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SUMMARY

We study the asymptotic behaviour of penalized spline estimators in the univariate case. We use
B-splines and a penalty is placed on mth-order differences of the coefficients. The number of knots
is assumed to converge to infinity as the sample size increases. We show that penalized splines
behave similarly to Nadaraya–Watson kernel estimators with ‘equivalent’ kernels depending
upon m. The equivalent kernels we obtain for penalized splines are the same as those found by
Silverman for smoothing splines. The asymptotic distribution of the penalized spline estimator
is Gaussian and we give simple expressions for the asymptotic mean and variance. Provided that
it is fast enough, the rate at which the number of knots converges to infinity does not affect
the asymptotic distribution. The optimal rate of convergence of the penalty parameter is given.
Penalized splines are not design-adaptive.

Some key words: Asymptotic bias; Binning; B-spline; Difference penalty; Equivalent kernel; Increasing number of
knots; P-spline.

1. INTRODUCTION

Suppose we have a univariate regression model yt = f (xt ) + εt , t = 1, . . . , n, where, condi-
tionally given xt , εt has mean zero and variance σ 2(xt ). For simplicity, we assume that the xt are
in [0, 1]. This paper presents an asymptotic theory of penalized spline estimators of f .

The model is f (x) = ∑K (n)+p
k=1 bk B[p]

k (x), where {B[p]
k : k = 1, . . . , K (n) + p} is the pth-

degree B-spline basis with knots 0 = κ0 < κ1 < · · · < κK (n) = 1. The value of K (n) will depend
upon n as discussed below. The penalized least-squares estimator b̂ = (b̂1, . . . , b̂K (n)+p)′ mini-
mizes

n∑
t=1

⎧⎨⎩yt −
K (n)+p∑

j=1

b j B[p]
j (xt )

⎫⎬⎭
2

+ λ∗
n

K (n)+p∑
k=m+1

{�m(bk)}2, λ∗
n � 0, (1)

where � is the difference operator, that is, �bk = bk − bk−1, m is a positive integer, and �m =
�(�m−1). The nonparametric regression estimator f̂ (x) = ∑K (n)+p

k=1 b̂k B[p]
k (x) was introduced

by Eilers & Marx (1996) and is called a P-spline.
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Let X [p] be the n × {K (n) + p} matrix with (t, j)th entry equal to B[p]
j (xt ) and let Y =

(Y1, . . . , Yn)′. Define Dm as the {K (n) + p − m} × {K (n) + p} differencing matrix satisfying

Dmb =
⎛⎜⎝ �m(bm+1)

...
�m

(
bK (n)+p

)
⎞⎟⎠ .

For simplicity of notation, the dependence of Dm on p will not be made explicit. Let �[p,m]
n =

(X [p])′X [p] + λ∗
n(Dm)′Dm . Then, by (1), b̂ solves

�[p,m]
n b̂ = (

X [p])′Y . (2)

This paper develops an asymptotic theory of P-splines for the cases p = 0 and 1 and m = 1
and 2, that is, piecewise-constant or linear splines, with a first- or second-order difference penalty.
In § 5·1 we discuss possible extensions to higher-degree splines and higher-order penalties. One
interesting, and perhaps surprising, result is that the rate of convergence of f̂ to f depends upon
m but not upon p and K (n), provided only that K (n) → ∞ fast enough with the minimum rate
depending on p; see Theorems 1 and 2 where K (n) is of order nγ and only a lower bound for
γ is assumed, though the lower bound depends on p. The minimum number of knots grows
more slowly with n as p increases. The asymptotic results presented here provide theoretical
justification for the conventional wisdom that the number of knots is not important, provided only
that the number is above some minimum depending upon the degree of the spline. Previously
there was empirical support for this assertion (Ruppert, 2002) but no theoretical support. The
bias of a penalized spline has two components, namely modelling bias due to approximating the
regression function by a spline, and shrinkage bias due to estimation by penalized rather than
ordinary least squares. In the theory presented here, K (n) grows sufficiently rapidly with n that
the modelling bias is asymptotically negligible compared to the shrinkage bias. This result agrees
with finite-sample examples in Ruppert (2002), where the modelling bias is quite small compared
to the shrinkage bias.

For simplicity, most of our results are for the case of equally spaced design points and knots,
so that x1 = 1/n, x2 = 2/n, . . . , xn = 1 and κ0 = 0, κ1 = 1/K (n), κ2 = 2/K (n), . . . , κK (n) = 1.
In § 4, these results are generalized to unequally spaced design points and knots. An interesting
finding is that penalized splines are not design-adaptive as defined by Fan (1992) because their
asymptotic bias depends on the design density and the bias converges to zero at a slower rate at
the boundary than in the interior.

Penalized splines use fewer knots than smoothing splines, which use a knot at each data-point.
Reducing the number of knots, which goes back at least to O’Sullivan (1986), makes compu-
tations easier. The methodology and applications of penalized splines are discussed extensively
in Ruppert et al. (2003) and in papers by many authors, too many to review here. What, with
a few exceptions, has been largely absent is an asymptotic theory that can be used to compare
penalized splines with other nonparametric regression techniques. Exceptions are papers such as
Yu & Ruppert (2002) and Wand (1999), where the number of knots is held fixed as the sample
size increases. Another exception is the paper by Hall & Opsomer (2005). The results of Hall
and Opsomer differ in several major ways from the results presented here. First, they use an
approximation where knots are placed continuously; that is, there is a knot at every value of x in
some interval. Moreover, their results are expressed as infinite series involving the eigenvalues
of a certain operator; for example, see their expression (25) for the mean integrated squared
error. In contrast our results are expressed in a form similar to results for kernel estimators,
making comparisons with other nonparametric regression estimators easier. For example, we
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obtain explicit expressions for bias which, as just mentioned, show that penalized splines are not
design-adaptive. Another advantage of our approach over that in Hall & Opsomer (2005) is that
we can find the minimum rate at which the number of knots must converge to infinity in order for
the modelling bias to be negligible.

2. ZERO-DEGREE SPLINES

2·1. Overview

Zero-degree splines are piecewise-constant. The kth zero-degree B-spline is B[0]
k (x) =

I {κk−1 < x � κk}, 1 � k � K (n). For simplicity, assume that n/K (n) is an integer, which will
be denoted by M . This assumption implies that every M th xt is a knot; that is κ j = x j M for
j = 1, . . . , K (n). If n/K (n) is not an integer, we could define M = �n/K (n)�, the integer part
of n/K (n), and place a knot at every M th xt and at xn . This would introduce an asymptotically
negligible boundary effect in that the number of data points in the last ‘bin’ would be less than
that in other bins. Here the kth ‘bin’ is (κk−1, κk] and equals the support of B[0]

k .

Recall that X [0] is the n × K (n) matrix with (t, j)th entry equal to B[0]
j (xt ). Then

(X [0])′X [0] = M IK (n) where IK (n) is the K (n) × K (n) identity matrix. Therefore, by (2), the
penalized least-squares estimator solves

{IK (n) + λn(Dm)′Dm}b̂ = y, (3)

where λn = λ∗
n/M and (X ′Y/M) = y = (y1, . . . , yK (n))

′ where yk is the average of all yt such
that κk−1 < xt � κk .

2·2. Solving banded linear equations

The matrix IK (n) + λn(Dm)′Dm in (3) and, more generally, �[p,m]
n in (2) have a pattern that we

will use to study the asymptotic behaviour, as K (n) → ∞, of the solutions to equations such as
(2). Define q = max(p − 1, m). Except for the first q and last q columns, every column of �[p,m]

n
has the form

(0 · · · 0 ωq · · · ω1 ω0 ω1 · · · ωq · · · 0)′,

where ω0 is the diagonal entry and ωq � 0 by definition of q. We will approximate the solution
to (2) by finding a vector Tt that is orthogonal to all columns of �[p,m]

n except the t th and the first
and last q columns. Moreover, for estimation in the interior, that is, for t/K (n) → x ∈ (0, 1), Tt

will also be asymptotically orthogonal to the first and last q columns.
We will say that Hx,n(·) is the ‘equivalent kernel’ for an estimator f̂ at x ∈ [0, 1] if f̂ (x) has

the same asymptotics as
∑n

t=1 Hx,n(xt )yt . In the common case where Hx,n(·) = H{(· − x)/bn}
for some function H independent of x and n, we also call H the equivalent kernel and bn is called
the ‘equivalent bandwidth’. Here Tt determines the form of the equivalent kernel at xt for the
penalized spline estimator.

Assume that there is root ρn , possibly complex, of modulus less than 1 of the polynomial

P(ρ) = ωq + ωq−1ρ + · · · + ω0ρn
q + · · · + ωqρn

2q .

Define Tt (ρn) = (ρt−1
n · · · ρ2

nρn1ρnρ
2
n · · · ρK (n)+p−t

n ). Then Tt (ρn) is orthogonal to all columns of
�[p,m]

n except the first and last q columns and columns t − q + 1, . . . , t + q − 1. If we can find
q distinct roots of P , ρn1, . . . , ρnq , say, all less than 1 in modulus, then we can find a linear com-
bination, St say, of T (ρn1), . . . , T (ρnq ) that is orthogonal to columns t − q + 1, . . . , t − 1 and
columns t + 1, . . . , t + q − 1. Moreover, since |ρn j | < 1 for j = 1, . . . , q, St is asymptotically
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orthogonal to all columns except the t th, assuming that t/K (n) → x ∈ (0, 1). As we will see, the
boundary case where x → 0 or 1 at a suitable rate can be handled similarly.

We see that our technique requires P to have q distinct roots of modulus less than 1. Will this
happen? Note that P has 2q roots, and all are nonzero since ωq � 0. By the symmetry of the
coefficients of P , if ρn is a root, then 1/ρn is also a root. Thus, if the roots of p are distinct and
none of them has modulus 1, then there will be exactly q roots less than 1 in modulus. Numerical
experiments suggest that this is always the case with the matrix �[p,m]

n in (2). In certain situations,
we have a proof that no root has modulus 1; see Proposition 1.

In § 2·6, m = 2 and q = 2 and P has two complex roots of modulus less than 1. The complex
roots cause the effective kernel to be an exponentially damped linear combination of cos(x) and
sin(|x |).

We remark that �[p,m]
n is a Toeplitz matrix with modified upper left and lower right corners.

The inverses of such matrices have been much studied; see Dow (2003) for a review. We have
tried, but without success, to find results in the literature that would give the asymptotic behaviour
of solutions to (2) in a direct manner. Also, since ρn is a root of P(ρ), we see that G(n) = ρn

n is
a solution to the homogeneous difference equation ωq G(n) + ωq−1G(n − 1) + · · · + ω0G(n −
q) + · · · + ωq G(n − 2q) = 0. We used this fact when constructing Tt . We had hoped to exploit
the theory of difference equations—see, for example, Elaydi (2005)—in this research but we
were unable to find an approach simpler than the one just described.

2·3. First-order difference penalties: overview

Now we specialize to the case where m = 1. To find the solution to (3) it is convenient to divide
both sides of (3) by (1 + 2λn) so that all diagonal elements, except the first and last, equal 1. This
gives us


b̂ = z, (4)

where z = (z1, . . . , zK (n))′ = y/(1 + 2λn) and 
 is the K (n) × K (n) matrix with 
t j = 1
if 1 < t = j < K (n), 
t j = ηn = −λn/(1 + 2λn) if |t − j | = 1, 
11 = 
K (n)K (n) = θn =
(1 + λn)/(1 + 2λn), and 
t j = 0 if |t − j | > 1.

To solve (4) we apply the methodology described in § 2·2. In our case, m = 1 and p = 0, so
q = 1. Let ρn be the solution between 0 and 1 of

P(ρ) = ηn + ρ + ηnρ
2 = 0; (5)

since P(0) < 0 and P(1) > 0 such a solution must exist. Then

ρn = 1 − (
1 − 4η2

n

)1/2

−2ηn
= 1 + 2λn − (1 + 4λn)1/2

2λn
. (6)

We now solve for b̂1 and b̂K (n). Let Tt = Tt (ρn) = (ρt−1
n , ρt−2

n , . . . , ρn, 1, ρn, ρ
2
n , . . . , ρ

K (n)−t
n )′.

By (5), Tt is orthogonal to all columns of 
 except the first, last and t th. In particular, T1 and TK (n)

are orthogonal to all columns except the first and last, which makes it easy to solve for b̂1 and
b̂K (n). Multiplying both sides of (4) by T ′

1, we obtain {θn + ηnρn}b̂1 + ρ
K (n)−2
n (ηn + θnρn)b̂K (n) =∑K (n)

k=1 ρk−1
n zk , and then multiplying both sides of (4) by T ′

K (n) we obtain ρ
K (n)−2
n (ηn + θnρn)b̂1 +

(θn + ηnρn)b̂K (n) = ∑K (n)
k=1 ρ

K (n)−k
n zk . Therefore,

b̂1 =
(θn + ηnρn)

(∑K (n)
k=1 ρk−1

n zk

)
− ρ

K (n)−2
n (ηn + θnρn)

(∑K (n)
k=1 ρ

K (n)−k
n zk

)
(θn + ηnρn)2 − ρ

2(K (n)−2)
n (ηn + θnρn)2

. (7)
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We will choose λn so that ρn , which is a function of λn , satisfies ρ
K (n)
n = exp(−n1/5h−1) for

some positive constant h; equations (16) and (18) below show that λn can be chosen to achieve
this result. Then b̂1 ∼ (

∑K (n)
k=1 ρk−1

n zk)/(θn + ηnρn) = (
∑K (n)

k=1 ρk−1
n yk)/{(θn + ηnρn)(1 + 2λn)},

where an ∼ cn means that an/cn → 1. Also,

b̂K (n) =
−ρ

K (n)−2
n (ηn + θnρn)

(∑K (n)
k=1 ρk−1

n zk

)
+ (θn + ηnρn)

(∑K (n)
k=1 ρ

K (n)−k
n zk

)
(θn + ηnρn)2 − ρ

2(K (n)−2)
n (ηn + θnρn)2

, (8)

so that b̂K (n) ∼ (
∑K (n)

k=1 ρ
K (n)−k
n yk)/{(θn + ηnρn)(1 + 2λn)}.

After some algebra, one can show that

(θn + ηnρn)(1 + 2λn) = 1 + λn − ρnλn = {
1 + (1 + 4λn)1/2}/2,

since ρnλn = 1/2 + λn − (1 + 4λn)1/2/2. Also,

1/(1 − ρn) = (2λn)/{(1 + 4λn)1/2 − 1} = {
1 + (1 + 4λn)1/2}/2.

Thus,

(θn + ηnρn)(1 + 2λn) = 1/(1 − ρn) ∼
K (n)∑
k=1

ρk−1
n ,

so that b̂1 � (
∑K (n)

k=1 ρk−1
n yk)/(

∑K (n)
k=1 ρk−1

n ), with a similar result for b̂K (n).
Multiplying both sides of (4) by Tt , 1 < t < K (n), one obtains

(1+2ρnηn)b̂t =
K (n)∑
j=1

ρ|t− j |
n z j −

{(
ρt−1

n θn +ρt−2
n ηn

)
b̂1 +(

ρK (n)−t−1
n ηn +ρK (n)−t

n θn
)
b̂K (n)

}
. (9)

Substituting (7) and (8) into (9) gives an exact expression for b̂t .

2·4. First-order penalties: estimation at interior points

Consider the non-boundary case where we fix x ∈ (0, 1) and let t = tn(x) be such that

t/K (n) → x . (10)

Then

b̂t ∼
K (n)∑
j=1

ρ|t− j |
n y j/{(1 + 2ρnηn)(1 + 2λn)}. (11)

Also, by (10), t → ∞ so that

K (n)∑
j=1

ρ|t− j |
n ∼

∞∑
j=−∞

ρ|t− j |
n = 1

1 − ρn
+ ρn

1 − ρn
= 1 + ρn

1 − ρn
= (1 + 4λn) − (1 + 4λn)1/2

−1 + (1 + 4λn)1/2
. (12)

If we multiply the numerator and denominator on the right-hand side of (12) by (1 + 4λn) + (1 +
4λn)1/2, this expression simplifies to (1 + 4λn)1/2. Also, by (6), 1 + 2ρnηn = (1 − 4η2

n)1/2 and
some algebra show that 1 − 4η2

n = 1 − 4λ2
n/(1 + 2λn)2 = (1 + 4λn)/(1 + 2λn)2, so that

(1 + 2ρnηn)(1 + 2λn) = (1 + 4λn)1/2 ∼
K (n)∑
j=1

ρ|t− j |
n . (13)
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Thus, in the nonboundary case, we have by (11) and (13), and since f̂ is piecewise constant, that,
for any x ∈ (κt−a, κt ],

f̂ (x) = bt ∼
∑K (n)

j=1 ρ|t− j |
n y j∑K (n)

j=1 ρ
|t− j |
n

. (14)

This result shows that, in the nonboundary case, the penalized spline with p = 0 and m = 1
is asymptotically equivalent to a binned Nadaraya–Watson kernel estimator. More precisely, we
have the following result.

THEOREM 1. Suppose there exists δ > 0 such that E(Y 2+δ) < ∞, that the regression func-
tion f (x) has a continuous second derivative, that the conditional variance function σ 2(x) is
continuous, that

K (n) = Cnγ with C > 0 and γ > 2/5, (15)

and that λn is chosen so that

ρn = exp
{−(Ch)−1n1/5−γ

} = exp
{−n1/5h−1K (n)−1}. (16)

Let f̂n(x) be the first-order penalized estimator using zero-degree splines, that is m = 1 and
p = 0, with equally spaced knots. Then, for any x ∈ (0, 1), we have that

n2/5{ f̂n(x) − f (x)} → N {B(x),V(x)},
in distribution as n → ∞, where B(x) = h2 f (2)(x) and V(x) = 4−1h−1σ 2(x). The equivalent
kernel is the double-exponential or Laplace kernel

H (x) = 1
2 exp(−|x |), (17)

and the equivalent bandwidth is hn = hn−1/5.

Proofs of all theorems in this paper can be found in the technical appendix.
Note that (16) will hold for some choice of λn such that

λn ∼ C2h2n2γ−2/5 ∼ {
K (n)hn−1/5}2

, (18)

where h > 0 is a constant. To show (18), combine equations (6) and (16) to obtain
{1 + 2λn − (1 + 4λn)1/2}/(2λn) = ρn = exp{−C−1h−1n1/5−γ }. By (18), λn → ∞ so we
have

− log(ρn) = log[2λn/{1 + 2λn − (1 + 4λn)1/2}] = log(1 + λ−1/2
n ) + o(λ−1

n )

= λ−1/2
n + o(λ−1/2

n ) ∼ C−1h−1n1/5−γ .

Hence λn should be chosen as λn ∼ C2h2n2γ−2/5 ∼ {K (n)hn−1/5}2, by (15).

Example 1. This example studies how quickly the finite-sample kernel converges to (17).
Figure 1 shows the finite-sample kernels and the double-exponential kernel for all four values,
40, 80, 160 and 320, of n. Also, K (n) and λn are functions of n suggested by the asymptotics;
see the caption of Fig. 1. The double-exponential kernel for fitting at the j th bin has value
ρ|t− j |

n /(
∑

� ρ|�− j |
n ) at the t th bin with ρn a root of (5). The kernels are for estimation at the centre

of the design. We see good agreement between the finite-sample and asymptotic kernels for
n = 40 and excellent agreement for n = 320.
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Fig. 1. The finite-sample kernel (solid) and asymptotic double-exponential kernel (dashed)
for m = 1 and p = 0 and for (a) n = 40, (b) n = 80, (c) n = 160, (d) n = 320. In each
case K (n) and λn are functions of n suggested by the asymptotics: K (n) = 2n1/2, rounded
to the nearest integer, and λn = {K (n)hn−1/5}2 with h = 0·6. Here k is the bin number,
(k − 0·5)/K (n) is the midpoint of the kth bin, and the kernels are for estimation at midpoint

of the bin containing 0·5.

2·5. First-order penalties: estimation at the boundary

The boundary case is slightly more complex than the nonboundary case. The bias is of order
n−1/5 but it is not the same as the bias of the Nadaraya–Watson estimator, though the Nadaraya–
Watson bias is also of order n−1/5.

To find the equivalent kernel at the left-hand boundary, we suppose that t/K (n) → 0 as n → ∞
at look at the t th bin. Then, from (9), we have

(1 + 2ρnηn)b̂t ∼
K (n)∑
j=1

ρ|t− j |
n z j − ρt

n

(
ρ−1

n θn + ρ−2
n ηn

)
b̂1

∼
K (n)∑
j=1

ρ|t− j |
n z j − ρt

n

(
ρ−1

n θn + ρ−2
n ηn

) K (n)∑
j=1

ρ j−1
n z j/(θn + ηnρn)

so that

b̂t ∼
K (n)∑
j=1

(
a1ρ

|t− j |
n + a1a2ρ

t+ j
n

)
z j , (19)
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Fig. 2. The finite-sample kernel (solid) and asymptotic boundary kernel (dashed) given
by (19) for m = 1 and p = 0 and for (a) n = 40, (b) n = 80, (c) n = 160, (d) n = 320.
In each case K (n) and λn are functions of n suggested by the asymptotics: K (n) = 2n1/2,
rounded to the nearest integer, and λn = {K (n)hn−1/5}2 with h = 0·6. Here k is the bin
number, (k − 0·5)/K (n) is the midpoint of the kth bin, and the kernels are for estimation
at the midpoint of the bin containing 0·2. One can see that, in addition to the truncation at

the boundary, the kernels are asymmetric, in agreement with (19).

where a1 = (1 + 2ρnηn)−1 and a2 = (θn + ηnρ
−1
n )/{ρ2

n (θn + ηnρn)}. By (A1) and (19),

b̂t ∼
K (n)∑
j=1

H
(
xt , x j ; hn−1/5)z j

where H is the equivalent boundary kernel such that

H (xt , x j ; h) ∝ [a1 exp(−|xt − x j |/h) + a1a2 exp{−(xt + x j )/h}]. (20)

The constant of proportionality is determined by
∑K (n)

j=1 H (xt , x j ; hn−1/5) = 1. Since the equiv-

alent bandwidth is of order n−1/5 by (A2), the second term in (20) is asymptotically negligible in
the nonboundary case where, for some x ∈ (0, 1), xt is chosen so that xt → x . However, in the
left-hand boundary case under consideration where xt = cn−1/5 for some c � 0, the contribution
of the second term persists as n → ∞.

Example 2. Figure 2 compares the finite-sample kernel with the asymptotic boundary kernel
given by (19), both for estimation at x = 0·2. The sample sizes are 40, 80, 160 and 320, and K (n)
and λn are functions of n suggested by the asymptotics; see the caption of Fig. 2. We see that the
agreement between the finite-sample and asymptotic kernels is very good for n = 320. For smaller
sample sizes, the finite-sample kernel is well above zero at both the left-hand and right-hand
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boundaries, so there are effects from both boundaries; in this situation, the asymptotic boundary
kernel should not be expected to approximate the finite-sample kernel (20) extremely well.

2·6. Second-order penalties: overview

Now suppose that m = 2. Then Dm = D2 is {K (n) − 2} × K (n) and the t th row of D2 has 1 in
coordinates t and t + 2, −2 in coordinate t + 1, and 0 elsewhere. Except for t = 1, 2, K (n) − 1
and K (n), the t th column of (D2)′D2 has entries, 1, −4, 6, −4 and 1 in rows t − 2 to t + 2 and 0
elsewhere. Now b̂ solves (3) with m = 2.

2·7. Second-order penalties: estimation at interior points

The next theorem treats the interior case where x ∈ (0, 1). Theorem 3 below covers the bound-
ary case.

THEOREM 2. Suppose that there exists δ > 0 such that E(Y 2+δ) < ∞, that f (x) has a con-
tinuous fourth derivative, that σ 2(x) is continuous, that K (n) ∼ Cnγ with C > 0 and γ > 4/9,
and that there exists a constant h > 0 such that

λn ∼ 4−1C4h4n4γ−4/9. (21)

Let f̂n(x) be the penalized estimator with p = 0, m = 2, and equally spaced knots. Then, for any
x ∈ (0, 1), when n → ∞, we have

n4/9{ f̂n(x) − f (x)} → N {B1(x),V1(x)},
in distribution, where B1(x) = (1/24) f (4)(x)h4 ∫

x4T (x)dx,V1(x) = h−1{∫ T 2(x)dx}σ 2(x),
and T (x) is a fourth-order kernel given by

L−1{exp(−|x |) cos(x) + exp(−|x |) sin(|x |)}, (22)

where L is a normalizing constant. The equivalent bandwidth is

hn = hn−1/9, (23)

where h is given by (21), so that λn ∼ 4−1K (n)4h4
n.

Example 3. We plotted finite-sample and asymptotic kernels for estimation at x = 0·5 using
four sample sizes: 40, 80, 160 and 320. For each sample size, K (n) = 2n1/2, rounded to the
nearest integer, and λn = 4−1{K (n)hn−1/9}4. To save space, we only describe the plots. There
is reasonably good agreement between the finite-sample and asymptotic kernels, especially for
n = 160 and larger where the two kernels were difficult to distinguish visually.

2·8. Second-order penalties: estimation at the boundary

We now consider the boundary case where x → 0 or 1 at the same rate at which the equivalent
bandwidth converges to 0.

THEOREM 3. Suppose that there exists δ > 0 such that E(Y 2+δ) < ∞, that f (x) has a contin-
uous second derivative, that σ 2(x) is continuous, that K (n) ∼ Cnγ with γ > 2/5, and that there
exists a constant h > 0 such that λn ∼ 4−1C4h4n4γ−4/5. Let f̂n be the penalized estimator using
zero-degree splines with a second-order penalty and equally spaced knots. Assume that we are
in the boundary case so that either x = cn−1/5 or x = 1 − cn−1/5 for some c � 0. Then, when
n → ∞, we have

n2/5{ f̂n(x) − f (x)} → N {B(x),V(x)},
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in distribution, where V(x) = h−1{∫ T ′2(x ′, x)dx ′}σ 2(x), T ′(·, x) is a second-order boundary
kernel described in (A10), and B(x) = 2−1 f (2)(x)h2 ∫

x2T ′(x ′, x)dx ′.

Example 4. We plotted finite-sample and asymptotic boundary kernels for estimation at x =
0·2 using four sample sizes: 40, 80, 160 and 320. For each sample size, K (n) is a function of
n specified in Example 3. There was extremely good agreement between the finite-sample and
asymptotic kernels, even for the smaller sample sizes.

3. LINEAR SPLINES

3·1. Overview

The linear B-spline basis with knots κ−1 < 0 = κ0, . . . , κK (n) = 1 <κK (n)+1 is {B[1]
0 , . . . ,

B[1]
K (n)}, where

B[1]
k (x) = 0, x < κk−1

= K (n)(x − κk−1), κk−1 � x � κk

= K (n)(κk+1 − x), κk � x � κk+1

= 0, x > κk+1.

(24)

Thus, B[1]
k (x) increases linearly from 0 to 1 as x increases from κk−1 to κk and then decreases

linearly to 0 as x increases from κk to κk+1; the actual values of the knots κ−1 and κK (n)+1 are
immaterial, since the B-splines will be evaluated only on [0, 1].

Note that
∫ 1

0 {B[1]
k (x)}2dx equals 2/3 K (n)−1 for k = 1, . . . , K (n) − 1 and equals 1/3 K (n)−1

for k = 0 or K (n). Also,
∫ 1

0 B[1]
k (x)B[1]

k+1(x)dx = 1/6 K (n)−1 for k = 0, . . . , K (n) − 1.
Therefore, X ′X � M �, where

� =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1/3 1/6 0 0 · · · 0 0
1/6 2/3 1/6 0 · · · 0 0
0 1/6 2/3 1/6 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 2/3 1/6
0 0 0 0 · · · 1/6 1/3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
· (25)

Equation (2) is solved by

b̂ = {M� + λ∗
n(Dm)′Dm}−1 X ′Y = {� + λn(Dm)′Dm}−1(X ′Y/M). (26)

Equation (26) has a banded matrix, {� + λn(Dm)′Dm}, with the same number of nonzero
diagonals as the matrix {Ik + λn(Dm)′Dm} in equation (3).

Also, in (26), (X ′Y/M) can again be regarded as a vector of bin averages of the Yt using linear
binning (Hall & Wand, 1996). To appreciate this, let the kth bin be [κk−1, κk+1], k = 0, . . . , K (n).
Thus, if κk−1 � xt � κk , then xt is in bins k − 1 and k. A fraction K (n)(x − κk−1) of Yt is placed
in the kth bin and the remaining fraction K (n)(κk − x) goes into bin k − 1. It follows that the
analysis for linear splines can be done in the same way as for piecewise-constant splines.

3·2. First-order difference penalty

If a first-order difference penalty is used, then, in the nonboundary region, the penalized spline
behaves asymptotically as an exponential kernel-weighted average of the bin averages, just as
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with zero-degree splines. The only differences are that the bin counts are from linear binning and
the bandwidth is different because of the nonzero off-diagonal terms in �.

THEOREM 4. Suppose there exists δ > 0 such that E(Y 2+δ) < ∞, that f (x) has a continuous
second derivative, that σ 2(x) is continuous, that K (n) ∼ Cnγ with C > 0 and γ > 1/5, and that
there exists a constant h > 0 such that the penalty λn ∼ C2h2n2γ−2/5 = {K (n)hn−1/5}2. Let f̂n

be the first-order penalized estimator using linear splines with first-order penalty and equally
spaced knots. Then, for any x ∈ (0, 1), when n → ∞, we have that

n2/5{ f̂n(x) − f (x)} → N {B(x),V(x)},
in distribution, where B(x) = h2 f (2)(x) and V(x) = 4−1h−1σ 2(x).

The equivalent kernel is double-exponential and the equivalent bandwidth is hn−1/5.

Although their asymptotic behaviour is similar to that of zero-order splines, linear splines are
different in two ways. There is no significant difference in asymptotic behaviour between zero-
degree and linear splines when γ > 2/5. However, if K (n) ∼ Cnγ with 1/5 < γ � 2/5, then
only linear splines obtain a O(n−2/5) rate of convergence since zero-order splines have an infinite
bias at this rate. Also, for linear splines we require that ρn > 0. This always holds for zero-
degree splines according to equation (6). However, with linear splines, ρn = {6λn + 2 − (3 +
36λn)1/2}(6λn − 1)−1. We can rewrite this as ρn = 1 + {3 − (3 + 36λn)1/2}(6λn − 1)−1. Thus,
ρn > 0 implies that λn > 1/6. The assumptions of Theorem 4 imply that γ → ∞, so λn > 1/6
will hold eventually.

4. UNEQUALLY SPACED DATA AND KNOTS

So far, equally spaced xt and knots have been assumed. This assumption can be relaxed using
an idea of Stute (1984). Assume that the xt are in some finite interval (a, b) and that, for all t and
n, G(xt ) = ut = t/n for some smooth function G from (a, b) to (0, 1). If we fit a penalized spline
to (Yt , ut ), then the regression function is f ◦ G−1. Equally spaced knots for the (Yt , ut ) data
translate for the (Yt , xt ) data into placing knots at sample quantiles so there are equal numbers of
data points between pairs of consecutive knots. Therefore, our theory does not cover the situation
where the xt are unequally spaced but the knots are equally spaced. The asymptotics for this case
would be interesting but require a different approach.

The following theorem follows from the application of Theorem 1 to (Yt , ut ) and translation
of the results back to (Yt , xt ). Similar results can be obtained corresponding to Theorems 2, 3
and 4.

THEOREM 5. Assume that there is a twice-differentiable strictly increasing function G such that
G(xt ) = t/n for all t and n and that f ◦ G−1 is twice continuously differentiable on (0, 1). Assume
also that σ 2(x) is continuous, that there exists δ > 0 such that E(Y 2+δ) < ∞, that K (n) ∼ Cnγ

with C > 0 and γ > 2/5, and that there exists a constant h > 0 such that λn ∼ C2h2n2γ−2/5.
Let f̂n be the penalized spline estimator with p = 0 and m = 1 and with knots at equally
spaced sample quantiles. Then, for any x ∈ (0, 1), when n → ∞, we have n2/5{ f̂n(x) − f (x)} →
N {B(x),V(x)}, in distribution, where, with g = G ′,

B(x) = h2( f ◦ G−1)(2){G(x)} = h2

g2(x)

{
f (2)(x) − f ′(x)g′(x)

g(x)

}
(27)

and V(x) = 4−1h−1σ 2(x).
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Thus, the bias of the penalized spline differs in several ways from that of the Nadaraya–Watson
estimator, which is

B(x) = h2
{

f (2)(x) + 2 f ′(x)g′(x)

g(x)

}
.

Interestingly, the second term inside the curly brackets in (27) appears in the bias of the Nadaraya–
Watson estimator, though with a plus sign. The term g2(x) in the denominator of (27) is a spatially
varying local bandwidth induced by the transformation of the xt to the ut .

Nonparametric regression estimators whose bias does not involve the design density g are
called ‘design-adaptive’ by Fan (1992). Theorem 5 shows that penalized splines with p = 0,
m = 1 and knots at sample quantiles are not design-adaptive. An open question is the behaviour
of penalized splines when the knots are equally spaced or higher-order B-splines or penalties are
used. This will be investigated in another paper.

5. CONCLUDING REMARKS

5·1. Higher-order difference penalties

We intend to study higher-order penalties, where m > 2, in the future. Here we merely make
a few remarks about the case p = 0, i.e., piecewise-constant splines. The effective kernel will
depend on the roots of modulus less than 1 of the polynomial

P(ρn) = (1 − ρn)2m(−1)m + Cnρ
m
n ,

where Cn > 0 and Cn → 0 as K (n) → ∞. We have seen that, for m = 1, P has one real root
with modulus less than 1, and, for m = 2, there is a conjugate pair of roots with modulus less than
1. Since Cn → 0 as n → ∞ and K (n) → ∞, all roots of P converge to 1. This ensures that, at
each x , the effective bandwidth is of the optimal order and f̂ (x) is an average over an increasing
number of bins.

In the case m = 3, our numerical experimentation has always found that there is one real root
and one conjugate pair of roots with modulus less than 1. Therefore, the effective kernel is a
linear combination of a double-exponential kernel, cos(ax) for some a > 0, and sin(b|x |) for
some b > 0. The effective kernel for smoothing splines with a penalty on the third derivative is
of this form; see equation (4·20) of Silverman (1984).

For m = 4, we have found that there are two conjugate pairs of roots with modulus less than
1. Therefore, the effective kernel will be a linear combination of the effective kernel for m = 2
with one bandwidth and the same kernel with a second bandwidth.

Typically, the bias of a smoother has an expansion

E{ f̂ (x)} − f (x) =
L∑

�=1

c�h� f (�)(x) + o(h�), (28)

where h is the ‘effective bandwidth’. If, in (28), c� = 0 for � < L and c� � 0, then the smoother
is of order L at x .

For m = 1 and 2, we have found that the effective kernel is of the order 2m in the interior
and order m at the boundary. Some numerical experiments suggest that this pattern continues for
larger values of m. In fact, we have a heuristic justification for believing that the pattern continues
for all m. The heuristic that works for p = 0, we believe, can be extended to all p, with some care.
Let Z be a K (n)-dimensional vector such that Zt = Q(t), t = 1, . . . , K (n), for some polynomial
Q of degree dQ . Then Dm Z = 0 if m > dQ . Therefore, if we modify the data by subtracting
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�=1 f (�)(x)(xt − x)�/(�!) from yt for all t , then the value of f̂ (x) is unchanged because p = 0;

if p > 0 the estimator will change because (X [p])′X [p] in �
[p,m]
K (n),λ∗

n
is not a scalar multiple of the

identity matrix, but the change should be asymptotically negligible. With this modification, the
bias at x is of order m. Thus, since f̂ (x) is unchanged by the modification, the bias must have
been of order m even without this modification. The penalized spline behaves as if an oracle told
us the value of f �(x) for � = 1, . . . , m − 1. Moreover, except for the first and last m columns, all
columns of D2m are orthogonal to a polynomial of degree less than 2m − 1. This suggests that,
in the interior, penalized splines are of order 2m rather than m.

5·2. Comparisons with other spline smoothers

Silverman (1984) found equivalent kernels for smoothing splines using Laplace transform
techniques. For a cubic smoothing spline with an integral penalty of the squared second derivative,
the equivalent kernel given by his equation (1·3) is 1/2 exp(−2−1/2|u|) sin(2−1/2|u| + π/4),
which can be rewritten as an equally weighted linear combination of exp(−2−1/2|u|) sin(2−1/2|u|)
and exp(−2−1/2|u|) cos(2−1/2u). This is a rescaled version of the equivalent kernel for second-
order difference penalties given by (22), which we have found for piecewise-constant penalized
splines.

This result is not too surprising, since the penalty in (1) is a rescaled discrete approximation
to a smoothing spline penalty. More precisely,

K (n)+p∑
k=m+1

{�m(bk)}2 � K (n)−2m
∫ 1

0

{
f (m)(x)

}2dx .

Moreover, we have found that the behaviour of a spline estimator depends on the penalty, not the
degree of the spline. Silverman also found that the Laplace density is the equivalent kernel when
the penalty is on the first derivative, a result in agreement with (17).

Agarwal & Studden (1980) discuss ordinary least-squares estimation of spline models. Since
they do not use a penalty, overfitting is controlled by knot selection. In this context, there is no
shrinkage bias and only model bias, a situation opposite to ours. Thus, it is not surprising that the
results they obtain differ substantially from ours. In particular, Agarwal and Studden’s optimal
estimator uses fewer knots than ours. From their equation (3·12), their optimal rate for K (n)
is K (n) ∼ n−1/(2p+3); note that their d is our p + 1. Thus, for piecewise-constant splines, their
optimal rate is K (n) ∼ n−1/3 while ours is K (n) ∼ n−γ for any γ > 2/5. For linear splines, their
optimal rate is K (n) ∼ n−1/5 while ours is K (n) ∼ n−γ for any γ > 1/5.

An asymptotic theory intermediate between ours and that in Agarwal & Studden (1980) would
select K (n) so that modelling and shrinkage biases are of the same order. For the case p = 0
and d = 1, this would require K (n) ∼ Cnγ with γ = 2/5 rather than γ > 2/5 as assumed in
Theorem 1. Asymptotics of this type would require new research and will not be pursued here. It
is not clear to us how valuable they would be from a practical standpoint.

It is interesting to compare penalized splines with local polynomial estimators. Local zero-
degree polynomials are Nadaraya–Watson estimators. Therefore, penalized splines with a penalty
of order 1 coincide with local polynomials with degree 0 and double-exponential kernels.

Penalized splines with m > 1 have different bias-order properties from those of local polyno-
mial estimators. As shown in Ruppert & Wand (1994), local polynomial smoothers of degree p
behave differently for p odd compared to p even. For p odd, they are of order p + 1 for all x . If
p is even, then the order is again p + 1 at the boundary but is of order p + 2 in the interior. Thus,
their bias orders at the interior and boundary are either identical or differ by 1. In contrast, the
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bias-orders at the interior and boundary of a penalized spline differ by m, at least if the heuristics
in § 5·1 are correct.

5·3. Choice of basis

We have worked with the B-spline bases advocated by Eilers & Marx (1996). However,
other bases are often used for penalized splines; for example, the truncated polynomials are
used extensively in Ruppert et al. (2003). Our results apply, of course, to an estimator defined
with other bases provided that this estimator is identical to one of the P-splines, penalized
B-spline, estimators studied here. This is often the case. As discussed in § 3·7·1 of Ruppert et al.
(2003), a penalized spline in one basis will be algebraically identical to a penalized spline in a
second basis, if the two bases span the same vector space of functions and if they use identical
penalties. For example, suppose we use a basis consisting of a constant function and the functions
I (x > κk), that is, step functions that jump from 0 to 1 at the knots. Then the spline model is
β0 + ∑K (n)

k=1 ak I (x > κk). Suppose as well that we use the penalty

λn

K (n)∑
k=1

a2
k , (29)

that is, the sum of squared jumps of the spline at the knots is penalized. Then this estimator is
the same as the P-spline with p = 0 and m = 1. Similarly, the truncated line model β0 + β1x +∑K (n)

k=1 ak(x − κk)+ with penalty (29) is identical to the P-spline model with p = 1 and m = 2.
In both cases, the model is piecewise linear and the penalty is on the sum of squared jumps in the
first derivative.

5·4. Penalizing derivatives

Smoothing splines put a penalty on the integral of the squared mth derivative of the regression
function, with m = 2 being the most common choice. Such penalties can be used on a penalized
spline, if p � m, by replacing the penalty in (1) by λ∗

n

∫ 1
0 {∑K (n)+p

j=1 b j (B[p]
j )(m)(x)}2dx , where

(B[p]
j )(m)(x) is the mth derivative of B[p]

j (x). If one changes to the derivative penalty, then
the only change in b̂ is that the matrix (Dm)′Dm in �[p,m]

n is replaced by M where Mi j =∫ 1
0 (B[p]

i )(m)(x)(B[p]
j )(m)(x)dx . Since M is a banded matrix with modified corners having the

same structure as (Dm)′Dm , a penalized spline with penalty on the mth derivative has the same
asymptotic behaviour as penalized splines with an mth-order difference penalty. In fact, for some
choices of p and m, such as m = p = 1, M is proportional to (Dm)′Dm , so, if the constant of
proportionality is absorbed into the penalty parameter, then the spline with the derivative penalty
is identical to the spline with the difference penalty.
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APPENDIX

Technical details

Proof of Theorem 1. Let xt = (2t − 1)/2K (n) be the midpoint of the t th bin, i.e., of [(t − 1)K (n)−1,

t K (n)−1]. Since γ > 2/5, the effect of binning is asymptotically negligible when the bandwidth is
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of the optimal order, n−1/5. To be specific, we have ȳt = f (xt ) + ε′ + o(n−2/5) with ε′ distributed as
N [0, {K (n)/n}σ 2(xt )]. Since xt − x j = (t − j)/K (n),

ρ|t− j |
n = exp

{−h−1n1/5
(
C−1n−γ |t − j |)} = exp

{−|xt − x j |(hn−1/5
)−1}

, (A1)

by (15) and (16). Thus, by (14), f̂n is asymptotically equivalent to the Nadaraya–Watson estimator with
kernel (17) and bandwidth

hn = hn−1/5. (A2)

Therefore, one can derive the asymptotic distribution of f̂n(x) using well-known techniques, for example
as in Wand & Jones (1995). �

Before proving Theorem 2, we need some preliminary results. Define

w(ξ ) = λn(1 − 4ξ + 6ξ 2 − 4ξ 3 + ξ 4) + ξ 2 = λn(1 − ξ )4 + ξ 2, λn > 0. (A3)

As discussed in § 2·2, the roots of w will be used to find a vector orthogonal to all columns of 
 except the
first and last two and the t th. Clearly, w has no real root. Also, if r is a root of w, so is r−1. Thus, for some
complex r , the four roots of w are r , conj(r ), r−1 and conj(r )−1, where conj(r ) is the complex conjugate of
r . By the following proposition, one of the roots r and r−1 is less than 1 in magnitude and we will denote
it by rn .

PROPOSITION A1. No root of w has modulus equal to 1.

Proof . Suppose there is a ξ such that w(ξ ) = 0 and ξ = exp(iθn). Here i = (−1)1/2. Note that ξ − 1 =
2 sin(θn/2) exp{(π/2 + θn/2)i}, so −λn(ξ − 1)4 = ξ 2 implies that

16λn sin4(θn/2) exp{(3π + 2θn)i} = exp(2iθn).

Comparing the real and imaginary parts on both sides, we have that 16λn sin4(θn/2) = −1. For any positive
λn , this is impossible, so that there will be no root with norm 1. �

Since |ρn| < 1, rn = ρn exp(iαn) for some ρn in (0, 1). Therefore, we have the following proposition.

PROPOSITION A2. Let cn and dn be the real and imaginary parts of rn − 4 + (6 + λ−1
n )rn − 4r2

n + r3
n ,

where r is defined as above. Let Tt = (Tt,1, . . . , Tt,K (n)) be defined by

Tt = dn �(
r t−1

n , r t−2
n , . . . , rn, 1, rn, . . . , r K (n)−t

n

)− cn 
(
r t−1

n , r t−2
n , . . . , rn, 1, rn, . . . , r K (n)−t

n

)
, (A4)

where � and 
 are the real and imaginary parts, respectively, and each ‘1’ is in the tth position. Then
(i) Tt is orthogonal to all columns of {IK (n) + λn(D2)′ D2} except the first two, the last two and the tth,

and
(ii) limK (n)→∞

∑K (n)
j=1 Tt, j ( j − t)k = 0, for k = 1, 2, 3.

Proof . The definition of Tt guarantees that it is orthogonal to the (t − 1)th and (t + 1)th columns
of 
 for any x . Since rn satisfies (1 − 4rn + 6r2

n − 4r3
n + r4

n ) + r2
n /λn = 0, any linear combination of

�(r t−1
n , r t−2

n , . . . , rn, 1, rn, r2
n , . . . , r K (n)−t

n ) and 
(r t−1
n , r t−2

n , . . . , rn, 1, rn, r2
n , . . . , r K (n)−t

n ) is orthogonal
to columns of 
 except for the first two, the last two, the (t − 1)th, the t th and the (t + 1)th. Combining
these two results, we obtain (i).

Note that the j th element of Tt is equal to the (2t − j)th. As a result of the symmetry, when K (n) is
large enough, result (ii) of the proposition holds for the cases k = 1, 3. It remains to prove this result for
k = 2. Note that

K (n)∑
j=t+1

r j−t
n ( j − t)2 =

K (n)−t∑
j=1

r j
n j2 ∼ − 2rn

(rn − 1)2

rn + 1

rn − 1
,

(cn + dn i)
rn

(rn − 1)2
= {

rn − 4 + (
6 + λ−1

n

)
rn − 4r2

n + r3
n

} rn

(rn − 1)2
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= r2
n − 1 + {

1 − 4rn + (
6 + λ−1

n

)
r2

n − 4r3
n + r4

n

}
(rn − 1)2

= rn + 1

rn − 1
.

Hence
K (n)∑

j=t+1

r j−t
n ( j − t)2 ∼ − 2rn

(rn − 1)2

{
(cn + dn i)

rn

(rn − 1)2

}
= (cn + dn i)

−2r2
n

(rn − 1)4
.

Since Tt, j = �{r j−t
n (dn + cn i)} for j > t ,

K (n)∑
j=t+1

Tt, j ( j − t)2 = �
⎧⎨⎩

K (n)∑
j=t+1

r j−t
n (dn + cn i)( j − t)2

⎫⎬⎭
∼ �

{
(cn + dn i)(dn + cn i)

−2r2
n

(rn − 1)4

}
= 0. �

Proof of Theorem 2. Since r = ρn exp(iαn), the equivalent kernel is proportional to the linear com-
bination of ρ| j−t |

n cos{( j − t)αn} and ρ| j−t |
n sin(| j − t |αn). Since K (n) ∼ Cnγ and γ > 4/9, we have

yt = f (x̄t ) + ε′ + O(n−γ ) = f (x̄t ) + ε′ + o(n−4/9), where ε′ is distributed N {0, (K (n)/n)σ 2(x̄t )}.
At the end of this proof, we show that, for h > 0 given in (21) and for some h′ > 0,

ρn = exp
{−(Ch)−1n1/9−γ

}
, αn = h′K (n)−1h−1n1/9, (A5)

provided that λn satisfies (21).
Then, since x̄t − x̄ j = (t − j)/K (n), ρ|t− j |

n = exp{−h−1n1/9(C−1n−γ |t − j |)} ∼ exp{−|x̄t − x̄ j |
(hn−1/9)−1}, and αn|t − j | = h′|x̄t − x̄ j |h−1n1/9. Hence f̂n(x) is equivalent to the Nadaraya–Watson
estimator with the kernel T (x) = L−1{d ′ e−|x | cos(h′x) − c′ e−|x | sin(h′|x |)}. Here L a normalizing factor.
The constants d ′ = ∫ ∞

0 x2 e−|x | sin(h′x) dx and c′ = ∫ ∞
0 x2 e−|x | cos(h′x) dx are determined by the van-

ishing second moment of the kernel; see point (ii) of Proposition 2. Using the indefinite integrals given by
results 7 and 8 on p. 198 of Gradshteyn & Ryzhik (1980), one can show that d ′ = −c′. This proves (22),
because at the end of this proof we show that h′ = 1.

Since the kernel T (x) is of the fourth order, we have

E f̂num(x) = 1

hn−4/9

∫ 1

0
T

(
x − s

hn−1/9

)
f (s)ds + O(K (n)−1)

= f (x) + h4n−4/9

24
f (4)(x)

∫
u4T (u)du + o

(
n−4/9

)
.

By standard arguments for kernel estimators, e.g. in Wand & Jones (1995), for any x ∈ (0, 1), we have
that n4/9{ f̂n(x) − f (x)} → N {B1(x),V1(x)}, in distribution, where B1(x) = 24−1h4 f (4)(x)

∫
x4T (x)dx

and V1(x) = h−1σ 2(x)
∫

T 2(x)dx .
We now show that (A5) holds if λn satisfies (21). First, note that rn satisfies r4

n − 4r3
n + (6 + 1/λn)r2

n −
4rn + 1 = 0. One possible solution for rn is

rn = 1 − 1
2 (−λn)−1/2 − 1

2

{−4(−λn)−1/2 − λ−1
n

}1/2

= 1 − 1
2E1(λn) + i

{− 1
2 (λn)−1/2 + 1

2E2(λn)
}

,

where

E1(λn) =
{

−λ−1
n + (

λ−2
n + 16λ−1

n

)1/2

2

}1/2

,

E2(λn) =
{

λ−1
n + (

λ−2
n + 16λ−1

n

)1/2

2

}1/2

.
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We assume that ρn is this solution. Hence

ρ2
n =

{
1 − 1

2
E1(λn)

}2

+
{

−1

2
λ−1/2

n + 1

2
E2(λn)

}2

= 1 +
(
λ−2

n + 16λ−1
n

)1/2

4
+ λ−1

n

4
− E1(λn) − λ−1

n {E2(λn)}−1

= 1 − 21/2λ−1/4
n + o

(
λ−1/4

n

)
,

2−1 log(ρ2
n ) = −2−1/2λ−1/4

n + o
(
λ−1/4

n

) = −(Ch)−1n1/9−γ . (A6)

Note that ρn → 1 and αn → 0, when λn → ∞. Thus ρn sin(αn) = (2)−1/2λ−1/4
n + o(λ−1/4

n ). Moreover,
αn ∼ (Ch)−1n1/9−γ and h′ ∼ αnhCnγ−1/9 = 1, so the kernel can be simplified to (22). �

In order to prove Theorem 3, we need the following result. We will consider the case of the left-hand
boundary only, since the right-hand boundary is similar.

PROPOSITION A3. Let 
 = {IK (n) + λn(D2)′ D2}. Suppose that t depends on n in such a way that
t/K (n) = x = cn−1/5 for some c � 0. As before, Tt is defined by (A4) where rn is a root of (A3) that has
magnitude less than 1. Also, γ > 2/5. Let St = (r t

n, r t+1
n , . . . , r K (n)+t−1

n ). Denote the tth element of Tt and St

by Tt, j and St, j respectively. Denote the tth column of the matrix 
 by 
·, t . Define ut,�′ = ∑K (n)
j=1 Tt, j
 j,�′ ,

vt,�′ = ∑K (n)
j=1 St, j
 j,�′ . Let

β I
t =

∣∣∣∣
(vt,2) ut,2


(vt,1) ut,1

∣∣∣∣ , β I I
t =

∣∣∣∣ ut,2 �(vt,2)
ut,1 �(vt,1)

∣∣∣∣ , β I I I
t =

∣∣∣∣�(vt,2) 
(vt,2)
�(vt,1) 
(vt,1)

∣∣∣∣ .

Define T ′
t = β I

t �(St ) + β I I
t 
(St ) + β I I I

t Tt . Then
(i) T ′

t is orthogonal to the columns of 
 except the last two and the tth, and

(ii) limK (n)→∞
∑K (n)

j=1 ( j − t)T ′
t, j = 0.

Proof . By part (i) of Proposition 2, T ′
t is orthogonal to all columns of 
, except possibly the first two,

the last two and the t th. Moreover, β I
t , β I I

t and β I I I
t have been chosen such that T ′

t is orthogonal to the first
two columns of 
. To see this, note that the inner product of T ′

t and 
·, j is {�(vt, j ) β I
t + 
(vt, j ) β I I

t +
ut, j β I I I

t }, and Cramer’s rule shows that(�(vt,1) 
(vt,1)
�(vt,2) 
(vt,2)

)(
β I

t /β I I I
t

β I I
t /β I I I

t

)
= −

(
ut,1

ut,2

)
.

Thus, (i) holds.
To save space, in the remainder of the proof ‘limK (n)→∞’ will be abbreviated to ‘lim’. By the definition

of β I
t , β I I

t and β I I I
t , to prove (ii) it is enough to show that∣∣∣∣∣∣

lim
∑K (n)

j=1 ( j − t)�(St, j ) lim
∑K (n)

j=1 ( j − t)
(St, j ) lim
∑K (n)

j=1 ( j − t)Tt, j

�(vt,2) 
(vt,2) ut,2

�(vt,1) 
(vt,1) ut,1

∣∣∣∣∣∣ = 0. (A7)

Equation (A7) holds if we can prove that(
lim

∑K (n)
j=1 ( j − t)St, j

lim
∑K (n)

j=1 ( j − t)Tt, j

)
= (−t + 1)

(
vt,1

ut,1

)
+ (−t + 2)

(
vt,2

ut,2

)
.

Take

lim
K (n)∑
j=1

( j − t)St, j = (−t + 1)vt,1 + (−t + 2)vt,2, (A8)
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as an example; the other equation can be proved similarly. Define W = [(1 − t) (2 − t) · · · {K (n) − t}]′,
and note that 
W = W . Hence

St 
W = St W =
K∑

j=1

( j − t)St, j . (A9)

The left-hand side of (A9) can also be rewritten as

K (n)∑
j=1

(−t + j)St
·, j = (−t + 1)v1,1 + (−t + 2)v1,2 +
K−2∑
j=3

(−t + j)St
·, j

+ λn

[{−t + K (n) − 1}St

(
0 · · · 0 1 − 4 5 + λ−1

n − 2
)′

+ {−t + K (n)}St

(
0 · · · 0 1 −2 1 + λ−1

n

)′]
.

Note that lim{−t + K (n) − 1}St (0 · · · 0 1 − 4 5 + λ−1
n − 2)′ = 0 and lim(−t + K )St (0 · · · 0 1 − 2 1 +

λ−1
n )′ = 0. Hence

lim
K (n)∑
j=1

( j − t)St, j = lim
K (n)∑
j=1

(−t + j)St
·, j = (−t + 1)v1,1 + (−t + 2)v1,2,

which proves (A8).
Let 
(t,·) be the t th row of 
−1. Since St
·,t = 0, when t/K (n) ∼ cn−1/5 for some c � 0 we have


(t,·) � T ′
t

/(
β I I I

t ut,t

) = (
β I

t �(St ) + β I I
t 
(St )

)/(
β I I I

t ut,t

) + Tt/ut,t

with the approximation errors converging to 0 exponentially fast.
When t/K (n) → x ∈ (0, 1), i.e., the nonboundary case, it follows from (i) of Proposition A2 that Tt/ut,t

is approximately 
(t,·).
Now we want to derive the equivalent kernel. From Proposition A3, we see that the equivalent boundary

kernel is proportional to a linear combination of �(St ), 
(St ) and Tt . First, we can show that Tt/ut,t is still
equivalent to the kernel defined in (22) with a new bandwidth hn = hn−1/5. From (A6), λn ∼ 4−1 K (n)4h4

n .
Let ρn and αn be chosen as

ρn = exp
{−(Ch)−1n1/5−γ

}
αn = h′K (n)−1h−1n1/5,

for some h > 0, h′ > 0.
Note that ρ2

n = 1 − 21/2λ−1/4
n + o(λ−1/4

n ) when λn → ∞, which was shown at the end of the proof of
Proposition A2, continues to hold. Hence h′ is still 1. Recall that x̄t − x̄ j = (t − j)/K (n). We can conclude
that Tt/ut,t is still equivalent to the kernel defined in (22) with a new bandwidth hn .

Note that −x̄t − x̄ j = −( j + t − 1)/K (n). Then �(St, j ) is proportional to exp(| − x̄t − x̄ j |/hn)
cos(| − x̄t − x̄ j |/hn) and 
(St, j ) is proportional to exp(−| − x̄t − x̄ j |/hn) sin(| − x̄t − x̄ j |/hn).

If we view −x̄t as a reflection of x̄t , then we can view the boundary kernel T ′(·, x) as a linear combination
of the nonboundary kernel T centred at x and two other kernels centred at the reflection point −x :

T ′(x ′, x) = T

(
x − x ′

�

)
+ k1 exp

(
− x + x ′

�

)
cos

(
x + x ′

�

)
+ k2 exp

(
− x + x ′

�

)
sin

(
x + x ′

�

)
,

(A10)

where k1 and k2 are chosen such that
∫ 1

−x/�
T ′(x ′, x)dx ′ = 1 and

∫ 1
−x/�

x ′T ′(x ′, x)dx ′ = 0. Note that the
choice of k1 and k2 is unique because the three functions are linearly independent.

Furthermore, we can compare with Silverman’s equivalent smoothing kernel. His kernel is also of second
order, implying that it is the same as ours, except for a scaling difference, which can be subsumed into the
equivalent bandwidth. Furthermore, when x = 0, the boundary kernel can also be simplified as T ′(x ′, 0) =
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2 exp(−x ′) cos(x ′). One proof is to show that �(1, r, r2, r3, . . . , r K (n)−1) is orthogonal to 
 except for
the first and the last two columns. We only need to show that �(1, r, r2, r3, . . . , r K (n)−1) is orthogonal
to 
·,2, i.e. �(−2λ + (5λ + 1)r − 4λr2 + λr3) = 0. Recall that �[r−1{λ − 4λr + (6λ + 1)r2 − 4λr3 +
λr4}] = 0. Therefore, we only need to show that �(−λ/r + 2λ − λr ) = 0. Since λ(r − 1)4 + r2 = 0,
�(−1/r − r + 2) = �{(1 − 1/r )(1 − r )} = �{−(1 − r )2/r} = 0. Note that T ′

1/u1,1 is approximately the
first row of 
−1. From above,

�(
1, r, r2, r3, . . . , r K (n)−1

)/(�(
1, r, r2, r3, . . . , r K (n)−1

)

·,1

)
,

with the approximation error converging exponentially fast to 0. �

Proof of Theorem 3. From Proposition A3, we see that the equivalent boundary kernel is proportional
to a linear combination of �(St ), 
(St ) and Tt and is, by (ii), of the second order. The kernel is given
by (A10). By using standard calculations for second-order kernels to calculate the bias and variance, we
obtain Theorem 3. �

Proof of Theorem 4. Let ρn be the root of the equation (6−1 − λn)x2 + (2/3 + λn)x + (6−1 − λn) = 0,

and Tt = (ρ t−1
n , ρ t−2

n , . . . , ρn, 1, ρn, ρ
2
n , . . . , ρK (n)−t

n )′, with the ‘1’ in the t th coordinate.
Similarly to the proof of Proposition A3, Tt is orthogonal to all columns of 
 except the first, the last,

and the t th. Consider the nonboundary case where t is not too close to 1 or K (n). This case also has
bt ∼ {∑K (n)

j=1 ρ|t− j |
n y j }{

∑K (n)
j=1 ρ|t− j |

n }−1. According to Hall & Wand (1996), we have ȳt = f (xt ) + ε′ +
O{K (n)−2} with ε′ ∼ N {0, K (n)/Nσ 2}. Compared to the zero-degree spline case, the bias due to binning
is reduced from K (n)−1 to K (n)−2. Hence, if K (n) ∼ Cnγ for some C > 0, then we only require γ > 1/5
instead of 2/5.

Similarly to previous arguments, suppose ρn = exp{−(Ch)−1n1/5−γ }, for some h > 0, where
ρn satisfies (6−1 − λn)x2 + (2/3 + 2λn)x + 6−1 − λn = 0. Since x̄t − x̄ j = (t − j)/K (n), ρ|t− j |

n =
exp{−h−1n1/5(C−1n−γ |t − j |)} ∼ exp{−|x̄t − x̄ j |/(hn−1/5)}, and hence we can use the exponential ker-
nel as the zero-degree case. Then the conclusion can be obtained by following the argument in § 2·3.

If λn → ∞, we can also obtain the optimal penalty. Since − log(ρn) = {(36λn + 3)1/2 − 3}(6λn − 1)−1

+ o(λ−1/2
n ) = C−1h−1n1/5−γ · An optimal choice is λn = C2h2n2γ−2/5. �

Proof of Theorem 5. The idea is similar to that in Stute (1984). We just give a brief outline here. First,
note that the estimator is

f̂ (x̄t ) = (K (n)hn−1/5)−1
∑K (n)

j=1 Yt H{(Gn(x̄t ) − Gn(x̄ j ))/(hn−1/5)}
(K (n)hn−1/5)−1

∑K (n)
j=1 H{(Gn(x̄t ) − Gn(x̄ j ))/(hn−1/5)}

. (A11)

The given choice of penalty yields to a bandwidth hn−1/5 and we still have that

{K (n)hn−1/5}−1
K (n)∑
j=1

H [{Gn(x̄t ) − Gn(x̄ j )}/(hn−1/5)] → 1

in probability. Hence we only need to consider the numerator of (A11), which will be denoted f̂num(x̄t ).
Since H is twice differentiable, Taylor expansion yields

f̂num(x̄t ) = (
hn−1/5

)−1
K∑

j=1

ȳ j H
[{G(x̄t ) − G(x̄ j )}/

(
hn−1/5

)]

+ (
hn−1/5

)−2
K∑

j=1

ȳ j {Gn(x̄t ) − Gn(x̄t ) − G(x̄ j ) + G(x̄ j )}H ′ [{G(x̄t ) − G(x̄ j )}
/(

hn−1/5
)]
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+ (
hn−1/5

)−3
K∑

j=1

ȳ j {Gn(x̄t ) − Gn(x̄t )−G(x̄ j ) + G(x̄ j )}2 H
′′[{G(x̄t ) − G(x̄ j )}

/(
hn−1/5

)]/
2

+ higher-order terms = I1 + I2 + I3 + I0.

First, we want to show that n2/5 I3 → 0 in probability as n → ∞.
Choose a constant C1 > 3/5. Partition I3 into two parts

I3 = I3χ|G(x̄t )−G(x)|�C1hn−1/5 log(n) + I3χ|G(x̄t )−G(x)|�C1hn−1/5 log(n) =: I31 + I32,

where χ is the indicator function. According to Stute (1982),

sup
x :|G(x̄t )−G(x)|�C1(hn−1/5) log(n)

n(
hn−1/5

)
log(n)

|Gn(x̄t ) − Gn(x) − G(x̄t ) + G(x)|2

is stochastically bounded. Notice that H ′′ is bounded,

K∑
j=1

|ȳ j |χ|G(x̄t )−G(x)|�C1hn−1/5 log(n) < ∞

in probability, so that n2/5 I31 = Op(n−1/5 log(n)).
Following the idea of Stute (1984), we can show that n2/5 I32 is asymptotically equivalent to

−n2/5(hn−1/5)−2 f (x̄t )W + Op{n2/5−C1 log2(n)}, where W is∫
|G(x̄t )−G(x)|�C1hn−1/5 log(n)

|Gn(x̄t ) − Gn(x) − G(x̄t ) + G(x)|H ′
{

G(x̄t ) − G(x)

hn−1/5

}
{Gn(dx) − G(dx)}.

Choose C1 > 3/5. Since W = Op(n−C1−1/5), we can also obtain n2/5 I32 = op(1). Therefore n2/5 I3 → 0
in probability as n → ∞ and n2/5 I0 is also negligible.

Secondly, n2/5 I2 is asymptotically equivalent to

− n2/5
(
hn−1/5

)−1
f (x̄t )

∫
H

{
G(x̄t ) − G(x)

hn−1/5

}
{Gn(dx) − G(dx)}. (A12)

Let

Z1
n = K (n)−1h−2

(
n−1/5

)−3/2
K (n)∑
i=1

{ȳ j − f (x̄ j )}{τn(x̄t ) − τn(x̄ j )}H ′
[

G(x̄t ) − G(x̄ j )

hn−1/5

]
,

where τn(x) = n1/2[Gn(x) − G(x)]. Then E{(Z1
n)2} → 0. Since Z1

n → 0 in probability, n2/5 I2 is asymp-
totically equivalent to

h−2
(
n−1/5

)−3/2
∫

f (x)[τn(x̄t ) − τn(x)]H ′
{

G(x̄t ) − G(x)

hn−1/5

}
G(dx).

Furthermore, let

Z2
n = h−2

(
n−1/5

)−3/2
∫

| f (x̄t ) − f (x)||τn(x̄t ) − τn(x)|
∣∣∣∣H ′

{
G(x̄t ) − G(x)

hn−1/5

}∣∣∣∣ G(dx).
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Then Z2
n → 0 in probability and hence n2/5 I2 is also asymptotically equivalent to

h−2
(
n−1/5

)−3/2
f (x̄t )

∫
{τn(x̄t ) − τn(x)}H ′

{
G(x̄t ) − G(x)

hn−1/5

}
G(dx)

= −h−2
(
n−1/5

)−3/2
f (x̄t )

∫
τn(x)H ′

{
G(x̄t ) − G(x)

hn−1/5

}
G(dx)

= − h−1
(
n−1/5

)−1/2
f (x̄t )

∫
H

{
G(x̄t ) − G(x)

hn−1/5

}
τn(dx).

Hence (A12) is valid.
Thirdly, let I4 denote n2/5{I1 − E f̂num(x̄t ) + I2}. Then I4 is a standardized sum of independent and

identically distributed random variables, with

var(I4) = h−1
(
hn−1/5

)−1
(∫

E
[{Y − f (x̄t )}2|x]H 2

{
G(x̄t ) − G(x)

hn−1/5

}
G(dx)

−
[∫

{ f (x) − f (x̄t )}H

{
G(x̄t ) − G(x)

hn−1/5

}
G(dx)

]2 )
→ h−1σ 2(x̄t )

∫
H 2(u)du = V(x̄t ).

Since E(Y 2+δ) < ∞, the Lindeberg condition is satisfied. Therefore, n2/5{ f̂num(x̄t ) − E f̂num(x̄t )} →
N {0,V(x̄t )}, in distribution.

For the bias, we have

E f̂num(x̄t ) − f (x̄t ) = hn−1/5
∫

{ f (x) − f (x̄t )}H

{
G(x) − G(x̄t )

hn−1/5

}
G(dx)

= (
hn−1/5

)2
( f ◦ G−1)(2){G(x̄t )}

∫
u2 H (u)du/2 = n−2/5B(x̄t ).

Hence, we can conclude that n2/5{ f̂ (x̄t ) − f (x̄t )} → N {B(x̄t ),V(x̄t )}, in distribution. �
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