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Abstract. The object of the present paper is to prove an asymptotic analogue
of Th. M. Rassias’ theorem obtained in 1978 for the Hyers-Ulam stability of
mappings.

1. Introduction

In [15] Rassias generalized the result of Hyers [9] by allowing growth of the form
ε · (‖x‖p+‖y‖p) for the norm of the Cauchy difference f(x+y)−f(x)−f(y), where
0 ≤ p < 1, and still obtained the formula

g(x) = lim
n→∞

f(2nx)

2n

for the additive mapping approximating f . Other developments of this idea are
described in [10] (see also [1], [5], [7], [8], [12], [13], [16]). In the present article we
obtain an asymptotic analogue of this result of Th. M. Rassias.

Several authors have used asymptotic conditions in stating approximations to
Cauchy’s functional equation

f(x+ y) = f(x) + f(y).

P.D.T.A. Elliott [6] showed that if the real function f belongs to the class Lp(0, z)
for every z ≥ 0, where p ≥ 1, and satisfies the asymptotic condition

lim
z→∞

∫ z
0

∫ z
0
|f(x+ y)− f(x)− f(y)|p dx dy

z
= 0,

then there is a constant c such that f(x) = cx almost everywhere on R+. One
of the theorems of J. R. Alexander, C. E. Blair and L. A. Rubel [1] states that if
f ∈ L1(0, b) for all b > 0, and if for almost all x > 0

lim
u→∞

∫ y
0

[f(x+ y)− f(x)− f(y)] dy

u
= 0,

then for some real number c, f(x) = cx for almost all x ≥ 0.
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F. Skof [17] proved that given real normed spaces X and E and a mapping
f : X → E satisfying the condition

‖f(x+ y)− f(x)− f(y)‖ → 0 as ‖x‖+ ‖y‖ → ∞,

then f(x + y) = f(x) + f(y) for all x and y in X . In a later article [18] the
same author showed that a real-valued function f defined on a real normed space
X is additive proving that f(0) = 0 and |f(x + y)| − |f(x) + f(y)| → 0 when
‖x‖ + ‖y‖ → 0. In [12] is shown an interesting relation between the Hyers-Ulam
stability and the asymptotic derivability. This relation is applied to the study of
some important nonlinear problems (cf. [13]).

In the present paper we consider the asymptoticity aspect of Hyers-Ulam stability
close to the asymptotic derivability. The asymptotic derivability is very important
in nonlinear analysis (cf. [2], [3], [4], [11], [14]).

2. Main result

Theorem 1. Given a real normed vector space E1 and a real Banach space E2,
let numbers M > 0, ε > 0 and p with 0 < p < 1 be chosen. Let the mapping
f : E1 → E2 satisfy the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)(1)

for all x, y in E1 such that

‖x‖p + ‖y‖p > Mp.(2)

Then there exists an additive mapping ϕ : E1 → E2 such that

‖ϕ(x)− f(x)‖ < β(p)ε‖x‖p(3)

for all x ∈ E1 with ‖x‖ > M
21/p , where β(p) = 2

2−2p and ϕ(x) = limn→∞
f(2nx)

2n .

Proof. When ‖x‖ > M
21/p , that is, when 2‖x‖p > Mp, we may put y = x in (1) to

obtain

‖2−1f(2x)− f(x)‖ ≤ ε‖x‖p.(4)

Of course we can replace x by 2x in (4) since ‖2x‖ is also greater than M
21/p . Thus,

we can use the argument given in [15] to arrive at the inequality

‖2−nf(2nx) − f(x)‖ ≤ β(p)ε‖x‖p when ‖x‖ > M

21/p
for n ∈ N(5)

and thus to show that the limit

g(x) = lim
n→∞

f(2nx)

2n
(6)

exists when ‖x‖ > M
21/p . Therefore

‖g(x)− f(x)‖ ≤ β(p)ε‖x‖p.(7)

Clearly, when ‖x‖ > M
21/p , g(2x) = limn→∞

f(2n+1x)
2n = 2 limn→∞

f(2n+1x)
2n+1 , so that

g(2x) = 2g(x) for ‖x‖ > M

21/p
.(8)

Now suppose that ‖x‖, ‖y‖ and ‖x+ y‖ are all greater than M
21/p . Then by (1) we

find that for all n ∈ N ,

‖2−nf(2n(x + y))− 2−nf(2nx) − 2−nf(2ny)‖ ≤ ε2−n(1−p)(‖x‖p + ‖y‖p).(9)
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Under the conditions stated it follows by (6) that

g(x+ y) = g(x) + g(y).(9a)

Using an extension method of F. Skof [18] we will define a mapping ϕ : E1 → E2 to
be an extension of the mapping g to the whole space E1. Given any x ∈ E1 with
0 < ‖x‖ < M

21/p , let k = k(x) denote the largest integer such that

M

21/p
< 2k‖x‖ ≤M.(10)

Define the mapping ϕ as follows:
ϕ(0) = 0,

ϕ(x) = 2−kg(2kx) for 0 < ‖x‖ < M
21/p , where k = k(x),

ϕ(x) = g(x) for ‖x‖ > M
21/p .

Lemma. For all x in E1

ϕ(x) = lim
s→∞ 2−sf(2sx)(11)

and

ϕ(−x) = −ϕ(x).(12)

Proof. Take any x in E1 with 0 < ‖x‖ < M
21/p , and let k = k(x), so that k is the

largest integer satisfying (10). Thus k − 1 is the largest integer satisfying

M

21/p
< ‖2k−1(2x)‖ ≤M,

and we have

ϕ(2x) = 2−(k−1)g(2k−1(2x)) = 2−k · 2g(2kx) = 2ϕ(x) for 0 < ‖x‖ < M

21/p
.

From the definition of ϕ and property (8) of g it follows that ϕ(2x) = 2ϕ(x) for
all x in E1. Given x in E1 with x 6= 0, choose a positive integer m so large that
‖2mx‖ > M

21/p .
By the definition of ϕ we have

ϕ(x) = 2−mϕ(2mx) = 2−mg(2mx),

and by (6) this implies that

ϕ(x) = lim
n→∞ 2−(m+n)f(2m+nx),

which demonstrates (11) for x 6= 0.
Since ϕ(0) = 0, the same is true for x = 0. Equation (12) is obvious for x = 0.

Take any x in E1 with x 6= 0 and choose n ∈ N large enough so that ‖2nx‖ > M
21/p .

Then by (1) with y = −x we obtain

‖2−nf(2nx) + 2−nf(−2nx)‖ ≤ 2ε2−n(1−p)‖x‖p + 2−n‖f(0)‖.
When n→∞ it follows from (11) that (12) holds. The lemma is proved.

In proving the additivity of ϕ we note that the equation

ϕ(x+ y) = ϕ(x) + ϕ(y)(13)

holds when either x or y is zero.
Assume then that x 6= 0 and y 6= 0. If x + y = 0, i.e. y = −x, then (12) shows

that (13) holds. The only remaining case is when x, y and x+y are all different from
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zero. In this case we may choose an n in N such that ‖2nx‖, ‖2ny‖ and ‖2n(x+y)‖
are all greater than M

21/p . Then by (1) we have

‖f(2n(x+ y))− f(2nx) − f(2ny)‖ ≤ ε2np(‖x‖p + ‖y‖p).
If we divide both sides of this inequality by 2n and then let n→∞, we find by (11)
that (13) is true, thus ϕ is additive.

By definition ϕ(x) = g(x) when ‖x‖ > M
21/p , thus (3) follows from (7) and the

proof of Theorem 1 is complete. Q.E.D.

For convenience in applications we give the following modified version of Theorem
1.

Theorem 2. Given a real normed vector space E1 and a real Banach space E2, let
numbers m > 0, ε > 0 and p with 0 ≤ p < 1 be chosen. Suppose that the mapping
f : E1 → E2 satisfies the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)
for all x and y in E1 such that ‖x‖ > m, ‖y‖ > m and ‖x + y‖ > m. Then there
exists an additive mapping ϕ : E1 → E2 which satisfies

‖ϕ(x)− f(x)‖ ≤ 2ε(2− 2p)−1‖x‖p

for all x in E1 such that ‖x‖ > m. Moreover, ϕ is given by the formula

ϕ(x) = lim
n→∞ 2−nf(2nx)

for all x in E1.

Proof. Assume that ‖x‖ > m. Then as in the proof of Theorem 1 we obtain (4)–(8)
inclusive, but now all these formulas are satisfied for ‖x‖ > m. In particular,

g(x) = lim
n→∞ 2−nf(2nx) when ‖x‖ > m.

Also, if ‖x‖ > m, ‖y‖ > m and ‖x + y‖ > m, then by hypothesis we see that (9)
and (9a) also hold. To apply Skof’s extension procedure in the present case, let x
in E1 be given with 0 < ‖x‖ ≤ m and define k = k(x) to be the unique positive
integer such that

m < 2k‖x‖ ≤ 2m.(14)

Now define the mapping ϕ : E1 → E2 as follows:
ϕ(0) = 0,

ϕ(x) = 2−kg(2kx) for 0 < ‖x‖ ≤ m,

ϕ(x) = g(x) for ‖x‖ > m.

The proof of the Lemma used in the proof of Theorem 1, follows as before with the
obvious changes.

Indeed, we start with x in E1 satisfying 0 < ‖x‖ ≤ m and let k = k(x) as defined
by (14), etc. Thus the Lemma holds under the conditions of Theorem 2. The proof
of the additivity of ϕ also follows as before. Therefore the proof of Theorem 2 is
complete. Q.E.D.
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3. p-asymptotical additivity

We apply the main theorem, precisely Theorem 2, to the study of p-asymptotical
derivatives.

Let E1 and E2 be Banach spaces. Let T be a mapping from E1 into E2 satisfying
eventually a special property such as, for example, additivity, linearity, etc. Let
0 < p < 1 be arbitrary.

Definition 1. A mapping f : E1 → E2 is p-asymptotically close to T if and only

if lim‖x‖→∞
‖f(x)−T (x)‖

‖x‖p = 0.

Remark 1. If in Definition 1, T ∈ L(E1, E2), then we say that T is a p-asymptotical
derivative of f and if such a T exists, then f is p-asymptotically derivable.

Remark 2. Since for x such that ‖x‖ ≥ 1 we have ‖x‖p ≤ ‖x‖, one obtains that
every p-asymptotical derivative of f is an asymptotical derivative. Indeed, if T ∈
L(E1, E2) is a p-asymptotical derivative of f , then

0 ≤ lim
‖x‖→∞
‖x‖>1

‖f(x)− T (x)‖
‖x‖ ≤ lim

‖x‖→∞
‖x‖>1

‖f(x)− T (x)‖
‖x‖p = 0.

Definition 2. A mapping f : E1 → E2 is p-asymptotically additive if and only if
for every ε > 0 there exists δ > 0 such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)
for all x, y ∈ E such that ‖x‖p, ‖y‖p, ‖x+ y‖p > δ.

Definition 3. A mapping T : E1 → E2 is additive outside a ball if there exists
r > 0, such that T (x + y) = T (x) + T (y) for all x, y ∈ E1 with ‖x‖, ‖y‖ ≥ r and
‖x+ y‖ ≥ r.

Example. Let T : E1 → E2 be defined by

T (x) =

{
L(x) if ‖x‖ ≥ r,

ϕ(x) if ‖x‖ < r

where L : E1 → E2 is a linear mapping and

ϕ : B(0, r) → E2

is a nonlinear mapping where B(0, r) = {x ∈ E1| ‖x‖ < r}. It follows that if
x, y ∈ E1 with ‖x‖ ≥ r, ‖y‖ ≥ r, and ‖x+ y‖ ≥ r, then T (x+ y) = T (x) + T (y).

We have the following result.

Theorem 3. If f : E1 → E2 is p-asymptotically close to an additive mapping
outside a ball T : E1 → E2, then f is p-asymptotically additive.

Theorem 4. If f : E1 → E2 is p-asymptotically close to an additive outside a ball
mapping T : E1 → E2, then f is p∗-asymptotically close to an additive mapping,
where 0 < p < p∗ < 1.

Corollary. If f : E1 → E2 is p-asymptotically close to an additive outside a ball
mapping T : E1 → E2, then f has an additive asymptotical derivative.
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