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1. Introduction
The purpose of the present paper is to develop a systematic method of reduction of

problems of estimation and testing hypotheses to similar problems on normal distribu-
tions. The method proposed is only valid asymptotically and but little is known about
its performance for samples of finite size.
To describe more precisely the questions investigated it would be necessary to proceed

to an historical review of large sample theory. For brevity and simplicity we shall re-
strict ourselves to the key papers of J. Neyman and A. Wald. The first of these authors
introduced in [11 what are called best asymptotically normal regular estimates (B.A.N.
for short). The situation considered by Neyman is one in which the distributions are of
a multinomial nature, but the same techniques apply to families of the Koopman-Dar-
mois type (see [21). Part of the motivation for the introduction of B.A.N. estimates is
that the maximum likelihood estimates are, even in such a "simple" case, very often
difficult to obtain. Furthermore, the B.A.N. estimates behave asymptotically very much
like the maximum likelihood estimates.

In sharp contrast with the preceding, Wald [3] considers classes of densities restricted
only by regularity conditions. In such a case, sufficient statistics of fixed dimensionality
do not usually exist, so that the methods used by Wald are by necessity different from
those of Neyman. Wald confines his attention to maximum likelihood estimates and tests
based on these estimates. A fundamental result of Wald is that, under certain conditions,
the maximum likelihood estimates are "asymptotically sufficient." Further, by means of
suitable set transformations it is possible to associate to each test problem on the original
distributions a closely related, though not equivalent, problem on normal distributions.
The asymptotic sufficiency of the maximum likelihood estimates would make Neyman's
techniques available to the statistician if only he could obtain the values of the estimates.
Since Wald's reasoning relies heavily on the fact that maximum likelihood estimates are
roots of the corresponding equations, it is not at all clear that the same results would re-
main valid for approximate maximum likelihood estimates. It is even less clear that the
results would hold when the maximum likelihood estimates are not solutions of the rele-
vant equations, a circumstance which occurs often on boundaries of the parameter
space.
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In the present paper the author has attempted to describe a method by which results
similar to those of Wald's can be obtained, still retaining a large amount of freedom in
the choice of the estimates. It will be seen that even though maximum likelihood esti-
mates might not be consistent or even might not exist, it is possible under certain condi-
tions to obtain estimates which are consistent, asymptotically normal and asymptotically
sufficient by using the averages of the logarithmic derivatives of the densities. Although
the existence of such estimates is proved by a procedure which provides a particular
estimate, it is clear that in most cases a whole class of such estimates is readily available.

Finally, the method presented here leads to proofs of asymptotic optimality of cer-
tain tests proposed by Neyman in [4].

2. Notation and assumptions

Although the following assumptions are rather stringent, they seem to cover a large
variety of problems. They will be referred to as assumptions (A) and used throughout
unless the contrary is explicitly specified.

Let 0 be a parameter set indexing the states of nature. Let J' be the space where the
observable variables take their values. It is assumed that a o-field 4 of subsets of X has
been chosen and that to each 0 E 0 there corresponds a probability measure Pe on 4.

ASSUMrPTION 1. Xis a Euclidean space and4 is the field of Borel subsets ofX. The space
0 is a locally compact subset of an r-dimensional Euclidean space g.

ASSUMPTION 2. Observations can be made on a sequence of independent random variables
IXJi, j = 1, 2,- *, taking their values in A. The distribution of the sequence {Xi} is the
product measure corresponding to one of the measures Pe, 0 E 0.
ASSUPTION 3. Pe, = Pe, implies 01 = 02.
ASSUMPTION 4. There exists on 4 a measure ;, finite on compacts and such thatfor every

0 E 0 the measure Pe admits a density with respect to P.
It will be assumed that for each 0 E 0 a particular value p(x, 0) of the density dPe/dv

has been selected.
ASSUPTION 5. Thefunction 4(x, 0) = log p(x, 0) is for each x E Xafinite continuous

function of 0.
We pass now to assumptions relative to the differentiability of 4). It happens to be

particularly convenient to make use of a rather specific form of the remainder term in
Taylor's formula, and the assumptions are stated with due consideration of this. It is
often convenient and sometimes necessary to make use of local coordinate systems in-
stead of a fixed Cartesian system as assumed here. The modifications necessary for such
considerations would complicate the arguments without bringing in essentially new
features. Furthermore, the necessary modifications are rather obvious so that we shall
limit ourselves to the simplest case.

It will be assumed that 0 does not have any isolated points and further that there is a
set Q containing 0 such that each point of 0 possesses in Q a convex neighborhood.

Furthermore, it will be assumed that to each couple (x, t) with x E A' and t E it
there corresponds a 1 X r matrix A (x, t) and an r X r symmetric matrix B(x, t) in such
a way that the following properties hold.

ASSUMPTION 6. For each x E AX the functions t -* A (x, t) and t -+ B(x, t) are continuous
functions of t on D. For each t E Q the functions x -+ A (x, t) and x -, B(x, t) are Borel
measurable in x.
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ASSUMPTION 7. For every 0 E 0 there is a neighborhood Ve of 0 in Q and a numerical
function He(x) such that

(a) For a given 0 E 0 the integrals

(1) fHe (x) p (x, t) dv

are uniformly convergent for t E V. n 0.
(b) If t E V. every element of B(x, t) is bounded in absolute value by He(x).
(c) If t and T are two elements of V. n 0 then

(2) -1 (x, t) - 4 (x, T) =A (x, T) (t- T) -a(t- r) 'B (x; Tr, t) (t- T)
with
(3) B (x; T, t) =2] (1-X)B[x; T+)X(t-iT)]dX.

ASSUMPTION 8. For every 0 E 0 we have

(4) E{A(X, 0) }0=o
(5) E{B(X, 0) 0} =E{A'(X, 0) A(X, 0) I0} =r(0),
say. Furthermore, r(o) is positive definite.
A point {xi, X2,* * *, xn} in the product of n copies of Xwill be denoted by z. and the

corresponding random variable by Z.. If the distribution of Z. is the product measure
POn the corresponding density with respect to the product measure v' will be denoted by

17 p(X, 0) = p-(zn, 0).
i-1
To simplify formulas we shall denote by A.(t) the row matrix A,(t) =

n n

(1/n) A(xj, t) and by Bn(t) the square matrix Bn(t) = (l/n) EB(xj, t). Similarly
31 i=l

1',(zn, t) will be used to represent E '(x-, t). It will often be convenient to consider

A^(t) and Bn(t) as random variables and this without changing the notation. The inter-
pretation will always be clear from the context. Norms of vectors or matrices will be
denoted by double bars.

Let S be a Euclidean space and let Af be the space of bounded signed measures on S.
On fweshallconsideranormdefinedby 111u|| = ,u+(S) + ,A-(S) = sup {,i(A) + ,A(Ac);
A E 4}. Furthermore, we shall use on Af the topology T, and the associated uniform
structure defined by neighborhoods of the origin of the generic type

(6) V=I,u:Ifujdp.I1; j=1,2,---,k},
where the functions uj are continuous and bounded on S. The corresponding structures
obtained by restricting the uj's to be continuous and to vanish outside a compact will be
called the vague topology and the vague uniform structure.

For subsets of a vector space the symbols A + B and eA with e real will be given the
usual meaning.

If Xk is the product of k copies of X, an estimate depending on Zk is a function Tk from
Xk to the Euclidean space g containing 0. Such estimates will be called strict if their
range is a subset of 0.
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We shall not assume that estimates are necessarily measurable functions, the reason
for this being that the measurability of estimates obtained by the usual procedures is
often awkward to check. If measurability is used or needed we shall explicitly mention
the fact.

The reader should beware of the fact that lack of measurability entails some complica-
tions. Thus, almost sure convergence does not imply convergence in probability. Further,
the theorems due to Slutsky [5] and Cramer [6] have to be reinterpreted since nonmeasur-
able functions do not have distributions. The necessary modifications being evident, we
shall not dwell on this at any length. Upper and lower asterisks will be used occasionally
for upper integrals, outer measures, etc.

The assumptions (A) given above being somewhat stringent, it is useful to keep in
mind examples where they are satisfied. Note that the assumptions (A) do not imply
that 0 has any interior point in g. In fact, e could be nowhere dense in g.

Some extreme examples satisfying assumptions (A) have been used by C. Kraft and
the author [7] to show that assumptions (A) do not imply the consistency of maximum
likelihood estimates, or when the method applies, the consistency of minimum x2 esti-
mates.

More specifically, assumptions (A) do not imply the existence of the maximum likeli-
hood estimates. Even if the maximum likelihood estimates exist and are uniquely defined,
assumptions (A) do not imply their consistency. Examples of a very regular nature satis-
fying assumptions (A) are the exponential families constructed as follows. Let ,u be an
arbitrary measure on a Euclidean space {J, 41 . The set S of values of s E J for which
the integral K-1(s) = f exp(s'x)du is finite is always a convex subset of Jr. If the linear
dimension of S is smaller than the dimension of X, it is possible to reduce the dimen-
sionality of the variable X by the same amount; hence we shall assume that Z and
S have both been reduced to their minimum dimension. Let so be a point interior
to S in Jr and let v be the measure defined by v(A) =f exp(sox)d,i. Let p(x, s)
= K(s) exp [x'(s - so)] be considered as a density with respect to v. If 0 is an arbitrary
open subset of S the family {p(x, s), s E 0} satisfies assumptions (A). More gen-
erally, let 6 be an arbitrary open subset of a Euclidean space. Let 0 -> s(0) be a
twice continuously differentiable map from e to the interior of S such that O1 # 02
implies s(01) $d S(02). The resulting family {p[x, s(0)1; 0 E 6} satisfies assumptions
(A). The same assumptions (A) are still satisfied if 6 and s(0) being as above,
one considers only the family {p[x, s(O)J; 0 E 0 where 0 is a subset of 0, locally com-
pact and without isolated points. As an extreme example of circumstances where as-
sumptions (A) are satisfied consider the following: Let Q be an open subset of the real
line subject only to the restriction that its connected components have finite length.
For instance, Q might be the complement in (-1, +2) of the Cantor set, or Q might be
the real line deprived of the integers. Order the intervals composing El in a sequence
{Jk}, k = 1, 2,-, and order the rationals of the open interval (1, 2) in a sequence
I ak}, k = 1, 2,*.- For 0 E Jk let p(0) = ak, let X(0) be the reciprocal of the length of Jk
and let #(0) be the lower bound of the interval Jk.

Let X be a two-dimensional random vector having a normal distribution with the
identity as covariance matrix. Suppose that for 0 E Q1 the expectation of the coordinates
of X are, respectively, p(0) cos { 27rX(0) [0 -,(O)] } and p(O) sin { 2irX(0) [0 - i#()] }. One
verifies immediately that one can satisfy assumptions (A) by taking a sequence of in-
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dependent random vectors having the above characteristics, choosing 0 to be either fl
itself or any locally compact subset of Q without isolated points.

3. Preliminary lemmas
In order to make the proofs of the main theorems more understandable and yet

reasonably complete, some of the relevant lemmas have been collected in this section.

Let B,(t) = (1/n) S B(XJ, t) and let C(t, T) = E{B(X, t) |T.
j-1

LEMMA 1. Let assumptions (A) be satisfied. Every 6 E 0 possesses a neighborhood U in a
such that for every positive e one can find an integer N depending on e and 6 only for which

(7) sup P*{sup supIlB(t) -C(t, T) II>eT <e.
rE un o n2N tEU

PROOF. Let Ve be the neighborhood described in assumption 7 and let H(x) be the
corresponding function. Let U be a compact neighborhood of 0 contained in V. and such
that U n 0 be compact. Let a be a positive number. Denote by C the space of all con-
tinuous numerical functions on U considered as a Banach space for the norm llgll =
sup I I g(t) I; t E U}. Letf(x, t) be an element of the matrix B(x, t) and let IgkI be a de-
numerable dense set in C.

For every integer k let Sk be the set of values of x such that llgk(t)- f(x, t)II < 8.
Clearly Sk is measurable. The sequence {Sk} can be disjointed, giving a sequence {Sk}
defined by S1 = S' and Sk+1 = S;+An (.y Sj)c.

Let

(8) h (x, t) = z ISk (X) gk1 (t).
k-I

By construction
(9) sup sup h (x, t) -f(x,t)X _ 8

z
and
(10) kh(x,t)I.H(x)+8.
Let Ek be the set Ek = Sii,. The compactness of U n 0 and the continuity of the

map T -- p(x, r) implies that as k tends to infinity the integrals
(1 1) fIsk (x) [H (x) + SI p (x, T) dv
tend to zero uniformly for r E U n 0. Hence there exists m so large that

(12) fIEm (x) [H (x) +81 p (x, T) dy <

for ever,VT E U n 0.
Let

( h'(x, t) = EI81(X) g1(t)
(13) X,

1h (x, t) = Is (x) gA (t) .
I~~~>
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Clearly
(14) supl h(x, t) =K (x) _ H (x) +a.

Hence

(15) sup J K(x)p(x, r) dvy--

Let M be a bound for the norms JIg,II,j = 1, 2,*, m. Then according to the martingale
inequalities

(16) PrS2UPNsup sup IS(XJ) gf (t) -E[Isi(X) g (t) I T| > i _ 52

From this one concludes that

1 n Bm32(17) sup s"sup su Eh (X,, t)s-E [h'(X, t) 1 > S. _ m2?Eupne InZ:N it E ni.. ) 5

Furthermore,

(18) P sup- K(Xi).s- ,
(18) j~~~~~n2Nn1t

thus choosing a = e/3 and then N = 18mkM2/e2 gives

(19) SEu e sup lI E f (Xi, t) -E[f (Xi, t) iTI >et <e.

Repeating the argument for each element of B(x, t) gives the desired result.
LEmmA 2. Let assumptions (A) be satisfied. Then the integrals

(20) f A' (x, 0) A (x, 0) p (x, 0) dy

are uniformly convergent on compact subsets of 0. Consequently

(21) .ej-0 = A'(Xi, 0) I0-4[0,Fr(0)
i-i

in the ordinary (Ta) sense uniformly on the compacts of 0.
PROOF. Let K be a compact of 0 and let 0o be a point of K. Slutsky's theorems and

the continuity of p(x, 0) with respect to 0 imply that

(22) 11jP{ A' (X, Oo) Oan}-{ A' (X, O0) Oo}
tends to zero if 0in tends to 00.

Since A'(x, 0t1) = A'(x, O0) - M(x; Oo, 0,,)(,n- 0o) for some average M(x; 00, 019)
of B(x, t) between oo and 0,,, Slutsky's theorems also imply that

(23) B A'(X, Own) |O6n) -2{ A' (X, Oo) O o)
in the T, sense. Furthermore, r(0) = E{A'(X, 0)A (X, 0) 0) is a continuous function
of 0. Let a be an arbitrary fixed vector. Let Ye = A (X, 0) a and let Fe = { Ye 0}.
Let p. be the measure defined by ,u(S) = f y2dFe. We have just seen that if 0, -- Oo
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then Fe. --* Fe. and fy2 dF,, -* fy2 dFoe. Therefore, ,.se,, -+ A for I.. Hence for every
e > 0 there is a number b such that

(24) f y2dF. <e

for every integer n. This, repeated for an orthonormal system of values of a, implies the
desired result. Indeed if the integrals were not uniformly convergent on K there would
exist a sequence {0,,I} tending to a 0o E K for which the above would not hold.

The statement on the convergence to normal distributions follows immediately [8].
Our next lemma is relative to modifications of normal densities. Let the set 0 and the

matrix r(o) be as in the assumptions (A). Let X denote the Lebesgue measure on the
Euclidean space g. Further, let

(25) t;
T,

01 = [det r (0)I1 2
(2T)r/ exp -(t r)I(o)(t-r),

for every 0 E 0 and every couple of points t and r of C. Letf be a not necessarily meas-
urable function from C to ,. Let # be the function obtained by substituting f(t) for t in
g(t; r, 0).

LETMMA 3. For every compact C c 0 and every e > 0 there exists a a > 0 such that if
sup lf(t) - t < 5 then
0~~~

(26) f (t; TX 0) - g (t T ) dX <e
for every r E C and every 0 E C.

PROOF. Since g is always positive we can write

(27) f J#-gIdX=f*gj 1jdX
=f*gIexp{-a [f(t) -rT]r(a)([f(t) -T]

+1a(t- T)r'(0a)(t- T) }- lj|d A

Letting A((t) = f(t) - t, this becomes

(28) J I9- = f*gIexpr -4,6 r (t- r) I td;

therefore,

(29) f*j0-gjdX
:5fg lexpt +i4' r~++[46r4,11/2 [(t- T)lr (t- T)] 1/2} - 1 dX .

Let #2 be a bound for 4("rP( when t runs throughg and 0 through C, let t - r = [r(o)]-112t
and let gi(t) be the density of an ft(0, I) variable. This gives

(30) *1 - g dX, <_fg (S) [ 60/2+011II-I] dX

and implies the desired result.
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4. Existence of consistent estimates
In the next sections frequent use will be made of estimates T. which not only are

consistent but are such that '/_II T.. - Oil is "bounded in probability." We have already
mentioned that under assumptions (A) maximum likelihood estimates need not be con-
sistent. Thus, the question arises whether there exist consistent estimates of any nature.
This is implied by the following general lemma.
LEMMA 4. Let assumptions (1), (2), and (3) be satisfied. Furthermore, assume that the

map 0- Ps is continuous in the sense that if 0fi tends to Oo then P.,, tends to Po. in the ordi-
nary T1c sense.

Then there exists a sequence I T.n of measurable strict estimates such that for every posi-
tive e and every compact subset K of e the quantity

(31) sup PI{ITT- ol| > e I 0)

tends to zero as n tends to infinity.
PROOF. In the space Al of bounded signed measures on { 4) let V =

Ip: JIujd,ul 1 forj = 1, 2,---, k} be a typical neighborhood of the origin. Let Ali
be the subset of A constituted by probability measures. Let F be an arbitrary element
of Al and for a sample point z = {xI, X2, * * *, xn} let F(n, z) be the corresponding empiri-
cal distribution. If M is a bound for the functions u,, one can write

(32) PIF(n,Z)EF+V forevery n>_NIF 1_kMW
Let IKs}, j = 1, 2,--, be a sequence of compact subsets of e such that Kk+l is the
closure of a set open in e and containing K, and such that U K, = e. Let Si = P.;
0 E K,). Since the map 0 -- PO is assumed to be T c continuous and one to one, the in-
verse map F -* (F) defined on S = y Si is also continuous when restricted to Si.

Therefore, given e andj there exists a symmetric T0 neighborhood of zero, say V(e, j)
such that if F and G belong to Sj and F - G E V(e, j), then 110(G) - 0(F)jJ < e. Let
N(e, j) be so large that for n 2 N(e, j) one has

(33) P{F(n,Z)E F+ V (e, j) IF) > 1-e
for every F E S. Let P(n, z, e, j) be an arbitrary point of Sj n [F(n, z) + V(e, j)/4] if
this set is not empty, and some arbitrary point of Si otherwise. Then

(34) P* {I(p) - (F) || >eF} <e

if n 2 N(e, j) and F E S,.
Let now M, = N(l/j,j), define P. = j if M, < n . M,+1 and let 8in = I/P,. Define

an estimate T,, by
(35) T. = 0 [P (n, z, Sny vn)

Then for every n and every 0 C Kr, we have

(36) P*{IIIT.n-.0I: . I, 0)! an,.
This completes the proof of the lemma except for the fact that T. need not be meas-

urable.
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One can achieve measurability by giving a definite rule of selection for P. Although
this is not difficult it is rather long and uninteresting and will be omitted.

Instead of proceeding as above, one could try to show that maximum likelihood esti-
mates taken over a compact K, are uniformly consistent for points of K, and then apply
a diagonal process. This results rather easily from lemmas 1 and 2 of the preceding sec-
tion, at least when assumptions (A) are satisfied. The preceding lemma is however of a
more general applicability.

The sequence 1K,) of compacts used in the proof of lemma 4 will be used again in the
sequel. In this respect we shall use the following notation. Let 5,' be a decreasing sequence
of numbers such that 5,' is smaller than the distance between K, and Kj'+1. Furthermore,
choose the spheres V. of assumption 7 in such a way that their radii stay bounded from
below when 6 belongs to K1. This is possible because of the compactness of K,. Let 6al
be the lower bound of the radius of the spheres Vo when 8 belongs to K, and let aj =
min (5i+i, 5f1). Under nice circumstances {I5) does not necessarily tend to zero as j in-
creases. Furthermore, for every t E 0, let v(t) be the smallest integer j for which I be-
longs to K,.
LEmmA 5. Let assumptions (A) be satisfied. Then, there exists a sequence I T. I of meas-

urable strict estimates having the following property. For every compact K c 0 and every
e > 0 there exists a number b such that

(37) sup sup P{In T-11T.-6 bI 61<.<
A 0EXE

PROOF. Let Uj be the sphere of radius 5,/4 centered at the origin. Let { ,} be a se-
quence of strict estimates, uniformly consistent on the compacts of 0. If v(,,) = j, let

)= ,,+ U, n 0. Clearly S(t,) c K,(E.)+l. Take for T. any value t E S(Q,) such that

(38) $A(z., t) 2 supt4.(zz., r); rE S( n) --.

If T. is measurable, it has the desired property. To prove this, let 0 be a particular point
of 0. Assume v(@) = j. Then for r E 0+ 4U1 we have

( 3 9) 0r(z, )=b b ) + n A. ( 0) (rT- t0) -2 (7T- 9) 'M. (0f) ( r- 0) ,

where M.(0) is an average of BA(t) between 0 and r. This can also be written as

(40) 4, (s., -T) = (. (z, 0) + 2 YM 1 ( ) Y.

-2 T-0-M (0) Y.] 'M. (0) T -0-MM1 (6) Y.] X

with Y. = A'(0).
Now for every 0 E Sj we have

(41) P* { 1l t.- Oll <wA1 0} > I - an.(j) .

(42) P*{for everyt E 0+ 4U, the

inequalities Bn(t) 2 'I(0) and IIB (t) 11 21 Pr (6) lIhold | 61 > 1-a' (j),

with a. and a.' tending to zero as n tends to infinity. Neglecting cases of "small" proba-
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bility we can assume that the relations in braces are satisfied. In such a case t. E 0 +
U,/4 and S(Q) c 0+ 5U,/4. Consequently, writing I instead of Tn' to simplify, we have

(43) -ny:M,- (t) Y,+ 2n[t-0-M.-1 (t) ] Mn (t) [t- 0-M.-' (t) Yj]

--< Yn r1 (0) Y + inf 2 [ - 0 M, ( T) Yj 'M,,nl T~~~~~Es(4n 2 M1r ,'~r

[I - - Mn (r) YJ]1-
Since S(Q) contains 0 this implies

(44) n4 [t- 0-M.- (t) YJ] Ir (0a) [t- 0-Mn-1 (t) YJ]
S' It[- 0-Mn 1 (t) YJ] 'Mn (t) It--M0 (tM.

< + 2nll r-l (O) 11 YnYn-! Y: r-l ( 0) Y.+'2 YnMn 1 ( ) Yn -=n

According to Markov's inequality we have

(45) PInY.Y. > a I 0l trace r (e)

and similar bounds for the other terms in the last expression. Therefore, there exist num-
bers b1 and N such that

(46) P*{IV-il Tn- -M.-'(T.) Ynll > bl|I 0 <e

for every n 2 N. The numbers b1 and N can be chosen independent of 0 if 0 is restricted
to K,. Therefore, by Minkowski's inequality there exist numbers bj and Nj such that
P*{V, lT0I-Il >b.l0 <e if n _ N, and0E K,y.

If T, is measurable one can choose b, such that P{ivillTn- ojj > bI 1 < e for every
n < N, and every 0 E K,. This follows from the fact that the map P. -?+ e(Tnl 0) is
then continuous in the sense of the norm so that the set {..e(T,, 10); 0 E Ki) is compact
in the sense of the norm and further T, takes its values in a locally compact space 0.
To show that Tn can be chosen measurable, assume that t itself is measurable. It is

then possible to give a specific rule for the choice of Tn and show that this leads to
measurable estimates. For the same reasons as in lemma 4 we wil omit the details of this
selection.
LEMMA 6. If the assumptions (A) are satisfied, there exists a sequence I Tn) of measur-

able estimates (not necessarily strict) such that for every positive e the probabilities

(47) P*{ -,/nllTn- o_ r 1(0) An'(0) || >el 01
tend to zero uniformly on the compacts of 0 as n tends to infinity.

PRooF. According to lemma 5 there exists a sequence I n} of measurable strict esti-
mates such that for every positive e and every compact K one can find a number b
such that

(48) sup PI{Vn|| {n- 1l > b I 0) <e
EK
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Let T. = t. + rI1({)A'(Q). Then, if t. differs little from 0 we have

(49) in(Tn- 0) = r- ( n) vnAn' (0) + V/n[I-r1 (en) M.] (t - 0)
with Mn an average of Bn(t) between tn and 0. Therefore,

(50) \/n (Tn- 0) -r' (0) \/nAn(0) |

a/-| An' ( 0) |||r-I ( a) -r-I ( {n) 11 + 11 I- r- ( {n) Mn|| Vn (t. - t0).
By lemma 1, I-1Q(n)Mn tends to I in probability, uniformly on the compacts of 0. To
obtain the desired result it is sufficient to show that T. is measurable. This however is a
consequence of the fact that A (x, t), being continuous in t and measurable in x, is jointly
measurable in (x, t).

The preceding lemma has an important consequence concerning the limiting distribu-
tion of \Inn (Tn- 0). By lemma 2 the quantity > An'(0) is asymptotically normal and
according to Slutsky's theorems the same is true of /;i (Tn- 0) = V> (Qn- 0) +
r-1({,)-Vi A,(,,). More precisely, according to the uniform versions of Slutsky's theo-
rem _{ /In (T. - 0)1 0} converges to ft4[0, -.1(0)] in the T7 sense and this uniformly
on the compact subsets of 0. This implies that f being a bounded real-valued function
defined on the Euclidean space g and having a set of discontinuities of Lebesgue meas-
ure zero, the expectations E{f[Vn-(T,, - 0)]1 O} tend to f f(x) dkt[O, P-1(0)] and this
uniformly on the compact subsets of 0.

5. Asymptotically sufficient estimates
In many respects the construction given for the estimates of the preceding section is

not very appealing. In most practical cases other estimates occur in natural manner, for
instance, by using the method of moments or other methods. For this reason we shall use
not only the estimates defined in the preceding section, but any sequence {t,j of esti-
mates belonging to the class e defined below.

DEFINITION. A sequence {tn} of estimates will be said to belong to the class e if it satisfies
the following conditions:

(1) For each n, the estimate tn is a measurable strict estimate.
(2) For every positive e and every compact K c 0 there is a number c such that

(51) sup sup P{I;/ilt,,- 011. cI 0} <E .
n, OEK

From an estimate t, it is possible to obtain other estimates Tn and r,n defined as
follows.

Let YQ(t) = r-'(Q)A,Q). Define Tn by Tn = tn + Yn(tn), and let r,, be a function
of Tn such that rTn(T,,) E 0 and

(52) IITn-Ir.12 inf {I|ITn- t; tee.tE _

Note that when tn is measurable, the same is true of Tn and then rn can be chosen to be
measurable.

The class of sequences {Tn} of estimates of the form Tn = tn+ Yn(tn) with {tIn} e e
will be denoted by _.

For further use note that if { Tn} E _% and Tn is measurable so is the quantity A,n =
Tn + Yn(r.) - Tn.
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THEoREm 1. Let assumptions (A) be satisfied and let I Tn} be a sequence of estimates be-
longing to the class %. Then the sequence I Tn} is asymptoticaly sufficient in the sense that
there exist nonnegative functions qa(z., 6), each the product of a function of zn only by a
function of T. and 6 only such that

(53) P.t(z., 0) - q.(zn f)) Idon

tends to zero uniformly on the compacts of e as n tends to infinity.
Note. The assumptions of measurability of tn, Tn and rT are irrelevant to the present

theorem.
PRooF. According to assumptions (A), for every 6 such that 110 - rTll S 6,(,.) one

can write

(54) 4((zn, 6) =4 r(Zn,f) +nAn(Tr)(6- 7.) - (T.- )'M.(T., )(&- 6),

where M.(r7, 6) denotes the usual average of Bn(Q) between rn and 6. Simple rearrange-
ments show that this can also be written as

(55) 'Z' (Z., 6) ='P(Zn) - (T-))r (0) (T.-) +Rn z^T", T 6]
with
(56) n( z.) = )n ( zn, T.) + Yn' (.T.) r (r.) Y. ( rn) 2Anr (T)t

and
(57) R [ zn,T., T1, 6] =-2 ( Tn-n ) I [Mmn ( r, 6) -r ( Tn) I ( Tn-6)

-2 (T.- o) t [r (7n"-r ( o) I (Tn-o) -nA,'r ( ,,) (T.n- o)

Our purpose is to show that this residual is eventually small and then remove it from
further considerations. The property assumed for {tnI implies that for each integerj there
is a sequence {c', A) of real numbers such that 4 c,, , 5 5,+i n1/4 and such that

(58) sup P { iltn- Oil _ c, j 61}
* E K,+1

tends to zero as n tends to infinity.
Let

D.'= sup || I-r-, (tn)B. (t) |;11; t- t.11 G,/g

(59)~~ D." = sup I-1Ir-, (tn) r (t) t.11 -:5-C."il v nt.

Dn = max Dn, D."]I
According to lemma 1, for each j there exists a sequence I an, jA tending to zero and such
that sup [P*{Dn >- an, j 61; 6 E K+1j] tends to zero as n tends to infinity. Let cn, j=
min ncn,a;,1t21. Clearly
(60) sup P { vGllt,- 61 >- c, jl 6

GE Ki+1
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also tends to zero as n tends to infinity. From this we can deduce that t", T7 and T, are
reasonably close to each other. By definition T,, - t,, = J-1(t.)A.(t,,). Let j be an arbi-
trary integer and let e be a point of K, considered as "true value." IfV,It - Ojj C,, j,
Taylor's formula can be applied to A,(t,,) giving

(61) At (t,.) = An(0) -Mn (tR,,) (tn- 0)
with Mn(tn 0) an average of BQ(e) between tI and 0. Therefore,

(62) IITR-t,,II 1I r1 (IR)r(a)1'1 (0) At( II

+ 11 [r-1 (t.) ff. (t., 0) -I]I (tn-O) 11+ II t.- 1
(63) IITn-t,,lI . D,,IIr(0) An(@) ||+ (Dn+l) lit,, .

Let Pj be a bound for IIr(0)II1/2 over K,+1. According to Chebyshev's inequality

(64) Pil/_nIIr12 (0) Al'& (0) a,, 01

Consequently, if {an, A is any sequence of numbers tending to infinity we have

(65) V'nIlTn-t QI .5 ga., j a., ,+ (a., j+ 1) cR j

except for cases of probability tending to zero uniformly on K,. Take for a., j the
value a., , = min [a;!/2, (1/4)8j+1n1/21 and let -y,, j be the quantity obtained by sub-
stituting this value in
(66) mi [5an, ia., + (a., + 1) c,, L j8+1v'1.

Note that 'y, j ml/2 tends to zero as n tends to infinity. The preceding inequalities imply
that the following three quantities
(67) sup [P*{*IVnII7T.-t,i >y1 , Ij 01; GE KJl
(68) sup [P*{I VnIIT,,- t'-II 2y,2,y, 0 1; GE KR]
(69) sup [P*t{ 11tv -t-r1 2 37,, i I 01 ; GE KRf
tend to zero as n tends to infinity.
A similar computation can be applied to the quantity A,,. Using a Taylor expansion

around r, one obtains

(70) -A.,= [I-rJ (9,)M(Tr, t.)] (t -T1 ) + Ar(t,,) -r1(T,)] A"(r,).
It is clear from this formula that v4iA, tends to zero in probability as n tends to infinity.
By arguments similar to the ones used above one can show that for each j there exists a
sequence ;, jj tending to zero as n increases and such that

(71) sup [P*{ VnI/f(r)/2( 0)A.I1 2 l 0); GE Kj+11
tends to zero as n tends to infinity.

For each integerj let Ib,n j } be a sequence such that b,, j ri, j ! 1 and such that b,, j
tends to infinity as n increases. Let rn(r) = c,,, (,) and b,(r) = b.,(,) Assume also
that 11r1/2(T)ljb.(7) < (1/4)b,(,), and that b,(T)n-1/2 tends to zero as n tends to in-
finity.
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Let

Dn ((z) = sup { 1()tn) r Ill; 11 - 1TnJj 11 r1/2 ( r.) 11 bn ( r.) n-1/2}

(72) D) ll TI= max { zn(Zn ) - I( I}.

For each integer j, there exists a sequence I as, A} tending to zero and such that

(73) sup[P*{DnI2 nIa. 0)}; 0 E Kj+1
tends to zero as n tends to infinity. Let

(74) b (,r) =min I b.'(7),[, .] 1/4}
The conditions
(7 5) V-nhi|r2( Tn) (T.n- 0) | bn (rt)

imply
(76) IR. (z. T., r., f9) | 2 Dn.bn2 (Tn) + bn ( r.) I Ir 12 (T nil.

Finally, for every positive e and every integer j the quantity

(77) sup P* 2D.b2(rf) +bn(m)lrl2(rn)aAnrl 0l

tends to zero as n tends to infinity. Using the diagonal process, we can find a sequence
e,j tending to zero and such that

(78) sup P*{ 2Dnbn ( Tr) + bn (r.) I| r1 () n |_.E I 0}

tends to zero for every integer j.
Let Xn be the indicator of the set S. defined by

(79) S. =z: 2 Dnb.(T) + bn (Tr) |1| 1( 7n) AVn 1l < f,}

and let v.(T., 0) be equal to unity if both V4lIrll/2(,r)(Tn - 0)11 . b^(T3) and
vn4|lr1/2(7ft)(T. - o)11 9 b"(mr) and let vn(T., 0) be equal to zero otherwise. Let

(80) q. ( z0,0) = xn ( zf) v. (T., 0) exp {zI(z) (T.- 0) I r ( o) (T.- 0)}.

Let Qn(0) be the subset of X.n where x*(z^)v^(T,, 0) = 1. Then

(81) f I q ( zn, 0) - P.( 0)Idp-:!P* 1Qn( 0) 01 +f le- - I Ip.(z, 1) dy

p* {I(.) I+,een1 .

This quantity tends to zero uniformly on the compacts of 0 as n tends to infinity.
By construction, the function q,(zn, 0) is the product of two functions, the first de-

pending on sz only and the other depending on T. and 0 only. Therefore, the estimate T,,
is a sufficient statistic for the family {qn(zs, 0), 0 E 0}. Of course, q.(zn, 0) is not neces-
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sarily a probability density since its norm might differ from unity. However, the dif-
ference tends to zero uniformly on the compacts of 0, so that if necessary qn could be
normalized.

For further use, note that in Qfl(O) we have taken log qn(zn, 6) = *I'(zn)- (n/2)
(T. - o)'r(o)(Tn - 6). For problems involving a posteriori probabilities it is often more
convenient to take a qn defined by
(82) log qn (zn, 0) = (Z.)( n (T ()

for values of z,, in 1(1,(). The preceding argument shows also that, as n tends to infinity,

(83) f I Pn ( zn, 0) - qn ( Zs, 0)) I den
tends to zero uniformly on the compacts of 0.

6. Asymptotic normality
It has been shown in section 4 that the estimates IT.) of the class .% are asymptoti-

cally normally distributed. Such a result is, however, much too weak to be of general use
in finding asymptotically optimal test or decision functions. It is possible to get more
precise results by using the results of section 5 to form approximations to the distribu-
tion of T.. It wil be convenient to use instead of T. the random vector Xn = n Tn.
To achieve an equivalent modification of the parameter space let En denote the value
An = OV4i. The associated estimate r. will be considered as a function of x E C. In-
stead of using the function qn of section 5 in the form given there it will be convenient
to multiply it by [detFr(o)]1/2 [det r(.r)]1/2. This modification is of no importance asymp-
totically.

Let wn(x, 6) be equal to unity if 1r1/2(7,)(x - jn)jI . bn(rn) and J Prl/2(r.)Vn4[r(x) -
i]1l S b.(r.) and let wn be equal to zero otherwise.
Let gn(x, 6) be the normal density

(84) g (x, 6) = [det r (6) 11/2 exp (x- r (o) (x-
Let P9,n be the actual distribution of X, given 6 calculated using the original product
measures Pti). The approximate densities qn and q,n defined in section 5 give approxi-
mations to P., n to be denoted by Qs, n and Qot, ,. The form of qn implies that

(85) QO n (S) =fg((Xx ))w((Xx)) d

where X) is some measure on the Euclidean space C in which X. takes its values. It is
easily seen that A, is finite on the compacts of C.
The approximation q. gives a measure Q,, n defined by

(86) Qo, n (S) =fg. (x, t)w. (x, 6) dgs,
with

=[det Tr,.I/(87) g, (X, 6) = (2)? /exp t-i(x-an)P r (7-.)(X-on) }

and pn some measure on the space C.
Let X be the Lebesgue measure on
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THEoREM 2. Let assumptions (A) be satisfied. Let I Tn} be a sequence of estimates of the
dass .,. Then, the notation being as above, there exists a sequence j,p.) of measurable
functions from g to g such that

(1) supIlio,(x) - xlj tends to zero as n tends to infinity.
2

(2) Let ,, be the measure defined by A,,(S) = Xko;1(S)], and let Qa, be the measure
defined by
(88) Qo,,,(S) = g,, (x, 0) d,,

then for every compact K c 0 the quantity

(89) sup I|PO,,,,.-nl
*E K

tends to zero as n tends to infinity.
PROOF. It has been shown in section 5 that lIPe, -Qe. nil tends to zero uniformly

on the compacts of 0 when n tends to infinity. Also the actual distribution X(X. -
0nl0 of X. - 0n for the measure Pe,,, tends to the measure N4[0, 1>1(0)] uniformly
in the T. sense on the compacts of 0. This implies that, in a certain sense, X,, tends to
the Lebesgue measure X on C. More precisely, let )e . be the measure defined by
X, ,(B) = Xn(a. + B). For every bounded continuous function ry defined on g, the
difference

(90) fy (x-0^) dQo, f-y (x- .) dP#,,,
tends to zero uniformly on the compacts of 0. This and the structure of the function
w,,(x, 0) entering in the definition of Qe, ,, implies that Xe ,, converges to the Lebesgue
measure X uniformly in the vague sense on the compacts of 0.

For every integer m, there exists an integer nAn such that n 2 n' implies IIP., -
Qo, nil < 1/2m for every 0 E K.+,.

Let am be a number so large that if U is normal with mean zero and covariance r1>(0)
then

(91) sup[P{||X| Ia,l 01; 0E Km+,] : m

Let n" 2 n', be so large that n 2 n," implies
(92) sup{Qo, 11 X. - &II 2a.]; GE K.+,1 <1

m
Furthermore, assume -I 2 4am/a"-

Let K(n) be the image vn4 K, of the set K, in C. Assume without loss of generality
that the origin is a point of K1. Finally let pm be a bound for 1 + 2(2iY)/2[det r(o)],11
for 0 E K.+,.

Let I X7n} be a sequence of positive numbers decreasing to zero as m tends to infinity.
Starting from the origin, pave the space g with cubes having sides equal to ilm. Let W$(,)
be the part of g covered by cubes whose centers are at distance less than am from K(*),.
Note that 0 being any point of 0 the number of cubes at distance less than a. from e
is a bounded function of n.

Since the measures Xe, converge to X uniformly in the vague sense for 0 E K,,+,
there exists a number nm _ n,,' such that

(93) L(C) [I - (C)<X(c!r 1j xn(C)
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for any n >fn,. and every cube C element of the pavement giving Wfn'. For every such
cube X.(C) is positive and there exists a measurable function ° m,c from C to C such
that

(94) X . c (B) I = X(C) x (B)

for every Borel set B c C. For every x E W.0) let (P., be defined by juxtaposition of
the PR,..,c and for x not in W$,') define 5°, m to be the identity map. Let p,n, m(B) =
Mi<^,m(B)]. For every Borel set B c Wm0) we have

(95) pn,m(B) Xk 1m(B n C)]
c

the summation being over the cubes C c Wfn). From this it follows that

(96) fi(B) = X(C)X. (B n C)

and finally

(9 7) [1-m- ] X. (B) <n m(B)- I + X. (B)

Define a measure ,o,n, by

(98) QO,.n, m (S) =f gn (x, O) dA.,

It follows from the above inequalities that

(99) iQ.n,i(S) - Qo. n (S) I <-M
for every 0 C K., every Borel set S and every n > nm. Let 40,,) be the sequence of
functions defined by #°n = S°n, m if nm < n < nm+i and similarly for the measures ,un
and O,, .. Then

(100) IIQe,nQo..n|| 6

hence

(101) --PO,
7

provided n. < n . n,+i and 0 C K.. This and the fact that tflml tends to zero com-
pletes the proof of the theorem.

The construction of I San} given in the above proof has another consequence of some
interest. Let g(x, E, 0) be the density with respect to X of the normal distribution '[t,
1''(0)J, that is,

() [det r (0) ] 1/2

Let 4p be a function from 4C to C and let P(x, t, 0) be defined by g[4,(x), t, 0] = (x, t, 0).
According to lemma 6 for every integer m there exists a positive number m, such that
1140(x) - xll 6 rid,. implies

* ~~~~~~~~~~~1(103) f |(x,) , )-g(x, ,0) IdX\<-

for every 0 E K,.+, and every t.
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Suppose then that the sequence {77m} used in the construction of JS°n is such that
71m < 71m-.

Let Go, n be the normal measure

(104) Go, n(S) = fsgn(x, O) dXA.

Assuming that n verifies the inequality nfm < nf S n,l+i let

(105) G f(S)= [detr( )1/ exp 0)11/2(x)- r( )[p.(x) dX.

For every 0 E Km one has also ||Go, n- G, nil < 1/m. Owing to the definition of Qe,
the measure Ge, n is related to Qe, n by the equality

(106) Qo, n(S) =G1, n [S°n l(S)]I
Therefore, if Fe. n is defined by
(107) Fe, n (S) = GO, n [ pn 1 (S)]

we have also
(108) IFo n-Qe, nil < 1.
From this one concludes

(109) IQon -Fo nll.-m
and
(110) IPe, n-FO,nI m8

m

for every 0 E Km and n such that nm < n < nm+i. This gives the following corollary.
COROLLARY. Let Xn be -0n Tn as before and let Un have a normal distribution with ex-

pectation in = vn4l and covariance matrix r(0). Let Iopn} be as above. Then for every
compact K c e the quantity
(111) sup |.e(Xn I a) - {ISn ( U.) 01

*E K

tends to zero as n tends to infinity.
This corollary is weaker than the corresponding result of Wald [3], lemma 2, in the

sense that Wald obtains uniform convergence on the whole of 0 where we obtain only
uniform convergence on the compacts of 0. Nothing more can be expected under assump-
tions (A). However, this corollary is stronger than Wald's lemma 2 in the sense that
where Wald obtains only a set transformation we have obtained a point transformation.
The difference is of great importance when problems of estimation are considered.

7. Some consequences of a general nature

The general implications of the results of the preceding sections can best be described
in the framework of decision theory. To be able to apply theorems 1 and 2 directly, we
shall restrict our attention to situations where for each n the space Dn of available de-
cisions is a Borel subset of a Euclidean space. Furthermore, it will be assumed through-
out that, for each n, the loss function Wn defined on Dn X 0 is jointly measurable in its
arguments and that there exists a finite number M such that W.(d, 0) 1 < M for every
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triplet (n,-4 0). Only measurable decision functions will be considered, but no restriction
will be placed on the extent to which decision functions are randomized. To be precise, a
decision function depending on n observations is a function z, -+ Fzn from the product
space A., to the space of probability measures on the Borel subsets of D.. Such a decision
function is called measurable if for every closed set S of Dn the function zn -> Fzn(S) is
a measurable function of zn.

Let fn be a decision function depending on Zn. It will be convenient to denote by
Wn(fn, 0) the integral
(112) Wn(fn, 0) =fW n(t 0) dfn(t)
and by Rn(fn, 0) the corresponding risk function

(113) Rn(fn, 0) =E{Wn(fn, 0) 0}.

Let {T,j be a sequence of estimates of the class ._. According to theorem 1, for
every sequence {f.) of decision functions depending on z,n, there is a sequence {fn} of
decision functions depending on { Tj} only such that R(fn, 0) -Rn(fns, 0) tends to zero
as n tends to infinity, and this uniformly on the compacts of 0.

More precisely, letM be a bound for the sequence I W,} and let a.(@) be the integral
(114) a"(0) f-IP.(Z, 0) -qn(z., 0) Idve.

To everyfn one can associatefn depending on Tn only in such a way that

(115) Rn(fn, 0) -Rn(fn, 0) I_ Ma.n(0),
for every 0 E 0.

Let Af be the space of bounded signed measures on 0. The above inequality implies
that
(116) sup IfR.(fn, 0)dcTfRn(nx, 0)daI

fn

tends to zero as n tends to infinity, uniformly for a in the Tl compact subsets ofN.
When considering decision proceduresf,, which depend on { Tn} only, it is possible to

define several risk functions. The exact distribution Pe, n of Xn = -,ITn leads to the
risk denoted by Rn(fn, 0). The approximations Qo, n and Q0, n lead to risks to be denoted
by Rn(fn, 0) and RX(fn, 0), respectively. Clearly, the quantity
(117) sUp ARn(Jn, 0) -Rn(fn, 0)I

fn

tends to zero as n tends to infinity, uniformly on the compacts of 0, and similarly for R'.
Let I oa" be a sequence of a priori distributions on 0. By definition a sequence {fn}I of

decision procedures is asymptotically Bayes with respect to { a,, if the difference
(118) fRn (fn, 0) d an-inf JRn ( gn, 0) d an

gn
tends to zero as n tends to infinity.

In this definition fn and gn denote measurable decision procedures depending on the
sample point zn.
To simplify the statement of the next proposition, let us say that a set S of bounded

signed measures on 0 is "tight" if the norms 11 all, a E S, form a bounded set and if for
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every e > 0 there is a compact K c 0 such that I a I (KC) < e for every o E S. It is
equivalent to say that S is T0 relatively compact in A.

Assuming, as always, that {W. is a bounded measurable sequence one obtains the
following result.

PRoPosITION 1. Let assumptions (A) be satisfied. Let IT.} be a sequence of estimates
of the class _b. Let { an,} be a tight sequence of measures on 0 and let I114 be a sequence of
decision functions depending on f T.n only.
A necessary and sufficient condition that {If be asymptotically Bayes with respect to { an},

when the distributions considered are the original product measures p(n) on A', is that jf4I be
asymptotically Bayes with respect to { an} when the distribution of /n T. is given by Q.
The statement is also valid if Qo, is replaced by Q, .

Let ao be an arbitrary probability measure on 0 and let gm(x, 0) be the density

(119) g"(x, 0) =jdet r(0)11'/2

It follows from Fubini's theorem that, except perhaps for a set of values of x of X + jU.
measure zero, the integral
(120) J.n(x) =fgn,($x, ) d a-

is finite and positive. For every x for which Jn(x) < co define a measure a, X by

(121) n7, .(B) = [J.(x)I-f,g,(x, 0) d a.

These measures can be used as a posteriori distributions of 0 given X,, = x for the meas-
ures QOe, n. Obviously, a., . can also be considered as an a posteriori distribution of 0 given
Xn = x for the normal distributions Go, , = #f OVin, I-'(0) 1. This implies that the
two families I Qe, n and {Ge, I} have in common a large class of asymptotic Bayes solu-
tions. Let us say that a sequence {fn} of measurable decision functions is regularly asymp-
totically Bayes for the particular choice J Th, 4 if for some sequence {e"} tending to zero

( 1 22) f-W ( fn, 0) dan -inf fW (I. , 0) d a.,t X 5

Obviously regularly asymptotically Bayes sequences are asymptotically Bayes but not
conversely. The above argument shows that regularly asymptotically Bayes sequences
are asymptotically Bayes for the two families I Qe, ,} and {Go, I simultaneously.

The a posteriori distribution a., . are sometimes difficult to use, because along certain
sequences {0m} the eigen values of the matrices r(om) might become unreasonably dif-
ferent. To avoid this, it is often simpler to use the measures Q', , and the a posteriori
distributions an, defined by

(123) a.', .(B) = I fgn'(X, 0)W,.(X, 0) dant tg.(x, 0)wn (x, 1) dan.

For these distributions no such difficulty can occur.
The interest of asymptotic Bayes solutions lies in the fact that they possess remark-

able optimal asymptotic properties. Let assumptions (A) be satisfied and let IW,I be a
bounded sequence of measurable loss functions. Let I aon be a sequence of a priori dis-
tributions tending to a distribution a in the sense that 11 -n - all tends to zero. It can
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be shown that a sequence {f.} is asymptotically Bayes with respect to Ia." if and only
if it is asymptotically Bayes with respect to every sequence {pn} tending for the norm to
a positive measure p absolutely continuous with respect to a.

This implies as a particular case the following: Let {f,J be asymptotically Bayes with
respect to the sequence { a,,} tending for the norm to a. Let {f' j be an arbitrary sequence
of decision functions. If the difference Rn(f, , 0) - R(fn, 0) converges pointwise to a limit
v(@) then v(O) is nonnegative except maybe on a set of values of 0 of a measure zero.

The above propositions have been proved in [9] under conditions considerably weaker
than assumptions (A).

For these general conditions to be satisfied, it is sufficient but by no means necessary
that assumptions (1), (2), (3) of (A) hold and that for each Borel set B c T the map
o -. Po(B) be Borel measurable in 0.

It might seem plausible that under the stronger assumptions (A), results much
stronger than the above propositions would be available. Unfortunately, this does not
seem to be the case in general as can be judged from the results available if the family
IPe, 0 e 01 is the family of normal distributions with covariance matrix the identity
and expectation 0 a point of, say, the unit sphere in r dimensions.
By combining the results of [91 with those of the present paper one sees easily that the

Bernstein-von Mises phenomenon still takes place to a certain extent. Let 0 be an open
set and let a be a measure having a positive continuous density with respect to the
Lebesgue measure. Let an, ., be the a posteriori distribution of ¾i(0 - T.) given znand
let G"(Tr) be a normal distribution Gn(7r.) = /10 P1(T")}. Then for every e> 0 the
quantity
(124) P o1., -G.n(T) 11 >el 01

tends to zero as n tends to infinity and this for every 0 E 0 except maybe for a set of
values of 0 of Lebesgue measure zero. Therefore, the results of [10] apply, mutatis mu-
tandis, to the present situation. The same results can naturally be obtained by con-
sidering the a posteriori distributions a., z defined by means of the measures Qe,o.

In the introduction it has been mentioned that when an estimate I T.} of the class .3
is known, the methods used by Neyman in the study of B.A.N. estimates yield a variety
of other estimates or tests with asymptotically desirable properties. Before we pass to
an application of a much more specific character let us mention examples of results ob-
tainable in this manner.

Suppose that at some stage in building a model of a natural phenomenon, it has been
found adequate to assume that the class of probability measures under consideration is
I PO, 0 E 0e satisfying assumptions (A). It might happen that, at some further stage,
one believes that the class corresponding to a subset 01 of 0 is adequate. One might then
want to test the hypothesis that 0 belongs to 01 against the alternative that 0 belongs
to 0 n 01. Even more, one might desire to test the hypothesis that 0 belongs to a sub-
set 02 of 01 against the alternative 0 C 0l n 02. Also, one might wish to obtain estimates
of 0 taking their values in 01 or confidence intervals for 0.

If an estimate I T,,I of the class .% is available, such problems can be attacked by
the methods of [1]. Of course, for the B.A.N. methods to be useful, 01, or eventually 02,
must satisfy certain regularity conditions. Limiting ourselves to the case where only 01
is involved, we will assume that the following conditions are satisfied.

(1) At each of its points, the set 01 admits a tangent linear space. More precisely, let t



I50 THIRD BERKELEY SYMPOSIUM: LE CAM

be an arbitrary element of 01. Then there exists a linear affine subspace Lt of C of di-
mension s < r such that if II is a projection of g onto Lt there is a function 11(u) tending
to zero with u such that

(125) I(I -II1)(-O <_7{ 11 0- tI 11 0 - ti
for every 0 C 01.

(2) The projection II being as above, for every sequence {un} in gt tending to t there
exists a sequence [v.) in 01 such that nuIIIH(un - vJ)II tends to zero as n tends to
infinity.

Let then I T.} be of the class .% and let {TJ,} be the associated estimate of section 5.
Let {} be a sequence of estimates taking their values in E0 and such that

(126) './-i(T.- .)I r(rT) Vi./(T.- &) - inf n (Tn-t r) T(n)(Tn- t) <fn
E e1

for some sequence { e*} tending to zero as n tends to infinity. Assume that t E 01 is the
true value of the parameter and let HE be the projection on LE orthogonally with re-
spect to r(t). It is easily seen that as n tends to infinity the difference VnfitT, - nt
tends to zero in probability. The convergence is uniform on the compacts of 01. From
this and the theorems of Slutsky, one concludes that

(127) vI ( - t) I tI -,N{0, rt r- ( )Hi
uniformly in the T, sense in the compacts of 01. Similar results apply if t E 01 is con-
sidered to be a function of some other parameter w C Q provided that the function w --

t(w) be sufficiently regular. Another result of interest for tests of hypotheses is the follow-
ing. Let x2(X) denote a noncentral x2 with r - s degrees of freedom and noncentrality
parameter X.

The set 01 being as above, let

(12 8) Qn ( 0) = i (Tn-19)0 r() Vn (T. - 0)
- inf Vin (T.-)' r ( Tn) Vn (Tn-,t)

tE e1

(129) X, (o) = inf V (o - t)'Ir (0) V/n (0- ,).
{Ee1e

Assume that for each n the distribution of T. corresponds to a value 0fl of the parameter
and that the sequence {011n stays in a compact of 0. Then if X.(O.) tends to infinity with
n the random variables Qn(0n) tend in probability to infinity. If on the contrary for some
t E 01 the sequence x/{(0tn- t)} stays in a compact of C then

(130) AP{ Qn (0t) En } - { X,lI2 (E)] I

tends to zero in the T0 sense as n tends to infinity.
In this case let y, = n(I- r)(o.- ). Then one can also say that

(131) pyQ.(0n) | An x2[ Yn }

tends to zero as n tends to infinity.
The foregoing discussion should be sufficient to indicate some of the methods available.
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We shall only make the further remark that the matrix r(T,) could be replaced by any
one of a variety of matrices without affecting the results. Note however that it cannot al-
ways be replaced by r(t), since estimates minimizing V(Tn - t)' r()(T. - ,) for
t E 01 need not be consistent.

8. An application to asymptotically similar tests

The investigation presented in this paper arose naturally from a variety of motives,
such as the desire to escape the stringency of Wald's conditions, a need for a link between
the B.A.N. estimates and maximum likelihood estimates, etc. However, the decisive fac-
tor leading to this study was a desire to encompass in a general body of theory certain
results recently published by Neyman in [4]. The situation considered by this author is
the following. The parameter space 0 is a two-dimensional half plane, and to each
o E e corresponds a density p(x, 0). Denote by 0(1) and 0(2), respectively, the first and
second coordinates of the vector 0. The problem is to test the hypothesisH = {0: 0() =
01 against the alternative HC = { 0: 0(2) > 01. Let vp[x, 0(1), 6K2)] be the partial deriva-
tive of log p(x, 0) with respect to 0(1) and let (o2[u, 0(1), 0(2)] be the corresponding deriva-
tive with respect to 02), both evaluated at 0 [0(1), 0(2)].

Let f(x, 0(1)) be a function such that

(132) Etf [X, 0(1)] I0= [ 0(), 0 =0 .

Let p[0(l)] be the regression coefficient of f[X, 0(1)] on VJX, 0(1), 0] when 0 = [0(1), 01 is
the true value and let s[0(1)] be the standard deviation of F[X, 0(1)] = f[X, 0(1] -
p[0(1)]0o[X, 0(1), 0] under the same hypothesis on 0.

Under suitable conditions all the preceding quantities exist and furthermore

(133) E{F [X, 0(1)] 0 = [ (), 01 I = 0 .

If 0(l) is known a test of the hypothesis 0(2) = 0 against 02) > 0 can be obtained by re-
jecting the hypothesis if

(134) 1n FF[xi, OM] kks [(l)] .

If 0(1) is not known, suppose that a sequence I#. I of estimates of 0(1) is available and
that I /nI # - 0(1) 1 is bounded in probability. Then one might think of replacing 0(1)
by its estimated value #,,(xi *, x4) in the function F[x, 0(1)] and in p(0(l)) and s[0(1)].
Neyman shows that under suitable regularity conditions the test so obtained is asymp-
totically similar in 0(1).

The conditions given in [4] being somewhat too stringent, it might not be useless to
indicate alternative hypotheses under which theorem 5 of [4] is still valid. One such set
of hypotheses is the following.

(a) log p[x, 0(1), 0] is twice continuously differentiable in 0(1) and f[x, 0(1)] is continu-
ously differentiable in 0(1).

(b) EIff[X, 0(1)10 = [0(1), O} and E{1pl[X, 0(l), 0110 = [0(1), O} are finite and the
second of these expectations is positive.

(c) The integrals
(135) fJp, [x, 0(l), 0] p [x, 0(1), 0] dx and ff [x, 0(0)] p [x, 0(1), 0] dx

are equal to zero and can be differentiated once under the integral sign.
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(d) The functions p[6(l)] and s[6(1)J are continuous in @(l) and s[O(1)] is positive for
every M(l).

(e) Letf'[x, A(1)], p'[x, @(l), 0] be the derivatives of f[x, @(l)] and (A[x, 0(l), 0] with re-
spect to 0(0). For every 9(1) there is an open interval V[O(1)] centered at O(1) and a func-
tion H[x, 6(1)] such that

(136) (i) JfH [x, 6(')] p [x, 6('), 01 dx< o

(ii) For every I E V[0(')] and every x the following inequalities hold:

js,p(x, t, O) I _- H [x, 00')]
(137) f'(x, t) 1 -

H [x, (1)] .

It seems reasonable to expect that the "best" test of the family described above is
obtainable by takingf[x, 0(1)] = IP2[X, O(1), 0]. That such is the case has been shown by
Neyman [11].
To apply the results of the preceding section to the present case suppose that as-

sumptions (A) are satisfied and that IT.) is a sequence of estimates of class 5% con-
structed from parent estimates it.) of class e and having associated estimates T.I.
LetHbe a subset of e to be tested against He. For any sequence of tests {fip,I let j3n(^In, 6)
be the power of the test 4I'n at 6. It will be convenient to say that a sequence 4,4j is
asymptotically similar of size a uniformly on compacts if 0(456n,0) tends to a uniformly
on the compacts of H. To simplify we will abridge "asymptotically similar uniformly on
compacts" to K.S. Among K.S. sequences of size a there might exist sequences {,W I such
that for any other K.S. sequence P,4I of the same size

(138) lim supsup tB(6n,0)t1)-B( 0) ; 0 E Kn Hc} _0

for every compact K c e. Such a sequence would be called asymptotically uniformly
most powerful on compacts among K.S. sequences and, for short, K.U.M.P.S.
To find such a sequence it is most convenient to consider first a simpler problem.
Let 6,4 and {°*n} be two arbitrary sequences in e converging to the same point

6o E e. Let &. = -I(6,. - Oo) and * = V/f(0*n- 6) and finally X. = ln(T, - Oo).
Furthermore, let f.(x, in) and g,(x, in) be defined by

(139) f3(x, t ) = [det r ( 0)]/2exp I ( - r (o) (X- )
(2.) r/2

and
(140) g.(x, ) = [det r (O.) ] /2 exp I ( - r (oA) ( -

(2r) r/2

It is easily seen that, ;&n being the measure defined in theorem 2, section 6, the quantity
(141) fjIgo(x, i) -fn(x, .n) IdsA
tends to zero as n tends to infinity. Therefore, for a sequence 6fin} tending to 6o one can

approximate the measures Qe,n, of theorem 2 by the simpler measures Q2,n, defined by

(142) Qen,a(S) =fffn(x, f.) dAn.
s

The same proposition holds true mutais mutandis for the sequence {fJ*n}
Instead of trying to find a test of Pin-) against Pk) one may as well try to find a
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test of n n against (., n, the results so obtained being asymptotically equivalent
according to theorems 1 and 2.

According to the fundamental lemma of the Neyman-Pearson theory, for any level
of significance a there is a constant k*(a, ,, ,) such that the best test at level a of the
hypothesis 0., against t,n is given by

0 if (Qi*-tn) r(00)(X. - {+ > k
(143) 4(X.) = 2

{I (i.f)r)(0o)(X.- <kn

and some number between zero and unity if

(144) tn* - ,) I r (oo) [X n- t )] = kn.

Let h be a number such that

(145) 2 f e-t2/2dt= a

and let 5n be the difference t*- tn. Simple algebra shows that, since

(146) 21eX. - t. )/1/[0, r-'(oo)I,

the tests {An}1 obtained by rejecting ,n if

(147) an r (00)(X- n)_ hV 0)a

are most powerful for testing tn against t* and have levels of significance tending to a.
To come back to the problem of finding asymptotically similar tests, assume that the

hypothesis specifies that 0 lies in a hyperplaneH of C and that 0 is the part of g on one
side of this hyperplane. Take Oo E H as origin of coordinates and let e be an arbitrary
vector not contained in H. Every element x of 6 can be written in a unique manner as
x = u + ve, with u E H. It will be assumed that for x E Hc the number v is positive. Let
IHo be the projection onH orthogonally with respect to r(0o). Then every x E g can also
be written
(148) x=IIox+ (I-Ilo) x = u+ vlloe+ v(l-11o) e .

Let eo = (I -Ilo)e and z = u + vIloe. Let {O*} be a sequence of elements of 0 tending
to Oo. Let t* = n'(0* - Oo) and let t* = t. + 'ineo with tn = HOt*n.

For testing the hypothesis t = n against t = * the test derived above reduces to
the test 4,, obtained by rejecting the hypothesis if

(149) 7n v [ el r ( 0) eo h -V,n2e'r (00) eO

that is, sincenn is positive
(150) v _ h [ elOr (0o)eol -1/2 .

Such a test depends on the particular sequence Io* I only by the occurrence of the limit
point 0o in r(oo) and consequently eo. However, for any sequence IO* I tending to Go the
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matrix r(rT) tends in probability to r(0o) so that by Slutsky's theorem the tests w,n}
obtained by rejectingH if

(151) v>_ h [ e'(I -nt r(Tn) (I- in) el]-1/2

are asymptotically equivalent to { n} for every sequence {I *} tending to 0o.
The above argument applies to { con whatever may be the limit point Oo E H. There-

fore, {w. I is a K.S. sequence of size a for testingH against HC.
It remains to show that this sequence is K.U.M.P.S. If this were not true, there would

exist a sequence { 0*n contained in a compact, an e > 0 and a K.S. sequence 1 .J of
size a such that

(152) limsup P.(4, On*P)- (n, On* ) _ e>O.

By extracting a subsequence, if necessary, one can assume that {t0*n converges to
some point 00 E e. However, if Oo E Hc or if v(01*- 00) = t* = tn + 7neo with
Oo E Hand {bn} unbounded then lirn sup 8n( n,*n) = 1 so that the preceding inequality
is impossible. Hence {J1nJ must stay bounded. But then {#5n} is asymptotically of size a
for testing tn against t*n and therefore cannot be asymptotically more powerful than
I wn,. This completes the proof of the proposition: { w,.} is K.U.M.P.S. of size a for test-
ingH against H,.

For the situation considered earlier where e is a two-dimensional half plane e =
0: 0(2) _ O} andH is the lineH = lo: 0(2) = 0}, the sequence of tests {Iwn takes a par-

ticularly simple form. Let 'yj(l) be the elements of the matrix r(F) and let A(t) be the
determinant of I(t), that is, A(t) = -yll(t)Y22(t) - yl2(t). Let Tn2) be the second coordi-
nate of the vector Tn. The critical region of the test wn is given by the inequality

(153) V/n T,2) 2 h Y .

For any vector I = [IC'), 1(2)] let

=1n
(154)

Vn (t) = O2 [x, t(l), t(2)1.

By definition Tn is derived from a parent estimate tn by the formula

(1S5) Tn=tn+ r-, (tn)At's(tn) =tn+ 1 r-1(tn) Un (tn)

giving
(2) (2)+ 1

( 156) Tn = tn 2+ t) fll (tn) Vn (tn) - 12 (tn) U. (tn) I

If t42) is large the formula giving the test wn differs noticeably from the ones proposed by
Neyman. However, if 42) is small the situation is quite different. Let sn be the vector of
coordinates sil) = tnl) and SA) = 0. According to assumptions (A)

(15 7) An (tn) = A ( sn) -Bn (sn, tn) (tn-S)
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where B3(s., tn) is an average of B3(t) between sn and tn. Denote the elements of Bn(sn, tn)
by -if(n). Expanding U. and Vn by Taylor's formula one obtains

( 158) vn T") , Ytllz (t.) V- ( S.) - 12 (t.) U. ( s.) I +R.
with

(159) R- V t(2)) I. Y11(t4)i122 (n) 712 (t.) 112 (n)t

Consequently, if I0Onl is a sequence of values of 0 such that for some Oo E H the vec-
tors -/ (0,. - 0o) stay bounded, then for every e > 0 the quantity P{Rn > e I1On tends
to zero as n tends to infinity. Consider then a sequence 4'..) of tests defined by the
critical regions

(160) 1 [Y11 ( Sn) V. ( S.) -y12 ( Sn) U ( Sn.)] > h .

A ( S.) A (S.)
Slutsky's theorem implies again that if for some 0o E H the vectors Vn-(0. - 0o) stay
bounded then
(161) lim . ( 03,0.) - (con, 0.) = .

One can also verify easily that when I On} tends to Oo E H but A/ui0o 2) tends to infinity,
the power n.(Pn., 0n) tends to unity. Consequently, one can say that for every sequence
10 I1 converging to a point ofH
(162) lim On(4n, 0n) - . ('wn, 0n) = 0.

The sequence of tests {4,n} is a member of the class proposed by Neyman. More pre-
cisely { f4, is exactly the sequence of tests that Neyman has shown to be the "best" of
the proposed class. The following proposition summarizes the situation.

Let assumptions (A) be satisfied and let 0 be the half plane 0 = {0: 0(2) > 0}. Let
H be the hypothesisH = 10: 0(2) = 01. Let 1Tn I be a sequence of estimates of the class
_% with parent estimates I tn}). Letsn be the vector of coordinates snl) = A ) and s($2) = 0.
Let wcn be the test whose critical region is given by

(163) VinT2)_hT A(t,.)
Let 'n be the test whose critical region is given by

(164) g-z tso2[Xj, tnl) 01 712(5 ) O h A(s.)

PROPOSITION 2. Both sequences { xn} and {"4}) are K.S. sequences of size a. The sequence
(On I is K.U.M.PS. For every sequence 03 tending to a point ofH
(165) lim .(nn, 03) -8On(W,., 03) = 0

A necessary and sufficient condition that 14'n) be K.U.M.P.S. is that P,(4',n, 0) converge
to unity uniformly on the compacts of HC.

Since the tests 4'n are very much simpler to use than the tests con one might try to re-
place wn by 4,. whenever possible. Note that according to the preceding propositions



I56 THIRD BERKELEY SYMPOSIUM: LE CAM

there is no substantial difference in their performance close to the hypothesis H. How-
ever, to obtain this proposition we have assumed that the estimate available {it.
possesses the strong properties of consistency of the class e not only under the hy-
pothesis but under the alternatives as well. It is easily seen that an estimate It,I which
is of the class e only for the hypothesisH will lead to K.S. tests but not necessarily to
K.U.M.P.S. tests. Even if the sequence f 1t is of the class e for the whole of 0, the tests
w,, and 4,. might differ essentially for values of 0 remote from H.
To the author's knowledge, no simple condition to insure that 03n(!14I,0) converges to

unity uniformly on the compacts of Hc has yet been found.
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