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ON THE ASYMPTOTIC STABILITY
IN FUNCTIONAL DIFFERENTIAL EQUATIONS

A. O. IGNATYEV

(Communicated by Hal L. Smith)

Abstract. Consider a system of functional differential equations dx/dt =
f(t, xt) where f is the vector-valued functional. The classical asymptotic sta-
bility result for such a system calls for a positive definite functional V (t, ϕ)
and negative definite functional dV /dt. In applications one can construct a
positive definite functional V , whose derivative is not negative definite but is
less than or equal to zero. Exactly for such cases J. Hale created the effective
asymptotic stability criterion if the functional f in functional differential equa-
tions is autonomous (f does not depend on t), and N. N. Krasovskii created
such criterion for the case where the functional f is periodic in t. For the
general case of the non-autonomous functional f V. M. Matrosov proved that
this criterion is not right even for ordinary differential equations. The goal of
this paper is to prove this criterion for the case when f is almost periodic in
t. This case is a particular case of the class of non-autonomous functionals.

1. Introduction

Let x = (x1, . . . , xn) ∈ Rn, t ∈ R, |x| =
√
x2

1 + · · ·+ x2
n. For a given h > 0, C

denotes the space of continuous functions mapping [−h; 0] into Rn and for ϕ ∈ C,
‖ϕ‖ = sup−h≤θ≤0 |ϕ(θ)|. According to [4] we denote

CH = {ϕ ∈ C : ‖ϕ‖ ≤ H}.
If x is a continuous function of u defined on −h ≤ u < A,A > 0, and if t is a fixed
number satisfying 0 ≤ t < A, then xt denotes the restriction of x to the segment
[t− h; t] so that xt is an element of C defined by xt(θ) = x(t+ θ) for −h ≤ θ ≤ 0.

Consider a system of functional differential equations

dx

dt
= f(t, xt)(1)

and obtain conditions on a Lyapunov functional to insure that the zero solution is
asymptotically stable.

In this system dx/dt denotes the right-hand derivative of x at t, t is time, and
f(t, ϕ) ∈ Rn is defined on [0;∞)× CH ; f(t; 0) ≡ 0.
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1754 A. O. IGNATYEV

According to [4] we denote by x(t0, ϕ) a solution of (1) with initial condition
ϕ ∈ CH where xt0(t0, ϕ) = ϕ, and we denote by x(t, t0, ϕ) the value of x(t0, ϕ) at t
and xt(t0, ϕ) = x(t + θ, t0, ϕ), −h ≤ θ ≤ 0.

It is assumed that the vector-valued functional f(t, ϕ) is continuous on [0;∞)×
CH so that a solution will exist for each continuous initial condition. For continua-
tion of solutions, we suppose that f takes closed bounded sets of [0;∞)× CH into
closed bounded sets of Rn.

Let V (t, ϕ) be a continuous functional defined for t ≥ 0, ϕ ∈ CH . The upper
right-hand derivative of V along solutions of (1) is defined to be [9]

dV (t, xt(t0, ϕ))
dt

= lim
∆t→+0

{V (t+ ∆t, xt+∆t(t0, ϕ))− V (t, xt(t0, ϕ))} 1
∆t

.

If V satisfies a Lipschitz condition in the second argument, then this limit is uniquely
determined.

The classical criterion of asymptotic stability of zero solution of equations (1),
which was obtained by N. N. Krasovskii [10], assumes the existence of a positive
definite functional V and a negative definite functional dV /dt. In applications
one can constract a positive definite functional V , whose derivative is not negative
definite but is less than or equal to zero. Exactly for such cases J. Hale [8] created
the effective asymptotic stability criterion if the functional f in equations (1) is
autonomous (f does not depend on t), and N. N. Krasovskii [10] created such
criterion for the case where the operator f is periodic in t. For the general case of
the non-autonomous operator f V. M. Matrosov [12] proved that this criterion is
not right even for ordinary differential equations. The goal of this paper is to prove
this criterion for the case when f is almost periodic in t. This case is a particular
case of the class of non-autonomous operators.

2. Definitions and preliminary results

Definition 1 ([1], [2], [3], [5], [6], [11], [14], [15]). A continuous function F (t) :
R → Rn is called almost periodic if for every ε > 0 there exists l = l(ε) > 0
such that any segment [α;α + l], α ∈ R, contains at least one number τ such that
|F (t+ τ) − F (t)| < ε for every t ∈ R. A number τ is called an ε-almost period of
F .

Let us introduce the following definition which is analogous to [11], [14].

Definition 2. A continuous functional F (t, ϕ) : R × Cr → Rn (0 < r < ∞) is
called uniformly almost periodic in t if for every ε > 0 there exists l = l(ε, r) > 0
such that any segment [α;α + l], α ∈ R, contains at least one number τ such that
|F (t+ τ, ϕ)− F (t, ϕ)| < ε for every t ∈ R,ϕ ∈ Cr.

Remark. A continuous function F (t), which satisfies Definition 1 is called uniformly
almost periodic in papers [1], [2], [3], [11], so Definitions 1 and 2 are somewhat
different from corresponding Definitions in [1], [2], [3], [11].

Lemma 1 ([11]). Let F1(t), ..., FN (t) : R→ Rn be almost periodic functions. Then
for every ε > 0 there exists l = l(ε) > 0 such that any segment [α;α + l], α ∈ R,
contains a number τ such that

|Fi(t+ τ) − Fi(t)| < ε, i = 1, 2, ..., N ; t ∈ R.
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We denote

CH(L) = {ϕ ∈ CH : |ϕ(x1)− ϕ(x2)| ≤ L|x1 − x2|
for each x1, x2 ∈ [−h; 0]} ⊂ CH .

Lemma 2. If the functional F (t, ϕ) : R × CH(L) → Rn is Lipschitzian in ϕ and
almost periodic in t for every fixed ϕ ∈ CH(L), then it is uniformly almost periodic
in t.

Proof. Since the functional F (t, ϕ) satisfies Lipschitz conditions in ϕ, then

|F (t, ϕ)− F (t, ψ)| ≤ L1‖ϕ− ψ‖(2)

where L1 is the Lipschitz constant.
Let ε > 0 be any real number. CH(L) is the set of uniformly bounded equicon-

tinuous functions, therefore CH(L) is a compact set. Hence there is a finite set of
functions ϕ1, ..., ϕN such that ϕj ∈ CH(L) (j = 1, ..., N) and for each ϕ ∈ CH(L)

there exists a number i (1 ≤ i ≤ N) such that

‖ϕ− ϕi‖ < ε

3L1
.(3)

From Lemma 1 it follows that there exists l > 0 such that in any segment [α;α+ l]
there exists a number τ , such that

|F (t, ϕi)− F (t+ τ, ϕi)| < ε

3
(4)

for each t ∈ R, i = 1, ..., N .
We will now show that for every ϕ ∈ CH(L), each number τ , which satisfies

inequality (4), is an ε-almost period of the functional F (t, ϕ). Let ϕk be the same
element of the set ϕ1, ..., ϕN for which ‖ϕ− ϕk‖ < ε/(3L1). Then from (2)-(4) we
obtain

|F (t+ τ, ϕ)− F (t, ϕ)| ≤ |F (t+ τ, ϕ)− F (t+ τ, ϕk)|
+|F (t+ τ, ϕk)− F (t, ϕk)|+ |F (t, ϕk)− F (t, ϕ)|

<
ε

3
+ 2L1 · ε

3L1
= ε.(5)

The inequality (5) proves Lemma 2.

3. Main results

In this section we consider the system of functional differential equations (1)
under the assumptions above. We also assume that the functional f(t, ϕ) is Lips-
chitzian in ϕ and almost periodic in t for every fixed ϕ ∈ CH .

Lemma 3. Consider the solution x(t0, ϕ0) of the system (1). We suppose that
xt(t0, ϕ0) belongs to Cr (0 < r < H) for t ≥ 0. Let {εk} be a monotonically
approaching zero sequence of positive numbers and {τk} a sequence of εk-almost
periods of f(t, ϕ) (for every εk there corresponds an εk-almost period τk). Then the
limit relation

lim
k→∞

‖xt∗(t0, ϕk)− xt∗+τk
(t0, ϕ0)‖ = 0(6)

holds, where ϕk = xt0+τk
(t0, ϕ0) and t∗ is a fixed moment of time which is more

than t0 (t∗ > t0).
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Proof. Consider the solutions of the system (1)

x(t0, ϕk)(7)

and

x(t0 + τk, ϕk).(8)

For the time ∆t = t∗ − t0 the function ϕk moves to the function xt∗(t0, ϕk) along
the trajectory (7) and ϕk moves to the function

xt∗+τk
(t0 + τk, ϕk) = xt∗+τk

(t0, ϕ0)

along the solution (8). The restriction of the solution x of the system (1),
xt(t0 + τk, ϕk), with initial boundary value problem ϕk = xt0+τk

may be inter-
preted as one of the system

dx

dt
= f(t+ τk, xt)(9)

with initial function ϕk and initial moment of time t0. If t is large enough, then
xt ∈ CH(L). But according to Lemma 2 the right-hand side of the system (1) is
uniformly almost periodic in t on the set R×CH(L), therefore the right-hand sides
of the systems (1), (9) differ from each other no matter how small, if k is a large
enough natural number. Hence the limit relation (6) follows.

Theorem 1. Let functional differential equations (1) satisfy the above conditions.
There exists a continuous functional V (t, ϕ) : R×CH → R which is locally Lipschitz
in ϕ such that the following conditions are fulfilled on the set R× CH :

(i) a(|ϕ(0)|) ≤ V (t, ϕ) ≤ b(‖ϕ‖), where a, b ∈ K; K is a class of Hahn’s functions
[7], [13];

(ii) V (t, ϕ) is almost periodic in t for each fixed ϕ ∈ CH ;
(iii) dV /dt ≤ 0, dV /dt 6≡ 0 on each solution of the system (1).

Then the solution

x = 0(10)

of functional differential equations (1) is asymptotically stable.

Proof. From conditions (i), (iii) it follows that the solution (10) is uniformly stable
[8], [9]. Let ε ∈ (0;H) be any positive number. Denote by t0 ∈ R the initial
moment of time. By the stability of the zero solution there exists δ > 0 such that
if ϕ ∈ Cδ, then xt(t0, ϕ) ∈ Cε for every t ≥ t0. Choose such a δ > 0 and show that
any solution x(t0, ϕ) with ϕ ∈ Cδ tends to zero as t→∞. Suppose that this is not
true, i.e. there exist η > 0 and ϕ0 ∈ Cδ such that |x(t, t0, ϕ0)| > η > 0 as t ≥ t0.

The function V (t) = V (t, xt(t0, ϕ0)) is monotonically non-increasing because
dV/dt ≤ 0. Hence there exists the limit

lim
t→∞V (t) = lim

t→∞ V (t, xt(t0, ϕ0)) = V0 ≥ a(η) > 0

and it is easy to see that V (t, xt(t0, ϕ0)) ≥ V0 for t ∈ [t0;∞).
Consider some monotonically approaching zero sequence {εk} of positive num-

bers, where ε1 is sufficiently small. By Lemma 2 for every εi there exists a sequence
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of εi-almost periods τi,1, τi,2, ..., τi,n, ...→∞ for functionals f(t, ϕ) and V (t, ϕ), such
that inequalities

|V (t+ τi,n, ϕ)− V (t, ϕ)| < εi,

|f(t+ τi,n, ϕ)− f(t, ϕ)| < εi

hold for each t ∈ R,ϕ ∈ Cε. Without loss of generality one can suppose τi,n < τi+1,n

for every i, n. Designate τk = τk,k.
Consider the sequence of functions ϕk = xt0+τk

(t0, ϕ0) (k = 1, 2, ...). It is a
bounded sequence of equicontinuous functions because ϕk ∈ Cε, therefore there is
a limit function ϕ∗ of this sequence. Without loss of generality one can assume the
sequence ϕk itself converges to ϕ∗. Because of continuity and almost periodicity of
the functional V (t, ϕ) we obtain

V (t0, ϕ∗) = lim
n→∞V (t0, ϕn)

= lim
k→∞

lim
n→∞V (t0 + τk, ϕn)

= lim
n→∞V (t0 + τn, ϕn)

= lim
n→∞ V (t0 + τn, xt0+τn(t0, ϕ0)) = V0.

Now consider the solution x(t0, ϕ∗). From the condition (iii) of the theorem, the
existence of such a moment of time t∗ (t∗ > t0) follows, when the inequality

V (t∗, xt∗(t0, ϕ∗)) = V1 < V0

holds.
Solutions of functional differential equations (1) are continuous in initial data,

so one can write

lim
k→∞

‖xt∗(t0, ϕk)− xt∗(t0, ϕ∗)‖ = 0

because

lim
k→∞

‖ϕk − ϕ∗‖ = 0.

Hence it follows that

lim
k→∞

V (t∗, xt∗(t0, ϕk)) = V1(11)

Using the uniform almost periodicity property of f(t, ϕ) and the limit relation
(6), we obtain the inequality

‖xt∗(t0, ϕk)− xt∗+τk
(t0, ϕ0)‖ ≤ γk(12)

where γk → 0 as k → ∞. Because of the uniform almost periodicity property of
V (t, ϕ) we have

|V (t∗, ϕ)− V (t∗ + τk, ϕ)| < εk(13)

for every ϕ ∈ CH , and from conditions (11), (12) it follows that

|V (t∗, xt∗+τk
(t0, ϕ0))− V1| < ηk,(14)

where ηk → 0 as k →∞.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1758 A. O. IGNATYEV

From (13) we obtain

|V (t∗, xt∗+τk
(t0, ϕ0))− V (t∗ + τk, xt∗+τk

(t0, ϕ0))| < εk.(15)

From (14), (15) we have

|V (t∗ + τk, xt∗+τk
(t0, ϕ0))− V1| < ηk + εk,(16)

where ηk + εk → 0 as k →∞.
On the other hand

lim
k→∞

V (t∗ + τk, xt∗+τk
(t0, ϕ0)) = V0.(17)

The relations (16), (17) are in contradiction to the inequality V1 < V0. This con-
tradiction proves Theorem 1.

Theorem 2. Let the right-hand side of functional differential equations (1) be such
that there exists a continuous functional V (t, ϕ) : R × CH → R which is locally
Lipschitz in ϕ such that the following conditions are fulfilled on the set R× CH :

(i) |V (t, ϕ)| ≤ b(‖ϕ‖), b ∈ K;
(ii) V (t, ϕ) is almost periodic in t for each fixed ϕ ∈ CH ;
(iii) for every t ∈ R and for every δ > 0 there exists ϕ ∈ Cδ, such that V (t, ϕ) > 0;
(iv) dV/dt ≥ 0; dV/dt 6≡ 0 on each solution of the system (1).

Then the solution (10) of functional differential equations (1) is unstable.

Proof. Let ε ∈ (0;H). We shall take arbitrary t0 ∈ R and arbitrary small δ > 0.
Let us choose ϕ0 ∈ Cδ such that V (t0, ϕ0) > 0. We can do it by condition (iii)
of the theorem. By the condition (i) there exists η > 0 such that |V (t, ϕ)| <
V (t0, ϕ0) for every ϕ ∈ Cη. The function V (t) = V (t, xt(t0, ϕ0)) is nondecreasing,
i.e. V (t, xt(t0, ϕ0)) ≥ V (t0, ϕ0) for t ≥ t0. It means that ‖xt(t0, ϕ0)‖ ≥ η for each
t ≥ t0. We shall show that there exists a moment of time t1 (t1 > t0), such that
‖xt1(t0, ϕ0)‖ > ε. Suppose that this is not true, i.e. inequalities

η ≤ ‖xt(t0, ϕ0)‖ ≤ ε(18)

hold for each t > t0.
Using inequalities (18) and the condition (iv) of the theorem, we obtain a contra-

diction by means of the same way as in the proof of Theorem 1. We omit the literal
repetition of these reasonings. The contradiction proves that the semitrajectory
x(t0, ϕ0) leaves Cε. The proof is complete.

Example. Consider the non-linear equation

dx

dt
= −2x3(t) + 4x2(t)x(t − h)

+ (−12 + 3 sin2(
√

2t) + 3 sin2 t)x(t)x2(t− h) + 4x3(t− h)(19)
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and the functional

V (t, xt) =
1
2
x2(t) +

∫ t

t−h

x4(θ)dθ.

Its time derivative dV/dt along the solutions of (19) is

dV

dt
=

1
2
· 2x(t) [−2x3(t) + 4x2(t)x(t − h)

+ (−12 + 3 sin2(
√

2t) + 3 sin2 t)x(t)x2(t− h) + 4x3(t− h)
]

+ x4(t)− x4(t− h)

= −2x4(t) + 4x3(t)x(t− h) + (−12 + 3 sin2(
√

2t) + 3 sin2 t)x2(t)x2(t− h)

+ 4x(t)x3(t− h) + x4(t)− x4(t− h)

= −x4(t) + 4x3(t)x(t − h)− 6x2(t)x2(t− h) + 4x(t)x3(t− h)− x4(t− h)

+ (−6 + 3 sin2(
√

2t) + 3 sin2 t)x2(t)x2(t− h)

= − [x(t) − x(t− h)]4 − 3(2− sin2(
√

2t)− sin2 t)x2(t)x2(t− h).

For any ε > 0 small enough there exists a sequence t1, t2, . . . , tn, · · · → +∞ such
that

0 < 2− sin2(
√

2ti)− sin2 ti < ε (i = 1, 2, . . . ).

The right-hand side of the equation (19) is not periodic in t. Hence we cannot
apply Krasovskii’s corresponding theorems on the asymptotic stability, but we can
use Theorem 1 because the right-hand side of (19) is almost periodic in t and
dV/dt < 0 for each t > 0. Therefore the zero solution of (19) is asymptotically
stable.
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