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1. Introduction

In recent years there has been a rapidly growing interest in penalized least
squares problems via ℓ1 regularization, especially in high dimensional settings
where the model complexity is comparable or even larger than the sample size.
The lasso, originally put forward by Tibshirani (1996) for linear regression
models, is a regularization procedure in which the penalty for model complexity
is the ℓ1 norm of the estimated coefficients. It has the crucial advantages of be-
ing a convex problem, thus computationally feasible even when the number
of predictor is larger than the sample size, and of producing solutions that are
sparse, i.e. containing zero components. These two key properties make the
lasso simultaneously a shrinkage estimation and a model selection procedure
that is viable in high-dimensional problems where traditional model selection
criteria are not feasible. Furthermore, the lasso has been shown to have optimal
theoretical properties: model selection, or sign consistency, or sparsistency (see,
e.g., Meinshausen and Bühlmann, 2006; Wainwright, 2006, 2007; Zhao and Yu,
2006), consistency and oracle properties (see, e.g. Meinshausen and Yu, 2006;
Bickel et al., 2007; Bunea et al., 2007a,b; Zhang, 2007; Koltchinskii, 2005;
Zhang and Huang, 2007), and persistence (Greenshtein and Ritov, 2006;
Greenshtein, 2006).
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Researches have also devised few extensions of the lasso that are suited to
deal with regression problems in which the explanatory variables are grouped
or are organized in a hierarchal manner and, at the same time, exhibit similar
computational ease and the shrinkage properties of the lasso. We mention, in
particular, the group-lasso procedure by Yuan and Lin (2006) and its extension
by Kim et al. (2006), the elastic net regularization by Zou and Hastie (2005),
the hierarchical lasso by Zhou and Zhu (2007), regularization methods based
on ℓ∞ penalty by Gilbert et al. (2005) and the very general CAP penalties by
Zhao et al. (2007). Most of these procedures essentially comprise a penalty for
the model complexity that results from a composition of the ℓ1 norm with some
other norm computed over each group of parameters, thus exhibiting a behavior
that, at the group level, resembles that of the lasso solution. Besides ANOVA
models, the group-lasso penalty has been applied to generalized linear models in
Dahinden et al. (2006), Meier et al. (2006) and Nardi and Rinaldo (2007) and
to non-parametric problems in Bach (2007) and Ravikumar et al. (2007).

The general purpose of this paper is to prove for the group-lasso estimator de-
scribed in Yuan and Lin (2006) the same type of optimality properties that have
been established for the lasso estimator. In particular, we will derive conditions
ensuring estimation and model selection consistency, prediction and estimation
consistency, oracle properties and persistence. For the case of a fixed-dimensional
parameter space, Bach (2007) derives some conditions for estimation and model
selection consistency. For the double-asymptotic scenario in which the dimen-
sion of the parameter space grows with the sample size, a rigorous study of the
performance of the group-lasso seems to be missing in the statistical literature.
Our contributions include novel consistency and asymptotic normality results
for the fixed-dimensional parameter space, model selection consistency when the
number of predictors is larger than the sample size, oracle inequalities and per-
sistence properties. Our methods of proofs are based on non-trivial extensions
and generalizations of condition and results for the lasso procedure already in
existence in the literature.

The paper is organized as follows. Section 2 introduces the group-lasso set-
tings for least square problems. In section 3 we establish estimation and model
selection consistency and asymptotic normality under the traditional scenario
of increasing sample size and fixed parameter space. The conditions we impose
are of different nature than the ones introduced in Bach (2007) and the results
we obtain complement that analysis. In section 4 we investigate the properties
of the group-lasso solution under the more complex, double-asymptotic scenario
in which both the sample size and the model complexity grow simultaneously.
In section 4.1 we provide a sufficient condition guaranteeing uniqueness of the
group-lasso solution when the number of covariates is larger than the sample
size. In section 4.2 we provide conditions for model selection consistency that
holds even when the number of covariates grow at a larger rate than the sample
size and in section 4.3 we derive finite sample bounds that can be used to estab-
lish consistency for estimation and prediction. Finally, in section 4.4 we derive
two persistence properties. All the proofs are gathered in section 5 and in the
Appendix.
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2. The group-Lasso settings

Let H be an index set representing a class of linear subspaces of R
n, each

subspace being spanned by the columns of a n× dh matrix Xh, where h ranges
over H. We will be assuming henceforth that the set H is known and has been
assigned a total ordering, and we will always be using such an ordering. Let
X be a n × d design matrix formed by concatenating the design matrices Xh,
h ∈ H, with d =

∑
h dh. While we allow for non-zero correlations among groups,

namely X⊤
h Xh′ 6= 0 for h 6= h′, we will be making the simplifying assumption

1

n
X⊤

h Xh = Idh
, ∀h ∈ H,

where Idh
denote the dh-dimensional identity matrix, a condition that can be

enforced via the Gram-Schmidt orthogonalization procedure.
For a subset H′ ⊂ H, we will write (H′)c = H\H′ and, if x ∈ R

d, we will use
the notation xH′ = vec{xh, h ∈ H′} for the d′-dimensional subvector comprised
by the blocks of x indexed by H′, where d′ =

∑
h∈H′ dh. Similarly, if H1 and

H2 are two subsets of H, and M a d× d matrix, we will write

MH1,H2

for the (
∑

h∈H1
dh) × (

∑
h∈H2

dh) block matrix, with blocks indexed by the
subsets H1 and H2. In particular, if H1 = H2, we will simply write MH1 .

We assume that the n-dimensional observed vector Y satisfies the linear
model

Y = Xβ0 + ǫ, (1)

where ǫ is a n-dimensional vector of iid errors, with distributional properties to
be specified below, and β0 is the unknown d-dimensional vector of true coeffi-
cients. Then, the vector β0 can be represented as vec{β0

h, h ∈ H}, the concate-
nation of |H| vectors, where β0

h ∈ R
dh , for each h ∈ H. Our crucial modeling

assumption is that some of the subvectors of β0 are zero and we will denote by
H0 = {h : β0

h 6= 0} the unknown index set of non-zero subvectors of β0. Then,
the true model complexity is given by d0 =

∑
h∈H0

dh < d.

We consider the problem of estimating both β0 and H0 in the non-trivial
situation in which the cardinality |H0| of the number or subspaces spanning the
true mean vector of the response variable Y is smaller than the total number |H|
of candidate subspaces. In essence, the estimation of the true underlying model
H0 requires identifying, based on Y , the zero subvectors of β0 and removing the
blocks indexed by Hc

0. This may be naturally formulated as a penalized least
square problem with a ℓ0 penalty on the cardinality of the subspaces included.
Effectively, this entails considering all possible subsets of H, an NP-hard task
that is computationally infeasible, when |H| (and therefore d) is large. Instead,
Yuan and Lin (2006) propose to use the group-lasso penalty, which is a convex
relaxation to the ℓ0 penalty based on the combination of the ℓ1 penalty over the
number of subspaces with the ℓ2 penalty on the estimated coefficients of each
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subspace. The resulting group-lasso estimator is obtained as the solution to the
convex problem

inf
β∈Rd

1

2n
‖Y − Xβ‖2

2 + λ
∑

h

λh‖βh‖2, (2)

where λ and {λh, h ∈ H}, are tuning parameters that depend on the sample
size n. A reasonable choice for λh is

√
dh, so that larger subspaces are penalized

more heavily. The group-lasso regularization is an extension of the lasso, or
ℓ1 penalty function, and consists of applying first the ℓ2 penalty to individual
blocks, to promote non-sparsity, and then the ℓ1 norm to the resulting block
norms, to promote block sparsity. Notice also that the group-lasso problem (2)
includes as a special case the lasso and adaptive lasso (see Zou, 2006) problem
in which |H| = d and each h correspond to the 1-dimensional subspace of R

n

spanned by the corresponding column of the design matrix X.
Equation (2) is the Lagrangian function (with Lagrangian multipliers {λλh, h ∈

H}) of the equivalent convex problem

inf
β∈Rd

1

2n
‖Y − Xβ‖2

2

s.t. ‖βh‖2 ≤ th,

(3)

where {th, h ∈ H} are non-negative constants. In fact, there exists a correspon-
dence between the coefficients {th, h ∈ H} and {λλh, h ∈ H} of (3) and (2),
respectively. In this article, we will mostly focus on the more popular, uncon-
strained formulation (2), which has, in particular, the advantage of letting one
choose in a more direct way the regularization parameters. The constrained set-
tings (3) will be used in Section 4.4 to establish persistence properties of the
group-lasso.

In our analysis, we will study the asymptotic properties of the group-lasso
estimator β̂, defined as a minimizer of (2), and of the associated group-lasso
model selector

Ĥ = {h : β̂h 6= 0}. (4)

We will consider two asymptotic regimes. In the simpler, traditional scenario,
we assume that the model complexity is fixed and that only the sample size n
increases. In the second, more modern, scenario, the model complexity increases
with the sample size and we will then study the group-lasso solutions to a
sequence of linear models in which |H| and {dh, h ∈ H} grow with n. In fact, we
allow for d to grow at a faster rate than n. For ease of readability, we will not
make the dependence of H, {dh, h ∈ H}, λ, X, ǫ and {λh, h ∈ H} on n explicit,
although it will be apparent that all those quantities may change with n.

We conclude this section with some computational remarks. The subgradient
conditions for the problem (2) are

− 1

n
X⊤

h

(
Y − Xβ̂

)
+ λλh

β̂h

‖β̂h‖2

= 0 if β̂h 6= 0

− 1

n
X⊤

h

(
Y − Xβ̂

)
+ λλhzh = 0 if β̂h = 0,

(5)
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where zh are generic vectors such that ‖zh‖2 ≤ 1 for all h. Because the objective
function in (2) is convex on R

d, the first-order conditions obtained by solving
the sub-gradient equations produce the solutions to the group-lasso problem.
By inspecting the sub-gradient conditions (5), Yuan and Lin (2006) devise a
modification of the LARS algorithm by Efron et al. (2004) to account for the
block structure of the penalty function that can be used to solve (2) numerically.
Dahinden et al. (2006) improve on this method and develop a different compu-
tational strategy based on a block-coordinate gradient descent method in the
context of logistic regression, which can be adapted to the present settings. See
Dahinden et al. (2006) and, in particular, Zhao et al. (2007) for further details
and some discussion on the computational aspects of the group-lasso estimator
and on the choice of the regularization parameters.

2.1. Example: ANOVA models

Consider an ANOVA design, arising from the cross-classification of K categorical
variables, each taking value on a finite set Ik = {1, . . . , Ik}, for k = 1, . . . , K.
Let I =

⊗
k Ik be the set of cells and I =

∏
k Ik the total number of cells.

Also, for each i ∈ I, let ni be the total number of observations in cell i. Then
H = 2K, the power set of K = {1, . . . , K}. Each h ∈ H0 represents an effect.
For example, h = ∅ corresponds to the grand mean, a subset h with |h| = 1 to
a main effect and, more generally, a subset h to an interaction effect among the
variables indexed by h. The true model can be represented as H0 ⊆ 2K.

As h ranges over H, R
I can be decomposed into the direct sum of orthogonal

subspaces indexed by h, each with dimension
∏

j∈h(Ij − 1) (see, e.g. Rinaldo,
2006). Let Uh be a matrix of full column rank spanning the subspace index by
h ⊂ K. Then, the columns of

⊕
h∈2K Uh form a basis for R

I. Next, let T be a
n × I matrix of the form




11 0 . . . 0
0 12 . . . 0
0 0 . . . 1I



 ,

where each 1i is a ni-dimensional vector of ones, and Xh = TUh. Notice that
dim(range(Uh)) = dim(range(Xh)), provided each cell is positive. Then, the
n × I matrix

X =
⊕

h∈2K

Xh

has full column rank and its columns span a I-dimensional subspace in R
n.

Notice that, for any h 6= h′ ∈ 2K, while U⊤
h Uh′ = 0, it is no longer the case that

X⊤
h Xh′ = 0 when the cells ni differ, i.e. when the model is unbalanced or when

some cells are empty. It is clear that the group-lasso settings described above
include as special cases unbalanced and empty-cells ANOVA models, for which
the usual decomposition of sums of square does not hold.
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3. Fixed-d asymptotics

In this section we derive conditions for model selection and estimation con-
sistency when the sample size n increases, while the parameter space remains
fixed. Our consistency results rely on different assumptions and slightly different
settings than the analogous results in Bach (2007), and our analysis provides
novel insights into this problem. Furthermore, we obtain rates of consistency
and asymptotic normality.

We will use the classical assumptions for consistency of the ordinary least
squares solutions:

(F1) limn→∞
1
nX⊤X → M, with M positive definite;

(F2) the errors ǫi are iid with mean zero and finite second moment σ2.

To motivate our analysis, we first consider the necessary conditions for the
group-lasso procedure to be model selection consistent, namely

P
{
Ĥ = H0

}
→ 1, as n → ∞, (6)

where Ĥ is defined in (4). An adaptation of Theorem 3 in Bach (2007) yields
that, under assumption (F1) and (F2), (6) holds only if the weakly irreducibility
condition

max
h′∈Hc

0

1

λh′

∥∥Mh′,H0M
−1
H0

BH0βH0

∥∥
2
≤ 1, (7)

is verified, where BH0 denotes the d0-dimensional block-diagonal matrix with
blocks {

Idh

λh

‖βh‖2
, h ∈ H0

}
.

We remark that (7) generalizes an analogous necessary condition for model selec-
tion consistency of the lasso (see Zou, 2006; Zhao and Yu, 2006; Yuan and Lin,
2006). Below, we derive a different necessary condition for model selection con-
sistency, which provides a rationale for the results we derive in the remainder
of this section.

Proposition 3.1. Under assumption (F1) and (F2), the model selection con-
sistency property (6) holds only if

√
nλλh → ∞, ∀h 6∈ H0.

Using the previous condition, it seems natural to consider sequences of penalty

parameters such that λλh = O
(

1√
n

)
if h ∈ H0, and

√
nλλh → ∞ otherwise,

which will also satisfy the weakly irreducibility condition (7). Implicitly, this
idea is behind both Theorem 3.2 and 3.3.

The weak irreducibility condition and the other necessary condition of Propo-
sition 3.1 both have the undesirable feature of depending on the unknown index
set H0 of non-zero blocks. To remedy this problem, in the following result we
describe an oracle procedure which automatically yields model selection consis-
tency without knowing H0. This estimator is obtained as a direct generalization



Y. Nardi and A. Rinaldo/The log-linear group lasso estimator 611

to the group-lasso framework of the adaptive lasso penalty put forward by Zou

(2006). We let β̂OLS =
(
X⊤X

)−1
X⊤Y for the least squares estimate of β. In the

proof we essentially follow Zou (2006) and Knight and Fu (2000) and generalize
their results to our settings.

Theorem 3.2. Assume (F1) and (F2) and let λh = 1

‖β̂OLS
h

‖γ

2

, for some γ > 0

such that n(γ+1)/2λ → ∞. If
√

nλ → 0, the model selection consistency property
(6) is satisfied and, furthermore,

√
n(β̂ − β0)

d→ Z, (8)

where ZH0 ∼ Nd0 (0, σ2M−1
H0

) and ZHc
0

= 0.

Remark. The only property of the ordinary least squares estimate β̂OLS that
was used in the proof is its

√
n-consistency. This is enough to guarantee that

the penalty parameters {λh, h ∈ Hc
0} corresponding to the index set of the

zero subvectors of β0 are very large, with high probability for all n big enough.
More generally, the Theorem remains true also when β̂OLS is replaced by any
an-consistent estimator, where an → ∞, provided aγ

n

√
nλ → ∞.

We conclude this section with one final consistency result for the group-lasso
estimator, which demands the knowledge of H0. Unlike the consistency results
derived in (Bach, 2007, Section 2), the weakly irreducibility condition (7) is
replaced by conditions on the asymptotic behavior of

√
nλλh, h ∈ H. Despite

its reduced practical value, this result has the merit of showing explicitly that
the penalty terms for the zero and non-zero blocks need to have a different
asymptotic behavior.

Theorem 3.3. Assume (F1), (F2) and further assume that the (possibly ran-

dom) sequence {an}, with an = |H0|maxh∈H0 λh, satisfy λan
p→ 0 as n → ∞.

Then ‖β̂ − β0‖2 = OP

(
1√
n

+ λan

)
. Furthermore, if λan = OP

(
1√
n

)
and

√
nλλh

p→ ∞ for each h 6∈ H0, then the conclusions of Theorem 3.2 still hold.

Remark. The previous Theorem covers cases in which estimation consistency
may hold (at a suboptimal rate) but not model selection consistency.

Theorem 3.2 and Theorem 3.3 both establish that the group-lasso estimator
is asymptotically optimal, namely unbiased and efficient, and, therefore, offers
the same asymptotic guarantees as the ordinary, unpenalized, least squares es-
timator. However, unlike the ordinary least squares, the group-lasso solutions
comes equipped with a built-in penalty for sparsity, so that some of its blocks
components will be zero. In fact, and this is key, as n increases, these zero com-
ponents will be the same zero components of the true vector of coefficients β0,
with probability tending to 1. In contrast, the solutions to the ordinary least
squares are all non-zero, thus making it much less effective at recovering H0.
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4. Double asymptotics

We turn now to the study of double-asymptotic scenario in which |H| → ∞ and
the block-dimensions {dh, h ∈ H} are allowed to change with n. In particular,
this includes situations in which d >> n, i.e. d grows faster than n.

To simplify our derivations, we will enforce a normality assumption on the
vector ǫ of errors:

(N) ǫi ∼ N(0, σ2), 1 ≤ i ≤ n.

Specific cases in which this assumption can be relaxed are discussed as we pro-
ceed with our analysis.

4.1. Uniqueness of the group-Lasso solution

When d > n, there is a (d−n) dimensional affine space of vectors satisfying the
model equation (1). As a result, the solution to (2) needs not be unique and,
therefore, it may no longer make sense to refer to “the” group-lasso estimator or
model selector. To overcome this problem, we may want to impose the following
condition, which is enough to guarantee uniqueness of the model representation
(1) and, therefore, of the group-lasso solution:

(U(c)) maxh′ 6=h ‖X⊤
h′Xh‖2 ≤ λh′λh

(1+2c)δ|H0| , for some constants c > 0 and δ > λ2
max,

where, for a m × p matrix A, ‖A‖2 denotes the operator norm with respect
to the Euclidian metric. In stating the assumption, we make explicit only the
dependence on the more relevant constant c.

Proposition 4.1. Under assumption (U(c)), if β1 and β2 satisfy (1) with
|{h : βi

h 6= 0}| ≤ |H0|, for i = 1, 2, then β1 = β2.

Remarks.

1. Assumption (U(c)) is the group-lasso equivalent of Assumption 2 in Lounici
(2008) on the maximal mutual coherence between different columns of the
design matrix X, which is

max
i 6=j

1

n
|Mi,j| ≤

1

ρ(1 + 2c)d0
,

where ρ > 1 and c > 0. We point out that uniqueness of the represen-
tation (1) follows also from this mutual coherence condition. However,
assumption (U(c)) is more naturally tailored to the problem at hand and,
furthermore, implies the important (RE(|H0|, c)) condition (see Propo-
sition 4.4 below), which is essential to establish the bounds derived in
Section 4.3.

2. Alternatively, one may consider investigating conditions guaranteeing unique-
ness of the group-lasso solution (2) directly, rather of the model represen-
tation, following the arguments used in Osborne et al. (2000) for the lasso



Y. Nardi and A. Rinaldo/The log-linear group lasso estimator 613

problem. Although it is apparent from their analysis that |Ĥ| ≤ n, i.e.
the number of non-zero blocks is no larger than the sample size, extend-
ing the polyhedral arguments of Osborne et al. (2000, Section 3.1) to the
group-lasso penalty appears problematic.

4.2. Sparsistency

In this section, we provide conditions for the model selection consistency (6),
or sparsistency, of the group-lasso model selector under the double asymptotic
settings.

To this end, let O be the event that there exists a solution β̂ to (2) such that

‖β̂h‖2 > 0 for all h ∈ H0, and β̂h = 0 for all h ∈ Hc
0. Then, the sparsistency

property is
P(O) → 1, n → ∞. (9)

We will make the following assumptions:

(S1) the smallest eigenvalue of 1
n

(
X⊤

H0
XH0

)
is bounded below by a constant

Cmin > 0;
(S2) letting α = minh∈H0 ‖β0

h‖∞,

1

α

[√
logd0

n
+
√

d0λ max
h∈H0

λh

]
→ 0;

(S3) for some 0 < ǫ < 1 and every h ∈ Hc
0,

∥∥∥X⊤
h XH0

(
X⊤

H0
XH0

)−1
∥∥∥

2
≤ 1 − ǫ√∑

h∈H0
λ2

h

;

(S4)

1

λ

√
log(d − d0)

n
max
h∈Hc

0

√
dh

λh
→ 0.

Theorem 4.2. Under the assumptions (N) and (S1)-(S4), the sparsistency
property (9) holds.

Remarks. The conditions of Theorem 4.2 deserve a few comments.

1. From the proof, it can be seen that we can combine (S1) and (S2) into
one assumption

1

α

[√
logd0

nCmin
+
√

d0λ max
h∈H0

λh

]
→ 0,

thus allowing the minimal eigenvalue of 1
n

(
X⊤

H0
XH0

)
to vanish at a rate

slower than 1
α2

log d0

n .
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2. The normality assumption (N) is by no means crucial. In fact, it is enough
to require the errors to be independent, sub-gaussian random variables,
with second moments bounded uniformly in n. Then, by applying, for
example, Lemma 2.3 in Massart (2007), the conclusions of the Theorem
would hold unchanged.

3. If λh =
√

dh then conditions (S4) simplifies to

log(d − d0)

nλ2
→ 0.

which is the same rate appearing in Equation 15 b) in Wainwright (2006)
for the simpler lasso penalty.

4. It is apparent from condition (S4) that not only can d be much bigger then
n, but it can in fact grow at at faster rate than n. In particular, condition
(S4) formalizes quite explicitly the notion that the true model should be
sparse in order for the group-lasso model selector to be successful.

5. Because the group-lasso solution may not be unique, Theorem 4.2 only
implies the existence of a sequence of solutions guaranteeing sparsistency.
In order to obtain a more satisfactory result, one may want to enforce also
the uniqueness condition (U(c)), for some c > 0.

4.3. Inequalities for prediction and estimation

We now derive oracle inequalities for the prediction and estimation loss of the
group-lasso estimator.

As a main technical step in our derivations (which generalizes standard ar-
guments found, for example, in Bunea et al., 2007a,b; Bickel et al., 2007), the
prediction and estimation bounds we establish hold on the event

A =
⋂

h

{
2√
n

∥∥X⊤
h ǫ
∥∥

2
<

√
nλλh

}
.

Therefore, we must impose conditions implying that A occurs with probability
tending to 1, as both n and the model complexity increase. To that end, we
formulate the asymptotic condition

(A) minh{ n
σ2 λ2λ2

h − dh} − log |H| → ∞,

which will guarantee that the inequalities given below are meaningful for n
large enough and also offers some characterizations of the rates of growth of the
regularization parameters.

Lemma 4.3. Assume (N) and (A). Then, P(A) → 1, as n → ∞.

Remarks.

1. Assumption (A) provides general guidelines for choosing the tuning pa-
rameters λ and {λh, h ∈ H}. In particular, if λh =

√
dh for each h, the

condition reduces to

dmin
n

σ2
λ2 − log |H| → ∞,
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where dmin = minh dh. For such a choice of λh, for example, we can use

λ = σ
√

Cn

n
, where Cn is such that

Cndmin

log |H| → ∞.

Since dmin ≥ 1, we can set

λ = Aσ

√
log |H|

n
,

for some A > 1.
2. Alternatively, and in less generality, if again λh =

√
dh for each h, we

could consider the event

A′ =

d⋂

i=1

{
2

n

∣∣X⊤
i ǫ
∣∣ < λ

}
.

where Xi denotes the i-th column of the matrix X. Then, for

λ = Aσ

√
logd

n

with A ≥ 2, a standard Gaussian tail bound (see, e.g., van de Geer, 2007,
Lemma 3.8) yields

1 − P(A′) ≤ 2 exp

{
−A2

8
log d

}
,

which vanishes provided d → ∞. Notice that this case is covered by as-
sumption (A). Then, using the event A′ and Cauchy-Schwarz’s inequality
in equation (39) in the proof of Theorem 4.6, it is easy to see that the
results of this section would hold with A replaced by A′.

3. It appears that the Gaussianity assumption (N) is quite important in this
context, as it is used in a fundamental way to establish condition (A). If,
instead of the event A, one considers the event A′ (with the additional
constraints λh =

√
dh for each h), then Gaussianity is not necessary and,

with λ = σ

√
(log d)(1+η)

n for some η > 0, one can still guarantee a vanishing

probability for A′ under the slightly stronger requirement (log d)(1+δ) =
o(n) and some additional mild constraints. See Lounici (2008, Theorem 3)
for a formal argument.

Another key assumption to our results is given below, where s is an integer
and c a positive number:

(RE(s, c))

min
H′⊆H : |H′|≤s

min
β∈Rd : γ=Λβ,

∑
h∈(H′)c

‖γh‖2≤c
∑

h∈H′
‖γh‖2

‖Xβ‖2√
n‖βH′‖2

≡ κ(h, c) > 0.
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Here Λ is the d×d matrix with diagonal vec{1dh
λh, h ∈ H} and 1dh

denotes the
dh-dimensional vector with entries all equal to 1. This assumption specializes the
restricted eigenvalue assumption introduced by Bickel et al. (2007) to analyze
the L2 consistency property of the lasso procedure.

In particular, in the special case in which s = |H0|, the (RE(s, c)) assumption
is implied by the uniqueness assumption (U(c)), as demonstrated in the next
proposition.

Proposition 4.4. Let U(c, δ) be satisfied. Then, assumption RE(|H0|, c) holds.

Our first result provides finite sample bounds for the prediction and estima-
tion loss and for the number of non-zero blocks of the group-lasso estimator
under the linear model (1), with unknown block-support set H0.

Theorem 4.5. Assume (N) and (RE(|H0|, 3)). On the event A,

‖β̂ − β0‖2 ≤ 16
λ

κ2
0λmin

|H0|, (10)

where λmin = minh λh,

1

n
‖X(β̂ − β0)‖2

2 ≤ 16λ2|H0|
κ2

0

, (11)

and

|Ĥ| ≤ 64
Cmax|H0|
κ2

0λ
2
min

, (12)

where Cmax is the largest eigenvalue of 1
n

(
X⊤

H0
XH0

)
and κ0 = κ(|H0|, 3).

Next, we establish a more general oracle inequality for the prediction loss of
the group-lasso estimator which covers the case of a mispecified model. Specifi-
cally, rather than assuming that the true model is linear, we consider the more
general model

Y = f0(X) + ǫ,

for some unknown, possibly non-linear, function f0 of the covariates.

Theorem 4.6. Under the assumptions (N) and RE(s, 3+4/ǫ), on the event A,

1

n
‖Xβ̂ − f0(X)‖2

2

≤ inf
β : |H(β)|≤s

{
(1 + ǫ)

1

n
‖Xβ − f0(X)‖2

2 +
4

κ2

(
4

ǫ
+ ǫ + 4

)
λ2|H(β)|

}
, (13)

where H(β) = {h : βh 6= 0} and κ = κ(s, 3 + 4/ǫ).

Remarks.

1. Recall that, under our assumption (A), the event Ac has vanishing prob-
ability, so the bounds we obtain holds with large probability, for n big
enough.
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2. In both Theorems (4.6) and (13), we do not enforce the uniqueness condi-
tion (U(c)), and, therefore, the conclusions hold for any solution to (2). In
fact, because of Proposition 4.4, we can replace the RE(s, c) conditions in
both Theorems (4.6) and (13) by the appropriate U(c) conditions, which
would guarantee the same results and also uniqueness of the group-lasso
estimator.

3. The inequalities derived above directly generalize the corresponding bounds
established by Bunea et al. (2007a) and Bickel et al. (2007) for the lasso
problem.

4. From both Theorems, it is possible to get rates of prediction and estima-
tion consistency of the group-lasso. These rates depend crucially on the
choice of the tuning parameters compatible with assumption (A), in par-
ticular of λ. See Remark 1. after Lemma 4.3 for some comments on the

possible values for λ. In particular, for λh =
√

dh and λ = Aσ
√

log |H|
n

,

for some A > 1, we obtain rates that are comparable to lasso rates, with
the number of parameters replaced by the number of blocks. This is due
to the nature of our assumption (RE(s, c)).

4.4. Persistence

In this final section, we change our settings and adopt the double-asymptotic
framework of Greenshtein and Ritov (2006) and Greenshtein (2006). Our goal
is to study the risk consistency of the group-lasso solutions under a triangular
array framework for the random vector Q = (Y, X), where Y is the response
variable and X = (X1, . . . , Xd) the vector of covariates. We are concerned with
the predictive risk R(β) = E(Y − Xβ)2 , where the expectation is with respect
to the joint distribution P(X,Y ) of Y and X.

Specifically, let β̂n be an estimator based on an iid sample (Q1, . . . , Qn) of size

n from P(X,Y ) and let R(β̂) = E(Y − β̂X|Q1, . . . , Qn), for a new iid observation
(Y, X) ∼ P(Y,X). Just like above, we allow d to grow unbounded with n. Let
{Sn} be a sequence of sets of increasing dimensions. A sequence of estimators

{β̂n} is said to be persistent with respect to {Sn} if

R(β̂n) − inf
β∈Sn

R(β)
p→ 0, n → ∞.

Notice that, in order for persistence to hold, it is not necessary for the best
predictor of Y based on X to be linear.

We assume that the random covariates X have a grouping structure, which we
represent using the same notation and conventions of Section 2. Accordingly, we
consider the following two sequences of sets, each of them providing a different
form of group penalty:

Bn =

{
β :
∑

h

√
dh‖βh‖2 ≤ bn

}
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and
Cn =

{
β : |{h, βh 6= 0}| ≤ cn

}
,

for some sequences of numbers {bn} and {cn} to be determined.
Letting γ = (−1, β1, . . . , βp), we can write R(β) = γ⊤Σγ, where Σ = EQQ⊤.

The empirical equivalent of this quantity is R̂(β) = γ⊤Σ̂γ, where

Σ̂ =
1

n

∑

i

Qi(Qi)⊤.

In these new settings, the group-lasso estimator β̂ with respect to the se-
quence {Sn} of sets of potential coefficients, which can be {Bn} or {Cn}, is
computed as

β̂ = min
β∈Sn

R̂(β). (14)

Following Zhou et al. (2007), we impose the conditions

(P1) E|Zjk|q ≤ q!Aq−2B/2, for each j, k = 1, . . . , d + 1;
(P2) d ≤ enα

,

where Zjk = QjQk −EQjQk, and A, B and α are some positive constants with
0 < α ≤ 1.

Theorem 4.7. Under the assumptions (P1) and (P2), the group lasso estimator
defined in (14) is persistent with respect to {Bn} if

bn = o

((
n

logn

)1/4
)

. (15)

It is persistent with respect to {Cn} if

cn = o

((
n

d2
max log n

)1/2
)

(16)

and the minimal eigenvalue of the covariance matrix of the predictors is positive.

Remarks.

1. Notice that (15) is implied by the stronger condition

bn = o

((
n

d2
max logn

)1/4
)

,

which is of the same form as (16).
2. The definition of the set sequence {Bn}n can be generalized to

Bn =

{
β :
∑

h

λh‖βh‖2 ≤ bn

}
,

and the results of Theorem 4.7 would remain true provided maxh

√
dh

λh
=

O(1).
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3. The persistence results (15) and (16) are easy generalizations of their
lasso equivalents derived in Greenshtein and Ritov (2006) and Greenshtein
(2006), the only difference being the additional term dmax. For the choice
λh =

√
dh, for each h, this is precisely the extra term appearing also in

Theorem 4.6.
4. Assumptions (P1) and (P2) are not the only options. See Greenshtein

and Ritov, (2006) and Greenshtein (2006) for alternative assumptions and
derivations.

5. Proofs

Proof of Proposition 3.1. For every h ∈ H, let lim
√

nλλh = ch ≥ 0. Next, we
observe that, for any u ∈ R

d, as n → ∞,

√
n

(∥∥∥∥β
0
h +

1√
n

uh

∥∥∥∥
2

−
∥∥β0

h

∥∥
2

)
→
{

u⊤

h β0
h

‖β0
h
‖2

if β0
h 6= 0

‖uh‖2 if β0
h = 0.

Then, by the same arguments used in the proof of Theorem 3.2 below and by
equation (18), √

n
(
β̂ − β0

) d→ u∗ ≡ argminu∈RdV (u),

where

V (u) =
1

2
u⊤Mu − 2u⊤W +

∑

h

ch

(
u⊤

h β0
h

‖β0
h‖2

1{β0
h
6=0} + ‖uh‖21{β0

h
=0}

)
,

with W ∼ Nd(0, σ2M) (see also Knight and Fu, 2000; Zou, 2006).
We will prove the claim by showing that if ch′ 6= ∞ for some h′ 6∈ H0, then

P {u∗
h′ = 0} < 1, (17)

which will contradict the assumed model selection consistency (6). The optimal
solution u∗ must satisfy the first order optimality conditions

−2WH0 + MH0u
∗
H0

+ ηH0 = 0,

where ηH0 = vec
{
ch

β0
h

‖β0
h
‖2

, h ∈ H0

}
, and

‖ − 2Wh + Mh,H0u∗
H0

‖2 ≤ ch, ∀h 6∈ H0,

which together imply

‖ − 2Wh + Mh,H0M
−1
H0

(2WH0 − ηH0 ) ‖2 ≤ ch, ∀h 6∈ H0.

Then, since ch′ < ∞,

P {u∗
h′ = 0) ≤ P

(
‖ − 2Wh′ + Mh′,H0M

−1
H0

(2WH0 − ηH0) ‖2 ≤ ch′

}
< 1,

thus proving (17).
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Proof of Theorem 3.2. We first show (8). Letting βn = β0 + u√
n
, where u ∈ R

d,

the objective function (2) (multiplied by n) can be written as a function of u as

Qn(u) =
1

2

∥∥∥∥
1√
n

Xu + ǫ

∥∥∥∥
2

2

+
∑

h

nλλh

∥∥∥∥β
0
h +

1√
n

uh

∥∥∥∥
2

,

where u =
√

n(βn − β0). Let u∗ = argminu∈RdQn(u) and observe that u∗ =√
n(β̂ − β0), where β̂ is the minimizer of (2). Next, write

Dn(u) = Qn(u) − Qn(0)

=

(
1

2
u⊤
(

1

n
X⊤X

)
u − 1√

n
u⊤Xǫ

)

+
√

nλ
∑

h

λh

√
n

(∥∥∥∥β
0
h +

1√
n

uh

∥∥∥∥
2

−
∥∥β0

h

∥∥
2

)

≡ I1,n +
∑

h

I2,n,h. (18)

Note that Dn is strictly convex. If β0
h 6= 0, then λh

p→ 1
‖β0

h
‖γ

2
and

√
n

(∥∥∥∥β
0
h +

1√
n

uh

∥∥∥∥
2

−
∥∥β0

h

∥∥
2

)
→ u⊤

h β0
h

‖β0
h‖2

,

and, therefore, I2,n,h converges in probability to 0 by Slutsky theorem and the

assumption
√

nλ = o(1). If β0
h = 0, then, since nγ/2‖β̂OLS

h ‖γ
2 = OP (1) and

√
n
(∥∥∥β0

h + 1√
n
uh

∥∥∥
2
−
∥∥β0

h

∥∥
2

)
= ‖uh‖2, we obtain

I2,n,h =
√

nλλh‖uh‖2 = ‖uh‖2λ
n(γ+1)/2

(
√

n‖β̂OLS
h ‖2)γ

p→ ∞, (19)

where the second assumption in the statement was used. Because I1,n
d→ 1

2u⊤Mu+

W , where W ∼ Nd(0, σ2M), and |H| is finite, it follows that Dn(u)
d→ D(u),

with

D(u) =

{
1
2u⊤

H0
MuH0 − 2u⊤

H0
W if uH0 6= 0

∞ otherwise.

The unique minimizer of D(u) is (M−1
H0

W, 0)⊤. By the argmax theorem in
van der Vaart and Wellner (1998, Corollary 3.2.3) (or alternatively, the results
in Geyer, 1994),

u
(n)
H0

d→ M−1
H0

W ∼ Nd0 (0, σ2M−1
0 )

and
u

(n)
Hc

0

p→ 0,

and (8) is verified.



Y. Nardi and A. Rinaldo/The log-linear group lasso estimator 621

Next, we prove model selection consistency (6). Since β̂ is
√

n−consistent,

for each h ∈ H0, β̂h 6= 0 with arbitrarily high probability for sufficiently large n.
Thus, we only need to show that, for each h 6∈ H0, β̂h = 0 with arbitrarily high
probability for sufficiently large n. Model selection consistency will then follow
from the finiteness of |H0|. Suppose that, for some h 6∈ H0, β̂h 6= 0. Then, from
the subgradient conditions (5),

X⊤
h

(
Y − Xβ̂

)
= nλλh

β̂h

‖β̂h‖2

. (20)

Because of
√

n(β0 − β̂) is asymptotically normally distributed, and using our
assumption on the design matrix,

∥∥∥∥
1√
n

X⊤
h

(
Y − Xβ̂

)∥∥∥∥
2

=

∥∥∥∥
1

n
X⊤

h X
√

n(β0 − β̂) +
1√
n

X⊤
h ǫ

∥∥∥∥
2

= OP (1).

Furthermore, by the same arguments leading to (19),
√

nλλh
p→ ∞. Then,

the norm of the terms on two sides of equation (20) have different order of

magnitude, as n → ∞, which implies that β̂h does not satisfy that first order
condition for being non-zero with increasing probability, and therefore β̂h = 0
with probability tending to 1.

Proof of Theorem 3.3. In the first part of the proof, we followFan and Li (2001).
Let αn = 1√

n
+ λan and ph : R

dh → R be a random function given by

ph(x) = λh‖x‖2

and write

Q(β) =
1

2
‖Y − Xβ‖2

2 + nλ
∑

h

ph(βh),

and
D(αnu) = Q(β0 + αnu) − Q(β0),

for u ∈ R
d. We will show that, for each ǫ, there exists a constant C such that,

for large enough n,

P

{
inf

u : ‖u‖2=C
D(αnu) > 0

}
> 1 − ǫ,

which implies the existence of a local minimizer inside the ball {β0 +αu : ‖u‖2 ≤
C} and therefore a solution β̂ such that ‖β̂ − β0‖2 = OP (αn). Since ph(0) = 0
and Y = Xβ0 + ǫ, we have

D(αn, u) ≥ 1

2
‖Y − X(β0 − αnu)‖2

2 −
1

2
‖Y − Xβ0‖2

2

+ nλ
∑

h∈H0

(
ph(β0

h + αnuh) − ph(β0
h)
)

(21)
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The first two terms in (21) can be written as

1

2
‖ǫ − αnXu‖2

2 −
1

2
‖ǫ‖2

2 =
1

2
α2

nnu⊤Mu(1 + o(1)) − αn〈ǫ, Xu〉,

from which it follows easily that they are of order

O
(
α2

nn‖u‖2
2

)
− OP

(
αn

√
n‖u‖2

)
. (22)

The last term on the right hand side of (21) can be bounded as follows:

nλ
∑

h∈H0

(
ph(β0

h + αnuh) − ph(β0
h)
)

≥ −λn
∑

h∈H0

λhαn‖uh‖2

≥ −‖u‖2αnλnan|H0|
= −‖u‖2OP (nα2

n).

Combining the previous display with (21) and (22), one can conclude that, for
sufficiently large C = ‖u‖2, the positive term O

(
α2

nn‖u‖2
2

)
dominates all the

others.
If λan = O

(
1√
n

)
, then

√
n
(
β̂ − β0

)
= OP (1). Then, since

√
nλλh → ∞ for

each h 6∈ H0, the model selection consistency (6) follows from the same argu-

ments used at the end of the proof of Theorem 3.2. Since the event {Ĥ 6= H} has
vanishing probability, asymptotic normality (8) is easily proved by restricting

to the complementary event {Ĥ = H} and applying the central limit theorem
and Slutsky’s theorem to equation (23) below, taking into account fact that
λan → 0.

Proof of Proposition 4.1. Let β = β1 − β2 . Then Xβ = 0. Assume that β 6= 0.
Using the same notation as in Proposition 4.4 with s = 2|H0|, we get, by
equation (30),

‖Xβ‖2
2

n‖γ‖2
2

≥ 1

λ2
max

− 1

(1 + 2c)δ
> 0,

which gives a contradiction, since δ > λ2
max.

Proof of Theorem 4.2. The proof is an adaptation to the present settings of
arguments use in Wainwright (2006). Let Ĥ = {h : β̂h 6= 0} and set

η̂H = vec

{
λh

β̂h

‖β̂h‖2

, h ∈ Ĥ
}

and
η̂Hc = vec

{
λhzh, h ∈ Ĥc

}
,

where ‖zh‖2 ≤ 1. Using the subgradient conditions, the event O holds if and
only if

β̂H0 = βH0 +

(
1

n
X⊤

H0
XH0

)−1 (
1

n
X⊤

H0
ǫ − λη̂H0

)
(23)
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and

λη̂Hc
0

=
1

n
X⊤

Hc
0
ǫ +

1

n
X⊤

Hc
0
XH0

(
1

n
X⊤

H0
XH0

)−1 (
λη̂H0 −

1

n
X⊤

H0
ǫ

)
(24)

We will use equations (23) and (24) to show

P

{
‖β̂H0 − β0

H0
‖∞ < α

}
→ 1, n → ∞ (25)

and

P

{
1

λh
‖η̂h‖2 < 1, ∀h ∈ Hc

0

}
→ 1, n → ∞, (26)

respectively, where we recall that α = minh∈H0 ‖β0
h‖∞. In turn, (25) and (26)

imply
P(O) → 1, n → ∞,

as claimed. We begin with (25). Write, for simplicity, Σ0 = 1
n
X⊤

H0
XH0 and

consider the d0-dimensional vector Z = Σ−1
0

1
n
X⊤

Hc
0
ǫ. Then, EZ = 0 and VZ =

σ2

n
Σ−1

0 , so that VZi ≤ σ2

nCmin
for each coordinate i of Z. Using standard results

on the maximum of a Gaussian vector (see, e.g., Ledoux and Talagrand, 1991),

E‖Z‖∞ ≤ 3σ

√
log d0

nCmin
(27)

As for the second term on the right hand side of (23), we obtain

λ‖Σ−1
0 η̂H0‖∞ ≤ λ‖Σ−1

0 ‖∞‖η̂H0‖∞ ≤ λ

√
d0

Cmin
max
h∈H0

λh, (28)

where in the last inequality we use the bounds

‖η̂H0‖∞ ≤ max
h∈H0

‖η̂h‖2 ≤ max
h∈H0

λh,

and

‖Σ−1
0 ‖∞ ≤

√
d0‖Σ−1

0 ‖2 ≤
√

d0

Cmin
.

By Markov inequality, and using (27) and (28),

P

(
‖β̂H0 − β0

H0
‖∞ > α

)
≤ E‖β̂H0 − β0

H0
‖∞

α

≤ 1

α

[
E‖Z‖∞ + λ‖Σ−1

0 η̂H0‖∞
]

≤ 1

α

[
3σ

√
log d0

nCmin
+ λ

√
d0

Cmin
max
h∈H0

λh

]
,

which goes to zero under (S2), thus establishing (25).
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Next, we show (26). Rewrite (24) as

η̂Hc
0

= K +
1

λ
W,

where

K =
1

n
X⊤

Hc
0
XH0

(
1

n
X⊤

H0
XH0

)−1

η̂H0

and

W = X⊤
Hc

0

[
I − XH0

(
1

n
X⊤

H0
XH0

)−1

X⊤
H0

]
1

n
ǫ.

Then, for any h ∈ Hc
0,

1

λh
‖η̂h‖2 ≤ 1

λh
‖Kh‖2 +

1

λ

√
dh

λh
‖Wh‖∞. (29)

We bound the first term in the previous equation as follows,

1

λh
‖Kh‖2 ≤

∥∥∥X⊤
h XH0

(
X⊤

H0
XH0

)−1
∥∥∥

2

√∑

h∈H0

λ2
h < 1 − ǫ,

with the last inequality stemming from assumption (S3). As for the second term
in (29), notice that EWh = 0 and

VWh =
σ2

n
X⊤

h

[
I − XH0

(
1

n
X⊤

H0
XH0

)−1

X⊤
H0

]
Xh ≤ σ2

n
‖Xh‖2

2 =
σ2

n
.

By the same arguments used above,

E‖W‖∞ ≤ 3σ

√
log(d − d0)

n
,

hence, in virtue of Markov’s inequality,

P

(
1

λ
max
h∈Hc

0

√
dh

λh
‖W‖∞ >

ǫ

2

)
≤ 6 max

h∈Hc
0

√
dh

λh

σ

λǫ

√
log(d − d0)

n
.

Therefore, using assumption (S4),

P (‖η̂h‖2 > 1 − ǫ/2, for some h ∈ Hc
0) → 0,

which gives (26). The proof is now complete.

Proof of Theorem 4.6. The proof follows closely (Bickel et al., 2007, Theorem
5.1) and is essentially based on Lemma 6.1 in the Appendix. Let β ∈ R

d be
arbitrary, with H(β) ≤ s. On the event A, if

4λ
∑

h∈H′

λh‖β̂h − βh‖2 ≤ ǫ
1

n
‖X(β̂ − β0)‖2

2,
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the claim holds trivially from the first inequality in (37). Consider instead the
complementary case

A1 =

{
ǫ
1

n
‖X(β̂ − β0)‖2

2 < 4λ
∑

h∈H′

λh‖β̂h − βh‖2

}
.

On the event A∩A1, from the first inequality in (37), we get

∑

h∈(H′)c

λh‖β̂h − βh‖2 ≤
(

3 +
4

ǫ

) ∑

h∈H′

λh‖β̂h − βh‖2.

Using the assumption RE(s, 3 + 4/ǫ),we obtain, still on A∩A1,

∑

h∈H′

λ2
h‖β̂h − βh‖2

2 ≤ 1

κ2

1

n
‖X(β̂ − β)‖2

2.

Thus, by the second inequality in (37), on A∩A1,

1

n
‖X(β̂ − β0)‖2

2 ≤ 1

n
‖X(β − β0)‖2

2

+ 4λ

√
|H(β)|
κ

(
1√
n
‖X(β̂ − β0)‖2 +

1√
n
‖Xβ0 − Xβ‖2

)
.

This expression is of the same form as inequality (A.3) in Bunea et al. (2007a).
Following their arguments, we get that, for any a > 1,

1

n

(
‖X(β̂ − β0)‖2

2

)
≤ a + 1

a − 1

1

n
‖X(β − β0)‖2

2 +
8a2

κ2(a − 1)
λ2|H(β)|,

and (13) is established by setting ǫ = 2
a−1 .

Proof of Proposition 4.4. We adapt the arguments used in Lounici (2008, Lemma
2). Let β ∈ R

d such that H′ ≡ H(β), |H′| ≤ s and
∑

(H′)c ‖γh‖2 ≤ c
∑

H′ ‖γh‖2,
where γ = Λβ. Then,

‖XβH′‖2
2

n‖γH′‖2
2

≥ 1

λ2
max

− 1

‖γH′‖2
2

∑

h,h′∈H′

β⊤
h

(
1

n
X⊤

h Xh′

)
βh′

≥ 1

λ2
max

− 1

(2c + 1)δs

(∑
h∈H′ λh‖βh‖2

)2

‖γH′‖2
2

,

(30)

where assumption (U) is used in the second inequality. Denoting with XH′ the
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submatrix of X comprised by {Xh, h ∈ H′}, the last inequality yields

‖Xβ‖2
2

n‖γH′‖2
2

≥ ‖XβH′‖2
2

n‖γH′‖2
2

+ 2
β⊤
H′X⊤

H′X(H′)cβ(H′)c

n‖γH′‖2
2

≥ 1

λ2
max

− 1

(2c + 1)δs

(∑
h∈H′ λh‖βh‖2

)2

‖γH′‖2
2

− 2

‖γH′‖2
2

∑

h∈H′ ,h′∈(H′)c

β⊤
h

(
1

n
X⊤

h Xh′

)
βh′

≥ 1

λ2
max

− 1

(2c + 1)δs

(∑
h∈H′ λh‖βh‖2

)2

‖γH′‖2
2

− 2

(2c + 1)δs‖γH′‖2
2

(∑

h∈H′

λh‖βh‖2

)( ∑

h∈(H′)c

λh‖βh‖2

)

=
1

λ2
max

− 1

(2c + 1)δs

(∑
h∈H′ ‖γh‖2

)2

‖γH′‖2
2

− 2

(2c + 1)δs

(∑
h∈H′ ‖γh‖2

) (∑
h∈(H′)c ‖γh‖2

)

‖γH′‖2
2

≥ 1

λ2
max

− 1

(2c + 1)δs

(∑
h∈H′ ‖γh‖2

)2

‖γH′‖2
2

− 2c

(2c + 1)δs

(∑
h∈H′ ‖γh‖2

)2

‖γH′‖2
2

≥ 1

λ2
max

− s

(2c + 1)δs
− 2cs

(2c + 1)δs

≥ 1

λ2
max

− 1

δ
,

where we have used Cauchy-Schwarz’s inequality in the third and fourth line
and assumption (U) in the third line. Since δ > λ2

max by assumption, we obtain
κ(s, c) > 0.

Proof of Theorem 4.5. In Lemma 6.1 we can now set f0(X) = Xβ0 and β = β0.
Throughout the proof, all the inequalities are valid on the set A. The first
inequality in (37) implies that

∑

h

λλh‖β̂h − β0
h‖2 ≤ 4

∑

h∈H0

λλh‖β̂h − β0
h‖2,

from which it follows

∑

h∈Hc
0

λh‖β̂h − β0
h‖2 ≤ 3

∑

h∈H0

λh‖β̂h − β0
h‖2. (31)
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Similarly, using the second inequality in (37),

1

n
‖X(β̂ − β0)‖2

2 ≤ 4λ
√
|H0|

√∑

h∈H0

λ2
h‖β̂h − β0

h‖2
2. (32)

Combining (31) and (32), and using assumption (RE(|H0|, 3)), we obtain

√∑

h∈H0

λ2
h‖β̂ − β0‖2

2 ≤ 4λ
√

|H0|
κ2

0

, (33)

which yields (11).
Next, in virtue of (33), and using Cauchy-Schwarz’s inequality

∥∥∥Λ(β̂ − β0)
∥∥∥

2
≤

∑

h

λh‖β̂ − β0‖2 ≤ 4
∑

h∈H0

λh‖β̂ − β0‖2

≤ 4
√
|H0|

√∑

h∈H0

λ2
h‖β̂ − β0‖2

2,

which is bounded by 16 λ
κ2
0

|H0|. This implies

‖β̂ − β0‖2 ≤ 16
λ

κ2
0λmin

|H0|,

which is (10).
In order to show (12), we first show that

|Ĥ| ≤ 16

9

Cmax

λ2λ2
min

1

n
‖X(β0 − β̂)‖2

2. (34)

From the subgradient conditions, we get, for each h,

1

n
X⊤

h

(
X(β0 − β̂)

)
+

1

n
X⊤

h ǫ = λλhzh,

where zh = β̂h

‖β̂h‖2

if β̂h 6= 0 and zh is any vector with ℓ2 norm bounded by 1 if

β̂h = 0. Then, by the triangle inequality,

1

n

∥∥∥X⊤
h

(
X(β̂ − β0)

)∥∥∥
2
≥ λλh − 1

n

∥∥X⊤
h ǫ
∥∥
2
≥ 1

2
λλh,

for each h. It then follows that

1

n2

∑

h∈Ĥ

∥∥∥X⊤
h

(
X(β̂ − β0)

)∥∥∥
2

2
≥ |Ĥ|λ2λ2

min

1

4
. (35)

On the other hand, since

XX⊤ =
∑

h

XhX⊤
h ,
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we also have

1

n2

∑

h∈Ĥ

∥∥∥X⊤
h

(
X(β̂ − β0)

)∥∥∥
2

2
≤ 1

n2

(
X(β̂ − β0)

)⊤
XX⊤

(
X(β̂ − β0)

)

≤ Cmax

n
‖X(β̂ − β0)‖2

2, (36)

where the last inequality follows from the fact that 1
nX⊤X and 1

nXX⊤ have the
same maximal eigenvalue. Combining (35) and (36),

|Ĥ| ≤ 4
Cmax

λ2λ2
min

1

n
‖X(β0 − β̂)‖2

2,

which is (34). Inserting equation (11) in (34), we obtain (12).

Proof of Theorem 4.7. Following the results of section A, part IV of Zhou et al.
(2007), assumptions (P1) and (P2) coupled with Berstein’s inequality yield

max
j,k

∣∣∣Σj,k − Σ̂j,k

∣∣∣ = OP

(√
log n

n

)
.

Then,

sup
β∈Bn

|R(β) − R̂(β)| = sup
β∈Bn

∣∣∣γ⊤(Σ − Σ̂)γ
∣∣∣

≤ sup
β∈Bn

max
j,k

∣∣∣Σj,k − Σ̂j,k

∣∣∣ ‖γ‖2
1

≤ sup
β∈Bn

∣∣∣Σj,k − Σ̂j,k

∣∣∣

(
1 +

∑

h

√
dh‖βh‖2

)2

≤ max
j,k

∣∣∣Σj,k − Σ̂j,k

∣∣∣ (1 + bn)2

= oP (1).

where, in the second inequality, we used the bound ‖γ‖1 ≤ 1 +
∑

h

√
dh‖βh‖2

and the last step follows from (15). Therefore,

sup
β∈Bn

|R(β) − R̂(β)| p→ 0,

which implies persistence with respect to {Bn}, since

|R(β̂n) − inf
β∈Bn

R(β)| ≤ 2 sup
β∈Bn

|R(β) − R̂(β)|.

The second part of the statement follows for the simple chain of inequalities
∑

h

√
dh‖βh‖2 =

∑

h

√
dh‖βh‖2I{βh 6=0}

≤ ‖β‖2

√∑

h

dhI{βh 6=0}

≤ C
√

dmax

√
|{h, βh 6= 0}|,



Y. Nardi and A. Rinaldo/The log-linear group lasso estimator 629

where ‖β‖2 ≤ C holds uniformly over n for some constant C in virtue of (P1)
and the assumed positivity of the minimal eigenvalue of the covariance matrix of
the predictors. Under (16), this implies Cn ⊂ Bn for each n and thus persistency
with respect to {Cn}n.

6. Appendix

Proof of Lemma 4.3. Let Vh = 1√
nσ

X⊤
h ǫ, so that Vh ∼ Ndh

(0, I) and ‖Vh‖2
2 ∼

χ2
dh

. By the union bound,

P(Ac) ≤
∑

h

P

(
‖Vh‖2

2 ≥ 1

4

n

σ2
λ2λ2

h

)
=
∑

h

P

(
‖Vh‖2

2 − dh ≥ 1

4

n

σ2
λ2λ2

h − dh

)

=
∑

h

P

(
‖Vh‖2

2 − dh ≥
√

2dhxh

)
,

where xh = 1√
2

(
1
4

n

σ2 λ2λ2
h√

dh
−√

dh

)
. For large enough n, we can apply the tail

bound inequality for a variable distributed like χ2
dh

(see, e.g. Cavalier et al.,
2002), yielding

P(Ac) ≤
∑

h

exp




− x2
h

2
(
1 + xh

√
2

dh

)




 .

Because of (A), for large enough n,

exp

{
− x2

h

2
(
1 + xh

√
2

dh

)
}

≤ exp

{
− x2

h

3
√

2 xh√
dh

}
= exp

{
− 1

3
√

2

( n

σ2
λ2λ2

h − dh

)}
,

from which it follows, once again using (A), that

P(Ac) ≤ exp

{
log |H| − 1

3
√

2
min

h

( n

σ2
λ2λ2

h − dh

)}
→ 0.

This concludes the proof.

Lemma 6.1. Let EY = f0(X), for some function f0 and assume (N). On the
event A, for any β ∈ R

d with block support set H′ = {h : βh 6= 0},

1

n
‖Xβ̂ − f0(X)‖2

2 +
∑

h

λλh‖β̂h − βh‖2

≤ 1

n
‖Xβ − f0(X)‖2

2 + 4λ
∑

h∈H′

λh‖β̂h − βh‖2

≤ 1

n
‖Xβ − f0(X)‖2

2 + 4λ
√
|H′|

√∑

h∈H′

λ2
h‖β̂h − βh‖2

2, (37)



Y. Nardi and A. Rinaldo/The log-linear group lasso estimator 630

Proof of Lemma 6.1. Following the derivation in Bunea et al. (2007a), for an
arbitrary β ∈ R

d with block support set H′, it holds that

1

2n
‖Xβ̂ − f0(X)‖2

2 ≤ 1

2n
‖Xβ − f0(X)‖2

2 +
∑

h

λλh‖βh‖2

−
∑

h

λλh‖β̂h‖2 +
∑

h

W⊤
h (β̂h − βh), (38)

where Wh = 1
nX⊤

h ǫ. By Cauchy-Schwarz’s inequality, on the event A,

∑

h

|W⊤
h (β̂h − βh)| ≤ 1

2

∑

h

λλh‖β̂h − βh‖2. (39)

Using the last display, and adding and subtracting 1
2

∑
h λλh‖β̂h−βh‖2 to both

sides of (38), the term

1

2n
‖Xβ̂ − f0(X))‖2

2 +
1

2

∑

h

λλh‖β̂h − βh‖2

is bounded by

1

2n
‖Xβ − f0(X)‖2

2 +
∑

h

λλh‖β̂h − βh‖2 +
∑

h

λλh‖βh‖2 −
∑

h

λλh‖β̂h‖2,

which, in turn, is no larger than

1

2n
‖Xβ − f0(X)‖2

2 +
∑

h∈H′

λλh‖β̂h − βh‖2 +
∑

h∈H′

λλh

(
‖βh‖2 − ‖β̂h‖2

)
,

all the above inequalities being valid on A. Then, from (38), and applying the
triangle inequality to the last display, we obtain, still on A,

1

2n
‖Xβ̂ − f0(X)‖2

2 +
1

2

∑

h

λλh‖β̂h − βh‖2

≤ 1

2n
‖Xβ − f0(X)‖2

2 + 2λ
∑

h∈H′

λh‖β̂h − βh‖2

≤ 1

2n
‖Xβ − f0(X)‖2

2 + 2λ
√
|H′|

√∑

h∈H′

λ2
h‖β̂h − βh‖2

2,

where the second inequality stems from Cauchy-Schwarz’s inequality. The last
expression, multiplied by 2, is (37).
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Contingency Tables and High-Dimensional Log-Linealr Models for Alternative
Splicing in Full-Length cDNA Libraries, Research Report 132, Swiss Federal
Institute of Technology.

Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle re-
gression, Annals of Statistics, 32, 407–499. MR2060166

Fan, J. and Li, R. (2001). Variable selection via non-concave penalized likelihood
and its oracle properties, Journal of the American Statistical Association,
96(456), 1348–1360. MR1946581

Fan J. and Peng, H. (2004). Nonconcave penalized likelihood with a diverging
number of parameters, Annals of Statistics, 32(3), 928–961. MR2065194

Geyer, C. (1994). On the asymptotics of constrained-M estimation, Annals of
Statistics,, 22, 1993–2010. MR1329179

Gilbert, A. C. and Strauss, M. J. (2006). Algorithms for Simultaneous Sparse
Approximation Part II: Convex Relaxation, Signal Processing, 86, 572–588

Greenshtein, E. and Ritov, Y. (2004). Persistence in high-dimensional predic-
tor selection and the virtue of overparametrization, Bernoulli, 10, 971–988.
MR2108039

Greenshtein, E. (2006). Best subset selection, persistence in high-dimensional
statistical learning and optimization under ℓ1 constraint, Annals of Statistics,
34(5), 2367–2386. MR2291503

Kim, Y., Kim, J. and Kim, Y. (2006). Blockwise sparse regression. Statistica
Sinica, 16(2). MR2267240

Knight, K. and Fu, W. (2000). Asymptotics for Lasso-type estimators, Annals
of Statistics, 28(5), 1356–1378. MR1805787

Koltchinskii, V. (2005). Sparsity in Penalized Empirical Risk Minimization,
manuscript.

Ledoux, M. and Talagrand, M. (1991). Probability in Banach spaces: isoperime-
try and processes. Springer-Verlag. MR1102015

Lounici, K. (2008). Sup-norm convergence rate and sign concentration property
of Lasso and Dantzig estimators, Electronic Journal of Statistics, 2, 90–102.
MR2386087

Massart, P. (2007). Concentration Inequalities and Model Selection, Lecture
Notes in Mathematics, Vol. 1896, Springer. MR2319879

http://www.ams.org/mathscinet-getitem?mr=2351101
http://www.ams.org/mathscinet-getitem?mr=2312149
http://www.ams.org/mathscinet-getitem?mr=1922543
http://www.ams.org/mathscinet-getitem?mr=2060166
http://www.ams.org/mathscinet-getitem?mr=1946581
http://www.ams.org/mathscinet-getitem?mr=2065194
http://www.ams.org/mathscinet-getitem?mr=1329179
http://www.ams.org/mathscinet-getitem?mr=2108039
http://www.ams.org/mathscinet-getitem?mr=2291503
http://www.ams.org/mathscinet-getitem?mr=2267240
http://www.ams.org/mathscinet-getitem?mr=1805787
http://www.ams.org/mathscinet-getitem?mr=1102015
http://www.ams.org/mathscinet-getitem?mr=2386087
http://www.ams.org/mathscinet-getitem?mr=2319879


Y. Nardi and A. Rinaldo/The log-linear group lasso estimator 632
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