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Let Ω ⊂ R2 be a domain having a compact boundary Σ which is Lipschitz and piecewise C4 smooth, and let ν

denote the inward unit normal vector on Σ. We study the principal eigenvalue E(β) of the Laplacian in Ω with

the Robin boundary conditions ∂f/∂ν + βf = 0 on Σ, where β is a positive number. Assuming that Σ has no

convex corners, we show the estimate E(β) = −β2 − γmaxβ + O
(
β

2
3

)
as β → +∞, where γmax is the maximal

curvature of the boundary.
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1. Introduction

Let Ω ⊂ R2 be an open connected set having a compact Lipschitz piecewise smooth
boundary Σ. For β > 0 consider the operator Hβ which is the Laplacian f 7→ −∆f with the
Robin boundary conditions,

∂f

∂ν
+ βf = 0 on Σ,

where ν is the inward unit normal vector. More precisely, Hβ is the self-adjoint operator in
L2(Ω) associated with the sesquilinear form

hβ(f, g) =

∫∫
Ω

∇f∇g dx− β
∫

Σ

f g dσ, domhβ = H1(Ω); (1)

here σ denotes the one-dimensional Hausdorff measure on Σ. The operator Hβ is semibounded
from below. If Ω is bounded, then Hβ has a compact resolvent, and we denote by Ej(β),
j ∈ N, its eigenvalues taken according to their multiplicities and enumerated in the non-
decreasing order. If Ω is unbounded, then the essential spectrum of Hβ coincides with [0,+∞),
and the discrete spectrum consists of a finite number of eigenvalues, which we denote again by
Ej(β), j ∈ {1, . . . , Nβ}, and enumerate them in the non-decreasing order taking into account
the multiplicities. In the both cases, the principal eigenvalue E(β) := E1(β) may be defined
through the Rayleigh quotients

E(β) = inf
06=f∈domhβ

hβ(f, f)

‖f‖2
L2(Ω)

.

It is easy to check that E(β) < 0: for bounded Ω one can test on f = 1, and for unbounded Ω,
one may use f(x) = exp

(
− |x|α/2

)
with small α > 0.

The study of the principal eigenvalue arises in several applications: work [1] discusses
the stochastic meaning of the Robin eigenvalues, paper [2] shows that the eigenvalue problem
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appears in the study of long-time dynamics related to some reaction-diffusion processes, and a
discussion of an interplay between the eigenvalues and the estimate of the critical temperature
in a problem of superconductivity may be found in [3].

In the present note, we are interested in the asymptotic behavior of E(β) for large
values of β. For bounded Ω, this question was already addressed in numerous papers. It was
conjectured and partially proven in [2] that one has the asymptotics

E(β) = −CΩβ
2 + o(β2) as β → +∞, (2)

for some constant CΩ > 0. It seems that the paper [4] contains the first rigorous proof
of the above equality for the case of a C1 smooth Σ, and in that case one has CΩ = 1,
as predicted in [2]. Under the same assumption, it was shown in [5] that the asymptotics
Ej(β) = −β2 + o(β2), β → +∞, hold for any fixed j ∈ N. The paper [6] proved the
asymptotics (2) for domains whose boundary is C∞ smooth with the possible exception of a
finite number of corners. If the corner opening angles are αj ∈ (0, π)∪(π, 2π), j = 1, . . . ,m,
and θ := minαj/2, then CΩ = (sin θ)−2 if θ < π/2, otherwise CΩ = 1. We remark that
the paper [6] formally deals with bounded domains, but the proofs can be easily adapted to
unbounded domains with compact boundaries. It should pointed out that domains with cusps
need a specific consideration, and the results are different [6, 7]. Various generalizations of the
above results and some related questions concerning the spectral theory of the Robin Laplacians
were discussed in [7–12]. The aim of the present note is to refine the asymptotics (2) for a
class of two-dimensional domains. More precisely, we calculate the next term in the asymptotic
expansion for piecewise C4 smooth domains whose boundary has no convex corners, i.e. we
assume that either the boundary is smooth or that all corner opening angles are larger than π;
due to the above cited result of [6] we have CΩ = 1 in the both cases.

Let us formulate the assumptions and the result more carefully. Let Σk, k = 1, . . . , n, be
non-intersecting C4 smooth connected components of the boundary Σ such that Σ =

⋃n
k=1 Σk.

Denote by `k the length of Σk and consider a parametrization of the closure Σk by the arc
length, i.e. let [0, `k] 3 s 7→ Γk(s) ≡

(
Γk,1(s),Γk,2(s)

)
∈ Σk be a bijection with |Γ′k| = 1, such

that Γk ∈ C4
(
[0, `k], R2

)
, and we assume that the orientation of each Γk is chosen in such a

way that νk(s) :=
(
−Γ′k,2(s),Γ′k,1(s)

)
is the inward unit normal vector at the point Γk(s) of the

boundary. If two components Σj , Σk meet at some point P := Γj(`j) = Γk(0), then two options
are allowed: either Σj ∪ Σk is C4 smooth near P or the corner opening angle at P measured
inside Ω belongs to (π, 2π).

We denote by γk(s) the signed curvature of the boundary at the point Γk(s) and let γmax

denote its global maximum:

γk(s) := Γ′k,1(s)Γ′′k,2(s)− Γ′′k,1(s)Γ′k,2(s), γmax := max
k∈{1,...,n}

max
s∈[0,`k]

γk(s);

note that the decomposition of the boundary Σ into the pieces Σk is non-unique, but the value
γmax is uniquely determined. Our result is as follows:

Theorem 1. Under the preceding assumptions there holds

E(β) = −β2 − γmaxβ +O
(
β

2
3

)
as β → +∞.

We believe that it is hard to improve the asymptotics without any additional information
on the set at which the curvature attains its maximal value. For example, one may expect that
the case of a curvature having isolated maxima and the case of a piecewise constant curvature
should give different resolutions of the remainder, and we hope to progress in this direction in
subsequent works.
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At first sight, the Robin eigenvalue problem may look rather similar to the eigenvalue
problem for δ-potentials supported by curves, see e.g. [13–15]. This first impression is wrong,
and the result of Theorem 1 concerning the secondary asymptotic term is very different from the
one obtained in the papers [13,14] for strong δ-potentials; nevertheless, a part of the machinery
of [13] plays an important role in our considerations. On the other hand, the asymptotic
behavior of the principal Robin eigenvalue shows some analogy with the lowest eigenvalue of
the Neumann magnetic Laplacian studied in the theory of superconductivity [16–18].

2. Dirichlet-Neumann bracketing on thin strips

In this section we introduce and study an auxiliary eigenvalue problem, and the results
obtained will be used in the next section to prove theorem 1.

Let ` > 0 and let Γ : [0, `] → R2, s 7→ Γ(s) =
(
Γ1(s),Γ2(s)

)
∈ R2, be an injective C4

map such that
∣∣Γ′(s)∣∣ = 1 for all s ∈ (0, `). We denote

S := Γ
(
(0, `)

)
, κ(s) := Γ′1(s)Γ′′2(s)− Γ′′1(s)Γ′2(s), κmax := max

s∈[0,`]
κ(s),

K := max
s∈[0,`]

∣∣κ(s)
∣∣+ max

s∈[0,`]

∣∣κ′(s)∣∣+ max
s∈[0,`]

∣∣κ′′(s)∣∣.
Due to κ ∈ C2

(
[0, `]

)
, the above quantity K is finite.

For a > 0, consider the map

Φa : (0, `)× (0, a)→ R2, Φa(s, u) =

(
Γ1(s)− uΓ′2(s)

Γ2(s) + uΓ′1(s)

)
.

As shown in [13, Lemma 2.1], for any a ∈ (0, a0), a0 := (2K)−1, the map Φa defines a
diffeomorphism between the domains �a := (0, `)× (0, a) and Ωa := Φa(�a). In what follows,
we always assume that a ∈ (0, a0) and we will work with the usual Sobolev space H1(Ωa) and
its part H̃1

0 (Ωa) :=
{
f ∈ H1(Ωa) : fd∂Ωa\S = 0

}
; here the symbol d means the trace of the

function on the indicated part of the boundary.
Here, we introduce two sesquilinear forms in L2(Ωa). The first one, hN,aβ , is defined on

domhN,aβ := H1(Ωa) by the expression

hN,aβ (f, g) =

∫∫
Ωa

∇f∇g dx− β
∫
S

fg dσ,

and the second one, hD,aβ , is its restriction to domhD,aβ := H̃1
0 (Ωa). Both forms are densely

defined, symmetric, closed and semibounded from below, and we denote

EN/D(β, a) = inf
06=f∈domh

N/D,a
β

h
N/D,a
β (f, f)

‖f‖2
L2(Ωa)

. (3)

We show the following results:

Lemma 2. There exists a1 > 0 such that for any a ∈ (0, a1) one has the estimate
EN/D(β, a) = −β2 − κmaxβ +O(β

2
3 ) as β → +∞.

The rest of this section is devoted to the proof of lemma 2. We first introduce a
suitable decomposition of Ωa and then provide two-side eigenvalue estimates using operators
with separated variables.
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Define Ua : L2(Ωa) → L2(�a) by
(
Uaf

)
(s, u) =

√
1− uκ(s)f

(
Φa(s, u)

)
. Clearly, Ua

is a unitary operator, and one has Ua
(
H1(Ωa)

)
= H1(�a) and

Ua
(
H̃1

0 (Ωa)
)

= H̃1
0 (�a) :=

{
f ∈ H1(�a) : f(0, ·) = f(`, ·) = 0 and f(·, a) = 0

}
,

where the restrictions should be again understood as the traces. Using integration by parts, one
may easily check that for any f, g ∈ H1(Ωa), one has hN,aβ (f, g) = qN,aβ (Uaf, Uag), where the

form qN,aβ is defined on the domain dom qN,aβ := H1(�a) by the expression

qN,aβ (f, g) =

∫∫
�a

1(
1− uκ(s)

)2

∂f

∂s

∂g

∂s
ds du+

∫∫
�a

∂f

∂u

∂g

∂u
ds du

−
∫∫

�a

V (s, u)f g ds du− β
∫ `

0

f(s, 0)g(s, 0) ds

− 1

2

∫ `

0

κ(s) f(s, 0)g(s, 0) ds+
1

2

∫ `

0

κ(s)

1− aκ(s)
f(s, a)g(s, a) ds

+
1

2
κ′(`)

∫ a

0

u(
1− uκ(`)

)3 f(`, u)g(`, u) du

− 1

2
κ′(0)

∫ a

0

u(
1− uκ(0)

)3 f(0, u)g(0, u) du

(4)

with

V (s, u) :=
uκ′′(s)

2
(
1− uκ(s)

)3 +
5u2κ′(s)2

4
(
1− uκ(s)

)4 +
κ(s)2

4
(
1− uκ(s)

)2 .

Similarly, for any f, g ∈ H̃1
0 (Ωa), one has hD,aβ (f, g) = qD,aβ (Uaf, Uag), where qD,aβ is the

restriction of qN,aβ to the domain dom qD,aβ := H̃1
0 (�a); note that for f, g ∈ dom qD,aβ the three

last terms on the right-hand side of (4) vanish. Using the unitarity of Ua we may rewrite the
equalities (3) in the form:

EN/D(β, a) = inf
0 6=f∈dom q

N/D,a
β

q
N/D,a
β (f, f)

‖f‖2
L2(�a)

. (5)

We would like to reduce the estimation of these quantities to the study of the eigenvalues of
certain one-dimensional operators.

Using the one-dimensional Sobolev inequality on (0, `) we see that one can find a
constant C > 0 independent of a, such that for all f ∈ H1(�a), one has∫ a

0

∣∣f(0, u)
∣∣2 du+

∫ a

0

∣∣f(`, u)
∣∣2 du ≤ C

(∫∫
�a

∣∣∣∂f
∂s

∣∣∣2ds du+

∫∫
�a

|f |2ds du
)
.

One can also find a constant v > 0, such that
∣∣V (s, u)

∣∣ ≤ v for all (s, u) ∈ �a and all
a ∈ (0, a0). Furthermore, again for (s, u) ∈ �a and any a ∈ (0, a0), we have∣∣∣ κ(s)

1− aκ(s)

∣∣∣ ≤ 2K,
2

3
≤ 1

1− uκ(s)
≤ 2.
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For any M ∈ N, we denote

δ :=
`

M
, IjM := (jδ − δ, jδ), �j

a,M := IjM × (0, a),

κ−M,j := inf
s∈IjM

κ(s), κ+
M,j := sup

s∈IjM

κ(s), j = 1, . . . ,M,

and introduce functions κ±M : (0, `)→ R as follows: κ±M(s) := κ±M,j if s ∈ IjM , and κ±M(jδ) := 0

for j = 1, . . . ,M − 1. In addition, we assume that 0 < a < (10KC)−1. Now, we introduce two
new sesquilinear forms which will be used to obtain a two-side estimate for EN/D(β, a). The
first one, t−,M,a

β , is defined by

dom t−,M,a
β = H1

( M⋃
j=1

�j
a,M

)
'

M⊕
j=1

H1
(
�j
a,M

)
,

t−,M,a
β (f, g) =

(4

9
− 4aKC)

∫∫
�a

∂f

∂s

∂g

∂s
ds du+

∫∫
�a

∂f

∂u

∂g

∂u
ds du

− (v + 4aKC)

∫∫
�a

fg ds du−
∫ `

0

(
β +

κ+
M(s)

2

)
f(s, 0)g(s, 0) ds

−K
∫ `

0

f(s, a)g(s, a) ds.

The second one, t+,M,a
β , is defined on the domain dom t+,M,a

β =
⊕M

j=1 H̃
1
0 (�j

a,M),

H̃1
0 (�j

a,M) :=
{
f ∈ H1(�j

a,M) : f(jδ − δ, ·) = f(jδ, ·) = 0 and f(·, a) = 0
}
,

through

t+,M,a
β (f, g) = 4

∫∫
�a

∂f

∂s

∂g

∂s
ds du+

∫∫
�a

∂f

∂u

∂g

∂u
ds du

+ v

∫∫
�a

fg ds du−
∫ `

0

(
β +

κ−M(s)

2

)
f(s, 0)g(s, 0) ds.

One clearly has the inclusions dom t+,M,a
β ⊂ dom qD,aβ ⊂ dom qN,aβ ⊂ dom t−,M,a

β and the in-
equalities

t−,M,a
β (f, f) ≤ qN,aβ (f, f), f ∈ dom qN,aβ ,

qN,aβ (f, f) = qD,aβ (f, f), f ∈ dom qD,aβ ,

qD,aβ (f, f) ≤ t+,M,a
β (f, f), f ∈ dom t+,M,a

β ,

which justify the estimates

E−M(β, a) ≤ EN(β, a) ≤ ED(β, a) ≤ E+
M(β, a), (6)

where we denote

E±M(β, a) := inf
06=f∈dom t±,M,aβ

t±,M,a
β (f, f)

‖f‖2
L2(�a)

.

Now, we are going to estimate E±M(β, a) using separation of variables. Note that the forms
t±,M,a
β are densely defined, semibounded from below and closed in L2(�a), therefore, they

define some self-adjoint operators T±,M,a
β in L2(�a), and E±M(β, a) = inf specT±,M,a

β . On the
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other hand, due to the fact that the domains �j
a,M are disjoint and isometric to one another , we

can identify T±,M,a
β '

⊕M
j=1 T

±,M,a
β,j , where T±,M,a

β,j are self-adjoint operators acting in L2(�δ,a),

�δ,a := (0, δ)× (0, a), and associated respectively with the sesqulinear forms t±,M,a
β,j ,

t−,M,a
β,j (f, g) =

(4

9
− 4aKC)

∫ δ

0

∫ a

0

∂f

∂s

∂g

∂s
du ds+

∫ δ

0

∫ a

0

∂f

∂u

∂g

∂u
du ds

− (v + 4aKC)

∫ δ

0

∫ a

0

fg du ds−
(
β +

κ+
M,j

2

)∫ δ

0

f(s, 0)g(s, 0) ds

−K
∫ δ

0

f(s, a)g(s, a) ds, dom t−,M,a
β,j = H1(�δ,a),

t+,M,a
β,j (f, g) = 4

∫ δ

0

∫ a

0

∂f

∂s

∂g

∂s
du ds+

∫ δ

0

∫ a

0

∂f

∂u

∂g

∂u
du ds

+ v

∫ δ

0

∫ a

0

fg du ds−
(
β +

κ−M,j

2

) ∫ δ

0

f(s, 0)g(s, 0) ds,

dom t+,M,a
β,j =

{
f ∈ H1(�δ,a) : f(0, ·) = f(δ, ·) = 0 and f(·, a) = 0

}
.

It is routine to check that T±,M,a
β,j = Q±M ⊗ 1 + 1⊗ L±,jβ,a , where Q±M are the operators acting in

L2(0, δ) as follows:

Q−Mf = −
(

4

9
− 4aKC

)
f ′′ − (v + 4aKC) f,

domQ−M =
{
f ∈ H2(0, δ) : f ′(0) = f ′(δ) = 0

}
,

Q+
Mf = −4f ′′ + vf,

domQ−M =
{
f ∈ H2(0, δ) : f(0) = f(δ) = 0

}
,

and L±,jβ,a are the self-adjoint operators in L2(0, a) both acting as L±,jβ,af = −f ′′ on the domains

domL−,jβ,a =
{
f ∈ H2(0, a) : f ′(0) +

(
β +

κ+
M,j

2

)
f(0) = 0, f ′(a)−Kf(a) = 0

}
,

domL+,j
β,a =

{
f ∈ H2(0, a) : f ′(0) +

(
β +

κ−M,j

2

)
f(0) = 0, f(a) = 0

}
.

The spectra of Q±M can be calculated explicitly; in particular, one has

inf specQ−M = −v − 4aKC, inf specQ+
M =

4π2

δ2
+ v ≡ 4π2M2

`2
+ v.

Therefore, denoting E±,j(β, a) := inf specL±,jβ,a , we arrive at

E−M(β, a) = min
j

(
inf specT−,M,a

β,j

)
= −v − 4aKC + min

j
E−,j(β, a),

E+
M(β, a) = min

j

(
inf specT+,M,a

β,j

)
=

4π2M2

`2
+ v + min

j
E+,j(β, a).

(7)

To study the lowest eigenvalues of L±,jβ,a , we prove two auxiliary estimates.

Lemma 3. For a, β, γ > 0, let Λa,β,γ denote the self-adjoint operator in L2(0, a) acting as
f 7→ −f ′′ on the functions f ∈ H2(0, a) satisfying the boundary conditions



480 Konstantin Pankrashkin

f ′(0) + βf(0) = f ′(a)− γf(a) = 0, and let E(a, β, γ) be its lowest eigenvalue. Let β > 2γ
and βa > 1, then β2 < −E(a, β, γ) < β2 + 123β2e−2βa.

Proof. Let k > 0. Clearly, E = −k2 is an eigenvalue of Λa,β,γ if one can find
(C1, C2) ∈ C2 \

{
(0, 0)

}
such that the function f : x 7→ C1e

kx + C2e
−kx belongs to the do-

main of Λa,β,γ . The boundary conditions give

0 = f ′(0) + βf(0) = (β + k)C1 + (β − k)C2,

0 = f ′(a)− γf(a) = (k − γ)ekaC1 − (k + γ)e−kaC2,

and one has a non-zero solution if the determinant of this system vanishes, i.e. if k satisfies the
equation (k + β)(k + γ)e−ka = (k − β)(k − γ)eka. Let us look for solutions k ∈ (β,+∞). One
may rewrite the preceding equation as

g(k) = h(k), g(k) =
k + β

k − β
, h(k) =

k − γ
k + γ

e2ka. (8)

Both functions g and h are continuous. It is readily seen that the function g is strictly decreasing
on (β,+∞) with g(β+) = +∞ and g(+∞)=1. Conversely, for β > 2γ, the function h is
strictly increasing in (β,+∞), being the product of two strictly increasing positive functions,
and we have h(β+) = e2βa(β − γ)/(β + γ) < +∞ and h(+∞) = +∞. These properties of
g and h show that there exists a unique solution k = k(a, β, γ) ∈ (β,+∞) of (8) and that
E(a, β, γ) = −k(a, β, γ)2.

To obtain the required estimate we use again the monotonicity of h on (β,+∞) and the
inequality β > 2γ. We have

k + β

k − β
= g(k) = h(k) > h(β+) =

β − γ
β + γ

e2βa ≥ e2βa

3
,

which gives (1 − 3e−2βa)k < (1 + 3e−2βa)β. The assumption βa > 1 gives the inequality
3e−2βa < 1/2, and we arrive at

k <
1 + 3e−2βa

1− 3e−2βa
β < (1 + 3e−2βa)(1 + 15e−2βa)β < (1 + 41e−2βa)β

and k2 < (1 + 41e−2βa)2β2 < (1 + 123e−2βa)β2. Together with the inclusion k ∈ (β,+∞) this
gives the result. �

Lemma 4. For a, β > 0, let Πa,β denote the self-adjoint operator in L2(0, a) acting as
f 7→ −f ′′ on the functions f ∈ H2(0, a) satisfying the boundary conditions
f ′(0) + βf(0) = f(a) = 0, and let E(a, β) be its lowest eigenvalue. Assume that βa > 4/3,
then β2 − 4β2e−βa < −E(a, β) < β2.

Proof. Let k > 0. Proceeding as in the proof of lemma 3, we see that E = −k2 is an
eigenvalue of Πa,β if k satisfies the equation (β + k)e−ka = (β − k)eka. As the left sideof
the equation is strictly positive, the right side must be positive as well, which means that
all solutions k belong to (0, β). Let us rewrite the equation in the form g(k) = 0 with
g(k) := log(β + k)− log(β − k)− 2ka. One has g(0) = 0, the function g is strictly de-
creasing in (0, k0) and strictly increasing in (k0, β), with k0 :=

√
β2 − β/a. Moreover,

g(β−) = +∞. Therefore, the equation g(k) = 0 has a unique solution in (k0, β). It fol-
lows from the assumption βa > 4/3 that k0 > β/2, and we can represent k = β − s
with some s ∈ (0, β/2). Using again the condition g(k) = 0, we arrive at the inequality
log s = log(2β − s)− 2βa+ 2sa < log(2β)− βa, which gives s < 2βe−βa and
k = β − s > β(1− 2e−βa). Finally, −E(a, β) = k2 > β2(1− 2e−βa)2 > β2(1− 4e−βa). To-
gether with the first inequality k < β this gives the desired estimate . �
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Let us complete the proof of lemma 2. Denote a1 := min
{
a0, (10KC)−1

}
and pick any

a ∈ (0, a1), and let β > 3K + 1 + 4/(3a). Applying lemma 3 to each of the operators L−,jβ,a and

lemma 4 to each of the operators L+,j
β,a , we arrive at the estimates

E−,j(β, a) > −
(
β +

κ+
M,j

2

)2

− 123
(
β +

κ+
M,j

2

)2

exp

[
− 2a

(
β +

κ+
M,j

2

)]
,

E+,j(β, a) < −
(
β +

κ−M,j

2

)2

+ 4
(
β +

κ−M,j

2

)2

exp

[
− a
(
β +

κ−M,j

2

)]
.

To simplify the form of the remainders, we choose βa > 0 sufficiently large such that for β > βa
we have (

β +
K

2

)2

exp

[
− 2a

(
β − K

2

)]
+ 4
(
β +

K

2

)2

exp

[
− a
(
β − K

2

)]
≤ 1

β
,

then for β > βa + 3K + 1 + 4/(3a) and all j = 1, . . . ,M , we have

E−,j(β, a) > −β2 − κ+
M,jβ −

K2

4
− 1

β
, E+,j(β, a) < −β2 − κ−M,jβ +

1

β
.

Using the inequality κ+
M,j ≤ κmax, we obtain

min
j
E−,j(β, a) > −β2 − κmaxβ −

K2

4
− 1

β
. (9)

Conversely, let l ∈ {1, . . . ,M} be such that κ+
M,l = κmax. This means that there exists s ∈ I lM

such that κ(s) = κmax. Using the Taylor expansion near s, we obtain

κ−M,l ≥ κ+
M,l −Kδ = κmax −Kδ ≡ κmax −

K`

M
. (10)

In the previous considerations the number M was arbitrary, and now we pick M ∈
[
β

1
3 , 2β

1
3

]
∩N,

then

min
j
E+,j(β, a) ≤ E+,l(β, a) < −β2 − κ−M,lβ +

1

β

= −β2 − κmaxβ +
K`

M
β +

1

β
≤ −β2 − κmaxβ +K`β

2
3 +

1

β
. (11)

Substituting the estimates (9) and (11) into (7) we arrive at

E+
M(β, a) ≤ −β2 − κmaxβ +K`β

2
3 +

1

β
+

4π2M2

`2
+ v

= −β2 − κmaxβ +
(
K`+

16π2

`2

)
β

2
3 + v +

1

β
,

E−M(β, a) ≥ −β2 − κmaxβ −
K2

4
− v − 4aKC − 1

β
,

and the assertion of lemma 2 follows from the two-side estimates (6) .
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3. Proof of Theorem 1

We continue using the notation introduced just before theorem 1. For a > 0, consider
the maps

Φk,a : (0, `k)× (0, a)→ R2, Φk,a(s, u) =

(
Γk,1(s)− uΓ′k,2(s)

Γk,2(s) + uΓ′k,1(s)

)
, k = 1, . . . , n.

As in section 2, we can find a0 > 0 such that for any a ∈ (0, a0) these maps are diffeo-
morphic between �k,a := (0, `k) × (0, a) and Ωk,a := Φk,a(�k,a), that Ωk,a ⊂ Ω, and that
Ωj,a ∩ Ωk,a = ∅ for j 6= k. Note that the last property follows from the fact that the opening

angles of the boundary corners (if any) are reflex. In addition, we set Ω0,a := Ω \
(⋃n

k=1 Ωk,a

)
.

Denote H̃1
0 (Ωk,a) :=

{
f ∈ H1(Ωk,a) : fd∂Ωk,a\Σk = 0

}
, k = 1, . . . , n, and introduce two new

sesquilinear forms hN/D,aβ in L2(Ω), both defined by the same expression as hβ on the domains

domhN,aβ =
n⊕
k=0

H1(Ωk,a), domhD,aβ = H1
0 (Ω0,a)∪

( n⊕
k=1

H̃1
0 (Ωk,a)

)
,

and define

EN/D(β, a) := inf
06=f∈domh

N/D,a
β

h
N/D,a
β (f, f)

‖f‖2
L2(Ω)

.

Due to the inclusions domhD,aβ ⊂ domhβ ⊂ domhN,aβ , we have the inequalities

EN(β, a) ≤ E(β) ≤ ED(β, a). (12)

Furthermore, due to the fact that the parts Ωk,a are disjoint and that the set Σ∩ ∂Ω0,a is finite
(this is exactly the set of the corners), we have the equality EN/D(β, a) = mink∈{0,...,n}Ek,N/D(β, a),
with

E0,N(β, a) := inf
06=f∈H1(Ω0,a)

‖∇f‖2
L2(Ω0,a)

‖f‖2
L2(Ω0,a)

,

Ek,N(β, a) := inf
0 6=f∈H1(Ωk,a)

‖∇f‖2
L2(Ωk,a) − β‖f‖2

L2(Σk)

‖f‖2
L2(Ωk,a)

, k = 1, . . . , n,

E0,D(β, a) = inf
06=f∈H1

0 (Ω0,a)

‖∇f‖2
L2(Ω0,a)

‖f‖2
L2(Ω0,a)

,

Ek,D(β, a) := inf
0 6=f∈H̃1

0 (Ωk,a)

‖∇f‖2
L2(Ωk,a) − β‖f‖2

L2(Σk)

‖f‖2
L2(Ωk,a)

, k = 1, . . . , n.

We have clearly E0,N/D(β, a) ≥ 0. Furthermore, in virtue of lemma 2 we can find a > 0 such
that for each k ∈ {1, . . . , n} for β → +∞ we have

Ek,N/D(β, a) = −β2 − γk,maxβ +O
(
β

2
3

)
, γk,max := max

s∈[0,`k]
γk(s),

which gives EN/D(β, a) = −β2− γmaxβ +O
(
β

2
3

)
, and the assertion of theorem 1 follows from

the two-side estimate (12).

Remark 5. A more detailed asymptotic analysis is beyond the scope of the present note, but
we mention one case in which the remainder estimate can be slightly improved with minimal
efforts. Namely, assume that one of the following conditions is satisfied:
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• the boundary Σ is of class C4 (i.e. there are no corners),
• the curvature does not attain its maximal value γmax at the corners,

then
E(β) = −β2 − γmaxβ +O

(√
β
)

as β → +∞. (13)
Indeed, let us pick any k ∈ {1, . . . , n} such that γk,max = γmax and revise the proof of lemma 2
with Γ := Γk, κ := γk and ` := `k. For any s ∈ [0, `] with κ(s) = κmax we have then κ′(s) = 0,
and we may replace the inequality (10) with

κ−M,l ≥ κ+
M,l −Kδ

2 = κmax −Kδ2 ≡ κmax −
K`2

M2
,

and by choosing M ∈
[

4
√
β, 2 4

√
β
]
∩N we arrive at the estimate

EN/D(β, a) = −β2 − κmaxβ + O(
√
β ) as β → +∞, which in turn gives the asymptotics

(13).
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