , . . . , y

(i)
n } ∼ fn(y | θi);

3. For each i = 1, . . . , N , accept θi with probability Kε{s
(i)
n − sobs}, where s

(i)
n = sn{Y

(i)};

and define the associated weight as wi = π(θi)/qn(θi).

There are three choices in implementing approximate Bayesian computation: the choice of

summary statistic, the choice of bandwidth, and the Monte Carlo algorithm. For importance

sampling, the last of these involves specifying the Monte Carlo sample size, N , and the proposal

density, qn(θ). These, roughly, relate to three sources of approximation. To see this, note that as

ε → 0 we would expect (1) to converge to the posterior given sobs (Fearnhead & Prangle, 2012).

Thus the choice of summary statistic governs the approximation, or loss of information, between

using the full posterior distribution and using the posterior given the summary. The value ε
then affects how close the approximate Bayesian computation posterior is to the posterior given

the summary. Finally there is Monte Carlo error from approximating the approximate Bayesian

computation posterior with a Monte Carlo sample. The Monte Carlo error is not only affected

by the Monte Carlo algorithm, but also by the choices of summary statistic and bandwidth,
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Approximate Bayesian Computation asymptotics 3

which together affect, say, the probability of acceptance in step 3 of Algorithm 1. Having a

higher-dimensional summary statistic, or a smaller value of ε, will tend to reduce this acceptance

probability and hence increase the Monte Carlo error.

This work aims to study the interaction between the three sources of error, in the case where the

summary statistics obey a central limit theorem for large n. We are interested in the efficiency of

approximate Baysian computation, where by efficiency we mean that an estimator obtained from

running Algorithm 1 has the same rate of convergence as the maximum likelihood estimator for

the parameter given the summary statistic. In particular, this work is motivated by the question

of whether approximate Bayesian computation can be efficient as n → ∞ if we have a fixed

Monte Carlo sample size. Intuitively this appears unlikely. For efficiency we will need ε → 0 as

n → ∞, and this corresponds to an increasingly strict condition for acceptance. Thus we may

imagine that the acceptance probability will necessarily tend to zero as n increases, and thus we

will need an increasing Monte Carlo sample size to compensate for this.

However our results show that Algorithm 1 can be efficient if we choose an appropriate pro-

posal distribution. The proposal distribution needs to have a suitable scale and location and have

appropriately heavy tails. If we use an appropriate proposal distribution and have a summary

statistic of the same dimension as the parameter vector then the posterior mean of approximate

Bayesian computation is asymptotically unbiased with a variance that is 1 +O(1/N) times that

of the estimator maximising the likelihood of the summary statistic. This is similar to asymptotic

results for indirect inference (Gouriéroux & Ronchetti, 1993; Heggland & Frigessi, 2004). Our

results also lend theoretical support to methods that choose the bandwidth indirectly by speci-

fying the proportion of samples that are accepted, as this leads to a bandwidth which is of the

optimal order in n.

We first prove a Bernstein-von Mises type theorem for the posterior mean of approximate

Bayesian computation. This is a non-standard convergence result, as it is based on the partial

information contained in the summary statistics. For related convergence results see Clarke &

Ghosh (1995) and Yuan & Clarke (2004), though these do not consider the case when the di-

mension of the summary statistic is larger than that of the parameter. Dealing with this case

introduces extra challenges.

Our convergence result for the posterior mean of approximate Bayesian computation has prac-

tically important consequences. It shows that any d-dimensional summary with d > p can be

projected to a p-dimensional summary statistic without any loss of information. Furthermore it

shows that using a summary statistic of dimension d > p can lead to an increased bias, so the

asymptotic variance can be reduced if the optimal p-dimensional projected summary is used in-

stead. If a d-dimensional summary is used, with d > p, it suggests choosing the variance of the

kernel to match the variance of the summary statistics.

This paper adds to a growing literature on the theoretical properties of approximate Bayesian

computation. Initial results focussed on comparing the bias of approximate Bayesian computa-

tion to the Monte Carlo error, and how these depend on the choice of ε. The convergence rate of

the bias is shown to be O(ε2) in various settings (e.g. Barber et al., 2015). This can then be used

to consider how the choice of ε should depend on the Monte Carlo sample size so as to balance

bias and Monte Carlo variability (Blum, 2010; Barber et al., 2015; Biau et al., 2015). There has

also been work on consistency of approximate Bayesian computation estimators. Marin et al.

(2014) considers consistency when performing model choice and Frazier et al. (2016) considers

consistency for parameter estimation. The latter work, which appeared after the first version of

this paper, includes a similar result on the asymptotic normality of the posterior mean to our The-

orem 1, albeit under different conditions. More interestingly, Frazier et al. (2016) also give results

on the asymptotic form of the posterior obtained using approximate Bayesian computation. This



145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

4 W. LI AND P. FEARNHEAD

shows that for many implementations of approximate Bayesian computation, the posterior will

over-estimate the uncertainty in the parameter estimate that it gives.

Finally, a number of papers have looked at the choice of summary statistics (e.g. Wegmann

et al., 2009; Blum, 2010; Prangle et al., 2014). Our Theorem 1 gives insight into this. As men-

tioned above, this result shows that, in terms of minimising the asymptotic variance, we should

use a summary statistic that is of the same dimension as the number of parameters. In particular

it supports the suggestion in Fearnhead & Prangle (2012) of having one summary per parameter,

with that summary approximating the maximum likelihood estimator for that parameter.

2. NOTATION AND SET-UP

Denote the data by Yobs = (yobs,1, . . . , yobs,n), where n is the sample size, and each obser-

vation, yobs,i, can be of arbitrary dimension. We make no assumption directly on the data, but

make assumptions on the distribution of the summary statistics. We consider the asymptotics as

n → ∞, and denote the density of Yobs by fn(y | θ), where θ ∈ P ⊂ R
p. We let θ0 denote the

true parameter value, and π(θ) its prior distribution. For a set A, let Ac be its complement with

respect to the whole space.

We assume that θ0 is in the interior of the parameter space, and that the prior is differentiable

in a neighbourhood of the true parameter:

CONDITION 1. There exists some δ0 > 0, such that P0 = {θ : |θ − θ0| < δ0} ⊂ P, π(θ) ∈
C1(P0) and π(θ0) > 0.

To implement approximate Bayesian computation we will use a d-dimensional summary

statistic, sn(Y ) ∈ R
d; for example a vector of sample means of appropriately chosen func-

tions. We assume that sn(Y ) has a density function, which depends on n, and we denote this by

fn(s | θ). We will use the shorthand Sn to denote the random variable with density fn(s | θ). In

approximate Bayesian computation we use a kernel, K(x), with maxxK(x) = 1, and a band-

width ε > 0. As we vary n we will often wish to vary ε, and in these situations denote the

bandwidth by εn. For Algorithm 1 we require a proposal distribution, qn(θ), and allow for this

to depend on n. We assume the following conditions on the kernel, which are satisfied by all

commonly used kernels,

CONDITION 2. The kernel satisfies (i)
´

vK(v) dv = 0; (ii)
´ ∏l

k=1 vikK(v) dv < ∞ for

any coordinates (vi1 , . . . , vil) of v and l ≤ p+ 6; (iii) K(v) ∝ K(‖v‖2Λ) where ‖v‖2Λ = vTΛv
and Λ is a positive-definite matrix, and K(v) is a decreasing function of ‖v‖Λ; (iv) K(v) =

O(e−c1‖v‖
α1

Λ ) for some α1 > 0 and c1 > 0 as ‖v‖Λ → ∞.

For a real function g(x) denote its kth partial derivative at x = x0 by Dxk
g(x0), the gradient

function by Dxg(x0) and the Hessian matrix by Hxg(x0). To simplify the notations, Dθk , Dθ

and Hθ are written as Dk, D and H respectively. For a series xn we use the notation that for

large enough n, xn = Θ(an) if there exists constants m and M such that 0 < m < |xn/an| <
M < ∞, and xn = Ω(an) if |xn/an| → ∞. For two square matrices A and B, we say A ≤ B if

B −A is semi-positive definite, and A < B if B −A is positive definite.

Our theory will focus on estimates of some function, h(θ), of θ, which satisfies differentiability

and moment conditions that will control the remainder terms in a Taylor-expansions.

CONDITION 3. The kth coordinate of h(θ), hk(θ), satisfies (i) hk(θ) ∈ C1(P0); (ii)

Dkh(θ0) 6= 0; and (iii)
´

hk(θ)
2π(θ) dθ < ∞.

The asymptotic results presuppose a central limit theorem for the summary statistic.
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Approximate Bayesian Computation asymptotics 5

CONDITION 4. There exists a sequence an, with an → ∞ as n → ∞, a d-dimensional vector

s(θ) and a d× d matrix A(θ), such that for all θ ∈ P0,

an{Sn − s(θ)} → N{0, A(θ)}, n → ∞,

with convergence in distribution. We also assume that sobs → s(θ0) in probability. Furthermore,

(i) s(θ) ∈ C1(P0) and A(θ) ∈ C1(P0), and A(θ) is positive definite for θ ∈ P0; (ii) for any

δ > 0 there exists a δ′ > 0 such that ‖s(θ)− s(θ0)‖ > δ′ for all θ satisfying ‖θ − θ0‖ > δ; (iii)

I(θ) = Ds(θ)TA−1(θ)Ds(θ) has full rank at θ = θ0.

Under Condition 4, an is the rate of convergence in the central limit theorem. If the data are

independent and identically distributed, and the summaries are sample means of functions of

the data or of quantiles, then an = n1/2. In most applications the data will be dependent, but

if summaries are sample means (Wood, 2010), quantiles (Peters et al., 2011; Allingham et al.,

2009; Blum & François, 2010) or linear combinations thereof (Fearnhead & Prangle, 2012) then

a central limit theorem will often still hold, though an may increase more slowly than n1/2.

Part (ii) of Condition 4 is required for the true parameter to be identifiable given only the

summary of data. The asymptotic variance of the summary-based maximum likelihood estimator

for θ is I−1(θ0)/a
2
n. Condition (iii) ensures that this variance is valid at the true parameter.

We next require a condition that controls the difference between fn(s | θ) and its limit-

ing distribution for θ ∈ P0. Let N(x;µ,Σ) be the normal density at x with mean µ and

variance Σ. Define f̃n(s | θ) = N{s; s(θ), A(θ)/a2n} and the standardized random variable

Wn(s) = anA(θ)−1/2{s− s(θ)}. Let f̃Wn
(w | θ) and fWn

(w | θ) be the density of Wn(s) when

s ∼ f̃n(s | θ) and fn(s | θ) respectively. The condition below requires that the difference be-

tween fWn
(w | θ) and its Edgeworth expansion f̃Wn

(w | θ) is o(a
−2/5
n ) and can be bounded

by a density with exponentially decreasing tails. This is weaker than the standard requirement,

o(a−1
n ), for the remainder in the Edgeworth expansion.

CONDITION 5. There exists αn satisfying αn/a
2/5
n → ∞ and a density rmax(w) satisfying

Condition 2 (ii)-(iii) where K(v) is replaced with rmax(w), such that supθ∈P0
αn|fWn

(w | θ)−

f̃Wn
(w | θ)| ≤ c3rmax(w) for some positive constant c3.

The following condition further assumes that fn(s | θ) has exponentially decreasing tails with

rate uniform in the support of π(θ).

CONDITION 6. The following statements hold: (i) rmax(w) satisfies Condition 2 (iv); and (ii)

supθ∈Pc
0
fWn

(w | θ) = O(e−c2‖w‖α2 ) as ‖w‖ → ∞ for some positive constants c2 and α2, and

A(θ) is bounded in P.

3. POSTERIOR MEAN ASYMPTOTICS

We first ignore any Monte Carlo error, and focus on the ideal estimator from approximate

Bayesian computation. This is the posterior mean, hABC, where

hABC = EπABC
{h(θ) | sobs} =

ˆ

h(θ)πABC(θ | sobs, εn).

This estimator depends on εn, but we suppress this from the notation. As an approximation to

the true posterior mean, E{h(θ) | Yobs}, hABC contains errors from the choice of the bandwidth

εn and summary statistic sobs.
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6 W. LI AND P. FEARNHEAD

To understand the effect of these two sources of error, we derive results for the asymptotic dis-

tributions of hABC and the likelihood-based estimators, including the summary-based maximum

likelihood estimator and the summary-based posterior mean, where we consider randomness

solely due to the randomness of the data. Let Tobs = anA(θ0)
−1/2{sobs − s(θ0)}.

THEOREM 1. Assume Conditions 1–6.

(i) Let θ̂
MLES

= argmaxθ∈P log fn(sobs | θ). For hs = h(θ̂
MLES

) or E{h(θ) | sobs},

an{hs − h(θ0)} → N{0, Dh(θ0)
T I−1(θ0)Dh(θ0)}, n → ∞,

with convergence in distribution.

(ii) Define c∞ = limn→∞ anεn. Let Z be the weak limit of Tobs, which has a standard normal

distribution, and R(c∞, Z) be a random vector with mean zero that is defined in the Supple-

mentary Material. If εn = o(a
−3/5
n ), then

an{hABC − h(θ0)} → Dh(θ0)
T {I(θ0)

−1/2Z +R(c∞, Z)}, n → ∞,

with convergence in distribution. If either (i) εn = o(a−1
n ); (ii) d = p; or (iii) the covariance

matrix of K(v) is proportional to A(θ0); then R(c∞, Z) = 0. For other cases, the variance

of I(θ0)
−1/2Z +R(c∞, Z) is no less than I−1(θ0).

Theorem 1 (i) shows the validity of posterior inference based on the summary statistics. Re-

gardless of the sufficiency and dimension of sobs, the posterior mean based on the summary

statistics is consistent and asymptotically normal with the same variance as the summary-based

maximum likelihood estimator.

Denote the bias of approximate Bayesian computation, hABC − E{h(θ) | sobs}, by biasABC.

The choice of bandwidth impacts the size of the bias. Theorem 1 (ii) indicate two regimes for

the bandwidth for which the posterior mean of approximate Bayesian computation has good

properties.

The first case is when εn is o(1/an). For this regime the posterior mean of approximate

Bayesian computation always has the same asymptotic distribution as that of the true poste-

rior given the summaries. The other case is when εn is o(a
−3/5
n ) but not o(n−1). We obtain the

same asymptotic distribution if either d = p or we choose the kernel variance to be proportional

to the variance of the summary statistics. In general for this regime of εn, hABC will be less

efficient than the summary-based maximum likelihood estimator.

When d > p, Theorem 1 (ii) shows that biasABC is non-negligible and can increase the asymp-

totic variance. This is because the leading term of biasABC is proportional to the average of

v = s− sobs, the difference between the simulated and observed summary statistics. If d > p,

the marginal density of v is generally asymmetric, and thus is no longer guaranteed to have a

mean of zero. One way to ensure that there is no increase in the asymptotic variance is to choose

the variance of the kernel to be proportional to the variance of the summary statistics.

The loss of efficiency we observe in Theorem 1 (ii) for d > p gives an advantage for choosing

a summary statistic with d = p. The following proposition shows that for any summary statistic

of dimension d > p we can find a new p-dimensional summary statistic without any loss of

information. The proof of the proposition is trivial and hence omitted.

PROPOSITION 1. Assume the conditions of Theorem 1. If d > p, define C =
Ds(θ0)

TA(θ0)
−1. The p-dimensional summary statistic CSn has the same information

matrix, I(θ), as Sn. Therefore the asymptotic variance of hABC based on Csobs is smaller than

or equal to that based on sobs.
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Approximate Bayesian Computation asymptotics 7

Theorem 1 leads to following natural definition.

DEFINITION 1. Assume that the conditions of Theorem 1 hold. Then the asymptotic variance

of hABC is

AVhABC
=

1

a2n
Dh(θ0)

T I−1
ABC(θ0)Dh(θ0).

4. ASYMPTOTIC PROPERTIES OF REJECTION AND IMPORTANCE SAMPLING ALGORITHM

4·1. Asymptotic Monte Carlo Error

We now consider the Monte Carlo error involved in estimating hABC. Here we fix the data and

consider solely the stochasticity of the Monte Carlo algorithm. We focus Algorithm 1. Remember

that N is the Monte Carlo sample size. For i = 1, . . . , N , θi is the proposed parameter value and

wi is its importance sampling weight. Let φi be the indicator that is 1 if and only if θi is accepted

in step 3 of Algorithm 1 and let Nacc =
∑N

i=1 φi be the number of accepted parameter.

Provided Nacc ≥ 1 we can estimate hABC from the output of Algorithm 1 with

ĥ =
N∑

i=1

h(θi)wiφi

/ N∑

i=1

wiφi.

Define the acceptance probability:

pacc,q =

ˆ

q(θ)

ˆ

fn(s | θ)Kε(s− sobs)dsdθ,

and the density of the accepted parameter:

qABC(θ | sobs, ε) =
qn(θ)fABC(sobs | θ, ε)

´

qn(θ)fABC(sobs | θ, ε) dθ
.

Finally, define

ΣIS,n = EπABC

{
(h(θ)− hABC)

2πABC(θ | sobs, εn)

qABC(θ | sobs, εn)

}
,

ΣABC,n = p−1
acc,qnΣIS,n, (2)

where ΣIS,n is the importance sampling variance with πABC as the target density and qABC as

the proposal density. Note that pacc,qn and ΣIS,n, and hence ΣABC,n, depend on sobs.

Standard results give the following asymptotic distribution of ĥ.

PROPOSITION 2. For a given n and sobs, if hABC and ΣABC,n are finite, then

N1/2(ĥ− hABC) → N(0,ΣABC,n),

in distribution as N → ∞.

This proposition motivates the following definition.

DEFINITION 2. For a given n and sobs, assume that the conditions of Proposition 2 hold.

Then the asymptotic Monte Carlo variance of ĥ is

MCV
ĥ
=

1

N
ΣABC,n.
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8 W. LI AND P. FEARNHEAD

4·2. Asymptotic efficiency

We have defined the asymptotic variance as n → ∞ of hABC, and the asymptotic Monte Carlo

variance, as N → ∞ of ĥ. The error of hABC when estimating h(θ0) and the Monte Carlo error

of ĥ when estimating hABC are independent, which suggests the following definition.

DEFINITION 3. Assume the conditions of Theorem 1, and that hABC and ΣABC,n are bounded

in probability for any n. Then the asymptotic variance of ĥ is

AV
ĥ
=

1

a2n
h(θ0)

T I−1
ABC(θ0)Dh(θ0) +

1

N
ΣABC,n.

We can interpret the asymptotic variance of ĥ as a first-order approximation to the variance of

our Monte Carlo estimator for both large n and N . We wish to investigate the properties of this

asymptotic variance, for large but fixed N , as n → ∞. The asymptotic variance itself depends on

n, and we would hope it would tend to zero as n increases. Thus we will study the ratio of AV
ĥ

to

AVMLES, where, by Theorem 1, the latter is a−2
n h(θ0)

T I−1(θ0)Dh(θ0). This ratio measures the

efficiency of our Monte Carlo estimator relative to the maximum likelihood estimator based on

the summaries; it quantifies the loss of efficiency from using a non-zero bandwidth and a finite

Monte Carlo sample size.

We will consider how this ratio depends on the choice of εn and qn(θ). Thus we introduce the

following definition:

DEFINITION 4. For a choice of εn and qn(θ), we define the asymptotic efficiency of ĥ as

AE
ĥ
= lim

n→∞

AVMLES

AV
ĥ

.

If this limiting value is zero, we say that ĥ is asymptotically inefficient.

We will investigate the asymptotic efficiency of ĥ under the assumption of Theorem 1 that

εn = o(a
−3/5
n ). We shall see that the convergence rate of the importance sampling variance ΣIS,n

depends on how large εn is relative to an, and so we further define an,ε = an if limn→∞ anεn <
∞ and an,ε = ε−1

n otherwise.

If our proposal distribution in Algorithm 1 is either the prior or the posterior, then the estimator

is asymptotically inefficient:

THEOREM 2. Assume the conditions of Theorem 1.

(i) If qn(θ) = π(θ), pacc,qn = Θp(ε
d
na

d−p
n,ε ) and ΣIS,n = Θp(a

−2
n,ε).

(ii) If qn(θ) = πABC(θ | sobs, εn), pacc,qn = Θp(ε
d
na

d
n,ε) and ΣIS,n = Θp(a

p
n,ε).

In both cases ĥ is asymptotically inefficient.

The result in part (ii) shows a difference from standard importance sampling settings, where

using the target distribution as the proposal leads to an estimator with no Monte Carlo error.

The estimator ĥ is asymptotically inefficient because the Monte Carlo variance decays more

slowly than 1/a2n as n → ∞. However this is caused by different factors in each case.

To see this, consider the acceptance probability of a value of θ and corresponding summary

sn simulated in one iteration of Algorithm 1. This acceptance probability depends on

sn − sobs
εn

=
1

εn
[{sn − s(θ)}+ {s(θ)− s(θ0)}+ {s(θ0)− sobs}] , (3)
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where s(θ), defined in Condition 4, is the limiting value of sn as n → ∞ if data is sampled from

the model for parameter value θ. By Condition 4, the first and third bracketed terms within the

square brackets on the right-hand side are Op(a
−1
n ). If we sample θ from the prior the middle

term is Op(1), and thus (3) will blow up as εn goes to zero. Hence pacc,π goes to zero as εn
goes to zero, which causes the estimate to be inefficient. If we sample from the posterior, then by

Theorem 1 we expect the middle term to also be Op(a
−1
n ). Hence (3) is well behaved as n → ∞,

and pacc,π is bounded away from zero, provided either εn = Θ(a−1
n ) or εn = Ω(a−1

n ).
However, if we use πABC(θ | sobs, εn) as a proposal distribution, the estimates are still in-

efficient due to an increasing variance of the importance weights: as n increases the proposal

distribution is more and more concentrated around θ0, while π does not change.

4·3. Efficient Proposal Distributions

Consider proposing the parameter value from a location-scale family. That is our proposal is of

the form σnΣ
1/2X + µn, where X ∼ q(·), E(X) = 0 and var(X) = Ip. This defines a general

form of proposal density, where the center, µn, the scale rate, σn, the scale matrix, Σ and the

base density, q(·), all need to be specified. We will give conditions under which such a proposal

density results in estimators that are efficient.

Our results are based on an expansion of πABC(θ | sobs, εn). Consider the rescaled ran-

dom variables t = an,ε(θ − θ0) and v = ε−1
n (s− sobs). Recall that Tobs = anA(θ0)

−1/2{sobs −
s(θ0)}. Define an unnormalised joint density of t and v as

gn(t, v; τ) =





N
[
{Ds(θ0) + τ}t; anεnv +A(θ0)

1/2Tobs, A(θ0)
]
K(v), anεn → c < ∞,

N
[
{Ds(θ0) + τ}t; v + 1

anεn
A(θ0)

1/2Tobs,
1

a2nε
2
n
A(θ0)

]
K(v), anεn → ∞,

and further define gn(t; τ) =
´

gn(t, v; τ) dv. For large n, and for the rescaled variable t, the

leading term of πABC is then proportional to gn(t; 0). For both limits of anεn, gn(t; τ) is a

continuous mixture of normal densities with the kernel density determining the mixture weights.

Our main theorem requires conditions on the proposal density. First, that σn = a−1
n,ε and cµ =

σ−1
n (µn − θ0) is Op(1). This ensures that under the scaling of t, as n → ∞, the proposal is not

increasingly over-dispersed compared to the target density, and the acceptance probability can

be bounded away from zero. Second, that the proposal distribution is sufficiently heavy-tailed:

CONDITION 7. There exist positive constants m1 and m2 satisfying m2
1Ip < Ds(θ0)

TDs(θ0)
and m2Id < A(θ0), α ∈ (0, 1), γ ∈ (0, 1) and c ∈ (0,∞), such that for any λ > 0,

sup
t∈Rp

N(t; 0,m−2
1 m−2

2 γ−1)

q{Σ−1/2(t− c)}
< ∞, sup

t∈Rp

K
α
(‖λt‖2)

q{Σ−1/2(t− c)}
< ∞, sup

t∈Rp

rmax(‖m1m2γ
1/2t‖2)

q{Σ−1/2(t− c)}
< ∞,

where rmax(·) satisfies rmax(v) = rmax(‖v‖
2
Λ), and for any random series cn in R

p satisfying

cn = Op(1),

sup
t∈Rp

q(t)

q(t+ cn)
= Op(1).

If we choose εn = Θ(a−1
n ), the Monte Carlo importance sampling variance for the accepted

parameter values is Θ(a−2
n ), and has the same order as the variance of summary-based maximum

likelihood estimator.



433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

10 W. LI AND P. FEARNHEAD

THEOREM 3. Assume the conditions of Theorem 1. If the proposal density qn(θ) is

βπ(θ) + (1− β)
1

σp
n|Σ|1/2

q{σ−1
n Σ−1/2(θ − µn)},

where β ∈ (0, 1), q(·) and Σ satisfy Condition 7, σn = a−1
n,ε and cµ is Op(1), then pacc,qn =

Θp(ε
d
na

d
n,ε) and ΣIS,n = Op(a

−2
n,ε). Then if εn = Θ(a−1

n ), AE
ĥ
= Θp(1).

Furthermore, if d = p, AE
ĥ
= 1−K/(N +K) for some constant K.

The mixture with π(θ) here is to control the importance weight in the tail area (Hesterberg,

1995). It is not clear whether this is needed in practice, or is just a consequence of the approach

taken in the proof.

Theorem 3 shows that with a good proposal distribution, if the acceptance probability is

bounded away from zero as n increases, the threshold εn will have the preferred rate Θ(a−1
n ).

This supports using the acceptance rate to choose the threshold based on aiming for an appropri-

ate proportion of acceptances (Del Moral et al., 2012; Biau et al., 2015).

In practice, σn and µn need to be adaptive to the observations since they depend on n. For

q(·) and Σ, the following proposition gives a practical suggestion that satisfies Condition 7. Let

T (·; γ) be the multivariate t density with degree of freedom γ. The following result says that it

is theoretically valid to choose any Σ if a t distribution is chosen as the base density.

PROPOSITION 3. Condition 7 is satisfied for q(θ) = T (θ; γ) with any γ > 0 and any Σ.

Proof. The first part of Condition 7 follows as the t-density is heavy tailed relative to the

normal density, K(·) and rmax(·). The second part can be verified easily. �

4·4. Iterative Importance Sampling

Taken together, Theorem 3 and Proposition 3 suggest proposing from the mixture of π(θ) and

a t distribution with the scale matrix and center approximating those of πABC(θ). We suggest the

following iterative procedure, similar in spirit to that of Beaumont et al. (2009).

Algorithm 2. Iterative importance sampling approximate Bayesian computation

Input a mixture weight β, a sequence of acceptance rates {pk}, and a location-scale family.

Set q1(θ) = π(θ).
For k = 1, . . . ,K:

1. Run Algorithm 1 with simulation size N0, proposal density βπ(θ) + (1− β)qk(θ) and

acceptance rate pk, and record the bandwidth εk.

2. If εk−1 − εk is smaller than some positive threshold, stop. Otherwise, let µk+1 and Σk+1

be the empirical mean and variance matrix of the weighted sample from step 1, and let

qk+1(θ) be the density with centre µk+1 and variance matrix 2Σk+1.

3. If qk(θ) is close to qk+1(θ) or K = Kmax, stop. Otherwise, return to step 1.

After the iteration stops at the K th step, run Algorithm 1 with the proposal density βπ(θ) + (1−
β)qK+1(θ), N −KN0 simulations and pK+1.

In this algorithm, N is the number of simulations allowed by the computing budget, N0 < N
and {pk} is a sequence of acceptance rates, which we use to choose the bandwidth. The maxi-

mum value Kmax of K is set such that KmaxN0 = N/2. The rule for choosing the new proposal

distribution is based on approximating the mean and variance of the density proportional to

π(θ)fABC(sobs | θ, ε)
1/2, which is optimal (Fearnhead & Prangle, 2012). It can be shown that

these two moments are approximately equal to the mean and twice the variance of πABC(θ) re-
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spectively. For the mixture weight, β, we suggest a small value, and use 0.05 in the simulation

study below.

5. NUMERICAL EXAMPLES

5·1. Gaussian Likelihood with Sample Quantiles

This examples illustrates the results in Section 3 with an analytically tractable problem. As-

sume the observations Yobs = (y1, . . . , yn) follow the univariate normal distribution N(µ, σ)
with true parameter values (1, 21/2). Consider estimating the unknown parameter (µ, σ) with

the uniform prior in the region [−10, 10]× [0, 10] using Algorithm 1. The summary statistic is

(eq̂α1
/2, . . . , eq̂αd

/2) where q̂α is the sample quantile of Yobs for probability α.

The results for data size n = 105 are presented. Smaller sizes from 102 to 104 show similar

patterns. The probabilities α1, . . . , αd for calculating quantiles are selected with equal intervals

in (0, 1), and d = 2, 9 and 19 were tested. In order to investigate the Monte Carlo error-free

performance, N is chosen to be large enough that the Monte Carlo errors were negligible. We

compare the performances of θABC, the maximum likelihood estimator based on the summary

statistics and the maximum likelihood estimator based on the full dataset. Since the dimension

reduction matrix C in Proposition 1 can be obtained analytically, the performance of θABC using

the original d-dimension summary is compared with that using the 2-dimension summary. The

results of mean square error are presented in Figure 1.

The phenomena implied by Theorem 1 and Proposition 1 can be seen in this example, together

with the limitations of these results. First, E{h(θ) | sobs}, equivalent to θABC with small enough

ε, and the maximum likelihood estimator based on the same summaries, have similar accuracy.

Second, when ε is small, the mean square error of θABC is the same as that of the maximum

likelihood based on the summary. When ε becomes larger, for d > 2 the mean square error

increases more quickly than for d = 2. This corresponds to the impact of the additional bias

when d > p.

For all cases, the two-dimensional summary obtained by projecting the original d summaries

is, for small ε, as accurate as the maximum likelihood estimator given the original d summaries.

This indicates that the lower-dimensional summary contains the same information as the original

one. For larger ε, the performance of the reduced-dimension summaries is not stable, and is in

fact worse than the original summaries for estimating µ. This deterioration is caused by the bias

of θABC, which for larger ε, is dominated by higher order terms in ε which could be ignored in

our asymptotic results.

5·2. Stochastic Volatility with AR(1) Dynamics

We consider a stochastic volatility model from Sandmann & Koopman (1998) for the de-

meaned returns of a portfolio. Denote this return for the tth time-period as yt. Then

xt = φxt−1 + ηt, ηt ∼ N(0, σ2
η); yt = σext/2ξn, ξt ∼ N(0, 1),

where ηt and ξt are independent, and xt is a latent state that quantifies the level of volatility for

time-period t. By the transformation y∗t = log y2t and ξ∗t = log ξ2t , the observation equation in

the state-space model can be transformed to

y∗n = 2 log σ + xn + ξ∗n, exp(ξ
∗
n) ∼ χ2

1, (4)

which is linear and non-Gaussian.

Approximate Bayesian computation can be used to obtain an off-line estimator for the un-

known parameters of this model. Here we illustrate the effectiveness of iteratively choosing the
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Fig. 1: Illustration of results in Section 3. Mean square errors of point estimates for 200 data sets are reported. Point

estimates compared include θABC using the original summary statistic (solid) and the transformed summary statistic

(dashed), the dimension of which is reduced to 2 according to Proposition 1, the maximum likelihood estimates based

on the original summary statistic (dotted) and the full data set (dash-dotted).

importance proposal for large n by comparing with rejection sampling. In the iterative algorithm,

a t distribution with 5 degrees of freedom is used to construct qk.

Consider estimating the parameter (φ, ση, log σ) under a uniform prior in the region [0, 1)×
[0.1, 3]× [−10,−1]. The setting with the true parameter (φ, ση, log σ) = (0.9, 0.675,−4.1) is

studied. We use a 3-dimensional summary statistic that stores the mean, variance and lag-1 au-

tocovariance of the transformed data. If there were no noise in the state equation for ξ∗n, then this

would be a sufficient statistic of Y ∗, and hence is a natural choice for the summary statistic. The

uniform kernel is used in the accept-reject step.

We evaluate rejection sampling and iterative importance sampling methods on data of length

n = 100, 500, 2000 and 10000; and use N = 40000 Monte Carlo simulations. For iterative im-

portance sampling, the sequence {pk} has the first five values decreasing linearly from 5% to

1%, and later values being 1%. We further set N0 = 2000, and Kmax = 10. For the rejection

sampler acceptance probabilities of both 5% and 1% were tried and 5% was chosen as it gave

better performance. The simulation results are shown in Figure 2.

For all parameters, iterative importance sampling shows increasing advantage over rejection

sampling as n increases. For larger n, the iterative procedure obtains a center for proposals closer

to the true parameter and a bandwidth that is smaller than those used for rejection sampling.

These contribute to the more accurate estimators. It is easy to estimate log σ̄, since the expected

summary statistic Ẽ(Y ∗) is roughly linear in log σ̄. Thus iterative importance sampling less of

an advantage over rejection sampling when estimating this parameter.
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Fig. 2: Comparisons of rejection (solid) and iterative importance sampling (dashed) versions of approximate Bayesian

computation. For each n, the logarithm of the average mean square error across 100 datasets is reported. For each

dataset, the Monte Carlo sample size is 40000. Ratios of mean square errors of the two methods are given in the table,

and smaller values indicate better performance of iterative importance sampling. For each polyline in the plots, a line

is fitted and the slope is reported in the table. Smaller values indicate faster decrease of the mean square error.

6. DISCUSSION

Our results suggest you can obtain efficient estimates using Approximate Bayesian Computa-

tion with a fixed Monte Carlo sample size as n increases. Thus the computational complexity of

approximate Bayesian computation will just be the complexity of simulating a sample of size n
from the underlying model.

Our results on the Monte Carlo accuracy of approximate Bayesian computation considered the

importance sampling implementation given in Algorithm 1. If we do not use the uniform kernel,

then there is a simple improvement on this algorithm, that absorbs the accept-reject probability

within the importance sampling weight. A simple Rao–Blackwellisation argument then shows

that this leads to a reduction in Monte Carlo variance. As such, our positive results about the

scaling of approximate Bayesian computation with n will immediately apply to this implemen-

tation as well.

Similar positive Monte Carlo results are likely to apply to Markov chain Monte Carlo imple-

mentations of approximate Bayesian computation. A Markov chain Monte Carlo version will be

efficient provided the acceptance probability does not degenerate to zero as n increases. How-

ever at stationarity, it will propose parameter values from a distribution close to the approximate

Bayesian computation posterior density, and Theorems 2 and 3 suggest that for such a proposal

distribution the acceptance probability will be bounded away from zero.

Whilst our theoretical results suggest that point estimates based on approximate Bayesian

computation have good properties, they do not suggest that the approximate Bayesian computa-

tion posterior is a good approximation to the true posterior. In fact, results by Frazier et al. (2016)

show it will over-estimate uncertainty if εn = O(a−1
n ). However, Li & Fearnhead (2016) show

that using regression methods (Beaumont et al., 2002) to post-process approximate Bayesian
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computation output can lead to both efficient point estimation and accurate quantification of

uncertainty.

ACKNOWLEDGMENT

This work was support by the Engineering and Physical Sciences Research Council.

SUPPLEMENTARY MATERIAL

Proofs of the main results are included in the online supplementary material.

REFERENCES

ALLINGHAM, D., KING, R. A. R. & MENGERSEN, K. L. (2009). Bayesian estimation of quantile distributions.
Statistics and Computing 19, 189–201.

BARBER, S., VOSS, J., WEBSTER, M. et al. (2015). The rate of convergence for approximate Bayesian computation.
Electronic Journal of Statistics 9, 80–105.

BEAUMONT, M. A. (2010). Approximate Bayesian computation in evolution and ecology. Annual Review of Ecology,
Evolution, and Systematics 41, 379–406.

BEAUMONT, M. A., CORNUET, J.-M., MARIN, J.-M. & ROBERT, C. P. (2009). Adaptive approximate Bayesian
computation. Biometrika 96, 983–990.

BEAUMONT, M. A., ZHANG, W. & BALDING, D. J. (2002). Approximate Bayesian computation in population
genetics. Genetics 162, 2025–2035.
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